WorldWideScience

Sample records for drug toxicity

  1. Toxicity studies of drugs and chemicals in animals: An overview

    Directory of Open Access Journals (Sweden)

    S. Saganuwan

    2017-12-01

    Full Text Available Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50 first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety as-sessment of drugs and chemicals, LD50 values are no longer used. In view of this, literature search was carried out with a view to investigating the relevance of LD50 in development and assessment of drugs and chemicals. The findings revealed that in the past, many animals had been used for LD50 determination. OECD has reduced the number of test animals to 5–15 and presently it is further re-duced to 2–6. Acute toxicity study is being carried out in medicinal plants research and in the study of patent medicine. Although the application of LD50 has been drastically reduced, it is still applied and accepted in some parts of the world. Moreover, animals on which LD50 tests are conducted, should be allowed to die to see the end effect of the test drug or chemical because euthanisia of test animals may mask some toxicity signs of the test agents. Therefore, toxicity study of drugs and chemicals is a sci-entific process necessary for discovery and development of drugs as well as identification of potential toxicants.

  2. Mechanisms of reduction of antitumor drug toxicity by liposome encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Y. E.; Hanson, W. R.; Bharucha, J.; Ainsworth, E. J.; Jaroslow, B.

    1977-01-01

    The antitumor drug Actinomycin D is effective against the growth of some human solid tumors but its use is limited by its extreme toxicity. The development of a method of administering Act. D to reduce its systemic toxicity by incorporating the drug within liposomes reduced its toxicity but its tumoricidal activity was retained.

  3. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  4. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Science.gov (United States)

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  5. The Role of Therapeutic Drugs on Acquired Mitochondrial Toxicity.

    Science.gov (United States)

    Morén, Constanza; Juárez-Flores, Diana Luz; Cardellach, Francesc; Garrabou, Glòria

    2016-01-01

    Certain therapeutic drugs used in medical practice may trigger mitochondrial toxicity leading to a wide range of clinical symptoms including deafness, neuropathy, myopathy, hyperlactatemia, lactic acidosis, pancreatitis and lipodystrophy, among others, which could even compromise the life of the patient. The aim of this work is to review the potential mitochondrial toxicity derived from drugs used in health care, including anesthetics, antiepileptics, neuroleptics, antidepressants, antivirals, antibiotics, antifungals, antimalarics, antineoplastics, antidiabetics, hypolipemiants, antiarrhythmics, anti-inflammatories and nitric oxide. We herein have reviewed data from experimental and clinical studies to document the molecular mitochondrial basis, potential biomarkers and putative clinical symptoms associated to secondary effects of drugs. One hundred and forty-five articles were selected and the information was organized by means of the primary target to which pharmacologic drugs were directed. Adverse toxic events were classified depending on the mitochondrial offtarget effect and whether they had been demonstrated in the experimental or clinical setting. Since treatment of acquired mitochondriopathies remains supportive and therapeutic interventions cannot be avoided, information of molecular and clinical consequences of toxic exposure becomes fundamental to assess riskbenefit imbalance of treatment prescription. Additionally, there is a crucial need to develop less mitochondrial toxic compounds, novel biomarkers to follow up mitochondrial toxicity (or implement those already proposed) and new approaches to prevent or revert unintended mitochondrial damage.

  6. A simple approach discriminating cardio­safe drugs from toxic ones

    Science.gov (United States)

    Falah, Mizied; Nassar, Taher; Rayan, Anwar

    2009-01-01

    More than 130 FDA-approved drugs have been identified for now to prolong the QT interval and possibly lead to sudden cardiac death. Due to their toxic effect, some of these drugs have been withdrawn from the pharmaceutical market. In this study, we have formulated few rules to assess the ability to prolong QT interval and thereby discriminate between cardiotoxic and -safe drugs. These rules have clearly determined that cardio-toxic drugs are more likely to obey Lipinski rule of 5 and Oprea lead-like rule. Moreover, the cardio-toxic drugs have been found to have in common values of -0.5 to 6.5 log P, 1-5 nitrogen atoms, up to 4 oxygen atoms, 5-27 hydrophobic atoms, and 15-53 single bonds. Matthews Correlation Coefficient with the value of 0.6 was also attained and nearly 96% of the cardio-toxic drugs were successfully covered. Thus, despite the simplicity of this methodology, we have obtained interesting and informative results. The proposed set of these simple rules could be employed to infer cardio-toxicity or -safety for current and potential drugs. The present study will have important impact on decision making in the fields of drug development, molecule screening in biological assays, and other applications as well. PMID:19759813

  7. Toxic keratopathy due to abuse of topical anesthetic drugs.

    Science.gov (United States)

    Yeniad, Baris; Canturk, Serife; Esin Ozdemir, Fatma; Alparslan, Nilufer; Akarcay, Koray

    2010-06-01

    To describe 8 cases of toxic keratopathy due to abuse of topical anesthetic drugs. Clinical findings from patients with toxic keratopathy were investigated retrospectively. Two patients had toxic keratopathy bilaterally. Five of 8 patients had an ocular history of a corneal foreign body, 1 had basal membrane dystrophy, 1 had ultraviolet radiation, and 1 had chemical burn. All patients had undergone psychiatric consultation. Four patients had anxiety disorder and 1 had bipolar disease. Clinical signs were improved in all patients with discontinuation of topical anesthetic drug use along with adjunctive psychiatric treatment. Penetrating keratoplasty was performed in 2 patients. Toxic keratopathy due to topical anesthetic abuse is a curable disease. Early diagnosis and prevention of topical anesthetic drug use are the most important steps in the treatment of this condition. As these patients commonly exhibit psychiatric disorders, adjunctive psychiatric treatment may help to break the chemical addiction.

  8. Psychosis associated with acute recreational drug toxicity: a European case series

    OpenAIRE

    Vallersnes, Odd Martin; Dines, Alison M.; Wood, David M.; Yates, Christopher; Heyerdahl, Fridtjof; Hovda, Knut Erik; Giraudon, Isabelle; Dargan, Paul I.

    2016-01-01

    Background Psychosis can be associated with acute recreational drug and novel psychoactive substance (NPS) toxicity. However, there is limited data available on how common this is and which drugs are most frequently implicated. We describe a European case series of psychosis associated with acute recreational drug toxicity, and estimate the frequency of psychosis for different recreational drugs. Methods ...

  9. Pulmonary drug toxicity. FDG-PET findings in patients with lymphoma

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Faria, S.C.; Macapinlac, H.A.; Uchida, Yoshitaka; Ito, Hisao

    2008-01-01

    The objective of this study was to evaluate the prevalence and positron emission tomography (PET) imaging features of pulmonary drug toxicity in patients with lymphoma during or just following chemotherapy. A total of 677 PET scans on 460 patients with lymphoma (351 non-Hodgkin's lymphoma, 92 Hodgkin's disease, and 17 both Hodgkin's and non-Hodgkin's lymphoma) were performed for the evaluation of chemotherapy response. In 51 patients, abnormal accumulation on both sides of the chest was reported. A review of medical records, 18 fluorodeoxyglucose ( 18 FDG)-PET scans, and chest computed tomography (CT) was performed, and cases with probable drug toxicity were identified. Inclusion criteria of probable drug toxicity were abnormal but symmetrical FDG accumulation in both lungs seen during or just following the completion of chemotherapy, the abnormal accumulation or corresponding abnormal CT findings resolved on subsequent studies, exclusion of clinical diagnosis of pneumonia, radiation pneumonitis, or lymphoma involvement. In 10 patients (six men and four women, average age 47.3), 2.2% of cases, probable drug toxicity was identified. In all 10 cases, diffuse and subpleural-dominant FDG accumulation was seen on FDG-PET scans, and scattered or diffuse ground-glass opacities were observed on chest CT. Four patients reported symptoms, and six patients did not report any symptoms. Diffuse and peripheral-dominant FDG accumulation in the lung, which may represent pulmonary drug toxicity, was not uncommon in patients with lymphoma who underwent chemotherapy. FDG-PET scan might be able to detect pulmonary drug toxicity in asymptomatic patients. (author)

  10. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs: - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model.

    Science.gov (United States)

    Gupta, Himanshu R; Patil, Yogesh; Singh, Dipty; Thakur, Mansee

    2016-12-01

    Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos ( Danio rerio ). Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used in this study. The embryonic zebrafish

  11. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    Science.gov (United States)

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  12. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model -

    Directory of Open Access Journals (Sweden)

    Himanshu R Gupta

    2016-12-01

    Full Text Available Objectives: Advancements in nanotechnology have led to nanoparticle (NP use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos (Danio rerio. Methods: Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED. For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. Results: The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Conclusion: Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and

  13. Lead Toxicity: A Probable Cause of Abdominal Pain in Drug Abusers

    Directory of Open Access Journals (Sweden)

    Hossein Froutan

    2011-05-01

    Full Text Available Background: Lead toxicity is caused by ingestion, inhalation, or contact with particles or vapors containing lead. It can present with nonspecific signs and symptoms such as abdominal pain, constipation, irritability, difficulty concentrating, and anemia. In this study, we have tried to find a relationship between lead poisoning and drug abuse.Methods: In a cross sectional study, drug addicts presenting with abdominal pain referring to GI center ofImam Khomeini hospital in 2008 were observed. Patients having occupational contact with lead were excluded from the study. Required data included age, sex, clinical findings, Para clinic results and blood lead level. Results were analyzed through SPSS-15 software.Results: 42 patients (all male with average age of 46.9 ± 10.1 years were included in the study. Averageblood lead level was 51.17±27.96µg/dl. 22 patients (52.6% had lead toxicity. A significant relation was found between lead toxicity and mode of opium drug use; however relation between lead toxicity and duration of addiction was not significant. Similarly, a meaningful relation was found between lead toxicity and abnormal liver function test, urine tests, ECG, presence of basophilic stippling and hyperuricemia.Conclusion: There seems to be a significant relation between opium drug abuse and lead toxicity. Further studies with more cases and ethnicities are needed.

  14. Psychosis associated with acute recreational drug toxicity: a European case series.

    Science.gov (United States)

    Vallersnes, Odd Martin; Dines, Alison M; Wood, David M; Yates, Christopher; Heyerdahl, Fridtjof; Hovda, Knut Erik; Giraudon, Isabelle; Dargan, Paul I

    2016-08-18

    Psychosis can be associated with acute recreational drug and novel psychoactive substance (NPS) toxicity. However, there is limited data available on how common this is and which drugs are most frequently implicated. We describe a European case series of psychosis associated with acute recreational drug toxicity, and estimate the frequency of psychosis for different recreational drugs. The European Drug Emergencies Network (Euro-DEN) collects data on presentations to Emergency Departments (EDs) with acute recreational drug and NPS toxicity at 16 centres in ten countries. Euro-DEN data from October 2013 through September 2014 was retrospectively searched, and cases with psychosis were included. The proportion of cases with psychosis per drug was calculated in the searched Euro-DEN dataset. Psychosis was present in 348 (6.3 %) of 5529 cases. The median (interquartile range) age was 29 (24-38) years, 276 (79.3 %) were male and 114 (32.8 %) were admitted to psychiatric ward. The drugs most commonly reported were cannabis in 90 (25.9 %) cases, amphetamine in 87 (25.0 %) and cocaine in 56 (16.1 %). More than one drug was taken in 189 (54.3 %) cases. Psychosis was frequent in those ED presentations involving tryptamines (4/7; 57.1 %), methylenedioxypyrovalerone (MDPV) (6/22; 27.3 %), methylphenidate (6/26; 23.1 %), lysergic acid diethylamide (LSD) (18/86; 20.9 %), psilocybe mushrooms (3/16; 18.8 %), synthetic cannabinoid receptor agonists (4/26; 15.4 %) and amphetamine (87/593; 14.7 %), but less common in those involving mephedrone (14/245; 5.7 %), methylenedioxymethamphetamine (MDMA) (20/461; 4.3 %) and methedrone (3/92; 3.3 %). Amphetamine was the most frequent drug associated with psychosis when only one agent was reported, with psychosis occurring in 32.4 % of these presentations. The frequency of psychosis in acute recreational drug toxicity varies considerably between drugs, but is a major problem in amphetamine poisoning. In rapidly changing drug markets and

  15. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview

    Directory of Open Access Journals (Sweden)

    Divya eSingh

    2016-01-01

    Full Text Available The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for medication instigated liver danger. Endorsed medications (counting acetaminophen represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group (ALFSG of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and herbal products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several plant products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less side reactions of the herbs provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed on the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.

  16. Toxicity studies of drugs and chemicals in animals: An overview

    OpenAIRE

    S. Saganuwan

    2017-01-01

    Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50) first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety ...

  17. Safety studies of homoeopathic drugs in acute, sub-acute and chronic toxicity in rats

    Directory of Open Access Journals (Sweden)

    Surender Singh

    2017-01-01

    Full Text Available Background: Homoeopathic drugs are frequently recommended in day to day life as therapeutic agents by homoeopathic practitioners. However, safety of homoeopathic drugs remains a challenge because of the high variability of chemical components involved. Aim: The objective of the present study was to investigate the acute, subacute, and chronic oral toxicity of different homoeopathic drugs (Ferrum phosphoricum 3X, Ferrum phosphoricum 6X, Calcarea phosphoricum 6X, and Magnesium phosphoricum 6X in experimental models. Materials and Methods: In acute oral toxicity study, homoeopathic drugs were administered orally at 2000mg/kg body weight, and animals were observed for toxic symptoms till 10 days as per the OECD guidelines. For subacute and chronic toxicity study, homoeopathic drugs were administered for 28 and 180 days, respectively, as per the OECD guidelines. At the end of 28 and 180 days, the animals were sacrificed and toxicity parameters were assessed. Histopathological evaluation of different organs was also performed to assess any toxicity. Results: In acute toxicity study, no mortality was found at a dose of 2000 mg/kg which indicates that oral LD50of homoeopathic drugs were more than 2000 mg/kg. The administration of drugs at a dose of 70 mg/kg body weight for 28 and 180 days did not produce any significant change in haematological and biochemical parameters of male and female rats as compared to normal control group. No pathological changes were observed in histology of various organs of treated rats as compared to normal control animals. Conclusion: These homoeopathic drugs are safe & produce no toxicity when administered for longer duration.

  18. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    Science.gov (United States)

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  19. In vitro pyrogen test for toxic or immunomodulatory drugs

    OpenAIRE

    Daneshian, Mardas; Guenther, Armin; Wendel, Albrecht; Hartung, Thomas; Aulock, Sonja von

    2006-01-01

    Pyrogenic contaminations of some classes of injectable drugs, e.g. toxic or immunomodulatory as well as false-positive drugs, represent a major risk which cannot yet be excluded due to the limitations of current tests. Here we describe a modification of the In vitro Pyrogen Test termed AWIPT (Adsorb, Wash, In vitro Pyrogen Test), which addresses this problem by introducing a pre-incubation step in which pyrogenic contaminations in the test sample are adsorbed to albumin-coated beads. After ri...

  20. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity.

    Science.gov (United States)

    Jabir, Rafid Salim; Naidu, Rakesh; Annuar, Muhammad Azrif Bin Ahmad; Ho, Gwo Fuang; Munisamy, Murali; Stanslas, Johnson

    2012-12-01

    Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.

  1. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  2. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-02-01

    For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  3. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Directory of Open Access Journals (Sweden)

    Hongbin Yang

    2018-02-01

    Full Text Available During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  4. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  5. Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity.

    Directory of Open Access Journals (Sweden)

    Richard de Boer

    Full Text Available Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.

  6. Ex vivo preparations of human tissue for drug metabolism, toxicity and transport

    NARCIS (Netherlands)

    Groothuis, Genoveva

    2012-01-01

    Before new drugs are allowed on the market, their safety and metabolite profile should be extensively tested, as often reactive metabolites are the ultimate toxicant. The exposure of the target cell to the drug and its metabolites is determined by the expression levels of the transporters and the

  7. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity.

    Science.gov (United States)

    Cruz-Monteagudo, Maykel; Cordeiro, M Natália D S; Borges, Fernanda

    2008-03-01

    Idiosyncratic drug toxicity (IDT), considered as a toxic host-dependent event, with an apparent lack of dose response relationship, is usually not predictable from early phases of clinical trials, representing a particularly confounding complication in drug development. Albeit a rare event (usually approach proposed in the present study, can play an important role in addressing IDT in early drug discovery. We report for the first time a systematic evaluation of classification models to predict idiosyncratic hepatotoxicity based on linear discriminant analysis (LDA), artificial neural networks (ANN), and machine learning algorithms (OneR) in conjunction with a 3D molecular structure representation and feature selection methods. These modeling techniques (LDA, feature selection to prevent over-fitting and multicollinearity, ANN to capture nonlinear relationships in the data, as well as the simple OneR classifier) were found to produce QSTR models with satisfactory internal cross-validation statistics and predictivity on an external subset of chemicals. More specifically, the models reached values of accuracy/sensitivity/specificity over 84%/78%/90%, respectively in the training series along with predictivity values ranging from ca. 78 to 86% of correctly classified drugs. An LDA-based desirability analysis was carried out in order to select the levels of the predictor variables needed to trigger the more desirable drug, i.e. the drug with lower potential for idiosyncratic hepatotoxicity. Finally, two external test sets were used to evaluate the ability of the models in discriminating toxic from nontoxic structurally and pharmacologically related drugs and the ability of the best model (LDA) in detecting potential idiosyncratic hepatotoxic drugs, respectively. The computational approach proposed here can be considered as a useful tool in early IDT prognosis.

  8. Investigation of toxic metabolites during drug development

    International Nuclear Information System (INIS)

    Park, Kevin; Williams, Dominic P.; Naisbitt, Dean J.; Kitteringham, Neil R.; Pirmohamed, Munir

    2005-01-01

    Adverse drug reactions (ADRs) are a significant human health problem. Any organ system can be affected, including the liver, skin and kidney. Drug-induced liver injury is the most frequent reason for the withdrawal of an approved drug from the market, and it also accounts for up to 50% of cases of acute liver failure. The clinical picture is often diverse, even for the same drug. Mild, asymptomatic effects occur at a relatively high frequency with a number of drugs. Idiosyncratic toxicity is rare but potentially life-threatening. Many serious ADRs that occur in man are unpredictable from routine pathology and clinical chemistry in laboratory animals and are therefore poorly understood. The drug metabolist can determine the propensity of a novel chemical entity to either accumulate in the hepatocyte or undergo bioactivation in numerous model systems, from expressed enzymes, genetically engineered cells to whole animals. Bioactivation can be measured using trapping experiments with model nucleophiles or by measurement of non-specific covalent binding. The chemistry of the process is defined and the medicinal chemist can address the issue by seeking a metabolically stable pharmacophore to replace the potential toxicophore. However, we require a more fundamental understanding of the role of drug chemistry and biochemistry in ADRs. This requires knowledge of the ultimate toxin, signalling in cell defense and the sequence of molecular events, which ultimately lead to cell and tissue damage. It is imperative that such studies have a clinical level, but then translated into laboratory-based molecular studies. This will provide a deeper understanding of potential toxicophores for drug design and define candidate genes for pharmacogenomic approaches to individualized medicines

  9. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs

    Science.gov (United States)

    Gupta, Himanshu R; Patil, Yogesh; Singh, Dipty

    2016-01-01

    Objectives: Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos (Danio rerio). Methods: Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. Results: The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Conclusion: Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used

  10. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  11. Toxicity Evaluation of Through Fish Bioassay Raw Bulk Drug Industry Wastewater After Electrochemical Treatment

    Directory of Open Access Journals (Sweden)

    S Satyanarayan

    2011-10-01

    Full Text Available Considering the high pollution potential that the synthetic Bulk Drug industry Wastewater (BDW possesses due to the presence of variety of refractory organics, toxicity evaluation is of prime importance in assessing the efficiency of the applied wastewater treatment system and in establishing the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter were studied under laboratory conditions. Results indicated that wastewater being very strong in terms of color, COD and BOD is found to be very toxic to the studied fish. The LC50 values for raw wastewater and after electrochemical treatment with carbon and aluminium electrodes for 24, 48, 72 and 96 hours ranged between, 2.5-3.6%, 6.8-8.0%, 5.0-5.8% respectively. Carbon electrode showed marginally better removals for toxicity than aluminium electrode. It was evident from the studies that electrochemical treatment reduces toxicity in proportion to the removal efficiency shown by both the electrodes. The reduction in toxicity after treatment indicates the intermediates generated are not toxic than the parent compounds. Furthermore, as the electrochemical treatment did not result in achieving disposal standards it could be used only as a pre-treatment and the wastewater needs further secondary treatment before final disposal.

  12. Progression of hydroxychloroquine toxic effects after drug therapy cessation: new evidence from multimodal imaging.

    Science.gov (United States)

    Mititelu, Mihai; Wong, Brandon J; Brenner, Marie; Bryar, Paul J; Jampol, Lee M; Fawzi, Amani A

    2013-09-01

    Given the infrequent occurrence of hydroxychloroquine toxic effects, few data are available about the presenting features and long-term follow-up of patients with hydroxychloroquine retinopathy, making it difficult to surmise the clinical course of patients after cessation of drug treatment. To report functional and structural findings of hydroxychloroquine retinal toxic effects after drug therapy discontinuation. A retrospective medical record review was performed to identify patients taking hydroxychloroquine who were screened for toxic effects from January 1, 2009, through August 31, 2012, in the eye centers of Northwestern University and the University of Southern California. Northwestern University Sorrel Rosin Eye Center, Chicago, Illinois, and the Doheny Eye Institute at the University of Southern California, Los Angeles. Seven consecutive patients diagnosed as having hydroxychloroquine retinal toxic effects. Retinal toxic effects. Seven patients (1 man and 6 women) with a mean age of 55.9 years (age range, 25-74 years) developed retinal toxic effects after using hydroxychloroquine for a mean of 10.4 years (range, 3-19 years). Fundus examination revealed macular pigmentary changes in all 7 patients, corresponding to abnormal fundus autofluorescence (FAF). On spectral domain optical coherence tomography, there was outer retinal foveal resistance (preservation of the external limiting membrane and the photoreceptor layer) in 6 patients. After drug therapy discontinuation, 5 patients experienced outer retinal regeneration (3 subfoveally and 2 parafoveally), with associated functional visual improvement on static perimetry in 2 patients. Over time, FAF remained stable in 3 patients, whereas the remaining patients had a pattern of hypoautofluorescence that replaced areas of initial hyperautofluorescence (2 patients) and enlargement of the total area of abnormal FAF (2 patients). Preservation of the external limiting membrane carries a positive prognostic value in

  13. In vitro pyrogen test for toxic or immunomodulatory drugs.

    Science.gov (United States)

    Daneshian, Mardas; Guenther, Armin; Wendel, Albrecht; Hartung, Thomas; von Aulock, Sonja

    2006-06-30

    Pyrogenic contaminations of some classes of injectable drugs, e.g. toxic or immunomodulatory as well as false-positive drugs, represent a major risk which cannot yet be excluded due to the limitations of current tests. Here we describe a modification of the In vitro Pyrogen Test termed AWIPT (Adsorb, Wash, In vitro Pyrogen Test), which addresses this problem by introducing a pre-incubation step in which pyrogenic contaminations in the test sample are adsorbed to albumin-coated beads. After rinsing, the beads are incubated with human whole blood and the release of the endogenous pyrogen interleukin-1beta is measured as a marker of pyrogenic activity. Intentional contaminations with lipopolysaccharide were retrieved from the chemotherapeutic agents paclitaxel, cisplatin and liposomal daunorubicin, the antibiotic gentamicin, the antifungal agent liposomal amphotericin B, and the corticosteroid prednisolone at lower dilutions than in the standard in vitro pyrogen test. This represents a promising new approach for the detection of pyrogenic contamination in drugs or in drugs containing interfering additives and should lead to improved safety levels.

  14. Cutaneous drug toxicity from 2,4-dinitrophenol (DNP): Case report and histological description.

    Science.gov (United States)

    Le, Patricia; Wood, Benjamin; Kumarasinghe, Sujith Prasad

    2015-11-01

    The use of 2,4-dinitrophenol (DNP) has regained popularity as a weight loss aid in the last two decades due to increased marketing to bodybuilders and the increasing availability of this banned substance via the Internet. 2,4-DNP is a drug of narrow therapeutic index and toxicity results in hyperthermia, diaphoresis, tachycardia, tachypnoea and possible cardiac arrest and death. Skin toxicity from 2,4-DNP has not been reported since the 1930s. We report a case of a 21-year-old bodybuilding enthusiast who presented with a toxic exanthem after taking 2,4-DNP, and describe the first skin biopsy findings in a case of 2,4-DNP toxicity. © 2014 The Australasian College of Dermatologists.

  15. Underestimated impact of novel psychoactive substances: laboratory confirmation of recreational drug toxicity in Oslo, Norway.

    Science.gov (United States)

    Vallersnes, Odd Martin; Persett, Per Sverre; Øiestad, Elisabeth Leere; Karinen, Ritva; Heyerdahl, Fridtjof; Hovda, Knut Erik

    2017-08-01

    Recreational drug toxicity is frequent. Availability of new psychoactive substances is steadily increasing. However, data with verified analyses from clinical settings are limited. To evaluate the impact of novel psychoactive substances (NPS) on recreational drug toxicity in Oslo, Norway, we analysed samples from a selection of patients. All the patients presenting with recreational drug toxicity at the Oslo Accident and Emergency Outpatient Clinic (OAEOC) and at the Oslo University Hospital (OUH) were registered from April through September 2014. Oral fluid samples were collected at the OAEOC. Blood samples were collected at the OUH. The samples were screened using ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Nine hundred and sixty-four cases were included, 841 (87.2%) at the OAEOC and 123 (12.8%) at the OUH. A total of 55 oral fluid samples (OAEOC) and 103 blood samples (OUH) could be analysed. NPS were not clinically suspected in any of the screened cases. At the outpatient clinic, the most commonly found substances were clonazepam in 42/55 (76.4%) cases, amfetamines in 40/55 (72.7%) and heroin in 39/55 (70.9%). In seven (12.7%) cases NPS were detected: 4-methylamfetamine in three cases, dimethyltryptamine in two, methylone in one, and N,N-dimethyl-3,4-methylenedioxyamfetamine in one. Among the hospital patients, the most commonly found substances were clonazepam in 51/103 (49.5%) cases, amfetamines in 48/103 (46.6%), heroin in 31/103 (30.1%), and diazepam in 30/103 (29.1%). In five (4.9%) cases NPS were detected: JWH-210 in two cases, AM-2201 in two, and 5-EAPB in one. NPS were clinically not suspected, though found in eight percent of cases. Still, the vast majority of patients treated for recreational drug toxicity in Oslo have taken classical drugs. Management of these patients should be based on their clinical condition. However, it is highly important to be alert to atypical presentations possibly resulting from

  16. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

    Science.gov (United States)

    Astashkina, Anna; Grainger, David W

    2014-04-01

    Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Phototransformation of Amlodipine in Aqueous Solution: Toxicity of the Drug and Its Photoproduct on Aquatic Organisms

    Directory of Open Access Journals (Sweden)

    Marina DellaGreca

    2007-01-01

    Full Text Available The phototransformation of amlodipine in water was investigated under various conditions. A quantum yield ΦS2.2×10−4 and a half-life time t1/2 0.419 days were calculated when the drug in water (10−4 M was exposed to sunlight. The only photoproduct found was its pyridine derivative. Formation of this product was explained on the basis of a radical cation intermediate. The acute and chronic toxicity of the drug and its photoproduct were evaluated on different organisms of the freshwater chain (Brachionus calyciflorus, Thamnocephalus platyurus, Daphnia magna, Ceriodaphnia dubia. The photoproduct exhibited a stronger toxic potential than the parent drug on the long time for C. dubia.

  18. Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Pascaline Boudou-Rouquette

    Full Text Available BACKGROUND: Identifying predictive biomarkers of drug response is of key importance to improve therapy management and drug selection in cancer therapy. To date, the influence of drug exposure and pharmacogenetic variants on sorafenib-induced toxicity remains poorly documented. The aim of this pharmacokinetic/pharmacodynamic (PK/PD study was to investigate the relationship between early toxicity and drug exposure or pharmacogenetic variants in unselected adult outpatients treated with single-agent sorafenib for advanced solid tumors. METHODS: Toxicity was recorded in 54 patients on days 15 and 30 after treatment initiation and sorafenib exposure was assessed in 51 patients. The influence of polymorphisms in CYP3A5, UGT1A9, ABCB1 and ABCG2 was examined in relation to sorafenib exposure and toxicity. Clinical characteristics, drug exposure and pharmacogenetic variants were tested univariately for association with toxicities. Candidate variables with p<0.1 were analyzed in a multivariate analysis. RESULTS: Gender was the sole parameter independently associated with sorafenib exposure (p = 0.0008. Multivariate analysis showed that increased cumulated sorafenib (AUC(cum was independently associated with any grade ≥ 3 toxicity (p = 0.037; UGT1A9 polymorphism (rs17868320 with grade ≥ 2 diarrhea (p = 0.015 and female gender with grade ≥ 2 hand-foot skin reaction (p = 0.018. Using ROC curve, the threshold AUC(cum value of 3,161 mg/L.h was associated with the highest risk to develop any grade ≥ 3 toxicity (p = 0.018. CONCLUSION: In this preliminary study, increased cumulated drug exposure and UGT1A9 polymorphism (rs17868320 identified patients at high risk for early sorafenib-induced severe toxicity. Further PK/PD studies on larger population are warranted to confirm these preliminary results.

  19. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity.

    Directory of Open Access Journals (Sweden)

    Yinbao Li

    Full Text Available Pharmaceutical safety testing requires a cheap, fast and highly efficient platform for real-time evaluation of drug toxicity and secondary effects. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic and teratogenic effects of drugs using zebrafish (Danio rerio embryos and larvae as the model organism. The microfluidic chip is composed of two independent functional units, enabling the assessment of zebrafish embryos and larvae. Each unit consists of a fluidic concentration gradient generator and a row of seven culture chambers to accommodate zebrafish. To test the accuracy of this new chip platform, we examined the toxicity and teratogenicity of an anti-asthmatic agent-aminophylline (Apl on 210 embryos and 210 larvae (10 individuals per chamber. The effect of Apl on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators such as heart rate, survival rate, body length and hatch rate. Most importantly, a new index called clonic convulsion rate, combined with mortality was used to evaluate the toxicities of Apl on zebrafish larvae. We found that Apl can induce deformity and cardiovascular toxicity in both zebrafish embryos and larvae. This microdevice is a multiplexed testing apparatus that allows for the examination of indexes beyond toxicity and teratogenicity at the sub-organ and cellular levels and provides a potentially cost-effective and rapid pharmaceutical safety assessment tool.

  20. A categorical structure-activity relationship analysis of the developmental toxicity of antithyroid drugs.

    Science.gov (United States)

    Cunningham, Albert R; Carrasquer, C Alex; Mattison, Donald R

    2009-01-01

    The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR) model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  1. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity

    International Nuclear Information System (INIS)

    Amacher, David E.

    2010-01-01

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in

  2. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.; Ingle, James D.; Biernat, Kristen A.; Pellock, Samuel J.; Venkatesh, Madhu Kumar; Guthrie, Leah; O’Neal, Sara K.; Robinson, Sara J.; Dollinger, Makani; Figueroa, Esteban; McShane, Sarah R.; Cohen, Rachel D.; Jin, Jian; Frye, Stephen V.; Zamboni, William C.; Pepe-Ranney, Charles; Mani, Sridhar; Kelly, Libusha; Redinbo, Matthew (Einstein); (UNC); (Cornell)

    2015-09-01

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes in the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.

  3. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.

    Science.gov (United States)

    Sadekar, S; Ghandehari, H

    2012-05-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer-drug conjugates, as a function of physicochemical properties will further need to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A Categorical Structure-Activity Relationship Analysis of the Developmental Toxicity of Antithyroid Drugs

    Directory of Open Access Journals (Sweden)

    Cunningham AlbertR

    2009-11-01

    Full Text Available The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  5. A Categorical Structure-Activity Relationship Analysis of the Developmental Toxicity of Antithyroid Drugs

    Directory of Open Access Journals (Sweden)

    Albert R. Cunningham

    2009-01-01

    Full Text Available The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  6. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  7. Chinese proprietary medicine in Singapore: regulatory control of toxic heavy metals and undeclared drugs.

    Science.gov (United States)

    Koh, H L; Woo, S O

    2000-11-01

    Traditional Chinese medicine (TCM) is gaining popularity as a form of complementary and alternative medicine. Reports of efficacy of TCM are increasing in numbers. TCM includes both crude Chinese medicinal materials (plants, animal parts and minerals) and Chinese proprietary medicine (CPM) [final dosage forms]. Despite the belief that CPM and herbal remedies are of natural origin, unlike Western medicine, and are hence safe and without many adverse effects, there have been numerous reports of adverse effects associated with herbal remedies. Factors affecting the safety of herbal medicines include intrinsic toxicity, adulteration, substitution, contamination, misidentification, lack of standardisation, incorrect preparation and/or dosage and inappropriate labelling and/or advertising. Hence, new regulations on the control of CPM were enforced in Singapore with effect from 1 September 1999. These include licensing and labelling requirements, as well as control of microbial contamination. This article also reviews reports of excessive toxic heavy metals and undeclared drugs in CPM in Singapore between 1990 and 1997. The names, uses, toxic heavy metal or drug detected and the year of detection are tabulated. Information on the brand or manufacturer's name are provided whenever available. The public and healthcare professionals should be better informed of the basic concept of TCM and its usefulness, as well as the potential adverse effects associated with its use. Greater control over the safety and quality of CPM could be achieved through good manufacturing practice, regulatory control, research, education, reporting usage of Chinese medicine (as in drug history) as well as reporting of adverse events.

  8. Algorithm of Molecular and Biological Assessment of the Mechanisms of Sensitivity to Drug Toxicity by the Example of Cyclophosphamide.

    Science.gov (United States)

    Telegin, L Yu; Sarmanaev, S Kh; Devichenskii, V M; Tutelyan, V A

    2018-01-01

    Comparative study of the liver, blood, and spleen of DBA/2JSto and BALB/cJLacSto mice sensitive and resistant to acute toxicity of the cyclophosphamide allowed us to reveal basic toxicity biomarkers of this antitumor and immunosuppressive agent. Obtained results can be used for the development of an algorithm for evaluation of toxic effects of drugs and food components.

  9. Stevens-Johnson syndrome and toxic epidermal necrolysis: an update on pharmacogenetics studies in drug-induced severe skin reaction.

    Science.gov (United States)

    Rufini, Sara; Ciccacci, Cinzia; Politi, Cristina; Giardina, Emiliano; Novelli, Giuseppe; Borgiani, Paola

    2015-11-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis are severe, life-threatening drug reactions involving skin and membranes mucous, which are associated with significant morbidity and mortality and triggered, especially by drug exposure. Different studies have demonstrated that drug response is a multifactorial character and that the interindividual variability in this response depends on both environmental and genetic factors. The last ones have a relevant significance. In fact, the identification of new specific genetic markers involved in the response to drugs, will be of great utility to establish a more personalized therapeutic approach and to prevent the appearance of these adverse reactions. In this review, we summarize recent progresses in the Pharmacogenetics studies related to Stevens-Johnson syndrome/toxic epidermal necrolysis reporting the major genetic factors identified in the last years as associated with the disease and highlighting the use of some of these genomic variants in the clinical practice.

  10. Fatal toxic leukoencephalopathy secondary to overdose of a new psychoactive designer drug 2C-E ("Europa").

    Science.gov (United States)

    Sacks, Justin; Ray, M Jordan; Williams, Sue; Opatowsky, Michael J

    2012-10-01

    We present a case of a fatal toxic leukoencephalopathy following ingestion of a new psychoactive designer drug known as 2C-E or "Europa." Recreational drugs, particularly hallucinogenic substances, appear to be growing in popularity, with increasing amounts of information available via the Internet to entice potential users. In addition, some newer "designer" psychoactive substances are available for purchase online without adverse legal consequences, therefore adding to their popularity. We describe magnetic resonance imaging (MRI) findings to include selective diffuse toxic injury of the cerebral white matter with sparing of the cortex and most of the deep gray nuclei. To our knowledge, this is the first reported description of cerebral findings on MRI that are likely related to a lethal ingestion of 2C-E.

  11. Application of electroretinography (ERG) in early drug development for assessing retinal toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenhu, E-mail: wenhu.huang@pfizer.com; Collette, Walter; Twamley, Michelle; Aguirre, Shirley A.; Sacaan, Aida

    2015-12-15

    Retinal ocular toxicity is among the leading causes of drug development attrition in the pharmaceutical industry. Electroretinography (ERG) is a non-invasive functional assay used to assess neuro-retinal physiological integrity by measuring the electrical responses. To directly assess the utility of ERG, a series of studies was conducted following intravitreal and/or iv administration of pan-cyclin-dependent kinase inhibitors: AG-012,986 and AG-024,322 in rats. Both compounds have previously shown to induce retinal toxicity. Retinal injury was evaluated by ERG, histopathology and TUNEL staining. Intravitreal injection of AG-012,986 at ≥ 10 μg/eye resulted in decreases (60%) in ERG b-wave and microscopic changes of mild to moderate retinal degeneration, and at 30 μg/eye led to additional ophthalmic findings. Intravenous administration of AG-012,986 daily at ≥ 5 mg/kg resulted in dose-related decreases (25 to 40%) in b-wave and sporadic to intense positive TUNEL staining. Intravitreal injection of AG-024,322 at 30 μg/eye also resulted in decreases (50 to 60%) in b-wave, mild to marked retinal degeneration and mild vitreous debris. These experiments demonstrate that ERG can be used as a sensitive and reliable functional tool to evaluate retinal toxicity induced by test compounds in rats complementing other classical ocular safety measurements. - Highlights: • There were strong correlations of ERG readouts to in vivo ophthalmic exams, TUNEL assay, and histopathology. • ERG appears to be more sensitive and can detect retinal functional changes at a very early stage of pathogenesis. • ERG can be incorporated into routine exploratory toxicity study to identify compound ocular safety issues. • In drug discovery, ERG is a quick, non-invasive, sensitive and reliable tool in retinal toxicity de-risking.

  12. Application of electroretinography (ERG) in early drug development for assessing retinal toxicity in rats

    International Nuclear Information System (INIS)

    Huang, Wenhu; Collette, Walter; Twamley, Michelle; Aguirre, Shirley A.; Sacaan, Aida

    2015-01-01

    Retinal ocular toxicity is among the leading causes of drug development attrition in the pharmaceutical industry. Electroretinography (ERG) is a non-invasive functional assay used to assess neuro-retinal physiological integrity by measuring the electrical responses. To directly assess the utility of ERG, a series of studies was conducted following intravitreal and/or iv administration of pan-cyclin-dependent kinase inhibitors: AG-012,986 and AG-024,322 in rats. Both compounds have previously shown to induce retinal toxicity. Retinal injury was evaluated by ERG, histopathology and TUNEL staining. Intravitreal injection of AG-012,986 at ≥ 10 μg/eye resulted in decreases (60%) in ERG b-wave and microscopic changes of mild to moderate retinal degeneration, and at 30 μg/eye led to additional ophthalmic findings. Intravenous administration of AG-012,986 daily at ≥ 5 mg/kg resulted in dose-related decreases (25 to 40%) in b-wave and sporadic to intense positive TUNEL staining. Intravitreal injection of AG-024,322 at 30 μg/eye also resulted in decreases (50 to 60%) in b-wave, mild to marked retinal degeneration and mild vitreous debris. These experiments demonstrate that ERG can be used as a sensitive and reliable functional tool to evaluate retinal toxicity induced by test compounds in rats complementing other classical ocular safety measurements. - Highlights: • There were strong correlations of ERG readouts to in vivo ophthalmic exams, TUNEL assay, and histopathology. • ERG appears to be more sensitive and can detect retinal functional changes at a very early stage of pathogenesis. • ERG can be incorporated into routine exploratory toxicity study to identify compound ocular safety issues. • In drug discovery, ERG is a quick, non-invasive, sensitive and reliable tool in retinal toxicity de-risking.

  13. Nanomedicine for therapeutic drug therapy: Approaches to increase the efficacy of drug therapy with nanoemulsion delivery and reduce the toxicity of quantum dots

    Science.gov (United States)

    Kambalapally, Swetha Reddy

    The advancement of nanotechnology has paved the way for novel nanoscale materials for use in a wide range of applications. The use of these nanomaterials in biomedicine facilitates the improvement of existing technologies for disease prevention and treatment through diagnostics, tumor detection, drug delivery, medical imaging and vaccine development. Nanotechnology delivery systems for therapeutic uses includes the formulation of nanoparticles in emulsions. These novel delivery systems can improve drug efficacy by their ability to enhance bioavailability, minimize drug side effects, decrease drug toxicity, provide targeted site delivery and increase circulation of the drug in the blood. Additionally, these delivery systems also improve the drug stability and encapsulation efficiency. In the Introduction, this thesis will describe a novel technique for the preparation of nanoemulsions which was utilized in drug delivery and diagnostic applications. This novel Phase Inversion Temperature (PIT) method is a solvent and polymer-free and low energy requiring emulsification method, typically utilizing oils stabilized by nonionic surfactants to prepare water in oil (W/O) emulsions. The correlation between the particle size, zeta potential and the emulsion stability is described. The use of this nanoemulsion delivery system for pharmaceuticals and nutraceuticals by utilizing in vitro systems was investigated. Using the PIT method, a self assembling nanoemulsion (SANE) of gamma Tocotrienols (gammaT3), a component of Vitamin E family has been demonstrated to reduce cholesterol accumulation in HepG-2 cells. The nanoemulsion is stable and the particle size is around 20 nm with a polydispersity index (PDI) of 0.065. The effect of the nano gammaT3 on the metabolism of cholesterol, HMG-CoA activity and Apo-B levels were evaluated in an in vitro system utilizing HepG2 cells. A new class of nanoparticles, Quantum dots (QDs) has shown immense potential as novel nanomaterials used as

  14. Modulation of the toxicity of photons by non-conventional drugs

    International Nuclear Information System (INIS)

    Bohm, L.; Theron, T.; Serafin, A.; Verheye, F.

    1997-01-01

    The 3 drugs under investigation Pentoxifylline, Ouabain and Thalidomide are non-conventional in the sense that they have a low toxicity and do not damage DNA. Pentoxifylline reduces blood viscosity ad enhances peripheral blood flow. When combined with irradiation in a mouse rhabdomyosarcoma model we found markedly enhanced tumour growth delay and in cultured cells dose modifying factors for SF2 and alpha in the region of 1.2-1.7 (Strahlentherapie 1995;170:595-01). The drug also alters cell regulation by inhibiting the radiation induced G2/M block and suppressing control of DNA synthesis (Theron and Boehm, unpubl.). When Thalidomide was added in the absence of irradiation to the myelo-blastic cell line K-562 we found characteristic changes of cell morphology and cell surface markers suggesting differentiation and expression of a megacaryocytic lineage (Leukemia Research 1991;15:129-136). A summary of the current state of research is given. (authors)

  15. A Relational Learning Approach to Structure-Activity Relationships in Drug Design Toxicity Studies

    Directory of Open Access Journals (Sweden)

    Camacho Rui

    2011-12-01

    Full Text Available It has been recognized that the development of new therapeutic drugs is a complex and expensive process. A large number of factors affect the activity in vivo of putative candidate molecules and the propensity for causing adverse and toxic effects is recognized as one of the major hurdles behind the current “target-rich, lead-poor” scenario.

  16. Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfizer.com [Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810 (United States); Ramaiah, Shashi K. [Drug Safety, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139 (United States); Whiteley, Laurence O. [Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810 (United States)

    2016-12-01

    Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well as their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.

  17. Effectiveness of combinations of Ayurvedic drugs in alleviating drug toxicity and improving quality of life of cancer patients treated with chemotherapy.

    Science.gov (United States)

    Deshmukh, Vineeta; Kulkarni, Arvind; Bhargava, Sudhir; Patil, Tushar; Ramdasi, Vijay; Gangal, Sudha; Godse, Vasanti; Datar, Shrinivas; Gujar, Shweta; Sardeshmukh, Sadanand

    2014-11-01

    This study was conducted to assess the effectiveness of combinations of Ayurvedic drugs in alleviating the toxicity of chemotherapy and improving the quality of life of cancer patients. The following was the research question: Can Ayurvedic drugs be used to alleviate the side effects of chemotherapy and improve the quality of life of cancer patients? Random patients with malignancies of different tissues, grades, and stages were divided into two groups according to their treatment modality. Group 1 consisted of 15 patients treated with six cycles of chemotherapy alone and who did not receive any Ayurvedic drugs (control group). Group 2 consisted of patients (divided into three arms) who received Ayurvedic drugs during chemotherapy and after chemotherapy. Nineteen patients in arm 1 received the Ayurvedic drugs Mauktikyukta Kamdudha (MKD) and Mauktikyukta Praval Panchamruta (MPP) along with a full course of chemotherapy. Fifteen patients in arm 2 received the same Ayurvedic treatment, but the treatment was started after completing the sixth cycle of chemotherapy. Eighteen patients in arm 3 received the Suvarnabhasmadi formulation (SBD) in addition to MKD and MPP after completing the sixth cycle of chemotherapy. Treatment was given for 16 weeks in all three arms. Patients from both groups were observed for a period of 6 months. The assessment criteria depended on Common Toxicity Criteria (CTC designed by NIH and NCI): haemogram; weight; physical examination including Quality of Life Questionnaire (QLQ designed by the European Organization of Research and Treatment of Cancer (EORTC)) for functional, symptom and global scores; and Karnofsky score for assessment of general well-being and activities of daily life. ECOG (Eastern Cooperation Oncology Group) score was also additionally included for assessment of symptoms. From amongst the symptomatic criteria, there was significant improvement in all the three arms compared with the control group in nausea, loss of appetite

  18. An integrated approach to improved toxicity prediction for the safety assessment during preclinical drug development using Hep G2 cells

    International Nuclear Information System (INIS)

    Noor, Fozia; Niklas, Jens; Mueller-Vieira, Ursula; Heinzle, Elmar

    2009-01-01

    Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicty is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC 50 values 100 μM or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity.

  19. Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota, and diseases: a meeting report of the 21st International Symposium on Microsomes and Drug Oxidations (MDO

    Directory of Open Access Journals (Sweden)

    Ai-Ming Yu

    2017-03-01

    Full Text Available Variations in drug metabolism may alter drug efficacy and cause toxicity; better understanding of the mechanisms and risks shall help to practice precision medicine. At the 21st International Symposium on Microsomes and Drug Oxidations held in Davis, California, USA, in October 2–6, 2016, a number of speakers reported some new findings and ongoing studies on the regulation mechanisms behind variable drug metabolism and toxicity, and discussed potential implications to personalized medications. A considerably insightful overview was provided on genetic and epigenetic regulation of gene expression involved in drug absorption, distribution, metabolism, and excretion (ADME and drug response. Altered drug metabolism and disposition as well as molecular mechanisms among diseased and special populations were presented. In addition, the roles of gut microbiota in drug metabolism and toxicology as well as long non-coding RNAs in liver functions and diseases were discussed. These findings may offer new insights into improved understanding of ADME regulatory mechanisms and advance drug metabolism research.

  20. Non-steroidal anti-inflammatory drugs vs. paracetamol: drug availability, patient's preference and knowledge of toxicity

    International Nuclear Information System (INIS)

    Zamir, Q.; Nadeem, A.

    2017-01-01

    Self-medication is a common practice which is influenced by level of education, society factors and health care facilities availability. In our region, Pakistan, it is very common and awareness regarding prescription implementation needs to be ensured. Hence the current study highlights the preference, availability and knowledge of toxicity of non-steroidal anti-inflammatory medications and paracetamol in Pakistan. Method: It was a Descriptive, cross sectional, conducted in Rawalpindi and Islamabad, Pakistan from May to august 2012. A total of 1000 questionnaires comprising of 21 questions were distributed to the persons with age groups from 18 years to 40 years. Non-probability convenience sampling technique was used for results deduction. Data was analysed using descriptive statistics. Results: The most commonly used medicine was Mefenamic acid (n=191, 40.8 percent). Paracetamol was second on the priority list (n=146, 31.3 percent). About 178 out of 467(38.1 percent) used these medications for headache. Very few responders knew about the toxic doses of the medicines they used. Only 52 (11 percent) were aware of the raised bleeding tendency being the most common side effect of acetylsalicylic acid and 129 (28 percent) were aware of liver damage by paracetamol toxicity. Conclusion: In Pakistan, common people take NSAIDs and Paracetamol without prescription and majority of them are unaware of the side effects of these medicines. This is the reason it is important to make the general public aware of the problems they may face if they misuse or over use the drugs without the prescription. (author)

  1. Histological vis-a-vis biochemical assessment on the toxic level and antineoplastic efficacy of a synthetic drug Pt-ATP on experimental animal models.

    Science.gov (United States)

    Pal, Shipra; Sadhu, Arpita Sengupta; Patra, Swarup; Mukherjea, Kalyan K

    2008-11-12

    Cisplatin, a platinum based anticancer drug has played a vital role in the treatment of cancers by chemical agents, but in view of the serious toxicity including nephrotoxicity of cisplatin, various other platinum based drugs have been synthesized and screened to overcome its toxicity. A Pt-ATP compound was prepared in our laboratory hoping to have reduced or no toxicity along with the potentiality of reducing neoplasm growth. A Pt-ATP compound was prepared. It was first screened for its antineoplastic efficacy. Confirming that, subsequent experiments were carried on to test its toxicity on animals, viz. Albino Swiss mice. The animals were randomly divided into four sets--Set I: Erhlich Ascites Carcinoma (EAC) challenged mice; Set II: Normal mice; Set III: Drug treated mice, Set IVA Cisplatin (CDDP) treated mice, Set IV B EAC challenged Cisplatin treated mice. Set I was used to test antineoplasticity of the drug, Set II and Set III for studying drug toxicity and Set IV was treated with CDDP. Set II was used as a control. Animals were sacrificed after 5 days, 10 days 15 days and 20 days of drug administration on the 6th, 11th, 16th and 21st days respectively for Set I, II and III. Set IVA was sacrificed only on the 16th day and Set IV B on 6th and 11th days. For Set I only tumor cell count and packed cell volume (PCV) of tumor cells were recorded. For Set II and III, aspartate aminotransferase (AST), alanine aminotransferase (ALT) assays were done using serum while blood creatinine and creatine were assayed from blood filtrate. For cytotoxicity assessment liver, spleen and kidney tissues were collected and subjected to scanning electron microscopy (SEM) after extensive treatment. Set IV A was only studied for the biochemical parameters viz. aspartate aminotransferase (AST), alanine aminotransferase (ALT) assays were done using serum while blood creatinine and creatine were assayed from blood filtrate. Set IV B was studied for tumor cell count after treatment with

  2. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    Energy Technology Data Exchange (ETDEWEB)

    Nadanaciva, Sashi [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States); Aleo, Michael D. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Strock, Christopher J. [Cyprotex US, Watertown, MA 02472 (United States); Stedman, Donald B. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Wang, Huijun [Computational Sciences, Pfizer Inc., Groton, CT 06340 (United States); Will, Yvonne, E-mail: yvonne.will@pfizer.com [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States)

    2013-10-15

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.

  3. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    International Nuclear Information System (INIS)

    Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.; Stedman, Donald B.; Wang, Huijun; Will, Yvonne

    2013-01-01

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary

  4. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro.

    Directory of Open Access Journals (Sweden)

    Deborah G Nguyen

    Full Text Available Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI. This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM. Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

  5. Exploring BSEP Inhibition-Mediated Toxicity with a Mechanistic Model of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Jeffrey L Woodhead

    2014-11-01

    Full Text Available Inhibition of the bile salt export pump (BSEP has been linked to incidence of drug-induced liver injury (DILI, presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels. We also simulate bosentan in rats in order to illuminate potential reasons behind the lack of toxicity in rats compared to the toxicity observed in humans. DILIsym® predicts that bosentan, but not telmisartan, will cause mild hepatocellular ATP decline and serum ALT elevation in a simulated population of humans. The difference in hepatotoxic potential between bosentan and telmisartan is consistent with clinical observations. However, DILIsym® underpredicts the incidence of bosentan toxicity. DILIsym® also predicts that bosentan will not cause toxicity in a simulated population of rats, and that the difference between the response to bosentan in rats and in humans is primarily due to the less toxic bile acid pool in rats. Our simulations also suggest a potential synergistic role for bile acid accumulation and mitochondrial electron transport chain inhibition in producing the observed toxicity in CP-724,714, and suggest that CP-724,714 metabolites may also play a role in the observed toxicity. Our work also compares the impact of competitive and noncompetitive BSEP inhibition for CP-724,714 and demonstrates that noncompetitive inhibition leads to much greater bile acid accumulation and potential toxicity. Our research demonstrates the potential for mechanistic modeling to contribute to the understanding of how bile acid transport inhibitors

  6. Application of metabolomics to toxicology of drugs of abuse: A mini review of metabolomics approach to acute and chronic toxicity studies.

    Science.gov (United States)

    Zaitsu, Kei; Hayashi, Yumi; Kusano, Maiko; Tsuchihashi, Hitoshi; Ishii, Akira

    2016-02-01

    Metabolomics has been widely applied to toxicological fields, especially to elucidate the mechanism of action of toxicity. In this review, metabolomics application with focus on the studies of chronic and acute toxicities of drugs of abuse like stimulants, opioids and the recently-distributed designer drugs will be presented in addition to an outline of basic analytical techniques used in metabolomics. Limitation of metabolomics studies and future perspectives will be also provided. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  7. Fatal toxic leukoencephalopathy secondary to overdose of a new psychoactive designer drug 2C-E (“Europa”)

    OpenAIRE

    Sacks, Justin; Ray, M. Jordan; Williams, Sue; Opatowsky, Michael J.

    2012-01-01

    We present a case of a fatal toxic leukoencephalopathy following ingestion of a new psychoactive designer drug known as 2C-E or “Europa.” Recreational drugs, particularly hallucinogenic substances, appear to be growing in popularity, with increasing amounts of information available via the Internet to entice potential users. In addition, some newer “designer” psychoactive substances are available for purchase online without adverse legal consequences, therefore adding to their popularity. We ...

  8. Simultaneous treatment of toxic diffuse goiter with I-131 and antithyroid drugs: a prospective study

    International Nuclear Information System (INIS)

    Steinbach, J.J.; Donoghue, G.D.; Goldman, J.K.

    1979-01-01

    We report a prospective study to evaluate the effect of antithyroid drugs containing the sulfhydryl radical on the outcome of I-131 (RAI) therapy. Twenty-four male patients with toxic diffuse goiter were assigned randomly into two treatment groups: Group A received RAI treatment while on antithyroid drugs after attainment of euthyroidism; Group B received no antithyroid drugs before, or when, RAI was given. Patients in each group received a dose of RAI calculated to deliver approximately 5000 rads per treatment. The incidence of hypothyroidism at 12 mo was 8% for Group A and 36% for Group B (p 0.45). The improved therapeutic outcome of patients in Group A suggests that further validation of the method in a larger patient population, including females, is warranted

  9. Adverse drug reaction and toxicity caused by commonly used antimicrobials in canine practice

    Directory of Open Access Journals (Sweden)

    K. Arunvikram

    2014-05-01

    Full Text Available An adverse drug reaction (ADR is a serious concern for practicing veterinarians and other health professionals, and refers to an unintended, undesired and unexpected response to a drug that negatively affects the patient's health. It may be iatrogenic or genetically induced, and may result in death of the affected animal. The ADRs are often complicated and unexpected due to myriad clinical symptoms and multiple mechanisms of drug-host interaction. Toxicity due to commonly used drugs is not uncommon when they are used injudiciously or for a prolonged period. Licosamides, exclusively prescribed against anaerobic pyoderma, often ends with diarrhoea and vomiting in canines. Treatment with Penicillin and β-lactam antibiotics induces onset of pemphigious vulgare, drug allergy or hypersensitivity. Chloroamphenicol and aminoglycosides causes Gray's baby syndrome and ototoxicity in puppies, respectively. Aminoglycosides are very often associated with nephrotoxicity, ototoxicity and neuromuscular blockage. Injudicious use of fluroquinones induces the onset of arthropathy in pups at the weight bearing joints. The most effective therapeutic measure in managing ADR is to treat the causative mediators, followed by supportive and symptomatic treatment. So, in this prospective review, we attempt to bring forth the commonly occurring adverse drug reactions, their classification, underlying mechanism, epidemiology, treatment and management as gleaned from the literature available till date and the different clinical cases observed by the authors.

  10. Is drug-induced toxicity a good predictor of response to neo-adjuvant chemotherapy in patients with breast cancer? -A prospective clinical study

    International Nuclear Information System (INIS)

    Chintamani; Singhal, Vinay; Singh, JP; Lyall, Ashima; Saxena, Sunita; Bansal, Anju

    2004-01-01

    Neo-adjuvant chemotherapy is an integral part of multi-modality approach in the management of locally advanced breast cancer and it is vital to predict the response in order to tailor the regime for a patient. The common final pathway in the tumor cell death is believed to be apoptosis or programmed cell death and chemotherapeutic drugs like other DNA-damaging agents act on rapidly multiplying cells including both the tumor and the normal cells by following the same common final pathway. This could account for both the toxic effects and the response. Absence or decreased apoptosis has been found to be associated with chemo resistance. The change in expression of apoptotic markers (Bcl-2 and Bax proteins) brought about by various chemotherapeutic regimens is being used to identify drug resistance in the tumor cells. A prospective clinical study was conducted to assess whether chemotherapy induced toxic effects could serve as reliable predictors of apoptosis or response to neo-adjuvant chemotherapy in patients with locally advanced breast cancer. 50 cases of locally advanced breast cancer after complete routine and metastatic work up were subjected to trucut biopsy and the tissue evaluated immunohistochemically for apoptotic markers (bcl-2/bax ratio). Three cycles of Neoadjuvant Chemotherapy using FAC regime (5-fluorouracil, adriamycin, cyclophosphamide) were given at three weekly intervals and patients assessed for clinical response as well as toxicity after each cycle. Modified radical mastectomy was performed in all patients three weeks after the last cycle and the specimen were re-evaluated for any change in the bcl-2/bax ratio. The clinical response, immunohistochemical response and the drug-induced toxicity were correlated and compared. Descriptive studies were performed with SPSS version 10 and the significance of response was assessed using paired t-test. Significance of correlation between various variables was assessed using chi-square test and coefficient

  11. Financial Toxicity of Cancer Drugs: Possible Remedies from an Ethical Perspective.

    Science.gov (United States)

    Marckmann, Georg; In der Schmitten, Jürgen

    2017-05-01

    Spiraling costs of cancer treatments have become a major concern for the payers in the health care system and for individual patients suffering from the cancer drugs' financial toxicity. This article discusses possible solutions from an ethical perspective. First, it gives some orientation about what constitutes a fair price for innovative anticancer agents. While a definitive answer remains difficult, there are good reasons to enter into price negotiations with the pharmaceutical companies to align the price with the R&D costs and the added value of the product. Information about the drug's cost-effectiveness should be available, a fixed threshold, however, seems ethically problematic. Rather, a 'signal cost-effectiveness threshold' should indicate when the drug price requires special justification. Further strategies include an improved benefit assessment after market authorization by independent publicly financed studies, which will provide a valid basis for price negotiations and clinical decision-making at the micro level. Last but not least, cancer treatments should be tailored not only to the biology of the tumor but also to the preferences of the patient. Primarily mandated by the respect for autonomy, promoting patient-centered care has the potential to improve quality of care and enable a wise use of scarce health care resources.

  12. Update on ocular toxicity of ethambutol

    Directory of Open Access Journals (Sweden)

    Priscilla Makunyane

    2016-08-01

    Full Text Available The purpose of this review is to update clinicians on available literature on the ocular toxicity of ethambutol and the type of eye care to be provided to patients treated with these medications. Ethambutol is a commonly used first-line anti-tuberculosis drug. Since its first use in the 1960s, ocular toxicity is described as related to dose and duration, and it is reversible on therapy discontinuation. However, the reversibility of the toxic optic neuropathy remains controversial. The mechanism of ocular toxicity owing to ethambutol is still under investigation. Other than discontinuing the drug, no specific treatment is available for the optic neuropathy caused by ethambutol. Doctors prescribing ethambutol should be aware of the ocular toxicity, and the drug should be used with proper patient education and ophthalmic monitoring.

  13. Evaluation of the Potential Risk of Drugs to Induce Hepatotoxicity in Human?Relationships between Hepatic Steatosis Observed in Non-Clinical Toxicity Study and Hepatotoxicity in Humans-

    OpenAIRE

    Goda, Keisuke; Kobayashi, Akio; Takahashi, Akemi; Takahashi, Tadakazu; Saito, Kosuke; Maekawa, Keiko; Saito, Yoshiro; Sugai, Shoichiro

    2017-01-01

    In the development of drugs, we sometimes encounter fatty change of the hepatocytes (steatosis) which is not accompanied by degenerative change in the liver in non-clinical toxicity studies. In this study, we investigated the relationships between fatty change of the hepatocytes noted in non-clinical toxicity studies of compound X, a candidate compound in drug development, and mitochondrial dysfunction in order to estimate the potential risk of the compound to induce drug-induced liver injury...

  14. Increased Toxicity of Chemotherapeutic Drugs by All-Trans Retinoic Acid in Cd44 Cells

    Directory of Open Access Journals (Sweden)

    A Abbasi

    2016-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In recent studies, undifferentiated CD44 cells have been introduced as the major cause of chemotherapeutic drug resistance in esophageal cancer. In this study, we aimed to evaluate the effects of all-trans retinoic acid on reducing chemotherapeutic drug resistance and improving the associated toxic effects. METHODS: In this clinical study, CD44+ and CD44- cells were separated from KYSE-30 cell line, using magnetic-activated cell sorting (MACS method. The cytotoxic effects of retinoic acid treatment, combined with cisplatin and 5-fluorouracil, were separately evaluated in two cell groups, i.e., CD44+ and CD44-. Cytotoxicity was determined by identifying cellular metabolic activity, acridine orange/ethidium bromide staining, and flow cytometry. FINDINGS: In this study, CD44 marker was expressed in 6.25% of the cell population in KYSE-30 cell line. The results of flow cytometry revealed that treatment with a combination of retinoic acid and chemotherapeutic drugs could improve cell cycle arrest in CD44+ cells (p<0.05, unlike CD44- cells. Determination of cellular metabolic activity, increased cell apoptosis along with decreased half maximal inhibitory concentration (IC50, and acridine orange/ethidium bromide staining were indicative of the increased percentage of primary and secondary apoptotic CD44+ cells. However, in CD44- cells, these effects were only observed by using a combination of retinoic acid and cisplatin (p<0.05. CONCLUSION: The present results showed that all-trans retinoic acid could increase the toxicity of cisplatin and 5-fluorouracil in CD44+ cells.

  15. Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Song, Taeksun; Lee, Myungsun; Jeon, Han-Seung; Park, Yumi; Dodd, Lori E; Dartois, Véronique; Follman, Dean; Wang, Jing; Cai, Ying; Goldfeder, Lisa C; Olivier, Kenneth N; Xie, Yingda; Via, Laura E; Cho, Sang Nae; Barry, Clifton E; Chen, Ray Y

    2015-11-01

    Long-term linezolid use is limited by mitochondrial toxicity-associated adverse events (AEs). Within a prospective, randomized controlled trial of linezolid to treat chronic extensively drug-resistant tuberculosis, we serially monitored the translational competence of mitochondria isolated from peripheral blood of participants by determining the cytochrome c oxidase/citrate synthase activity ratio. We compared this ratio with AEs associated with mitochondrial dysfunction. Linezolid trough concentrations were determined for 38 participants at both 600 mg and 300 mg doses. Those on 600 mg had a significantly higher risk of AE than those on 300 mg (HR 3·10, 95% CI 1·23-7 · 86). Mean mitochondrial function levels were significantly higher in patients before starting linezolid compared to their concentrations on 300 mg (P = 0·004) or 600 mg (P linezolid trough concentrations were associated with lower mitochondrial function levels (Spearman's ρ = - 0.48; P = 0.005). Mitochondrial toxicity risk increased with increasing linezolid trough concentrations, with all patients with mean linezolid trough > 2 μg/ml developing an AE related to mitochondrial toxicity, whether on 300 mg or 600 mg. Therapeutic drug monitoring may be useful to prevent the development of mitochondrial toxicity associated with long-term linezolid use.

  16. Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric Acute Lymphocytic Leukemia (ALL): Review from an International Consensus Conference

    NARCIS (Netherlands)

    T.M. Horton (Terzah); R. Sposto (Richard); P. Brown (Patrick); C.P. Reynolds (Patrick); S.P. Hunger (Stephen); N.J. Winick (Naomi); E.A. Raetz (Elizabeth); W.L. Carroll (William); R.J. Arceci (Robert); M.J. Borowitz (Michael); P.S. Gaynon (Paul); L. Gore (Lia); S. Jeha (Sima); B.J. Maurer (Barry); S.E. Siegel (Stuart); A. Biondi (Andrea); P. Kearns (Pamela); A. Narendran (Aru); L.B. Silverman (Lewis); M.A. Smith (Malcolm); C.M. Zwaan (Christian Michel); J.A. Whitlock (James)

    2010-01-01

    textabstractOne of the challenges of incorporating molecularly targeted drugs into multi-agent chemotherapy (backbone) regimens is defining dose-limiting toxicities (DLTs) of the targeted agent against the background of toxicities of the backbone regimen. An international panel of 22 pediatric acute

  17. Genomics and the prediction of xenobiotic toxicity

    International Nuclear Information System (INIS)

    Meyer, Urs-A.; Gut, Josef

    2002-01-01

    The systematic identification and functional analysis of human genes is revolutionizing the study of disease processes and the development and rational use of drugs. It increasingly enables medicine to make reliable assessments of the individual risk to acquire a particular disease, raises the number and specificity of drug targets and explains interindividual variation of the effectiveness and toxicity of drugs. Mutant alleles at a single gene locus for more than 20 drug metabolizing enzymes are some of the best studied individual risk factors for adverse drug reactions and xenobiotic toxicity. Increasingly, genetic polymorphisms of transporter and receptor systems are also recognized as causing interindividual variation in drug response and drug toxicity. However, pharmacogenetic and toxicogenetic factors rarely act alone; they produce a phenotype in concert with other variant genes and with environmental factors. Environmental factors may affect gene expression in many ways. For instance, numerous drugs induce their own and the metabolism of other xenobiotics by interacting with nuclear receptors such as AhR, PPAR, PXR and CAR. Genomics is providing the information and technology to analyze these complex situations to obtain individual genotypic and gene expression information to assess the risk of toxicity

  18. Is drug-induced toxicity a good predictor of response to neo-adjuvant chemotherapy in patients with breast cancer? -A prospective clinical study

    Directory of Open Access Journals (Sweden)

    Singh JP

    2004-08-01

    Full Text Available Abstract Background Neo-adjuvant chemotherapy is an integral part of multi-modality approach in the management of locally advanced breast cancer and it is vital to predict the response in order to tailor the regime for a patient. The common final pathway in the tumor cell death is believed to be apoptosis or programmed cell death and chemotherapeutic drugs like other DNA-damaging agents act on rapidly multiplying cells including both the tumor and the normal cells by following the same common final pathway. This could account for both the toxic effects and the response. Absence or decreased apoptosis has been found to be associated with chemo resistance. The change in expression of apoptotic markers (Bcl-2 and Bax proteins brought about by various chemotherapeutic regimens is being used to identify drug resistance in the tumor cells. A prospective clinical study was conducted to assess whether chemotherapy induced toxic effects could serve as reliable predictors of apoptosis or response to neo-adjuvant chemotherapy in patients with locally advanced breast cancer. Methods 50 cases of locally advanced breast cancer after complete routine and metastatic work up were subjected to trucut biopsy and the tissue evaluated immunohistochemically for apoptotic markers (bcl-2/bax ratio. Three cycles of Neoadjuvant Chemotherapy using FAC regime (5-fluorouracil, adriamycin, cyclophosphamide were given at three weekly intervals and patients assessed for clinical response as well as toxicity after each cycle. Modified radical mastectomy was performed in all patients three weeks after the last cycle and the specimen were re-evaluated for any change in the bcl-2/bax ratio. The clinical response, immunohistochemical response and the drug-induced toxicity were correlated and compared. Descriptive studies were performed with SPSS version 10 and the significance of response was assessed using paired t-test. Significance of correlation between various variables was

  19. Possible inclinations for psychostimulant, toxic agent and drug abuse among youths and students

    Directory of Open Access Journals (Sweden)

    V. G. Ginzburg

    2012-03-01

    Full Text Available Taking into account modern achievements in medicine, psychology and sociology, the attempt at complex research of possible inclinations for psychostimulant, toxic agent and drug abuse among youths and students was made with the subsequent determination of the possible alternates of primary prevention. It is analysed the basic and additional risk factors promoting smoking, drinking, psychostimulant abuse, toxicomania and narcomania among young people. The dynamics of possible influences of medical, psychological and social factors is studied. The attempt of short-term prognostication and ranking was made.

  20. Stevens Johnson syndrome, toxic epidermal necrolysis and SJS-TEN overlap: A retrospective study of causative drugs and clinical outcome

    Directory of Open Access Journals (Sweden)

    Sharma Vinod

    2008-01-01

    Full Text Available Background and Aims: Stevens Johnson syndrome (SJS, toxic epidermal necrolysis (TEN and SJS-TEN overlap are serious adverse cutaneous drug reactions. Drugs are often implicated in these reactions. Methods: A retrospective analysis of inpatients′ data with these dermatological diagnoses were carried out for three years, to study the causative drugs, clinical outcome, and mortality in these conditions. Results: Thirty patients (15 TEN, nine SJS-TEN overlap, and six SJS were admitted. In 21 cases, multiple drugs were implicated whereas single drugs were responsible in nine. Anticonvulsants (35.08% were the most commonly implicated drugs followed by antibiotics (33.33% and NSAIDS (24.56%. Twenty-five patients recovered whereas five died (four TEN, one SJS-TEN overlap. Conclusion: Anticonvulsants, antibiotics and NSAIDs were the most frequently implicated drugs. TEN causes higher mortality than both SJS and SJS-TEN overlap.

  1. Indefinite antithyroid drug therapy in toxic Graves′ disease: What are the cons

    Directory of Open Access Journals (Sweden)

    Rajesh Rajput

    2013-01-01

    Full Text Available Existing treatment modalities for Graves′ disease includes antithyroid drugs (ATDs, radioactive iodine, and surgery. There has been a lack of general agreement as to which therapy is the best as none is ideal since all effectively restore euthyroidism, but with some limitations. Previously, therapies were selected with the goal of achieving euthyroidism. Instead, hypothyroidism is now the goal of treatment, to ensure that hyperthyroidism does not recur. Current evidences suggest that high relapse rate and not so rare fatal side effects seen with ATD therapy compel one to consider other definite modes of treatment like radiotherapy and surgery for toxic Graves′ disease after discussing this with the patient.

  2. Indefinite antithyroid drug therapy in toxic Graves’ disease: What are the cons

    Science.gov (United States)

    Rajput, Rajesh; Goel, Vasudha

    2013-01-01

    Existing treatment modalities for Graves’ disease includes antithyroid drugs (ATDs), radioactive iodine, and surgery. There has been a lack of general agreement as to which therapy is the best as none is ideal since all effectively restore euthyroidism, but with some limitations. Previously, therapies were selected with the goal of achieving euthyroidism. Instead, hypothyroidism is now the goal of treatment, to ensure that hyperthyroidism does not recur. Current evidences suggest that high relapse rate and not so rare fatal side effects seen with ATD therapy compel one to consider other definite modes of treatment like radiotherapy and surgery for toxic Graves’ disease after discussing this with the patient. PMID:24251229

  3. Mixture toxicity of the antiviral drug Tamiflu (oseltamivir ethylester) and its active metabolite oseltamivir acid

    Energy Technology Data Exchange (ETDEWEB)

    Escher, Beate I., E-mail: b.escher@uq.edu.au [University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Straub, Juerg Oliver [F.Hoffmann-La Roche Ltd, Corporate Safety, Health and Environmental Protection, 4070 Basel (Switzerland)

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24 h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  4. Zebrafish embryotoxicity test for developmental (neuro)toxicity : Demo case of an integrated screening approach system using anti-epileptic drugs

    NARCIS (Netherlands)

    Beker van Woudenberg, Anna; Snel, Cor; Rijkmans, Eke; De Groot, Didima; Bouma, Marga; Hermsen, Sanne; Piersma, Aldert; Menke, Aswin; Wolterbeek, André

    2014-01-01

    To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid

  5. Zebrafish embryotoxicity test for developmental (neuro)toxicity: Demo case of an integrated screening approach system using anti-epileptic drugs

    NARCIS (Netherlands)

    Beker van Woudenberg, A.; Snel, C.; Rijkmans, E.; Groot, D. de; Bouma, M.; Hermsen, S.; Piersma, A.; Menke, A.; Wolterbeek, A.

    2014-01-01

    To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid

  6. Evaluation of the Potential Risk of Drugs to Induce Hepatotoxicity in Human—Relationships between Hepatic Steatosis Observed in Non-Clinical Toxicity Study and Hepatotoxicity in Humans-

    Science.gov (United States)

    Goda, Keisuke; Kobayashi, Akio; Takahashi, Akemi; Takahashi, Tadakazu; Saito, Kosuke; Maekawa, Keiko; Saito, Yoshiro; Sugai, Shoichiro

    2017-01-01

    In the development of drugs, we sometimes encounter fatty change of the hepatocytes (steatosis) which is not accompanied by degenerative change in the liver in non-clinical toxicity studies. In this study, we investigated the relationships between fatty change of the hepatocytes noted in non-clinical toxicity studies of compound X, a candidate compound in drug development, and mitochondrial dysfunction in order to estimate the potential risk of the compound to induce drug-induced liver injury (DILI) in humans. We conducted in vivo and in vitro exploratory studies for this purpose. In vivo lipidomics analysis was conducted to investigate the relationships between alteration of the hepatic lipids and mitochondrial dysfunction. In the liver of rats treated with compound X, triglycerides containing long-chain fatty acids, which are the main energy source of the mitochondria, accumulated. Accumulation of these triglycerides was considered to be related to the inhibition of mitochondrial respiration based on the results of in vitro mitochondria toxicity studies. In conclusion, fatty change of the hepatocytes (steatosis) in non-clinical toxicity studies of drug candidates can be regarded as a critical finding for the estimation of their potential risk to induce DILI in humans when the fatty change is induced by mitochondrial dysfunction. PMID:28417920

  7. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  8. Hydroxycut-induced Liver Toxicity

    African Journals Online (AJOL)

    hanumantp

    Annals of Medical and Health Sciences Research | Jan-Feb 2014 | Vol 4 ... supplements can be responsible for documented or undocumented adverse drug effects. The ... Keywords: Hydroxycut, Liver toxicity, Nutritional supplements ... Caffeine anhydrous: 200 mg* ... series and review of liver toxicity from herbal weight loss.

  9. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    International Nuclear Information System (INIS)

    Vedani, Angelo; Dobler, Max; Smieško, Martin

    2012-01-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  10. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    Energy Technology Data Exchange (ETDEWEB)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland); Dobler, Max [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Smieško, Martin [Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  11. Cytotoxicity and Acute Gastrointestinal Toxicity of Bacterial Cellulose-Poly (acrylamide-sodium acrylate Hydrogel: A Carrier for Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey 1,2 * , Hira Choudhury 1, Mohd Cairul Iqbal Mohd Amin 2

    2016-12-01

    Full Text Available Background: Preliminary safety evaluation of polymer intended to use as drug delivery carrier is essential. Methods: In this study polyacrylamide grafted bacterial cellulose (BC/AM hydrogel was prepared by microwave irradiation initiated free radical polymerization. The synthesized hydrogel was subjected to in vitro cytotoxicity and acute gastrointestinal toxicity studies to evaluate its biological safety as potential oral drug delivery carrier. Results: The results indicate that hydrogel was non cytotoxic and did not show any histopathological changes in GI tract after a high dose of oral administration. Conclusion: The results revealed that hydrogel composed of bacterial cellulose and polyacrylamide is safe as oral drug delivery carrier.

  12. Neurological manifestation of phenytoin toxicity, resulting from drug ...

    African Journals Online (AJOL)

    Phenytoin toxicity masquerading as deterioration of neurological symptoms caused by interaction with chloramphenicol is a very rare but real risk. To the authors' knowledge only one such case occurring in humans has been reported in the English literature. No case of clinical phenytoin toxicity occurring at less than ...

  13. Electronic Cigarette Toxicity.

    Science.gov (United States)

    Payne, J Drew; Michaels, David; Orellana-Barrios, Menfil; Nugent, Kenneth

    2017-04-01

    Electronic cigarettes (e-cigarettes) are often advertised as a healthier product when compared with traditional cigarettes. Currently, there are limited data to support this and only a threat of federal regulation from the US Food and Drug Administration. Calls to poison control centers about e-cigarette toxicity, especially in children, and case reports of toxic exposures have increased over the past 3 years. This research letter reports the frequency of hazardous exposures to e-cigarettes and characterizes the reported adverse health effects associated with e-cigarette toxicity.

  14. Albendazole Induced Recurrent Acute Toxic Hepatitis: A Case Report.

    Science.gov (United States)

    Bilgic, Yilmaz; Yilmaz, Cengiz; Cagin, Yasir Furkan; Atayan, Yahya; Karadag, Nese; Harputluoglu, Murat Muhsin Muhip

    2017-01-01

    Drug induced acute toxic hepatitis can be idiosyncratic. Albendazole, a widely used broad spectrum antiparasitic drug is generally accepted as a safe drug. It may cause asymptomatic transient liver enzyme abnormalities but acute toxic hepatitis is very rare. Case Report : Herein, we present the case of 47 year old woman with recurrent acute toxic hepatitis after a single intake of albendazole in 2010 and 2014. The patient was presented with symptoms and findings of anorexia, vomiting and jaundice. For diagnosis, other acute hepatitis etiologies were excluded. Roussel Uclaf Causality Assessment Method (RUCAM) score was calculated and found to be 10, which meant highly probable drug hepatotoxicity. Within 2 months, all pathological findings came to normal. There are a few reported cases of albendazole induced toxic hepatitis, but at adults, there is no known recurrent acute toxic hepatitis due to albendazole at this certainty according to RUCAM score. Physicians should be aware of this rare and potentially fatal adverse effect of albendazole. © Acta Gastro-Enterologica Belgica.

  15. Ischemic or toxic injury: A challenging diagnosis and treatment of drug-induced stenosis of the sigmoid colon.

    Science.gov (United States)

    Zhang, Zong-Ming; Lin, Xiang-Chun; Ma, Li; Jin, An-Qin; Lin, Fang-Cai; Liu, Zhuo; Liu, Li-Min; Zhang, Chong; Zhang, Na; Huo, Li-Juan; Jiang, Xue-Liang; Kang, Feng; Qin, Hong-Jun; Li, Qiu-Yang; Yu, Hong-Wei; Deng, Hai; Zhu, Ming-Wen; Liu, Zi-Xu; Wan, Bai-Jiang; Yang, Hai-Yan; Liao, Jia-Hong; Luo, Xu; Li, You-Wei; Wei, Wen-Ping; Song, Meng-Meng; Zhao, Yue; Shi, Xue-Ying; Lu, Zhao-Hui

    2017-06-07

    A 48-year-old woman was admitted with 15-mo history of abdominal pain, diarrhea and hematochezia, and 5-mo history of defecation difficulty. She had been successively admitted to nine hospitals, with an initial diagnosis of inflammatory bowel disease with stenotic sigmoid colon. Findings from computed tomography virtual colonoscopy, radiography with meglumine diatrizoate, endoscopic balloon dilatation, metallic stent implantation and later overall colonoscopy, coupled with the newfound knowledge of compound Qingdai pill-taking, led to a subsequent diagnosis of ischemic or toxic bowel disease with sigmoid colon stenosis. The patient was successfully treated by laparoscopic sigmoid colectomy, and postoperative pathological examination revealed ischemic or toxic injury of the sigmoid colon, providing a final diagnosis of drug-induced sigmoid colon stenosis. This case highlights that adequate awareness of drug-induced colon stenosis has a decisive role in avoiding misdiagnosis and mistreatment. The diagnostic and therapeutic experiences learnt from this case suggest that endoscopic balloon expansion and colonic metallic stent implantation as bridge treatments were demonstrated as crucial for the differential diagnosis of benign colonic stenosis. Skillful surgical technique and appropriate perioperative management helped to ensure the safety of our patient in subsequent surgery after long-term use of glucocorticoids.

  16. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  17. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    International Nuclear Information System (INIS)

    Diaz, Dolores; Ford, Kevin A.; Hartley, Dylan P.; Harstad, Eric B.; Cain, Gary R.; Achilles-Poon, Kirsten; Nguyen, Trung; Peng, Jing; Zheng, Zhong; Merchant, Mark; Sutherlin, Daniel P.; Gaudino, John J.; Kaus, Robert; Lewin-Koh, Sock C.; Choo, Edna F.; Liederer, Bianca M.; Dambach, Donna M.

    2013-01-01

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.

  18. Nail toxicity induced by cancer chemotherapy.

    Science.gov (United States)

    Gilbar, Peter; Hain, Alice; Peereboom, Veta-Marie

    2009-09-01

    To provide a comprehensive literature review of chemotherapy-induced nail toxicity, including clinical presentation, implicated drugs and approaches for prevention and management. A search of MEDLINE and EMBASE (1966-2008) databases was conducted using the terms (and variations of the terms) antineoplastic agents, nails, nail toxicity, onycholysis, and paronychia. Bibliographies from selected articles were reviewed for appropriate references. The retrieved literature was reviewed to include all articles relevant to the clinical presentation, diagnosis, incidence, prevention, and treatment of chemotherapy-induced nail toxicity. Nail toxicity is a relatively uncommon adverse effect linked to a number of chemotherapeutic agents. Clinical presentation varies, depending on which nail structure is affected and the severity of the insult. Nail changes may involve all or some nails. Toxicity may be asymptomatic and limited to cosmetic concerns, however, more severe effects, involving pain and discomfort can occur. Taxanes and anthracyclines are the antineoplastic drug groups most commonly implicated. It is suggested that the administration schedule may influence the incidence of nail abnormalities, for example reported cases linked to the weekly administration of paclitaxel.Before instituting chemotherapy, patients should be educated regarding potential nail toxicities and strategies for prevention implemented. Management includes appropriate nail cutting, avoiding potential irritants, topical, or oral antimicrobials, and possibly cessation or dose reduction of the offending agent. Cryotherapy, through the application of frozen gloves or socks, has been beneficial in reducing docetaxel-induced nail toxicity and may be effective for other drugs.

  19. Nanotechnology and Drug Delivery Part 2: Nanostructures for Drug ...

    African Journals Online (AJOL)

    Some challenges associated with the technology as it relates to drug effectiveness, toxicity, stability, pharmacokinetics and drug regulatory control are discussed in this review. Clearly, nanotechnology is a welcome development that is set to transform drug delivery and drug supply chain management, if optimally developed ...

  20. Promising Diabetes Therapy Based on the Molecular Mechanism for Glucose Toxicity: Usefulness of SGLT2 Inhibitors as well as Incretin-Related Drugs.

    Science.gov (United States)

    Kaneto, Hideaki; Obata, Atsushi; Shimoda, Masashi; Kimura, Tomohiko; Hirukawa, Hidenori; Okauchi, Seizo; Matsuoka, Taka-Aki; Kaku, Kohei

    2016-01-01

    Pancreatic β-cell dysfunction and insulin resistance are the main characteristics of type 2 diabetes. Chronic exposure of β-cells to hyperglycemia leads to the deterioration of β-cell function. Such phenomena are well known as pancreatic β-cell glucose toxicity. MafA, a strong transactivator of insulin gene, is particularly important for the maintenance of mature β-cell function, but its expression level is significantly reduced under diabetic conditions which is likely associated with β-cell failure. Reduction of incretin receptor expression level in β-cells in diabetes is also likely associated with β-cell failure. On the other hand, incretin-related drugs and sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising diabetes therapy based on the mechanism for pancreatic β-cell glucose toxicity. Indeed, it was shown that incretin-related drugs exerted protective effects on β-cells through the augmentation of IRS-2 expression especially in the presence of pioglitazone. It was also shown that incretin-related drug and/or pioglitazone exerted more protective effects on β-cells at the early stage of diabetes compared to the advanced stage. SGLT2 inhibitors, new hypoglycemic agents, also exert beneficial effects for the protection of pancreatic β-cells as well as for the reduction of insulin resistance in various insulin target tissues. Taken together, it is important to select appropriate therapy based on the molecular mechanism for glucose toxicity.

  1. Drug-drug interactions between anti-retroviral therapies and drugs of abuse in HIV systems.

    Science.gov (United States)

    Kumar, Santosh; Rao, P S S; Earla, Ravindra; Kumar, Anil

    2015-03-01

    Substance abuse is a common problem among HIV-infected individuals. Importantly, addictions as well as moderate use of alcohol, smoking, or other illicit drugs have been identified as major reasons for non-adherence to antiretroviral therapy (ART) among HIV patients. The literature also suggests a decrease in the response to ART among HIV patients who use these substances, leading to failure to achieve optimal virological response and increased disease progression. This review discusses the challenges with adherence to ART as well as observed drug interactions and known toxicities with major drugs of abuse, such as alcohol, smoking, methamphetamine, cocaine, marijuana, and opioids. The lack of adherence and drug interactions potentially lead to decreased efficacy of ART drugs and increased ART, and drugs of abuse-mediated toxicity. As CYP is the common pathway in metabolizing both ART and drugs of abuse, we discuss the possible involvement of CYP pathways in such drug interactions. We acknowledge that further studies focusing on common metabolic pathways involving CYP and advance research in this area would help to potentially develop novel/alternate interventions and drug dose/regimen adjustments to improve medication outcomes in HIV patients who consume drugs of abuse.

  2. Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection.

    Science.gov (United States)

    Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D

    2004-01-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.

  3. Studies on the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rat

    Directory of Open Access Journals (Sweden)

    Zheng-mou DONG

    2011-01-01

    Full Text Available Objective To evaluate the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rats.Methods A total of 100female SD rats were randomly divided into negative control,low-,medium-,high-dose group and intervention group(20each.Rats in low-,medium-and high-dose group were fed daily with the sustained release drug at 1,4,and 8g/kg respectively;those in negative control group were fed daily with distilled water from the 14th day before mating to the 7th day of pregnancy continuously,and those in intervention group received cyclophosphamide(40mg/kgby intraperitoneal injection for 5successive days.During this period,the general status,mating,pregnancy,coefficient of ovary and uterus,the numbers of corpus luteum,nidation,live births,stillbirths,absorbed embryo,prenidatory and postnidatory mortality,serum testosterone(Tand estradiol(E2were determined respectively.Histopathologic examination of the ovary and uterus,immunohistochemical observation of ovaries for proliferating cell nuclear antigen(PCNAand Bcl-2associated X protein(Baxwere also performed respectively.Results The general status of those rats was good except one in the low-dose group and one in the intervention group died on the 14th day of administration,and one in negative control and one in high dose group died on the 5th day of pregnancy,respectively.The body weight of animals decreased significantly(P 0.05.The serum T level in medium-and high-dose group and the E2level in high-dose group declined compared to that in negative control group(P < 0.05.Conclusions Although the periodontal sustained release drug containing ornidazole and pefloxacin mesylate shows no toxicity to the early embryonic development of SD rats,the high dose drug has certain toxicity to ovary.Declined serum concentrations of T and E2,reduced expression of PCNA,and increased Bax may be the causes of the toxicity.

  4. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  5. Acute And Subchronic Toxicity Studies Of SNEDDS (Self Nanoemulsifying Drug Delivery Systems) From Ethyl Acetate Extract Of Bay Leaf (Eugenia polyantha W.) with Virgin Coconut Oil As Oil Phase

    Science.gov (United States)

    Prihapsara, F.; Alamsyah, R. I.; Widiyani, T.; Artanti, A. N.

    2018-03-01

    Bay leaf (Eugenia polyantha) is widely used as an alternative therapy for diabetic and hypercholesterol. However, the administration of the extract has a low oral bioavailability, therefore it is prepared by Self Nanoemulsifying Drug Delivery Systems (SNEDDS) ethyl acetate extract of bay leaf. Therefore, acute and subchronic toxicity test is required. The toxicity test performed was an experimental study, including acute and subchronic toxicity tests. Animal experiments were used using Wistar strain rats. Acute toxicity test using 5 groups (n=5) consisted of 1 control group and 4 groups of SNEDDS dose with 48 mg/kgBW 240 mg/kg, 1200 mg/kg, and 6000 mg/kg, while for subchronic toxicity test with 1 group control and 3 groups of doses of SNEDDS with dose group variation 91.75 mg/kgBW, 183.5 mg/kg, and 367 mg/kg. Duration of observation at acute toxicity test for 14 days while for subcronic toxicity test for 28 days with continuous SNEDDS dosage. The results of the acute toxicity test showed toxic symptoms and obtained median lethal dose (LD50) values from SNEDDS from ethyl acetate extract of bay leaf 1409.30 mg/kgBW belonging to slightly toxic category. Subchronic toxicity studies show that the test drug has minor damage in liver and kidneys and moderate damage in pancreas.

  6. Ameliorating effect of microdoses of a potentized homeopathic drug, Arsenicum Album, on arsenic-induced toxicity in mice

    Directory of Open Access Journals (Sweden)

    Guha B

    2003-10-01

    Full Text Available Abstract Background Arsenic in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of West Bengal, India and adjoining areas of Bangladesh. Because of the tremendous magnitude of the problem, there seems to be no way to tackle the problem overnight. Efforts to provide arsenic free water to the millions of people living in these dreaded zones are being made, but are awfully inadequate. In our quest for finding out an easy, safe and affordable means to combat this problem, a homeopathic drug, Arsenicum Album-30, appears to yield promising results in mice. The relative efficacies of two micro doses of this drug, namely, Arsenicum Album-30 and Arsenicum Album-200, in combating arsenic toxicity have been determined in the present study on the basis of some accepted biochemical protocols. Methods Mice were divided into different sets of control (both positive and negative and treated series (As-intoxicated, As-intoxicated plus drug-fed. Alanine amino transferase (ALT and aspartate amino transferase (AST activities and reduced glutathione (GSH level in liver and blood were analyzed in the different series of mice at six different fixation intervals. Results Both Arsenicum Album-30 and Arsenicum Album-200 ameliorated arsenic-induced toxicity to a considerable extent as compared to various controls. Conclusions The results lend further support to our earlier views that microdoses of potentized Arsenicum Album are capable of combating arsenic intoxication in mice, and thus are strong candidates for possible use in human subjects in arsenic contaminated areas under medical supervision.

  7. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.

    Science.gov (United States)

    Yasinzai, Masoom; Khan, Momin; Nadhman, Akhtar; Shahnaz, Gul

    2013-10-01

    Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.

  8. Is LSD toxic?

    Science.gov (United States)

    Nichols, David E; Grob, Charles S

    2018-03-01

    LSD (lysergic acid diethylamide) was discovered almost 75 years ago, and has been the object of episodic controversy since then. While initially explored as an adjunctive psychiatric treatment, its recreational use by the general public has persisted and on occasion has been associated with adverse outcomes, particularly when the drug is taken under suboptimal conditions. LSD's potential to cause psychological disturbance (bad trips) has been long understood, and has rarely been associated with accidental deaths and suicide. From a physiological perspective, however, LSD is known to be non-toxic and medically safe when taken at standard dosages (50-200μg). The scientific literature, along with recent media reports, have unfortunately implicated "LSD toxicity" in five cases of sudden death. On close examination, however, two of these fatalities were associated with ingestion of massive overdoses, two were evidently in individuals with psychological agitation after taking standard doses of LSD who were then placed in maximal physical restraint positions (hogtied) by police, following which they suffered fatal cardiovascular collapse, and one case of extreme hyperthermia leading to death that was likely caused by a drug substituted for LSD with strong effects on central nervous system temperature regulation (e.g. 25i-NBOMe). Given the renewed interest in the therapeutic potential of LSD and other psychedelic drugs, it is important that an accurate understanding be established of the true causes of such fatalities that had been erroneously attributed to LSD toxicity, including massive overdoses, excessive physical restraints, and psychoactive drugs other than LSD. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric acute lymphocytic leukemia (ALL): review from an international consensus conference.

    Science.gov (United States)

    Horton, Terzah M; Sposto, Richard; Brown, Patrick; Reynolds, C Patrick; Hunger, Stephen P; Winick, Naomi J; Raetz, Elizabeth A; Carroll, William L; Arceci, Robert J; Borowitz, Michael J; Gaynon, Paul S; Gore, Lia; Jeha, Sima; Maurer, Barry J; Siegel, Stuart E; Biondi, Andrea; Kearns, Pamela R; Narendran, Aru; Silverman, Lewis B; Smith, Malcolm A; Zwaan, C Michel; Whitlock, James A

    2010-07-01

    One of the challenges of incorporating molecularly targeted drugs into multi-agent chemotherapy (backbone) regimens is defining dose-limiting toxicities (DLTs) of the targeted agent against the background of toxicities of the backbone regimen. An international panel of 22 pediatric acute lymphocytic leukemia (ALL) experts addressed this issue (www.ALLNA.org). Two major questions surrounding DLT assessment were explored: (1) how toxicities can be best defined, assessed, and attributed; and (2) how effective dosing of new agents incorporated into multi-agent ALL clinical trials can be safely established in the face of disease- and therapy-related systemic toxicities. The consensus DLT definition incorporates tolerance of resolving Grade 3 and some resolving Grade 4 toxicities with stringent safety monitoring. This functional DLT definition is being tested in two Children's Oncology Group (COG) ALL clinical trials. Copyright 2010 Wiley-Liss, Inc.

  10. Acute and subacute toxicity of 18F-FDG

    International Nuclear Information System (INIS)

    Dantas, Danielle Maia

    2013-01-01

    Before starting clinical trials of a new drug, it is necessary to perform a battery of safety tests for assessing human risk. Radiopharmaceuticals like any new drug must be tested taking into account its specificity, duration of treatment and especially the toxicity of both parties, the unlabeled molecule and its radionuclide, apart from impurities emanating from radiolysis. Regulatory agencies like the Food and Drug Administration - USA (FDA) and the European Medicine Agency (EMEA), establish guidelines for the regulation of production and research of radiopharmaceuticals. In Brazil the production of radiopharmaceuticals was not regulated until the end of 2009, when were established by the National Agency for Sanitary Surveillance (ANVISA) resolutions No. 63, which refers to the Good Manufacturing Practices of Radiopharmaceuticals and No. 64 which seeks the registration of record radiopharmaceuticals. To obtain registration of radiopharmaceuticals are necessary to prove the quality, safety, efficacy and specificity of the drug . For the safety of radiopharmaceuticals must be presented studies of acute toxicity, subacute and chronic toxicity as well as reproductive, mutagenic and carcinogenic. Nowadays IPEN-CNEN/SP produces one of the most important radiopharmaceutical of nuclear medicine, the 18 F-FDG, which is used in many clinical applications, particularly in the diagnosis and staging of tumors. The objective of this study was to evaluate the systemic toxicity (acute/ subacute) radiopharmaceutical 18 F-FDG in an in vivo test system, as recommended by the RDC No. 64, which will serve as a model for protocols toxicity of radiopharmaceuticals produced at IPEN. The following tests were performed: tests of acute and subacute toxicity, biodistribution studies of 18 F-FDG, comet assay and reproductive toxicity. In acute toxicity, healthy rats were injected . (author)

  11. Identification of clinically significant drug-drug interactions in cardiac ...

    African Journals Online (AJOL)

    Purpose: To identify clinically significant potential drug-drug interactions in cardiac intensive care units of two tertiary care ... hypertension, hyperlipidemia, diabetes or other diseases .... May result in digoxin toxicity (nausea, vomiting, cardiac.

  12. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity

    International Nuclear Information System (INIS)

    Boelsterli, Urs A.

    2003-01-01

    The nonsteroidal antiinflammatory drug diclofenac causes rare but significant cases of serious hepatotoxicity, typically with a delayed onset (>1-3 months). Because there is no simple dose relationship and because liver injury cannot be reproduced in current animal models, individual patient-specific susceptibility factors have been evoked to account for the increased risk. While these patient factors have remained undefined, a number of molecular hazards have been characterized. Among these are metabolic factors (bioactivation by hCYP2C9 or hCYP3A4 to thiol-reactive quinone imines, activation by hUGT2B7 to protein-reactive acyl glucuronides and iso-glucuronides, and 4'-hydroxylation secondary to diclofenac glucuronidation), as well as kinetic factors (Mrp2-mediated concentrative transport of diclofenac metabolites into bile). From the toxicodynamic view, both oxidative stress (caused by putative diclofenac cation radicals or nitroxide and quinone imine-related redox cycling) and mitochondrial injury (protonophoretic activity and opening of the permeability transition pore) alone or in combination have been implicated in diclofenac toxicity. In some cases, immune-mediated liver injury is involved, inferred from inadvertent rechallenge data and from a number of experiments demonstrating T cell sensitization. Why certain underlying diseases (e.g., osteoarthritis) also increase the susceptibility to diclofenac hepatotoxicity is not clear. To date, cumulative damage to mitochondrial targets seems a plausible putative mechanism to explain the delayed onset of liver failure, perhaps even superimposed on an underlying silent mitochondrial abnormality. Increased efforts to identify both patient-specific risk factors and disease-related factors will help to define patient subsets at risk as well as increase the predictability of unexpected hepatotoxicity in drug development

  13. A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery.

    Science.gov (United States)

    Yang, Conglian; Wu, Tingting; Qin, Yuting; Qi, Yan; Sun, Yu; Kong, Miao; Jiang, Xue; Qin, Xianya; Shen, Yaqi; Zhang, Zhiping

    2018-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic agent but severe side effects limit its clinical application. Nanoformulations can reduce the toxicity while still have various limitations, such as complexity, low drug loading capability and excipient related concerns. An amphiphilic conjugate, doxorubicin-dichloroacetate, was synthesized and the corresponding nanoparticles were prepared. The in vitro cytotoxicity and intracellular uptake, in vivo imaging, antitumor effects and systemic toxicities of nanoparticles were carried out to evaluate the therapeutic efficiency of tumor. Doxorubicin-dichloroacetate conjugate can self-assemble into nanoparticles with small amount of DSPE-PEG 2000 , leading to high drug loading (71.8%, w/w) and diminished excipient associated concerns. The nanoparticles exhibited invisible systemic toxicity and high maximum tolerated dose of 75 mg DOX equiv./kg, which was 15-fold higher than that of free DOX. It also showed good tumor targeting capability and enhanced antitumor efficacy in murine melanoma model. This work provides a promising strategy to simplify the drug preparation process, increase drug loading content, reduce systemic toxicity as well as enhance antitumor efficiency.

  14. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    Science.gov (United States)

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  15. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease.

    Science.gov (United States)

    Habchi, Johnny; Arosio, Paolo; Perni, Michele; Costa, Ana Rita; Yagi-Utsumi, Maho; Joshi, Priyanka; Chia, Sean; Cohen, Samuel I A; Müller, Martin B D; Linse, Sara; Nollen, Ellen A A; Dobson, Christopher M; Knowles, Tuomas P J; Vendruscolo, Michele

    2016-02-01

    The conversion of the β-amyloid (Aβ) peptide into pathogenic aggregates is linked to the onset and progression of Alzheimer's disease. Although this observation has prompted an extensive search for therapeutic agents to modulate the concentration of Aβ or inhibit its aggregation, all clinical trials with these objectives have so far failed, at least in part because of a lack of understanding of the molecular mechanisms underlying the process of aggregation and its inhibition. To address this problem, we describe a chemical kinetics approach for rational drug discovery, in which the effects of small molecules on the rates of specific microscopic steps in the self-assembly of Aβ42, the most aggregation-prone variant of Aβ, are analyzed quantitatively. By applying this approach, we report that bexarotene, an anticancer drug approved by the U.S. Food and Drug Administration, selectively targets the primary nucleation step in Aβ42 aggregation, delays the formation of toxic species in neuroblastoma cells, and completely suppresses Aβ42 deposition and its consequences in a Caenorhabditis elegans model of Aβ42-mediated toxicity. These results suggest that the prevention of the primary nucleation of Aβ42 by compounds such as bexarotene could potentially reduce the risk of onset of Alzheimer's disease and, more generally, that our strategy provides a general framework for the rational identification of a range of candidate drugs directed against neurodegenerative disorders.

  16. Specific toxicity of 5-thio-D-glucose to hypoxic cells

    International Nuclear Information System (INIS)

    Schulz, R.J.; Bongiorni, P.

    1984-01-01

    The toxicity of 5-thio-D-glucose (5TG) to mammalian cells in culture has been studied with respect to oxygen tension, concentration, and temperature. At 37 0 C and at 5 mM concentration of the drug in normal growth medium, survival is 10 -3 for 4-hr exposure to 5 ppm O 2 ; this increases to 0.5 for 24-hr exposure to 200 ppm O 2 . The relationship between survival and oxygen tension is nonlinear with the greatest change occurring between 50 and 100 ppm. The drug is essentially nontoxic to aerated cells. Drug toxicity increases with concentration up to about 5 mM at which point a plateau is reached. The effect of elevated temperature is to reduce the time required to obtain a specific level of survival, but temperatures as high as 42 0 C had only a slight effect on drug toxicity for oxygen tensions higher than 100 ppm. The effect of D-glucose on the toxicity of 5TG was studied, and an inverse relationship was established. At D-glucose concentrations greater than 20 mM the toxicity of 5TG was nullified regardless of oxygen tension or 5TG concentration

  17. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  18. Acute and Subchronic Toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from Chloroform Bay Leaf Extract (Eugenia Polyantha W.) with Palm Kernel Oil as A Carrier

    Science.gov (United States)

    Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.

    2018-03-01

    The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.

  19. Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy.

    Science.gov (United States)

    Mladosievicova, B; Carter, A; Kristova, V

    2007-01-01

    The standard anticancer therapy based "on one size fits all" modality has been determined to be ineffective or to be the cause of adverse drug reactions in many oncologic patients. Most pharmacogenetic and pharmacogenomic studies so far have been focused on toxicity of anticancer drugs such as 6-mercaptopurine, thioguanine, irinotecan, methotrexate, 5-fluorouracil (5-FU). Variation in genes are known to influence not only toxicity, but also efficacy of chemotherapeutics such as platinum analogues, 5-FU and irinotecan. The majority of current pharmacogenetic studies focus on single enzyme deficiencies as predictors of drug effects; however effects of most anticancer drugs are determined by the interplay of several gene products. These effects are polygenic in nature. This review briefly describes genetic variations that may impact efficacy and toxicity of drugs used in cancer chemotherapy.

  20. Therapeutic Drug Monitoring in Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    NG Hoi-Yan Alexandra

    2016-12-01

    Full Text Available The ultimate goal of treating rheumatic disease is to achieve rapid suppression of inflammation, while at the same time minimizing the toxicities from rheumatic drugs. Different patients have different individual pharmacokinetics that can affect the drug level. Moreover, different factors, such as renal function, age or even different underlying diseases, can affect the drug level. Therefore, giving the same dosage of drugs to different patients may result in different drug levels. This article will review the usefulness of therapeutic drug monitoring in maximizing drug efficacy, while reducing the risk of toxicities in Hydroxychloroquine, Mycophenolate Mofetil, Tacrolimus and Tumor Necrosis Factor inhibitors (TNF Inhibitors.

  1. Thrombotic microangiopathy associated with Valproic acid toxicity.

    Science.gov (United States)

    Hebert, Sean A; Bohan, Timothy P; Erikson, Christian L; Swinford, Rita D

    2017-08-03

    Thrombotic microangiopathy (TMA) is a serious, sometimes life-threatening disorder marked by the presence of endothelial injury and microvascular thrombi. Drug-induced thrombotic microangiopathy (DI-TMA) is one specific TMA syndrome that occurs following drug exposure via drug-dependent antibodies or direct tissue toxicity. Common examples include calcineurin inhibitors Tacrolimus and Cyclosporine and antineoplastics Gemcitabine and Mitomycin. Valproic acid has not been implicated in DI-TMA. We present the first case of a patient meeting clinical criteria for DI-TMA following admission for valproic acid toxicity. An adolescent male with difficult to control epilepsy was admitted for impaired hepatic function while on valproic acid therapy. On the third hospital day, he developed severe metabolic lactic acidosis and multiorgan failure, prompting transfer to the pediatric intensive care unit. Progressive anemia and thrombocytopenia instigated an evaluation for thrombotic microangiopathy, where confirmed by concomitant hemolysis, elevated lactate dehydrogenase (LDH), low haptoglobin, and concurrent oliguric acute kidney injury. Thrombotic thrombocytopenic purpura was less likely with adequate ADAMTS13. Discontinuing valproic acid reversed the anemia, thrombocytopenia, and normalized the LDH and haptoglobin, supporting a drug-induced cause for the TMA. To the best of our knowledge, this is the first report of drug-induced TMA from valproic acid toxicity.

  2. Reverse Phase Protein Arrays for High-throughput Toxicity Screening

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    High-throughput screening is extensively applied for identification of drug targets and drug discovery and recently it found entry into toxicity testing. Reverse phase protein arrays (RPPAs) are used widespread for quantification of protein markers. We reasoned that RPPAs also can be utilized...... beneficially in automated high-throughput toxicity testing. An advantage of using RPPAs is that, in addition to the baseline toxicity readout, they allow testing of multiple markers of toxicity, such as inflammatory responses, which do not necessarily cumulate in cell death. We used transfection of si......RNAs with known killing effects as a model system to demonstrate that RPPA-based protein quantification can serve as substitute readout of cell viability, hereby reliably reflecting toxicity. In terms of automation, cell exposure, protein harvest, serial dilution and sample reformatting were performed using...

  3. Kombucha--toxicity alert.

    Science.gov (United States)

    The Kombucha mushroom, also known as Manchurian mushroom, is a mail-order product touted to lower blood pressure and raise T-cell counts. No controlled trials have been conducted to test these claims. Aspergillus, a mold that may grow on the Kombucha mushroom, attacks the brain and may be fatal to persons with weakened immune systems. Reported toxicity reactions have included stomach problems and yeast infections. Taking Kombucha in combination with other drugs may affect the drugs potency.

  4. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    Science.gov (United States)

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  5. Drug metabolizing enzyme systems and their relationship to toxic mechanisms

    International Nuclear Information System (INIS)

    Boyd, M.R.; Ravindranath, V.; Burka, L.T.

    1983-01-01

    The metabolism and toxicity of 3-methylfuran (3-MF) are described. The major product of metabolic activation of 3-MF appears to be disemicarbazones. Cursory description of toxic effects of 3-MF on lung and kidneys are provided. 18 refs

  6. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease

    Science.gov (United States)

    Downey, Matthew A.; Giammona, Maxwell J.; Lang, Christian A.; Buratto, Steven K.; Singh, Ambuj; Bowers, Michael T.

    2018-04-01

    Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development.

  7. Screening tests in toxicity or drug effect studies with use of centrifichem general-purpose spectrophotometeric analyzer

    International Nuclear Information System (INIS)

    Nagy, B.; Bercz, J.P.

    1986-01-01

    CentrifiChem System 400 general-purpose spectrophotometric analyzer which can process simultaneously 30 samples and reads the reactions within milliseconds was used for toxicity studies. Organic and inorganic chemicals were screened for inhibitory action of the hydrolytic activity of sarcoplasmic reticulum (SR) Ca,Mg-ATPase and that of the sacrolemmal (SL) Na,K-ATPase, or mitochondrial ATPase (M). SR and SL were prepared from rabbit muscles, Na,K-ATPase from pig kidneys, M from pig hearts. Pseudosubstrates of paranitrophenyl phosphate and 2,4-dinitrophenyl phosphate, both proven high energy phosphate substitutes for ATPase coupled ion transfer were used. The reaction rates were followed spectrophotometrically at 405 nm measuring the accumulation of yellow nitrophenolate ions. The reported calcium transfer coupling ratio to hydrolysis of 2:1 was ascertained with use of 45 Ca in case of SR. Inhibition constants (pI) on SR, SL, and M for the pseudosubstrate hydrolysis will be given for over 20 chemicals tested. The applicability of the system to general toxicity testing and to general cardio-effective drug screening will be presented

  8. VORICONAZOLE TOXICITY IN MULTIPLE PENGUIN SPECIES.

    Science.gov (United States)

    Hyatt, Michael W; Georoff, Timothy A; Nollens, Hendrik H; Wells, Rebecca L; Clauss, Tonya M; Ialeggio, Donna M; Harms, Craig A; Wack, Allison N

    2015-12-01

    Aspergillosis is a common respiratory fungal disease in penguins managed under human care. Triazole antifungal drugs, including itraconazole, are most commonly used for treatment; however, itraconazole treatment failures from drug resistance are becoming more common, requiring newer treatment options. Voriconazole, a newer triazole, is being used more often. Until recently, no voriconazole pharmacokinetic studies had been performed in penguins, leading to empiric dosing based on other avian studies. This has led to increased anecdotal reporting of apparent voriconazole toxicity in penguins. This report describes 18 probable and 6 suspected cases of voriconazole toxicity in six penguin species from nine institutions: 12 African penguins (Spheniscus demersus), 5 Humboldt penguins (Spheniscus humboldti), 3 Magellanic penguins (Spheniscus magellanicus), 2 gentoo penguins (Pygoscelis papua papua), 1 macaroni penguin (Eudyptes chrysolophus), and 1 emperor penguin (Aptenodytes forsteri). Observed clinical signs of toxicity included anorexia, lethargy, weakness, ataxia, paresis, apparent vision changes, seizure-like activity, and generalized seizures. Similar signs of toxicity have also been reported in humans, in whom voriconazole therapeutic plasma concentration for Aspergillus spp. infections is 2-6 μg/ml. Plasma voriconazole concentrations were measured in 18 samples from penguins showing clinical signs suggestive of voriconazole toxicity. The concentrations ranged from 8.12 to 64.17 μg/ml, with penguins having plasma concentrations above 30 μg/ml exhibiting moderate to severe neurologic signs, including ataxia, paresis, and seizures. These concentrations were well above those known to result in central nervous system toxicity, including encephalopathy, in humans. This case series highlights the importance of species-specific dosing of voriconazole in penguins and plasma therapeutic drug monitoring. Further investigation, including pharmacokinetic studies, is

  9. Pulmonary toxicity of cytostatic drugs: cell kinetics

    International Nuclear Information System (INIS)

    Witschi, H.; Godfrey, G.; Frome, E.; Lindenschmidt, R.C.

    1987-01-01

    Mice were treated with three cytostatic drugs: cyclophosphamide, busulfan, or 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). The alveolar labeling index was measured following drug administration with a pulse of 3 H-labeled thymidine and autoradiography. In cyclophosphamide-treated animals, peak alveolar cell proliferation was seen 5 days after injection of the drug. In animals treated with busulfan or BCNU, proliferation was even more delayed (occurring 2-3 weeks after administration). In contrast, with oleic acid, the highest alveolar cell labeling was found 2 days after intravenous administration. In animals exposed to a cytostatic drug, proliferation of type II alveolar cells was never a prominent feature whereas in animals treated with oleic acid there was an initial burst of type II cell proliferation. It is concluded that the patterns of pulmonary repair vary between chemicals designed to interfere with DNA replication as compared to agents which produce acute lung damage such as oleic acid

  10. Acute and subchronic toxicity studies of the original drug FS-1

    Directory of Open Access Journals (Sweden)

    Assem Kalykova

    2016-01-01

    Full Text Available Interest in iodine complexes has increased significantly in recent years because of their wide spectrum of biological activity. The FS-1 is an ion nanostructured complex formed by proteins and/or polypeptides, carbohydrates, salts of alkali and alkaline earth metals with intercalated iodine. Patented in 2014, it is intended for the treatment of infectious diseases of bacterial origin including nosocomial infections and multidrug resistant tuberculosis. The aim of the study was to determine its acute and subchronic toxicity. The study of acute and subchronic toxicity was performed on adult Wistar rats according to OECD guidelines. The data on acute toxicity showed LD50 > 2,000 mg/kg after a single intragastric administration. Twenty-eight days of FS-1 administration at a dose of 500 mg/kg resulted in toxic effects. At a dose of 250 mg/kg, the toxic effects were temporary and a return to normal followed after the recovery period. Doses of 100 mg/kg had no adverse effects on the rats.

  11. The current status of biomarkers for predicting toxicity

    Science.gov (United States)

    Campion, Sarah; Aubrecht, Jiri; Boekelheide, Kim; Brewster, David W; Vaidya, Vishal S; Anderson, Linnea; Burt, Deborah; Dere, Edward; Hwang, Kathleen; Pacheco, Sara; Saikumar, Janani; Schomaker, Shelli; Sigman, Mark; Goodsaid, Federico

    2013-01-01

    Introduction There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. Areas covered This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled ‘Translational Biomarkers in Toxicology.’ The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. Expert opinion There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process. PMID:23961847

  12. Local anaesthetic toxicity

    African Journals Online (AJOL)

    Local anaesthetic toxicity has been known since the introduction of local anaesthetic drugs into anaesthetic practice more than a hundred ... was the first to think of cocaine as a narcotic. ..... anaesthetics act as Na+ channel-blocking agents, they slow down .... all neurons, leading to global CNS depression, slowing and.

  13. Developmental toxicity of low generation PAMAM dendrimers in zebrafish

    International Nuclear Information System (INIS)

    King Heiden, Tisha C.; Dengler, Emelyne; Kao, Weiyuan John; Heideman, Warren; Peterson, Richard E.

    2007-01-01

    Biological molecules and intracellular structures operate at the nanoscale; therefore, development of nanomedicines shows great promise for the treatment of disease by using targeted drug delivery and gene therapies. PAMAM dendrimers, which are highly branched polymers with low polydispersity and high functionality, provide an ideal architecture for construction of effective drug carriers, gene transfer devices and imaging of biological systems. For example, dendrimers bioconjugated with selective ligands such as Arg-Gly-Asp (RGD) would theoretically target cells that contain integrin receptors and show potential for use as drug delivery devices. While RGD-conjugated dendrimers are generally considered not to be cytotoxic, there currently exists little information on the risks that such materials pose to human health. In an effort to compliment and extend the knowledge gleaned from cell culture assays, we have used the zebrafish embryo as a rapid, medium throughput, cost-effective whole-animal model to provide a more comprehensive and predictive developmental toxicity screen for nanomaterials such as PAMAM dendrimers. Using the zebrafish embryo, we have assessed the developmental toxicity of low generation (G3.5 and G4) PAMAM dendrimers, as well as RGD-conjugated forms for comparison. Our results demonstrate that G4 dendrimers, which have amino functional groups, are toxic and attenuate growth and development of zebrafish embryos at sublethal concentrations; however, G3.5 dendrimers, with carboxylic acid terminal functional groups, are not toxic to zebrafish embryos. Furthermore, RGD-conjugated G4 dendrimers are less potent in causing embryo toxicity than G4 dendrimers. RGD-conjugated G3.5 dendrimers do not elicit toxicity at the highest concentrations tested and warrant further study for use as a drug delivery device

  14. Identification of Chemical Toxicity Using Ontology Information of Chemicals

    Directory of Open Access Journals (Sweden)

    Zhanpeng Jiang

    2015-01-01

    Full Text Available With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals.

  15. Emerging technologies and challenges for better and safer drugs.

    Science.gov (United States)

    Theodosiou, Maria; Amir-Aslani, Arsia; Mégarbane, Bruno

    2014-04-01

    Regardless of stringent safety regulations and increased compound selectivity by pharmaceutical companies, prediction of toxicity in humans is still far from perfect and adverse drug reactions are still detected after drug marketing. High costs of failures due to toxicity has led pharmaceutical companies to search for screening methods that would allow detection of toxicity issues at an early stage and improve their preclinical and clinical toxicology. Thanks to the last decade's biotechnology revolution, new technologies like toxicogenomics have demonstrated the capacity to improve toxicity assessment. However, our understanding of toxicological mechanisms is still incomplete and a wide range of approaches must be used to gain insight into toxicity issues. Consequently, an array of in silico, in vitro and in vivo methods is utilized to predict toxicity and its causative mechanisms, improving drug development processes and minimizing costs of failure.

  16. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo.

    Science.gov (United States)

    Pereira, Claudia V; Nadanaciva, Sashi; Oliveira, Paulo J; Will, Yvonne

    2012-02-01

    Nowadays the 'redox hypothesis' is based on the fact that thiol/disulfide couples such as glutathione (GSH/GSSG), cysteine (Cys/CySS) and thioredoxin ((Trx-(SH)2/Trx-SS)) are functionally organized in redox circuits controlled by glutathione pools, thioredoxins and other control nodes, and they are not in equilibrium relative to each other. Although ROS can be important intermediates of cellular signaling pathways, disturbances in the normal cellular redox can result in widespread damage to several cell components. Moreover, oxidative stress has been linked to a variety of age-related diseases. In recent years, oxidative stress has also been identified to contribute to drug-induced liver, heart, renal and brain toxicity. This review provides an overview of current in vitro and in vivo methods that can be deployed throughout the drug discovery process. In addition, animal models and noninvasive biomarkers are described. Reducing post-market drug withdrawals is essential for all pharmaceutical companies in a time of increased patient welfare and tight budgets. Predictive screens positioned early in the drug discovery process will help to reduce such liabilities. Although new and more efficient assays and models are being developed, the hunt for biomarkers and noninvasive techniques is still in progress.

  17. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats

    Directory of Open Access Journals (Sweden)

    Chien-Chun Li

    2018-01-01

    Full Text Available The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg and 400 LO (400 mg/kg and its major component, citral (240 mg/kg, on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(PH:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5′-diphospho (UDP glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen.

  18. Drug pharmacokinetics and pharmacodynamics: Technological considerations

    International Nuclear Information System (INIS)

    Fowler, J.S.; Volkow, N.D.; Wolf, A.P.

    1992-01-01

    Additionally, the use of PET to examine drug pharmacokinetics and pharmacadynamics and the relationship of these properties to the behavioral, therapeutic and toxic properties of drugs and substances of abuse is emerging as a powerful new scientific tool. The pharmacokinetic properties of a drug, which comprises all of the biological processes which determine the fraction of the drug available, can be measured using the labeled drug itself. For example, the labeled drug can be used to measure the absolute uptake, regional distribution and kinetics of a drug at its site of action in the body. Additionally the labeled drug and whole body its labeled metabolites and thus provide information an potential toxic effects as well as tissue half lives. On the other hand, different labeled tracers can be used to assess drug pharmacodynamics which include the biological Processes involved in the drug's effects. For example, with appropriate radiotracers, the effects of a drug on metabolism, neurotransmitter activity, blood flew, enzyme activity or other processes can be probed

  19. Serotonin Toxicity Caused by Moclobemide Too Soon After Paroxetine-Selegiline

    Directory of Open Access Journals (Sweden)

    Ming-Ling Wu

    2009-08-01

    Full Text Available Serotonin toxicity is an iatrogenic complication of serotonergic drug therapy. It is due to an overstimulation of central and peripheral serotonin receptors that lead to neuromuscular, mental and autonomic changes. Moclobemide is a reversible inhibitor of monoamine oxidase (MAO-A, selegiline is an irreversible selective inhibitor of MAO-B, and paroxetine is a selective serotonin reuptake inhibitor. Combined use of these agents is known to cause serotonin toxicity. A 53-year-old woman had been treated with paroxetine and selegiline. After moclobemide was prescribed in place of paroxetine without a washout period, she quickly developed confusion, agitation, ataxia, diaphoresis, tremor, mydriasis, ocular clonus, hyper-reflexia, tachycardia, moderately elevated blood pressure and high fever, symptoms that were consistent with serotonin toxicity. Discontinuation of the drugs, hydration and supportive care were followed by remarkable improvement of baseline status within 3 days. This case demonstrates that serotonin toxicity may occur even with small doses of paroxetine, selegi-line and moclobemide in combination. Physicians managing patients with depression must be aware of the potential for serotonin toxicity and should be able to recognize and treat or, ideally, anticipate and avoid this pharmacodynamically-mediated interaction that may occur between prescribed drugs.

  20. Pharmacokinetic drug interactions of antimicrobial drugs : a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams

    NARCIS (Netherlands)

    Bolhuis, Mathieu S; Panday, Prashant N; Pranger, Arianna D; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2011-01-01

    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug

  1. How toxic is ibogaine?

    NARCIS (Netherlands)

    Litjens, Ruud P. W.; Brunt, Tibor M.

    2016-01-01

    Ibogaine is a psychoactive indole alkaloid found in the African rainforest shrub Tabernanthe Iboga. It is unlicensed but used in the treatment of drug and alcohol addiction. However, reports of ibogaine's toxicity are cause for concern. To review ibogaine's pharmacokinetics and pharmacodynamics,

  2. The classification and application of toxic Chinese materia medica.

    Science.gov (United States)

    Liu, Xinmin; Wang, Qiong; Song, Guangqing; Zhang, Guangping; Ye, Zuguang; Williamson, Elizabeth M

    2014-03-01

    Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Radiation and platinum drug interaction

    International Nuclear Information System (INIS)

    Nias, A.H.W.

    1985-01-01

    The ideal platinum drug-radiation interaction would achieve radiosensitization of hypoxic tumour cells with the use of a dose of drug which is completely non-toxic to normal tissues. Electron-affinic agents are employed with this aim, but the commoner platinum drugs are only weakly electron-affinic. They do have a quasi-alkylating action however, and this DNA targeting may account for the radiosensitizing effect which occurs with both pre- and post-radiation treatments. Because toxic drug dosage is usually required for this, the evidence of the biological responses to the drug and to the radiation, as well as to the combination, requires critical analysis before any claim of true enhancement, rather than simple additivity, can be accepted. The amount of enhancement will vary with both the platinum drug dose and the time interval between drug administration and radiation. Clinical schedules may produce an increase in tumour response and/or morbidity, depending upon such dose and time relationships. (author)

  4. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2016-01-01

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  5. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  6. The eTOX Data-Sharing Project to Advance in Silico Drug-Induced Toxicity Prediction

    Directory of Open Access Journals (Sweden)

    Montserrat Cases

    2014-11-01

    Full Text Available The high-quality in vivo preclinical safety data produced by the pharmaceutical industry during drug development, which follows numerous strict guidelines, are mostly not available in the public domain. These safety data are sometimes published as a condensed summary for the few compounds that reach the market, but the majority of studies are never made public and are often difficult to access in an automated way, even sometimes within the owning company itself. It is evident from many academic and industrial examples, that useful data mining and model development requires large and representative data sets and careful curation of the collected data. In 2010, under the auspices of the Innovative Medicines Initiative, the eTOX project started with the objective of extracting and sharing preclinical study data from paper or pdf archives of toxicology departments of the 13 participating pharmaceutical companies and using such data for establishing a detailed, well-curated database, which could then serve as source for read-across approaches (early assessment of the potential toxicity of a drug candidate by comparison of similar structure and/or effects and training of predictive models. The paper describes the efforts undertaken to allow effective data sharing intellectual property (IP protection and set up of adequate controlled vocabularies and to establish the database (currently with over 4000 studies contributed by the pharma companies corresponding to more than 1400 compounds. In addition, the status of predictive models building and some specific features of the eTOX predictive system (eTOXsys are presented as decision support knowledge-based tools for drug development process at an early stage.

  7. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury.

    Science.gov (United States)

    Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin

    2017-07-01

    The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.

  8. [Research progress on potential liver toxic components in traditional Chinese medicine].

    Science.gov (United States)

    Wu, Hao; Zhong, Rong-Ling; Xia, Zhi; Huang, Hou-Cai; Zhong, Qing-Xiang; Feng, Liang; Song, Jie; Jia, Xiao-Bin

    2016-09-01

    In recent years, the proportion of traditional Chinese medicine in scientific research and its clinical use increased gradually. The research result also becomes more and more valuable, but in the process of using traditional Chinese medicine, it also needs to pay more attention. With the gradual deepening of the toxicity of traditional Chinese medicine, some traditional Chinese medicines have also been found to have the potential toxicity, with the exception of some traditional toxicity Chinese medicine. Traditional Chinese medicine in the growth, processing, processing, transportation and other aspects of pollution or deterioration will also cause the side effects to the body. Clinical practice should be based on the theory of traditional Chinese medicine to guide rational drug use and follow the symptomatic medication, the principle of proper compatibility. The constitution of the patients are different, except for a few varieties of traditional Chinese medicines are natural herbs with hepatotoxicity, liver toxicity of most of the traditional Chinese medicine has idiosyncratic features. The liver plays an important role in drug metabolism. It is easy to be damaged by drugs. Therefore, the study of traditional Chinese medicine potential liver toxicity and its toxic components has become one of the basic areas of traditional Chinese medicine research. Based on the review of the literatures, this paper summarizes the clinical classification of liver toxicity, the pathogenesis of target cell injury, and systematically summarizes the mechanism of liver toxicity and toxic mechanism of traditional Chinese medicine. This paper provided ideas for the study of potential liver toxicity of traditional Chinese medicine and protection for clinical safety of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  9. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ..., both under drug pressure and during inhibition. Factors affecting drug metabolism, such as genetic polymorphisms, age and diet are discussed and how metabolism can lead to toxicity is explained. The book concludes with the role of drug metabolism in the commercial development of therapeutic agents as well as the pharmacology of some illicit drugs.

  10. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    Science.gov (United States)

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  11. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ... metabolism and its impact on patient welfare. After underlining the relationship between efficacy, toxicity and drug concentration, the book then considers how metabolizing systems operate and how they impact upon drug concentration...

  12. The use of antimicrobial drugs in agriculture.

    Science.gov (United States)

    Black, W D

    1984-08-01

    Antibacterial drugs have been used widely in animal production for treatment and prevention of disease and for growth promotion. Concern has been expressed about possible harm to humans, through the use of drugs, in the following ways: increased microbial drug resistance; drug residues in food; allergic reactions and sensitization to antimicrobials; and drug toxicity. Research has shown that microbial resistance in people can develop from drugs used in animals. Farmers, butchers, etc., have been shown to have an increased incidence of drug-resistant organisms. Resistance to antibiotics can develop in two ways; genetic mutation and natural selection, and through R-factor plasmid transfer. Allergic reactions have been reported following the ingestion of penicillin-containing milk; however, residues in other foods have not caused allergic reactions. Sensitization of humans to antimicrobials through the consumption of drug residues in foods has never been documented. Evidence suggests that the residue levels in food are too low to cause sensitization. Drug toxicity, other than allergic reactions, appears not to result from residues of antimicrobial drugs in food. While it has been studied many times, monitoring programs have failed to find any evidence of a problem. This appears to reflect the low toxicity of these agents and the small amounts obtained in the food, however, it could also reflect failure of the monitoring systems.

  13. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.

    Science.gov (United States)

    Li, Chien-Chun; Yu, Hsiang-Fu; Chang, Chun-Hua; Liu, Yun-Ta; Yao, Hsien-Tsung

    2018-01-01

    The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO)] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg) and 400 LO (400 mg/kg) and its major component, citral (240 mg/kg), on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(P)H:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5'-diphospho (UDP) glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen. Copyright © 2017. Published by Elsevier B.V.

  14. Ethnically diverse pluripotent stem cells for drug development.

    Science.gov (United States)

    Fakunle, Eyitayo S; Loring, Jeanne F

    2012-12-01

    Genetic variation is an identified factor underlying drug efficacy and toxicity, and adverse drug reactions, such as liver toxicity, are the primary reasons for post-marketing drug failure. Genetic predisposition to toxicity might be detected early in the drug development pipeline by introducing cell-based assays that reflect the genetic and ethnic variation of the expected treatment population. One challenge for this approach is obtaining a collection of suitable cell lines derived from ethnically diverse populations. Induced pluripotent stem cells (iPSCs) seem ideal for this purpose. They can be obtained from any individual, can be differentiated into multiple relevant cell types, and their self-renewal capability makes it possible to generate large quantities of quality-controlled cell types. Here, we discuss the benefits and challenges of using iPSCs to introduce genetic diversity into the drug development process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Potential enzyme toxicity of oxytetracycline to catalase

    Energy Technology Data Exchange (ETDEWEB)

    Zhenxing, Chi; Rutao, Liu; Zhang Hao, E-mail: Trutaoliu@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Shandong Province, 27 Shanda South Road, Jinan 250100 (China)

    2010-10-15

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K{sub 293K} = 7.09 x 10{sup 4} L mol{sup -1} and K{sub 311K} = 3.31 x 10{sup 4} L mol{sup -1}. The thermodynamic parameters ({Delta}H{sup o}, {Delta}G{sup o} and {Delta}S{sup o}) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  16. Potential enzyme toxicity of oxytetracycline to catalase

    International Nuclear Information System (INIS)

    Chi Zhenxing; Liu Rutao; Zhang Hao

    2010-01-01

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K 293K = 7.09 x 10 4 L mol -1 and K 311K = 3.31 x 10 4 L mol -1 . The thermodynamic parameters (ΔH o , ΔG o and ΔS o ) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  17. Benefit and harms of new anti-cancer drugs.

    Science.gov (United States)

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise.

  18. Hazards and Benefits of Drug Interaction

    Science.gov (United States)

    Labianca, Dominick A.

    1978-01-01

    Most cases of drug toxicity are direct consequences of drug misuse--either intentional or inadvertent. Discusses two types of drug interaction--synergistic and antagonistic. The former produces a combined effect greater than the sum of the effects of the individual drugs concerned; the latter is produced when the desired action of one drug is…

  19. Novel Molecular Strategies Against Sulfur Mustard Toxicity

    Directory of Open Access Journals (Sweden)

    Zeki Ilker Kunak

    2012-04-01

    Full Text Available Among the available chemical warfare agents, sulfur mustard (SM, also known as mustard gas, has been widely used chemical weapon. In our laboratory, we have shown that, acute toxicity of SM is related to reactive oxygen and nitrogen species, DNA damage, poly(ADP-ribose polymerase activation and energy depletion within the affected cell. In spite of the knowledge about acute SM-induced cellular toxicity, unfortunately, it is not clear how mustard gas causes severe multi-organ damage years after even a single exposure. A variety of treatment modalities including antioxidants, anti-inflammatory drugs and others have resulted no promising results. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. The term epigenetic describes the study of inheritable alterations in gene expression that occur in the absence of changes in genome sequence. Therefore, epigenetic gene regulation requires molecular mechanisms that encode information in addition to the DNA base sequence and can be propagated through mitosis and meiosis. Our current understanding of epigenetic regulation of gene expression involves basically two classes of molecular mechanisms: histone modifications and DNA methylation. Preliminary evidence obtained from our laboratory reveals that exposure to mustards may not only cause nitro-oxidative stress and DNA (genetic damage, but epigenetic perturbations as well. Epigenetic therapy is a new and rapidly developing field in pharmacology. Epigenetic drugs alone or in combination with conventional drugs may prove to be a significant advance over the conventional drugs used to treat both acute and delayed SM toxicity. Future studies are urgently needed to clarify the mechanism of delayed SM-induced toxicity and novel treatment modalities. [TAF Prev Med Bull 2012; 11(2.000: 231-236

  20. Eventos toxicológicos relacionados a medicamentos no Estado de São Paulo Drug-related toxic events in the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Eliane Gandolfi

    2006-12-01

    Full Text Available OBJETIVO: Analisar as características epidemiológicas dos eventos toxicológicos relacionados a medicamentos. MÉTODOS: Realizou-se um estudo epidemiológico descritivo de série de casos. Utilizando a categoria "evento toxicológico relacionado a medicamentos", analisaram-se 6.673 casos registrados em centros de assistência toxicológica do Estado de São Paulo, no ano de 1998. As variáveis estudadas compreenderam características dos eventos, das pessoas afetadas, dos agentes tóxicos e das circunstâncias envolvidas. A análise dos agentes tóxicos considerou três níveis de desagregação: grupos terapêuticos, princípios ativos e nomes comerciais. RESULTADOS: Os medicamentos ocuparam o primeiro lugar entre todos os tipos de agentes tóxicos registrados pelos centros. Os eventos toxicológicos relacionados a medicamentos caracterizaram-se por serem registrados por telefone (78,5%, a partir de hospitais (86,6%; originaram-se de exposições agudas, pela via oral (90,2%, ocorridas em residência (85,7% de área urbana (95%. Houve predomínio do sexo feminino (59% e maior concentração na primeira década de vida (49,4%, sobretudo aos dois e três anos de idade. Os princípios ativos mais freqüentemente encontrados foram: fenobarbital, diazepam, haloperidol, carbamazepina e bromazepam. As principais circunstâncias foram as acidentais (38,8% e tentativas de suicídio (36,5%. Entre os princípios ativos relacionados predominaram os dos grupos terapêuticos psiquiatria, analgesia/anestesia e respiratório. CONCLUSÕES: Aponta-se a necessidade de cumprimento da legislação quanto à venda de medicamentos sob receituário médico e de construção da toxicovigilância conforme diretrizes do Sistema Único de Saúde.OBJECTIVE: To assess the epidemiological characteristics of drug-related toxic events in the State of São Paulo, Brazil. METHODS: A descriptive epidemiological case series study was conducted. Using the category "drug

  1. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management.

    Science.gov (United States)

    Kroschinsky, Frank; Stölzel, Friedrich; von Bonin, Simone; Beutel, Gernot; Kochanek, Matthias; Kiehl, Michael; Schellongowski, Peter

    2017-04-14

    Pharmacological and cellular treatment of cancer is changing dramatically with benefits for patient outcome and comfort, but also with new toxicity profiles. The majority of adverse events can be classified as mild or moderate, but severe and life-threatening complications requiring ICU admission also occur. This review will focus on pathophysiology, symptoms, and management of these events based on the available literature.While standard antineoplastic therapy is associated with immunosuppression and infections, some of the recent approaches induce overwhelming inflammation and autoimmunity. Cytokine-release syndrome (CRS) describes a complex of symptoms including fever, hypotension, and skin reactions as well as lab abnormalities. CRS may occur after the infusion of monoclonal or bispecific antibodies (MABs, BABs) targeting immune effectors and tumor cells and is a major concern in recipients of chimeric antigen receptor (CAR) modified T lymphocytes as well. BAB and CAR T-cell treatment may also be compromised by central nervous system (CNS) toxicities such as encephalopathy, cerebellar alteration, disturbed consciousness, or seizures. While CRS is known to be induced by exceedingly high levels of inflammatory cytokines, the pathophysiology of CNS events is still unclear. Treatment with antibodies against inhibiting immune checkpoints can lead to immune-related adverse events (IRAEs); colitis, diarrhea, and endocrine disorders are often the cause for ICU admissions.Respiratory distress is the main reason for ICU treatment in cancer patients and is attributable to infectious agents in most cases. In addition, some of the new drugs are reported to cause non-infectious lung complications. While drug-induced interstitial pneumonitis was observed in a substantial number of patients treated with phosphoinositol-3-kinase inhibitors, IRAEs may also affect the lungs.Inhibitors of angiogenetic pathways have increased the antineoplastic portfolio. However, vessel formation

  2. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan Robinson

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no cure and limited treatment solutions that are unable to target any of the suspected causes. Increasing evidence suggests that one of the causes of neurodegeneration is the overproduction of amyloid beta (Aβ and the inability of Aβ peptides to be cleared from the brain, resulting in self-aggregation to form toxic oligomers, fibrils and plaques. One of the potential treatment options is to target Aβ and prevent self-aggregation to allow for a natural clearing of the brain. In this paper, we review the drugs and drug delivery systems that target Aβ in relation to Alzheimer's disease. Many attempts have been made to use anti-Aβ targeting molecules capable of targeting Aβ (with much success in vitro and in vivo animal models, but the major obstacle to this technique is the challenge posed by the blood brain barrier (BBB. This highly selective barrier protects the brain from toxic molecules and pathogens and prevents the delivery of most drugs. Therefore novel Aβ aggregation inhibitor drugs will require well thought-out drug delivery systems to deliver sufficient concentrations to the brain.

  3. Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Pick Neora

    2004-01-01

    Full Text Available The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death.

  4. A high content screening assay to predict human drug-induced liver injury during drug discovery.

    Science.gov (United States)

    Persson, Mikael; Løye, Anni F; Mow, Tomas; Hornberg, Jorrit J

    2013-01-01

    Adverse drug reactions are a major cause for failures of drug development programs, drug withdrawals and use restrictions. Early hazard identification and diligent risk avoidance strategies are therefore essential. For drug-induced liver injury (DILI), this is difficult using conventional safety testing. To reduce the risk for DILI, drug candidates with a high risk need to be identified and deselected. And, to produce drug candidates without that risk associated, risk factors need to be assessed early during drug discovery, such that lead series can be optimized on safety parameters. This requires methods that allow for medium-to-high throughput compound profiling and that generate quantitative results suitable to establish structure-activity-relationships during lead optimization programs. We present the validation of such a method, a novel high content screening assay based on six parameters (nuclei counts, nuclear area, plasma membrane integrity, lysosomal activity, mitochondrial membrane potential (MMP), and mitochondrial area) using ~100 drugs of which the clinical hepatotoxicity profile is known. We find that a 100-fold TI between the lowest toxic concentration and the therapeutic Cmax is optimal to classify compounds as hepatotoxic or non-hepatotoxic, based on the individual parameters. Most parameters have ~50% sensitivity and ~90% specificity. Drugs hitting ≥2 parameters at a concentration below 100-fold their Cmax are typically hepatotoxic, whereas non-hepatotoxic drugs typically hit based on nuclei count, MMP and human Cmax, we identified an area without a single false positive, while maintaining 45% sensitivity. Hierarchical clustering using the multi-parametric dataset roughly separates toxic from non-toxic compounds. We employ the assay in discovery projects to prioritize novel compound series during hit-to-lead, to steer away from a DILI risk during lead optimization, for risk assessment towards candidate selection and to provide guidance of safe

  5. Drug-induced cholestasis: mechanisms, models, and markers.

    Science.gov (United States)

    Chatterjee, Sagnik; Annaert, Pieter

    2018-04-27

    Drug-induced cholestasis is a risk factor in progression of drug candidates, and poses serious health hazard if not detected before going into human. Intrahepatic accumulation of bile acids (BAs) represents a characteristic phenomenon associated with drug-induced cholestasis. The major challenges in obtaining a complete understanding of drug-induced cholestasis lies in the complexity of BA-mediated toxicity mechanisms and the impact of bile acids at different 'targets' such as transporters, enzymes and nuclear receptors. At the same time, it is not trivial to have a relevant in vitro system that recapitulates these features. In addition, lack of sensitive and early preclinical biomarkers, relevant to the clinical situation, complicates proper detection of drug-induced cholestasis. Significant overlap in biomarker signatures between different mechanisms of drug-induced liver injury (DILI) precludes identification of specific mechanisms. Over the last decade the knowledge gaps in drug-induced cholestasis are closing due to growing mechanistic understanding of BA-mediated toxicity at (patho)physiologically relevant BA concentrations. Significant progress has been made in the mechanistic understanding of drug-induced cholestasis and associated toxicity, biomarkers and susceptibility factors. In addition, novel in vitro models are evolving which provide a holistic understanding of processes underlying drug-induced cholestasis. This review summarizes the challenges and recent understandings about drug-induced cholestasis with a potential path forward. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Systemic toxicity of ropivacaine during ovine pregnancy.

    Science.gov (United States)

    Santos, A C; Arthur, G R; Pedersen, H; Morishima, H O; Finster, M; Covino, B G

    1991-07-01

    Ropivacaine is a new amide local anesthetic structurally related to bupivacaine and mepivacaine. Its potency and duration of action are similar to those of bupivacaine but its therapeutic index may be greater. Since pregnancy enhances the cardiotoxicity of bupivacaine, the current study was devised to compare the toxicity of ropivacaine in chronically instrumented nonpregnant and pregnant ewes during continuous intravenous infusion of the drug at the rate of 0.5 mg.kg-1.min-1. In all animals, symptoms of local anesthetic toxicity occurred in the usual order--convulsions, hypotension, apnea, and circulatory collapse. There were no significant differences between the two groups of animals in the doses and plasma concentrations of ropivacaine associated with each toxic manifestations. For example, circulatory collapse occurred at a mean dose of 11.3 +/- 1.1 mg.kg-1 in nonpregnant and 12.4 +/- 0.9 mg.kg-1 in pregnant animals, with corresponding plasma concentrations of 7.3 +/- 0.3 and 9.6 +/- 2.1 micrograms.ml-1 (P = not significant). Protein binding of ropivacaine in the concentration range associated with toxic manifestations was similar in sera obtained from nonpregnant and pregnant ewes. In conclusion, ovine pregnancy does not enhance the systemic toxicity of ropivacaine, possibly because of an absence of gestation-related increase in the availability of free drug.

  7. Toxicity of the sulfhydryl-containing radioprotector dithiothreitol

    International Nuclear Information System (INIS)

    Held, K.D.; Biaglow, J.E.

    1987-01-01

    The toxicity of the sulfhydryl-containing radioprotector dithiothreitol (DTT) has been studied in Chinese hamster V79 cells growing in monolayer. Under the conditions used here DTT causes a biphasic toxic response in which low concentrations of the drug (0.5 to 1.0 mM) are more toxic than are lower (0.2 mM) or higher (10 mM) concentrations. This response is similar to that seen by others with other sulfhydryl compounds. This DTT-induced toxicity is prevented by catalase, glutathione, and lowered temperatures. The toxicity is enhanced by some metal chelators (EDTA) but prevented by others (desferal). Metals (copper and iron) can either enhance or decrease the toxicity depending on their concentration and whether the exposure is in medium or in buffered salt solution. The results suggest a complex chain of chemical reactions and interactions with a role of H/sub 2/O/sub 2/ and perhaps . OH in this DTT toxicity. This is discussed

  8. A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection

    Directory of Open Access Journals (Sweden)

    Jane P. F. Bai

    2017-03-01

    Full Text Available Developing drugs to treat the toxic effects of lethal toxin (LT and edema toxin (ET produced by B. anthracis is of global interest. We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound’s mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection.

  9. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    Science.gov (United States)

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  10. Adverse ocular reactions to drugs.

    OpenAIRE

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration.

  11. Correlation between melphalan pharmacokinetics and hepatic toxicity following hyperthermic isolated liver perfusion for unresectable metastatic disease.

    Science.gov (United States)

    Mocellin, Simone; Pilati, Pierluigi; Da Pian, Pierpaolo; Forlin, Marco; Corazzina, Susanna; Rossi, Carlo Riccardo; Innocente, Federico; Ori, Carlo; Casara, Dario; Ujka, Francesca; Nitti, Donato; Lise, Mario

    2007-02-01

    In the present work, we report on the results of our pilot study of hyperthermic isolated hepatic perfusion (IHP) with melphalan alone for patients with unresectable metastatic liver tumors refractory to conventional treatments, with particular regard to the correlation between pharmacokinetic findings and hepatic toxicity. Inclusion criteria were unresectable liver metastases, hepatic parenchyma replacement drug distribution volumes of the perfusion circuit were assessed by a radiolabeled albumin-based method. Drug concentrations in perfusate and plasma were measured by means of high-performance liquid chromatography (HPLC). Twenty patients with unresectable liver metastases underwent IHP. No intraoperative mortality occurred. Treatment-related systemic toxicity was minimal and reversible. Three patients (15%) experienced grade 4 hepatic toxicity and died due to liver failure and subsequent multiorgan failure. Other six patients had significant (grade 3-4) but transitory hepatic toxicity. Complete and partial responses were observed in three and nine out of 17 evaluable patients, respectively (overall response rate = 70%). The pharmacokinetics study showed a 3% mean perfusate-to-plasma drug leakage (range 1-6%). Logistic regression analysis showed that drug concentration in the perfusate circuit, but not preoperative tests, significantly and independently correlated with hepatic toxicity (P = 0.028). Following melphalan-based IHP, objective tumor regression could be observed in a remarkable percentage of patients refractory to standard treatments. However, hepatic toxicity and related mortality were significant. Our findings suggest that drug dosage personalization based on the measurement of drug distribution volumes might minimize

  12. Predictive typing of drug-induced neurological sufferings from studies of the distribution of labelled drugs

    International Nuclear Information System (INIS)

    Takasu, T.

    1980-01-01

    A drug given to an animal becomes widely distributed throughout the body, acting on the living mechanisms or structures, and is gradually excreted. Some drugs can remain in some parts of the body for a long period. For example, 14 C-chloramphenical was found to remain preferentially in the salivary gland, liver and bone marrow of mice 24 hours after its oral administration. If such a drug is given repeatedly, it could possibly accumulate gradually in these organs. Thus, when its accumulation in a particular part of the body exceeds a certain level, the living mechanism or structure may possibly be injured. The harmful effects of a drug in repeated administration are called its chronic toxicity. The author discusses whether it is possible to predict the toxicity of a drug by studying its distribution in relation to time, and, if possible, the points in time. This problem is studied especially in relation to the nervous system. (Auth.)

  13. Gut microbiota modulation of chemotherapy efficacy and toxicity

    OpenAIRE

    Alexander, James L.; Wilson, Ian D.; Teare, Julian; Marchesi, Julian Roberto; Nicholson, Jeremy K.; Kinross, James M.

    2017-01-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidenc...

  14. ORIGINAL ARTICLES Nevirapine toxicity- implications for ...

    African Journals Online (AJOL)

    Nevirapine was the first non-nucleoside drug (NNRTI) to be approved by the ... related toxicities in pregnancy were highlighted by a study published in 2004 ..... health, of consumption of scarce financial resources, of concern about doctors ...

  15. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  16. Toxicity of carbon nanotubes: A review.

    Science.gov (United States)

    Francis, Arul Prakash; Devasena, Thiyagarajan

    2018-03-01

    Carbon nanotubes (CNTs) are widely used in the aerospace, automotive, and electronics industries because of their stability, enhanced metallic, and electrical properties. CNTs are also being investigated for biomedical applications such as drug delivery systems and biosensors. However, the toxic potential of CNTs was reported in various cell lines and animal models. The toxicity depends on diverse properties of the CNTs, such as length, aspect ratio, surface area, degree of aggregation, purity, concentration, and dose. In addition, CNTs and/or associated contaminants were well known for oxidative stress, inflammation, apoptosis, pulmonary inflammation, fibrosis, and granuloma in lungs. The increased production of CNTs likely enhanced the possibility of its exposure in people. Studies on the toxicity of CNTs are mainly focused on the pulmonary effects after intratracheal administration, and only a few studies are reported about the toxicity of CNTs via other routes of exposure. So, it is essential to consider the chronic toxicity of CNTs before using them for various biomedical applications. This review focuses on the potential toxicities of CNTs.

  17. Salicylate toxicity model of tinnitus

    Directory of Open Access Journals (Sweden)

    Daniel eStolzberg

    2012-04-01

    Full Text Available Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs or aging which affects ~14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed.

  18. [Evaluation of Brodifacoum-induced Toxicity by Metabonomics Approach Based on HPLC-TOF-MS].

    Science.gov (United States)

    Yan, H; Zhuo, X Y; Shen, B H; Xiang, P; Shen, M

    2017-06-01

    To analyse the metabolic changes in urine of rats with brodifacoum intoxication, and to reveal the molecular mechanism of brodifacoum-induced toxicity on rats. By establishing a brodifacoum poisoning rats model, the urine metabolic profiling data of rats were acquired using high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF-MS). The orthogonal partial least squares analysis-discrimination analysis (OPLS-DA) was applied for the multivariate statistics and the discovery of differential metabolites closely related to toxicity of brodifacoum. OPLS-DA score plot showed that the urinary metabolic at different time points before and after drug administration had good similarity within time period and presented clustering phenomenon. Comparing the urine samples of rats before drug administration with which after drug administration, twenty-two metabolites related to brodifacoum-induced toxicity were selected. The toxic effect of brodifacoum worked by disturbing the metabolic pathways in rats such as tricarboxylic cycle, glycolysis, sphingolipid metabolism and tryptophan metabolism, and the toxicity of brodifacoum is characterized of accumulation effect. The metabonomic method based on urine HPLC-TOF-MS can provide a novel insight into the study on molecular mechanism of brodifacoum-induced toxicity. Copyright© by the Editorial Department of Journal of Forensic Medicine

  19. An overview of data mining algorithms in drug induced toxicity prediction.

    Science.gov (United States)

    Omer, Ankur; Singh, Poonam; Yadav, N K; Singh, R K

    2014-04-01

    The growth in chemical diversity has increased the need to adjudicate the toxicity of different chemical compounds raising the burden on the demand of animal testing. The toxicity evaluation requires time consuming and expensive undertaking, leading to the deprivation of the methods employed for screening chemicals pointing towards the need to develop more efficient toxicity assessment systems. Computational approaches have reduced the time as well as the cost for evaluating the toxicity and kinetic behavior of any chemical. The accessibility of a large amount of data and the intense need of turning this data into useful information have attracted the attention towards data mining. Machine Learning, one of the powerful data mining techniques has evolved as the most effective and potent tool for exploring new insights on combinatorial relationships among various experimental data generated. The article accounts on some sophisticated machine learning algorithms like Artificial Neural Networks (ANN), Support Vector Machine (SVM), k-mean clustering and Self Organizing Maps (SOM) with some of the available tools used for classification, sorting and toxicological evaluation of data, clarifying, how data mining and machine learning interact cooperatively to facilitate knowledge discovery. Addressing the association of some commonly used expert systems, we briefly outline some real world applications to consider the crucial role of data set partitioning.

  20. Capping Drugs

    Indian Academy of Sciences (India)

    preventing disease in human beings or in animals. In the process ... of requirement. In the process, they may cause toxic side effects. .... the liver to release the physiologically active drug. Similarly ... patients addicted to alcohol. However, it is a ...

  1. The 5-day continuous infusion of cis-platinum: An update on toxicity pattern

    International Nuclear Information System (INIS)

    Salem, P.; Hashimi, L.; Jabboury, K.; Khalyl, M.

    1986-01-01

    In an attempt to further diminish the toxicity of Cis-Diamminodichloroplatinum (II) (DDP), clinical trials with the drug administered by 5-day continuous IV infusion were initiated in 1976. DDP cytotoxicity to asynchronous human lymphoma cells in culture was enhanced by prolonged exposure to the drug. Ninety-six patients patients with a varioty of histologically proven neoplastic diseases were intered in this study. All patients had a serum creatinine less than or equal to 1.5 mg/dl. Prior treatment was discontinued 3 to 4 weeks before initiation of cisplatin (DDP). Toxicity tables are presented of the general pattern of toxicity produced by 5-day DDP infustion and the gastrointestinal toxicity produced during the same period. A new dose schedule is presented which is apparently much less toxic than the bolus IV injection, in terms of immediate and delayed toxicities and allows the use of DDP for more prolonged periods of time in conjunction with radiation therapy

  2. The Role of Drug Transporters in the Kidney: Lessons from Tenofovir

    Directory of Open Access Journals (Sweden)

    Darren Michael Moss

    2014-11-01

    Full Text Available Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-containing regimens, and continuous use of tenofovir in HIV therapy is currently under question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes, low body weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors associated with tenofovir-associated tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, therefore drug transporters expressed in renal proximal tubule cells are believed to influence tenofovir plasma concentration and toxicity in the kidney. We review here the current evidence that the actions, pharmacogenetics and drug interactions of drug transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel biomarkers for kidney damage, and the role that drug transporters play in biomarker disposition, is discussed. The lessons learnt from investigating the role of transporters in tenofovir kidney elimination and toxicity can be utilised for future drug development and clinical management programs.

  3. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography–Mass Spectrometry

    Science.gov (United States)

    Hvastkovs, Eli G.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography–mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates. PMID:22482786

  4. Factors modifying the toxicity of total body irradiation (TBI) with bone marrow transplant

    International Nuclear Information System (INIS)

    Fish, B.L.; Moulder, J.E.

    1987-01-01

    In defined-flora, barrier-maintained rats, radiation nephritis is the principle late toxicity seen after single dose, high dose rate TBI with bone marrow transplant. Shielding the kidneys eliminates this late toxicity. If rats are exposed to a conventional microbiological environment during and after TBI and bone marrow transplant, the principle late toxicity is pneumonitis. Low dose rate TBI gives similar renal toxicity but at doses twice as large. Clinically, TBI and bone marrow transplant is preceded by intensive drug treatment, typically with cyclophosphamide (Cytoxan) and cytosine arabinoside (ara-C). Pretreatment with a standard cytoxan/ara-C regimen, has no effect on the gastrointestinal toxicity of TBI, but results in a decrease in marrow toxicity. Late renal toxicity still occurs when bone marrow transplants are given, but it is to early to determine whether drug treatment has affected late renal tolerance. Experiments are also underway to determine the effects of fractionated TBI (3, 6 and 9 fractions in 60 hours) on acute tolerance and on late tolerance after bone marrow transplantation

  5. A study on the toxicity of three radiosensitizers on retinoblastoma cells by MTT assay

    International Nuclear Information System (INIS)

    Yi Xianjin; Jin Yizun; Ding Li; Ni Zhou; Wang Wenji

    1994-01-01

    The toxicity of three radiosensitizers BSO, CM and RSU-1069 on retinoblastoma cells was determined and the efficiency of in vitro MTT assay on drug-screening for retinoblastoma was also evaluated. The results showed that the MTT assay is very useful. The toxicity of radiosensitizers on retinoblastoma cells is dependent on cell line characteristics, drug concentration and time of exposure to it

  6. Predicting the Toxicity of Adjuvant Breast Cancer Drug Combination Therapy

    Science.gov (United States)

    2013-03-01

    Neratinib Versus Lapatinib Plus Capecitabine For ErbB2 Positive Advanced Breast Cancer Active, not recruiting No Results Available YES neratinib -9...Drug: Neratinib |Drug: Lapatinib|Drug: Capecitabine Efficacy and Safety of BMS-690514 in Combination With Letrozole to Treat Metastatic Breast Cancer

  7. Thermal Stress and Toxicity | Science Inventory | US EPA

    Science.gov (United States)

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  8. Developmental toxicity of orally administered sildenafil citrate (Viagra) in SWR/J mice.

    Science.gov (United States)

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy; Al-Meteri, Mokhlid Hamed

    2011-04-01

    Normal adult inbred SWR/J mice were used to investigate the teratogenic and other possible toxic effects of various dose levels of sildenafil citrate (Viagra) on fetuses. Multiple dose levels of 6.5, 13.0, 19.5, 26.0, 32.5 or 40.0 mg of sildenafil citrate/kg body weight (which correspond to the multiples of 1, 2, 3, 4, 5 or 6 of human 50 mg Viagra, respectively) were orally administered into pregnant mice on days 7-9, 10-12 or 13-15 of gestation. On day 17 of pregnancy, all fetuses were removed and examined for toxic phenomena (embryo-fetal toxicity) and for external, internal and skeletal malformations. A total of 285 pregnant mice were used in the present study. None of the dams treated with sildenafil citrate at any of the oral dose levels used in the present study died during the experimental period and all dams treated with the drug failed to reveal overt signs of maternal toxicity. Moreover, the results of the present study clearly demonstrate that none of the multiple oral dose levels of the drug at any time interval used has induced any external, internal or skeletal malformations in the fetuses obtained from treated females. However, the dose level of 40 mg/kg body weight of sildenafil citrate has a growth suppressing effect on alive fetuses when it was administered at all the time intervals used in the present study. Furthermore, the dose levels 26.0, 32.5 and 40 mg/kg of the drug have embryo-fetal toxicity when the drug is applied on days 13-15 of gestation. The possible mechanisms involved in the embryo-fetal toxicity and fetal growth suppressing effects of sildenafil citrate were discussed. The results of this study have important implications for the widespread use of this drug.

  9. Metabolism related toxicity of diclofenac in yeast as model system

    NARCIS (Netherlands)

    van Leeuwen, J.S.; Vredenburg, G.; Dragovic, S.; Tjong, T.F.; Vos, J.C.; Vermeulen, N.P.E.

    2010-01-01

    Diclofenac is a widely used drug that can cause serious hepatotoxicity, which has been linked to metabolism by cytochrome P450s (P450). To investigate the role of oxidative metabolites in diclofenac toxicity, a model for P450-related toxicity was set up in Saccharomyces cerevisiae. We expressed a

  10. Nuclear track microfilters in controlled drug delivery against chronic skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Gopalani, D. E-mail: deflab@sancharnet.in; Jodha, A.S.; Saravanan, S.; Kumar, S

    2003-06-01

    Nuclear track microfilters have been developed for transdermal therapeutic system. The transdermal therapeutic method reduces the toxicity of the drug as compared to other conventional methods. For this purpose a slow drug release system containing the nuclear track microfilter was developed. This device was applied to the patients suffering from psoriasis and cellulites diseases. The delivery of the drug to the patient was confirmed through high performance liquid chromatography. The preliminary results have shown that patients are responding to drugs with minimum toxicity.

  11. Nuclear track microfilters in controlled drug delivery against chronic skin disease

    International Nuclear Information System (INIS)

    Gopalani, D.; Jodha, A.S.; Saravanan, S.; Kumar, S.

    2003-01-01

    Nuclear track microfilters have been developed for transdermal therapeutic system. The transdermal therapeutic method reduces the toxicity of the drug as compared to other conventional methods. For this purpose a slow drug release system containing the nuclear track microfilter was developed. This device was applied to the patients suffering from psoriasis and cellulites diseases. The delivery of the drug to the patient was confirmed through high performance liquid chromatography. The preliminary results have shown that patients are responding to drugs with minimum toxicity

  12. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  13. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2014-04-01

    Full Text Available Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU] developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers.Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers.FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology

  14. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Science.gov (United States)

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve

  15. Drug-drug interactions of antifungal agents and implications for patient care.

    Science.gov (United States)

    Gubbins, Paul O; Amsden, Jarrett R

    2005-10-01

    Drug interactions in the gastrointestinal tract, liver and kidneys result from alterations in pH, ionic complexation, and interference with membrane transport proteins and enzymatic processes involved in intestinal absorption, enteric and hepatic metabolism, renal filtration and excretion. Azole antifungals can be involved in drug interactions at all the sites, by one or more of the above mechanisms. Consequently, azoles interact with a vast array of compounds. Drug-drug interactions associated with amphotericin B formulations are predictable and result from the renal toxicity and electrolyte disturbances associated with these compounds. The echinocandins are unknown cytochrome P450 substrates and to date are relatively devoid of significant drug-drug interactions. This article reviews drug interactions involving antifungal agents that affect other agents and implications for patient care are highlighted.

  16. Acute Liver Failure Secondary to Niacin Toxicity

    Directory of Open Access Journals (Sweden)

    Marc A. Ellsworth

    2014-01-01

    Full Text Available A 17-year-old male was transferred to the pediatric intensive care unit for evaluation of acute liver failure. He was recently released from an alcohol treatment center with acute onset of chest pain. Cardiac workup was negative but he was found to have abnormal coagulation studies and elevated liver transaminases. Other evaluations included a normal toxicology screen and negative acetaminophen level. Autoimmune and infectious workups were normal providing no identifiable cause of his acute liver failure. He initially denied any ingestions or illicit drug use but on further query he admitted taking niacin in an attempt to obscure the results of an upcoming drug test. Niacin has been touted on the Internet as an aid to help pass urine drug tests though there is no evidence to support this practice. Niacin toxicity has been associated with serious multisystem organ failure and fulminant hepatic failure requiring liver transplantation. Pediatric providers should be aware of the risks associated with niacin toxicity and other experimental medical therapies that may be described on the Internet or other nonreputable sources.

  17. Incidence and risk factors of major toxicity associated to first-line antituberculosis drugs for latent and active tuberculosis during a period of 10 years

    Directory of Open Access Journals (Sweden)

    Ana Tavares e Castro

    2015-05-01

    Full Text Available Introduction: Adverse drug reactions (ADR to first-line antituberculosis drugs are frequent and have important implications that may affect the effectiveness of treatment and course of tuberculosis (TB. Material and methods: Retrospective data analysis of clinical records and national registration forms from patients with ADR to first line antituberculosis that occurred between 2004 and 2013 at a Portuguese Pulmonology Diagnostic Centre, and from a case–control population matched by sex, age and year of initiation of treatment. Results: Of the 764 patients treated with antituberculosis drugs, 55 (52.7% male, 92.7% European, mean age 50.8 ± 19.5 years had at least one severe ADR and six had a second ADR, for a total of 61 events. The most frequent ADR were hepatotoxicity (86.9%, rash (8.2% and others, such as ocular toxicity, gastrointestinal intolerance and angioedema (4.9%. Isoniazid, alone or in combination, was the antituberculosis drug most associated to toxicity. Due to ADR, treatment time changed an average of 1.0 ± 2.6 months (range −3.4 to 10.6. There was no correlation between age or gender and the overall incidence of ADR although we found a significant association between younger age and an increased risk of hepatotoxicity (P = 0.035. There was also a statistically significant relationship between ADR and diabetes mellitus (P = 0.042 but not for other comorbidities or multi-resistant TB risk factors. Conclusions: This study found a high frequency of ADR with strong impact on subsequent therapeutic orientation. What seems to be of particular interest is the relationship between ADR and diabetes mellitus and the increased frequency of hepatotoxicity in younger patients. Keywords: Tuberculosis, Adverse reaction, Antituberculosis, Treatment

  18. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  19. Electrochemical studies of ropinirole, an anti-Parkinson's disease drug

    Indian Academy of Sciences (India)

    trochemical techniques have application to drug-protein. ∗. For correspondence ... drug bioavailability and toxicity tests. ... analysis ranging from the assay of drugs in bulk form, ... stability-indicating assays.13,14 Separation and quantifi-.

  20. p21-LacZ reporter mice reflect p53-dependent toxic insult

    International Nuclear Information System (INIS)

    Vasey, Douglas B.; Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-01-01

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity

  1. Drug-induced liver injury associated with HIV medications.

    Science.gov (United States)

    Jain, Mamta K

    2007-08-01

    Antiretroviral therapy (ART) for HIV infection frequently has been associated with elevated liver enzyme levels. Determining the cause of elevated liver enzyme levels in patients who have HIV is difficult because ART usually consists of three different drugs, patients may be taking additional hepatotoxic medications and patients who have HIV often suffer from other liver diseases. Several agents, however, are recognized as having noteworthy and specific patterns of toxicity. This article reviews the different HIV drug classes, incidence of elevated liver enzyme values by class and by individual drug, risk factors, specific toxicities, and possible mechanisms of injury.

  2. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar

    2010-05-01

    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  3. Addressing the selectivity and toxicity of antiviral nucleosides.

    Science.gov (United States)

    Feng, Joy Y

    2018-01-01

    Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies.

  4. Indolealkylamines: biotransformations and potential drug-drug interactions.

    Science.gov (United States)

    Yu, Ai-Ming

    2008-06-01

    Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug-drug interactions (DDIs). A stable, principal metabolite of an IAA drug of abuse could serve as a useful biomarker in assessing intoxication of the IAA substance. Studies on the metabolism of IAA drugs of abuse including lysergic acid amides, tryptamine derivatives and beta-carbolines are therefore emerging. An important role for polymorphic cytochrome P450 2D6 (CYP2D6) in the metabolism of IAA drugs of abuse has been revealed by recent studies, suggesting that variations in IAA metabolism, pharmaco- or toxicokinetics and dynamics can arise from distinct CYP2D6 status, and CYP2D6 polymorphism may represent an additional risk factor in the use of these IAA drugs. Furthermore, DDIs with IAA agents could occur additively at the pharmaco/toxicokinetic and dynamic levels, leading to severe or even fatal serotonin toxicity. In this review, the metabolism and potential DDIs of these therapeutic and abused IAA drugs are described.

  5. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Jing Dai

    2016-10-01

    Full Text Available The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.

  6. Test systems to identify reproductive toxicants.

    Science.gov (United States)

    Riecke, K; Stahlmann, R

    2000-09-01

    Experience with drugs and other xenobiotics indicates that both animal testing and epidemiological studies are necessary to provide adequate data for an estimation of risks that might be associated with exposure to a chemical substance. In this review, the pros and cons of test systems for reproductive toxicity are discussed. Usually, several studies are performed to cover the different phases of the reproductive cycle. In the preclinical development of drugs, the three so-called 'segment testing protocols' have been used for several decades now. More recently, new testing concepts have been accepted internationally which include more flexibility in implementation. Several examples of compounds with the potential for reproductive toxicity are presented in more detail in a discussion of some pitfalls of the tests for fertility (phthalates and fluoroquinolones), teratogenicity (acyclovir and protease inhibitors) and postnatal developmental toxicity (fluoroquinolones). In addition, important aspects of kinetics and metabolism as a prerequisite for a rational interpretation of results from toxicological studies are briefly discussed. In vitro assays are useful for supplementing the routinely used in vivo approaches or for studying an expected or defined effect, but they are not suitable for revealing an unknown effect of a chemical on the complex reproductive process.

  7. Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer

    International Nuclear Information System (INIS)

    Fang Fang; Gong Changyang; Dong Pengwei; Fu Shaozhi; Gu Yingchun; Guo Gang; Zhao Xia; Wei Yuquan; Qian Zhiyong

    2009-01-01

    In this paper, biodegradable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) triblock copolymer was synthesized, and was characterized by FTIR, 1 H-NMR and GPC. The PCL-PEG-PCL/dimethyl sulfoxide (DMSO) solution displayed in situ gelling behavior when subcutaneously injected into the body. Toxicity tests and a histopathological study were performed in BALB/c mice. We focused mainly on acute organ toxicity of BALB/c mice by subcutaneous injection. In the acute toxicity test, the dose of subcutaneous injection was 5 g/kg body weight (b.w.), and the mice were observed continuously for 14 days. For the histopathological study, samples including heart, lung, liver, kidneys, spleen, stomach and intestine were histochemically prepared and stained with hematoxylin-eosin for histopathological examination. No mortality or significant signs of toxicity were observed during the whole observation period, and there is no significant lesion to be shown in histopathological study of major organs in the mice. Therefore, the maximal tolerance dose of dimethyl sulfoxide (DMSO) solution of PCL-PEG-PCL copolymer by subcutaneous injection was calculated to be higher than 5 g/kg b.w. Therefore, the PCL-PEG-PCL/DMSO system was thought to be non-toxic after subcutaneous injection, and it might be a candidate for an in situ gelling controlled drug delivery system.

  8. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs.

    Science.gov (United States)

    Oleaga, Carlota; Bernabini, Catia; Smith, Alec S T; Srinivasan, Balaji; Jackson, Max; McLamb, William; Platt, Vivien; Bridges, Richard; Cai, Yunqing; Santhanam, Navaneetha; Berry, Bonnie; Najjar, Sarah; Akanda, Nesar; Guo, Xiufang; Martin, Candace; Ekman, Gail; Esch, Mandy B; Langer, Jessica; Ouedraogo, Gladys; Cotovio, Jose; Breton, Lionel; Shuler, Michael L; Hickman, James J

    2016-02-03

    We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro "human-on-a-chip" assay for systemic toxicity screening.

  9. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  10. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics

    International Nuclear Information System (INIS)

    West, Paul R.; Weir, April M.; Smith, Alan M.; Donley, Elizabeth L.R.; Cezar, Gabriela G.

    2010-01-01

    Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statistical analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.

  11. ProTox: a web server for the in silico prediction of rodent oral toxicity.

    Science.gov (United States)

    Drwal, Malgorzata N; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R; Preissner, Robert

    2014-07-01

    Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein-ligand-based pharmacophore models ('toxicophores') for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A Review of the Toxicity of Compounds Found in Herbal Dietary Supplements.

    Science.gov (United States)

    Hudson, Amy; Lopez, Elizabeth; Almalki, Ahmad J; Roe, Amy L; Calderón, Angela I

    2018-04-19

    Use of herbal dietary supplements by the public is common and has been happening for centuries. In the United States, the Food and Drug Administration has a limited scope of regulation over marketed herbal dietary supplements, which may contain toxic botanical compounds that pose a public health risk. While the Food and Drug Administration has made efforts to prohibit the sale of unsafe herbal dietary supplements, numerous reports have proliferated of adverse events due to these supplements. This literature review investigates bioactive plant compounds commonly used in herbal dietary supplements and their relative toxicities. Using primarily the National Library of Medicine journal database and SciFinder for current reports, 47 toxic compounds in 55 species from 46 plant families were found to demonstrate harmful effects due to hepatic, cardiovascular, central nervous system, and digestive system toxicity. This review further contributes a novel and comprehensive view of toxicity across the botanical dietary market, and investigates the toxicity of the top ten botanical dietary supplements purchased in the United States of America to gauge the exposure risk of toxicity to the public. The criteria of measuring toxicity in this review (plant compound, family, quantity, and toxicity effects) across the entire market in the United States, with special attention to those supplements whose exposure to the consumer is maximal, provides a unique contribution to the investigation of botanical supplements. Georg Thieme Verlag KG Stuttgart · New York.

  13. A review on proniosomal drug delivery system for targeted drug action

    OpenAIRE

    Radha, G. V.; Rani, T. Sudha; Sarvani, B.

    2013-01-01

    Proniosomes are dry formulation of water soluble carrier particles that are coated with surfactant. They are rehydrated to form niosomal dispersion immediately before use on agitation in hot aqueous media within minutes. Proniosomes are physically stable during the storage and transport. Drug encapsulated in the vesicular structure of proniosomes prolong the existence of drug in the systematic circulation and enhances the penetration into target tissue and reduce toxicity. From a technical po...

  14. Comparing probabilistic and descriptive analyses of time–dose–toxicity relationship for determining no-observed-adverse-effect level in drug development

    International Nuclear Information System (INIS)

    Glatard, Anaïs; Berges, Aliénor; Sahota, Tarjinder; Ambery, Claire; Osborne, Jan; Smith, Randall; Hénin, Emilie; Chen, Chao

    2015-01-01

    The no-observed-adverse-effect level (NOAEL) of a drug defined from animal studies is important for inferring a maximal safe dose in human. However, several issues are associated with its concept, determination and application. It is confined to the actual doses used in the study; becomes lower with increasing sample size or dose levels; and reflects the risk level seen in the experiment rather than what may be relevant for human. We explored a pharmacometric approach in an attempt to address these issues. We first used simulation to examine the behaviour of the NOAEL values as determined by current common practice; and then fitted the probability of toxicity as a function of treatment duration and dose to data collected from all applicable toxicology studies of a test compound. Our investigation was in the context of an irreversible toxicity that is detected at the end of the study. Simulations illustrated NOAEL's dependency on experimental factors such as dose and sample size, as well as the underlying uncertainty. Modelling the probability as a continuous function of treatment duration and dose simultaneously to data from multiple studies allowed the estimation of the dose, along with its confidence interval, for a maximal risk level that might be deemed as acceptable for human. The model-based data integration also reconciled between-study inconsistency and explicitly provided maximised estimation confidence. Such alternative NOAEL determination method should be explored for its more efficient data use, more quantifiable insight to toxic doses, and the potential for more relevant animal-to-human translation. - Highlights: • Simulations revealed issues with NOAEL concept, determination and application. • Probabilistic modelling was used to address these issues. • The model integrated time-dose-toxicity data from multiple studies. • The approach uses data efficiently and may allow more meaningful human translation.

  15. Comparing probabilistic and descriptive analyses of time–dose–toxicity relationship for determining no-observed-adverse-effect level in drug development

    Energy Technology Data Exchange (ETDEWEB)

    Glatard, Anaïs; Berges, Aliénor; Sahota, Tarjinder; Ambery, Claire [Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, 1 Iron Bridge Road, Uxbridge, UB11 1BT London (United Kingdom); Osborne, Jan [Non-Clinical Safety Projects, GlaxoSmithKline, Ware (United Kingdom); Smith, Randall [Computational Toxicology, GlaxoSmithKline, Upper Merion (United States); Hénin, Emilie [UMR 5558 Laboratoire Biométrie et de Biologie Evolutive, Equipe EMET (Evaluation et Modélisation des Effets Thérapeutiques), Université Claude Bernard Lyon1, Service de Pharmacologie Clinique et Essais Thérapeutiques, Hospices Civils de Lyon, Lyon (France); Chen, Chao, E-mail: chao.c.chen@gsk.com [Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, 1 Iron Bridge Road, Uxbridge, UB11 1BT London (United Kingdom)

    2015-10-15

    The no-observed-adverse-effect level (NOAEL) of a drug defined from animal studies is important for inferring a maximal safe dose in human. However, several issues are associated with its concept, determination and application. It is confined to the actual doses used in the study; becomes lower with increasing sample size or dose levels; and reflects the risk level seen in the experiment rather than what may be relevant for human. We explored a pharmacometric approach in an attempt to address these issues. We first used simulation to examine the behaviour of the NOAEL values as determined by current common practice; and then fitted the probability of toxicity as a function of treatment duration and dose to data collected from all applicable toxicology studies of a test compound. Our investigation was in the context of an irreversible toxicity that is detected at the end of the study. Simulations illustrated NOAEL's dependency on experimental factors such as dose and sample size, as well as the underlying uncertainty. Modelling the probability as a continuous function of treatment duration and dose simultaneously to data from multiple studies allowed the estimation of the dose, along with its confidence interval, for a maximal risk level that might be deemed as acceptable for human. The model-based data integration also reconciled between-study inconsistency and explicitly provided maximised estimation confidence. Such alternative NOAEL determination method should be explored for its more efficient data use, more quantifiable insight to toxic doses, and the potential for more relevant animal-to-human translation. - Highlights: • Simulations revealed issues with NOAEL concept, determination and application. • Probabilistic modelling was used to address these issues. • The model integrated time-dose-toxicity data from multiple studies. • The approach uses data efficiently and may allow more meaningful human translation.

  16. Toxic epidermal necrolysis due to concomitant use of lamotrigine and valproic acid

    Directory of Open Access Journals (Sweden)

    Sukhjot Kaur

    2013-01-01

    Full Text Available Anti-epileptic drugs can be associated with a wide spectrum of cutaneous adverse reactions ranging from simple maculopapular rashes to more severe and life threatening reactions like Stevens-Johnson syndrome and toxic epidermal necrolysis. These rashes are well documented with older antiepileptic drugs like phenytoin, phenobarbitone and carbamazapine. Lamotrigine is a newer, unrelated antiepileptic drug that causes skin rashes in 3-10% of new users. Higher starting dose or rapid escalation, concurrent treatment with valproic acid, and a previous history of a rash with other antiepileptic drugs are well recognized risk factors for lamotrigine related serious rashes. We report two patients with toxic epidermal necrolysis, resulting from concomitant use of lamotrigine and valproic acid. It is emphasized that clinicians adhere to the recommended dosage guidelines and adopt a slow dose titration when initiating treatment with lamotrigine.

  17. Drug delivery and nanoparticles: Applications and hazards

    Directory of Open Access Journals (Sweden)

    Wim H De Jong

    2008-06-01

    Full Text Available Wim H De Jong1, Paul JA Borm2,31Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM, Bilthoven, The Netherlands; 2Zuyd University, Centre of Expertise in Life Sciences, Heerlen, The Netherlands; 3Magnamedics GmbH, Aachen, GermanyAbstract: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation

  18. Therapeutic drug monitoring of aminoglycosides in neonates

    NARCIS (Netherlands)

    Touw, Daniël J; Westerman, Elsbeth M; Sprij, Arwen J

    2009-01-01

    The efficacy and toxicity of aminoglycosides show a strong direct positive relationship with blood drug concentrations, therefore, therapy with aminoglycosides in adults is usually guided by therapeutic drug monitoring. Dosing regimens in adults have evolved from multiple daily dosing to

  19. [Club drugs].

    Science.gov (United States)

    Guerreiro, Diogo Frasquilho; Carmo, Ana Lisa; da Silva, Joaquim Alves; Navarro, Rita; Góis, Carlos

    2011-01-01

    Club drugs are the following substances: Methylenedioxymethamphetamine (MDMA); Methamphetamine; Lysergic Acid Diethylamide (LSD); Ketamine; Gamma-hydroxybutyrate (GHB) and Flunitrazepam. These substances are mainly used by adolescents and young adults, mostly in recreational settings like dance clubs and rave parties. These drugs have diverse psychotropic effects, are associated with several degrees of toxicity, dependence and long term adverse effects. Some have been used for several decades, while others are relatively recent substances of abuse. They have distinct pharmacodynamic and pharmacokinetic properties, are not easy to detect and, many times, the use of club drugs is under diagnosed. Although the use of these drugs is increasingly common, few health professionals feel comfortable with the diagnosis and treatment. The authors performed a systematic literature review, with the goal of synthesising the existing knowledge about club drugs, namely epidemiology, mechanism of action, detection, adverse reactions and treatment. The purpose of this article is creating in Portuguese language a knowledge data base on club drugs, that health professionals of various specialties can use as a reference when dealing with individual with this kind of drug abuse.

  20. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  1. Evaluation of toxic effects of metformin hydrochloride and ...

    African Journals Online (AJOL)

    olayemitoyin

    Drug Metabolism and Toxicology Research Laboratories, Department of ... This study was designed to investigate the toxic effect of MET and GB in the Liver, kidney and testis of rats. Twenty one ..... glibenclamide on male reproductive system,.

  2. Metabolic activation of hepatotoxic drug (benzbromarone) induced mitochondrial membrane permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, Maho; Sekine, Shuichi; Tanaka, Ayaka [The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (Japan); Horie, Toshiharu [Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo (Japan); Ito, Kousei, E-mail: itokousei@chiba-u.jp [The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (Japan)

    2015-10-01

    The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI. However, it is difficult to determine the target of TMs associated with exacerbation of DILI because of difficulties in identifying and purifying TMs. In this study, we propose a sequential in vitro assay system to assess TM formation and their ability to induce mitochondrial permeability transition (MPT) in a one-pot process. In this assay system, freshly-isolated rat liver mitochondria were incubated with reaction solutions of 44 test drugs preincubated with liver microsomes in the presence or absence of NADPH; then, NADPH-dependent MPT pore opening was assessed as mitochondrial swelling. In this assay system, several hepatotoxic drugs, including benzbromarone (BBR), significantly induced MPT in a NADPH-dependent manner. We investigated the rationality of using BBR as a model drug, since it showed the most prominent MPT in our assay system. Both the production of a candidate toxic metabolite of BBR (1′,6-(OH){sub 2} BBR) and NADPH-dependent MPT were inhibited by several cytochrome P450 (CYP) inhibitors (clotrimazole and SKF-525A, 100 μM). In summary, this assay system can be used to evaluate comprehensive metabolite-dependent MPT without identification or purification of metabolites. - Highlights: • We constructed a sequential assay system for toxic metabolite induced MPT in one pot. • 14 drugs (e.g. benzbromarone (BBR)) induced toxic metabolite dependent MPT. • Both the production of toxic metabolite and MPT could be inhibited by CYP inhibitors. • This system could evaluate the comprehensive MPT without purification of metabolites.

  3. Assessment of the Developmental Toxicity of Epidermal Growth ...

    African Journals Online (AJOL)

    developmental toxicity, using the embryonic stem cell test (EST), as well as ascertain how EGF ... differentiation of embryonic stem cells, EST was used to assess changes in different blastodermic ..... However, as an extraneous drug, it is worth.

  4. Oxaliplatin-induced Oxidative Stress Provokes Toxicity in Isolated Rat Liver Mitochondria.

    Science.gov (United States)

    Tabassum, Heena; Waseem, Mohammad; Parvez, Suhel; Qureshi, M Irfan

    2015-11-01

    Oxaliplatin is a widely employed platinum-derived chemotherapeutic agent commonly used for the treatment of colorectal cancer. Unfortunately, the benefit of this important drug is compromised by severe side effects such as neuropathy, ototoxicity, gastrointestinal toxicity, and hematological toxicity. Recently, few studies have also suggested the occurrence of hepatotoxicity in oxaliplatin-treated patients. Mitochondria have emerged as targets for anticancer drugs in various kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. Oxidative stress is a well-established biomarker of mitochondrial toxicity. The purpose of this study was to investigate the dose-dependent damage caused by oxaliplatin on isolated liver mitochondria under in vitro conditions. The study was conducted in mitochondria isolated from liver of Wistar rats. Oxaliplatin was incubated with mitochondria in a dose-dependent manner under in vitro conditions. Oxidative stress indexes, non-enzymatic and enzymatic antioxidants were evaluated, looking at the overall armamentarium against the toxicity induced by oxaliplatin. Oxaliplatin caused a significant rise in the mitochondrial oxidative stress indexes lipid peroxidation and protein carbonyl. Alterations in the levels of non-enzymatic antioxidants and activities of enzymatic antioxidants were also observed. Oxidative stress plays an important role in the mitochondrial toxicity of oxaliplatin. The integrity of the hepatic tissue is compromised by the reactive oxygen species-mediated lipid peroxidation and protein carbonyl formation. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  5. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    Science.gov (United States)

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  6. Antithyroid drugs as a factor influencing the outcome of radioiodine therapy in Graves' disease and toxic nodular goitre?

    International Nuclear Information System (INIS)

    Koerber, C.; Schneider, P.; Koerber-Hafner, N.; Haenscheid, H.; Reiners, C.

    2001-01-01

    There is controversy over the factors that may influence the outcome of radioiodine therapy for benign thyroid diseases. Antithyroid medication has been claimed to negatively influence the effectiveness of radioiodine therapy in Graves' disease. In a longitudinal study, we assessed the influence of sex, age, antithyroid drugs, target radiation dose, target mass, applied activity, delivered dose, interval between last meal and application, and TSH, FT 3 and FT 4 levels on the outcome of radioiodine therapy. One hundred and forty-four patients (111 female, 33 male) suffering from Graves' disease (GD) and 563 patients (434 female, 129 male) with toxic nodular goitre (TNG) were entered in the study and followed up until 8 months after therapy. Treatment was defined as successful when the TSH level was found to be normal or elevated. Ninety-eight GD patients and 418 TNG patients were successfully treated. Forward stepwise multiple regression analysis models retained only the target mass in GD and the applied activity in TNG as significantly associated with the outcome of therapy. The predictive value of all variables involved was extremely low in both disease groups. Whereas concomitant antithyroid medication had no influence in GD, it adversely influenced radioiodine therapy of TNG. This effect may be attributed to a radioiodine ''steal phenomenon'' induced by TSH-stimulated normal thyroid tissue, which causes overestimation of the uptake in toxic nodules. (orig.)

  7. Computer Simulation Lends New Insights Into Cyanide-Caused Cardiac Toxicity

    Science.gov (United States)

    2004-12-01

    current, ICl,sw is needed to terminate VF. There are several drugs that block ICl,sw. 5. DISCUSSION Exposure to CN has immediate consequences ...the search on the requirements on the means of pharmacological intervention to counter the effect of cyanide-caused cardiac toxicity . Of special...COMPUTER SIMULATION LENDS NEW INSIGHTS INTO CYANIDE-CAUSED CARDIAC TOXICITY C.K. Zoltani* U.S. Army Research Laboratory Computational and

  8. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention.

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; van de Laar, Mart A F J

    2010-01-01

    Objectives: To discuss nonsteroidal anti-inflammatory drugs (NSAIDs), their history, development, mode of action, toxicities, strategies for the prevention of toxicity, and future developments. - Methods: Medline search for articles published up to 2007, using the keywords acetylsalicylic acid,

  9. Stevens–Johnson syndrome and toxic epidermal necrolysis in an academic hospital setting: a 5-year retrospective study

    Directory of Open Access Journals (Sweden)

    Ewa Stocka-Łabno

    2016-10-01

    Full Text Available Introduction: Toxic epidermal necrolysis and Stevens–Johnson syndrome are acute life-threatening mucocutaneous reactions to drugs. The aims of the study were to identify these drugs and characterize population prone to these reactions. Materials and Methods: Data including demographics, culprit drug, clinical characteristics, course of disease, treatment given, and therapeutic responses were retrospectively collected from medical records of 31 patients admitted to Department of Dermatology from January 2009 to December 2014. Results: Drugs most commonly involved in Stevens–Johnson syndrome were antimicrobials: ciprofloxacin, doxycycline, cefuroxime, trimethoprim, amoxicillin, clindamycin, co-trimoxazole (50% of patients and nonsteroidal anti-inflammatory drugs: ibuprofen, naproxen, metamizole, piroxicam (29% of patients. Drugs involved in toxic epidermal necrolysis were antimicrobials: sulfasalazine, co-trimoxazole, cefuroxime, clindamycin (71% of patients and anticonvulsants: lamotrigine (29% of patients. The comorbidities’ characteristic for the group of patients affected by toxic epidermal necrolysis were psychiatric and autoimmune disorders. The most common complication was infection. Two patients died and in both cases the cause of death was sepsis. Conclusion: The study indicates that in observed population drugs with the highest risk of most severe reactions are lamotrigine (anticonvulsant and antimicrobials (most commonly sulfonamides, therefore it is advisable to consider carefully administration of these drugs, especially to patients with history of autoimmune reactions.

  10. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  11. A review on proniosomal drug delivery system for targeted drug action.

    Science.gov (United States)

    Radha, G V; Rani, T Sudha; Sarvani, B

    2013-03-01

    Proniosomes are dry formulation of water soluble carrier particles that are coated with surfactant. They are rehydrated to form niosomal dispersion immediately before use on agitation in hot aqueous media within minutes. Proniosomes are physically stable during the storage and transport. Drug encapsulated in the vesicular structure of proniosomes prolong the existence of drug in the systematic circulation and enhances the penetration into target tissue and reduce toxicity. From a technical point of view, niosomes are promising drug carriers as they possess greater chemical stability and lack of many disadvantages associated with liposomes, such as high- cost and variable purity problems of phospholipids. The present review emphasizes on overall methods of preparation characterization and applicability of proniosomes in targeted drug action.

  12. In Silico Systems Pharmacology to Assess Drug's Therapeutic and Toxic Effects

    DEFF Research Database (Denmark)

    Orozco, Alejandro Aguayo; Audouze, Karine; Brunak, Soren

    2016-01-01

    For many years, the "one target, one drug" paradigm has been the driving force behind developments in pharmaceutical research. With the recent advances in molecular biology and genomics technologies, the focus is shifting toward "drug-holistic" systems based approaches (i.e. systems pharmacology......). The integration of large and diverse amount of data from chemistry and biology coupled with the development and the application of network-based approaches to cope with these data is the next paradigm of drug discovery. Systems pharmacology offers a novel way of approaching drug discovery by developing models...

  13. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes.

    Science.gov (United States)

    Cañada, Andres; Capella-Gutierrez, Salvador; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso; Krallinger, Martin

    2017-07-03

    A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes-CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. MicroRNA Biomarkers of Toxicity in Biological Matrices

    Science.gov (United States)

    Biomarker measurements that reliably correlate with tissue injury and can be measured from sampling accessible biofluids offer enormous benefits in terms of cost, time, and convenience when assessing environmental and drug-induced toxicity in model systems or human cohorts. Micro...

  15. Radiology of adverse reactions to drugs and toxic hazards

    International Nuclear Information System (INIS)

    Ansell, G.

    1989-01-01

    The book reviews the contribution offered by radiological methods to detection of lesions, confirmation of tentative diagnoses, and differentiation of lesions. The radiological methods discussed cover the conventional roentgenology as well as computed tomography, ultrasonography, scintiscanning, and NMR tomography, which are the useful tools for the very important task, to detect and define the manifestations of adverse reactions and toxic hazards, in order to commence treatment in time. (orig.) With 154 figs [de

  16. The use of cultured hepatocytes to investigate the metabolism of drugs and mechanisms of drug hepatotoxicity.

    Science.gov (United States)

    Gómez-Lechón, M J; Ponsoda, X; Bort, R; Castell, J V

    2001-01-01

    Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.

  17. Abatement by Naringenin of Doxorubicin-Induced Cardiac Toxicity in Rats

    International Nuclear Information System (INIS)

    Arafa, H.M.; Abd-Ellah, M.F.; Hafez, H.F.

    2005-01-01

    Doxorubicin is one of the most active cytotoxic agents in current use. It has proven efficacy in various malignancies either alone or combined with other cytocidal agents. The clinical usefulness of the anthracycline drug has been precluded by cardiac toxicity. Many therapeutic interventions have been attempted to improve the therapeutic benefits of the drug. Few, however, have been efficacious in this setting. Purpose: We have addressed in the current study the possible protective effects of naringenin, a flavonoid known to have anti-oxidant properties, on doxorubicin induced cardiac toxicity in male Swiss albino rats. Methods: Forty male Swiss albino rats were used in this study. Naringenin (25 mg/kg body weight) was administered daily by gavage for 7 consecutive days before a cumulative single dose of doxorubicin (15 mg/kg body weight, ip). Doxorubicin induced marked biochemical alterations characteristic of cardiac toxicity including, elevated activities of serum total lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), enhanced lipid peroxidation measured as malonaldehyde (MDA). The anthracycline drug has also reduced the cardiac enzymatic activities of superoxide dismutase (SOD), glutathione-Stransferase (GST) and catalase (CAT). Besides, it reduced significantly the reduced glutathione (GSH) level, but it increased the total NO content in heart tissue. Prior administration of naringenin ahead of doxorubicin challenge ameliorated all these biochemical markers. Taken together, one could conclude that naringenin has a protective role in the abatement of doxorubicin-induced cardiac toxicity that resides, at least in part, on its anti-radical effects and regulatory role on NO production

  18. Comparative analysis of three drug-drug interaction screening systems against probable clinically relevant drug-drug interactions: a prospective cohort study.

    Science.gov (United States)

    Muhič, Neža; Mrhar, Ales; Brvar, Miran

    2017-07-01

    Drug-drug interaction (DDI) screening systems report potential DDIs. This study aimed to find the prevalence of probable DDI-related adverse drug reactions (ADRs) and compare the clinical usefulness of different DDI screening systems to prevent or warn against these ADRs. A prospective cohort study was conducted in patients urgently admitted to medical departments. Potential DDIs were checked using Complete Drug Interaction®, Lexicomp® Online™, and Drug Interaction Checker®. The study team identified the patients with probable clinically relevant DDI-related ADRs on admission, the causality of which was assessed using the Drug Interaction Probability Scale (DIPS). Sensitivity, specificity, and positive and negative predictive values of screening systems to prevent or warn against probable DDI-related ADRs were evaluated. Overall, 50 probable clinically relevant DDI-related ADRs were found in 37 out of 795 included patients taking at least two drugs, most common of them were bleeding, hyperkalemia, digitalis toxicity, and hypotension. Complete Drug Interaction showed the best sensitivity (0.76) for actual DDI-related ADRs, followed by Lexicomp Online (0.50), and Drug Interaction Checker (0.40). Complete Drug Interaction and Drug Interaction Checker had positive predictive values of 0.07; Lexicomp Online had 0.04. We found no difference in specificity and negative predictive values among these systems. DDI screening systems differ significantly in their ability to detect probable clinically relevant DDI-related ADRs in terms of sensitivity and positive predictive value.

  19. High rates of regimen change due to drug toxicity among a cohort of South Indian adults with HIV infection initiated on generic, first-line antiretroviral treatment.

    Science.gov (United States)

    Sivadasan, Ajith; Abraham, O C; Rupali, Priscilla; Pulimood, Susanne A; Rajan, Joyce; Rajkumar, S; Zachariah, Anand; Kannangai, Rajesh; Kandathil, Abraham Joseph; Sridharan, G; Mathai, Dilip

    2009-05-01

    To determine the rates, reasons and predictors of treatment change of the initial antiretroviral treatment (ART) regimen in HIV-infected south Indian adults. In this prospective cohort study, ART-naive adults initiated on generic, fixed dose combination ART as per the National AIDS Control Organization guidelines were followed up at an academic medical center. Treatment change was defined as any event which necessitated a change in or discontinuation of the initial ART regimen. Two hundred and thirty persons with HIV infection (males 74.8% and median age 37 years) were followed up for median duration of 48 weeks. The majority (98.7%) had acquired HIV infection through the heterosexual route. Most (70.4%) had advanced IV infection (WHO clinical stage 3 or 4) and 78% had CD4+ T-lymphocyte counts below 200 cells/microL. The initial ART regimens used were: Lamivudine (3TC) with Stavudine (d4T) (in 76%) or Azidothymidine (AZT) and Nevirapine (NVP) (in 86%) or Efavirenz (EFV). The cumulative incidence of treatment change was 39.6% (91 patients). Drug toxicity (WHO grade 3 or 4) was the reason for treatment change among 62 (27%) (incidence rate 35.9/100 person-years). The most common toxicities were attributable to the thymidine analogue nucleoside reverse transcriptase inhibitors (NRTIs), d4T and AZT [lactic acidosis (8.7%), anemia (7%) and peripheral neuropathy (5.2%)]. The other toxicities were rash (3.9%) and hepatitis (1.3%) due to NVP. The mortality (4.6/100 person-years) and disease progression rates (4.1/100 person-years) were low. The ART regimens used in this study were effective in decreasing disease progression and death. However, they were associated with high rates of drug toxicities, particularly those attributable to thymidine analogue NRTI. As efforts are made to improve access to ART, treatment regimens chosen should not only be potent, but also safe.

  20. An integrated multi-label classifier with chemical-chemical interactions for prediction of chemical toxicity effects.

    Science.gov (United States)

    Liu, Tao; Chen, Lei; Pan, Xiaoyong

    2018-05-31

    Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Drug interactions in hospitalized elderly patients

    Directory of Open Access Journals (Sweden)

    Juliana Locatelli

    2007-12-01

    Full Text Available Objective: To assess the prevalence of drug interactions in elderlyinpatients and to describe the most prevalent interactions. Methods:A retrospective study was conducted in 155 elderly inpatients enrolledin the Clinical Pharmacy program at the elderly-care unit of theHospital Israelita Albert Einstein from January 2006 to January 2007.Interactions were classified according to severity using Micromedex®.Results: A total of 705 potential drug interactions were found, withapproximately 4 interactions per patient. According to severity, 201(28% were major severities and 504 (72% were of moderate severity.Among these 705 interactions, 444 were selected according to theirresulting effect including 161 (36% had increased risk of bleeding, 78(18% hypoglycemia or hyperglycemia, 50 (11% cardiotoxicity, 46(10% digitalis toxicity, 40 (9% phenytoin toxicity, 31 (7% additiverespiratory depression, 20 (5% hyperkalemia, 18 (4% decreasedlevothyroxine absorption. Conclusion: The high drug interactionrate found in this study shows the relevance of this issue amongelderly inpatients and the need to assess and monitor drug therapyin the elderly to prevent and reduce consequences of potential druginteraction effects.

  2. Role of {sup 18}F-FDG PET-CT in monitoring the cyclophosphamide induced pulmonary toxicity in patients with breast cancer - 2 Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar [A.I.I.M.S, New Delhi (India)

    2016-09-15

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of {sup 18}F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim {sup 18}F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on {sup 18}F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  3. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment

    Directory of Open Access Journals (Sweden)

    Shoshana Rudin

    2017-04-01

    Full Text Available Pediatric acute lymphoblastic leukemia (ALL affects a substantial number of children every year and requires a long and rigorous course of chemotherapy treatments in three stages, with the longest phase, the maintenance phase, lasting 2–3 years. While the primary drugs used in the maintenance phase, 6-mercaptopurine (6-MP and methotrexate (MTX, are necessary for decreasing risk of relapse, they also have potentially serious toxicities, including myelosuppression, which may be life-threatening, and gastrointestinal toxicity. For both drugs, pharmacogenomic factors have been identified that could explain a large amount of the variance in toxicity between patients, and may serve as effective predictors of toxicity during the maintenance phase of ALL treatment. 6-MP toxicity is associated with polymorphisms in the genes encoding thiopurine methyltransferase (TPMT, nudix hydrolase 15 (NUDT15, and potentially inosine triphosphatase (ITPA, which vary between ethnic groups. Moreover, MTX toxicity is associated with polymorphisms in genes encoding solute carrier organic anion transporter family member 1B1 (SLCO1B1 and dihydrofolate reductase (DHFR. Additional polymorphisms potentially associated with toxicities for MTX have also been identified, including those in the genes encoding solute carrier family 19 member 1 (SLC19A1 and thymidylate synthetase (TYMS, but their contributions have not yet been well quantified. It is clear that pharmacogenomics should be incorporated as a dosage-calibrating tool in pediatric ALL treatment in order to predict and minimize the occurrence of serious toxicities for these patients.

  4. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yoo, Young-Choon [Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, International University of Korea, Jinju 660-759 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-{alpha} and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  5. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    International Nuclear Information System (INIS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-01-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  6. DRUG INTERACTIONS WITH TUBERCULOSIS THERAPY

    African Journals Online (AJOL)

    Kurt

    ous toxicity and a low therapeutic index, where relatively small changes in drug level can have ... Paracetamol. Increased clearance of paracetamol ... Rifampicin reduces ritonavir levels by Monitoring of liver function advised ritonavir enzyme ...

  7. Therapeutic drug monitoring of atypical antipsychotic drugs

    Directory of Open Access Journals (Sweden)

    Grundmann Milan

    2014-12-01

    Full Text Available Schizophrenia is a severe psychiatric disorder often associated with cognitive impairment and affective, mainly depressive, symptoms. Antipsychotic medication is the primary intervention for stabilization of acute psychotic episodes and prevention of recurrences and relapses in patients with schizophrenia. Typical antipsychotics, the older class of antipsychotic agents, are currently used much less frequently than newer atypical antipsychotics. Therapeutic drug monitoring (TDM of antipsychotic drugs is the specific method of clinical pharmacology, which involves measurement of drug serum concentrations followed by interpretation and good cooperation with the clinician. TDM is a powerful tool that allows tailor-made treatment for the specific needs of individual patients. It can help in monitoring adherence, dose adjustment, minimizing the risk of toxicity and in cost-effectiveness in the treatment of psychiatric disorders. The review provides complex knowledge indispensable to clinical pharmacologists, pharmacists and clinicians for interpretation of TDM results.

  8. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol).

    Science.gov (United States)

    Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea

    2017-07-13

    Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta

  9. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John's Wort?

    Science.gov (United States)

    Mouly, Stéphane; Lloret-Linares, Célia; Sellier, Pierre-Olivier; Sene, Damien; Bergmann, J-F

    2017-04-01

    An interaction of drug with food, herbs, and dietary supplements is usually the consequence of a physical, chemical or physiologic relationship between a drug and a product consumed as food, nutritional supplement or over-the-counter medicinal plant. The current educational review aims at reminding to the prescribing physicians that the most clinically relevant drug-food interactions may not be strictly limited to those with grapefruit juice and with the Saint John's Wort herbal extract and may be responsible for changes in drug plasma concentrations, which in turn decrease efficacy or led to sometimes life-threatening toxicity. Common situations handled in clinical practice such as aging, concomitant medications, transplant recipients, patients with cancer, malnutrition, HIV infection and those receiving enteral or parenteral feeding may be at increased risk of drug-food or drug-herb interactions. Medications with narrow therapeutic index or potential life-threatening toxicity, e.g., the non-steroidal anti-inflammatory drugs, opioid analgesics, cardiovascular medications, warfarin, anticancer drugs and immunosuppressants may be at risk of significant drug-food interactions to occur. Despite the fact that considerable effort has been achieved to increase patient' and doctor's information and ability to anticipate their occurrence and consequences in clinical practice, a thorough and detailed health history and dietary recall are essential for identifying potential problems in order to optimize patient prescriptions and drug dosing on an individual basis as well as to increase the treatment risk/benefit ratio. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ultrasound-guided drug delivery in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K. [Dept. of Radiology, Stanford University School of Medicine, Stanford (United States)

    2017-07-15

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  11. Party drugs - use and harm reduction.

    Science.gov (United States)

    Frei, Matthew

    2010-08-01

    Party drug use, the intermittent use of stimulants, ecstasy and so-called 'designer drugs' at dance parties or 'raves', is now part of the culture of many young Australians. This article discusses the risks associated with the use of 'party drugs' and describes an useful approach to general practitioner assessment and management of patients who may be using party drugs. Party drug use is associated with a range of harms, including risks associated with behaviour while drug affected, toxicity and overdose, mental health complications and physical morbidity. Multiple substance use, particularly combining sedatives, further amplifies risk. If GPs have some understanding of these drugs and their effects, they are well placed to provide an effective intervention in party drug users by supporting the reduction of harm.

  12. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2015-03-01

    Full Text Available Drug-induced liver injury (DILI is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.

  13. Precision-cut intestinal slices as an in vitro model to predict NSAID induced intestinal toxicity

    NARCIS (Netherlands)

    Niu, Xiaoyu; van der Bijl, Henk; Groothuis, Geny; de Graaf, Inge

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are associated with high prevalence of gastro-intestinal side-effects. In vivo studies suggest that uncoupling of oxidative phosphorylation is an important cause of the toxicity and that the toxicity is aggravated by enterohepatic circulation.

  14. Drug eruptions from phenylbutazone in Jamu.

    Science.gov (United States)

    Giam, Y C; Tham, S N; Tan, T; Lim, A

    1986-01-01

    Drug eruptions from indeginous medicine is often difficult to diagnosis and confirm. It is known that a number of these now supplied by bomohs and Chinese sinsehs contain known drugs and are dispensed as tablets and capsules. We report 3 cases of adverse drug eruption to "Jamu", a Malay herb. A particular brand, "Jamu Indonesia, Toko Air Pancur", from Johor Bahru, Malaysia, is especially recommended for "sakit pinggang" or backache. The cases occurred between January and February 1985, and all had taken brown kidney shaped tablets. The adverse reactions were moderately severe. Two had erythroderma with hepatitis, and one, Steven Johnson Syndrome. Analysis of this jamu for analgesics led to the discovery of adulteration with phenylbutazone and diazepam. Records from local cases from 1974-1984 showed that 8 other patients, all Chinese had adverse cutaneous eruptions from phenylbutazone, oxybutazone and propyphenazone. The skin manifestations were erythroderma (2 cases), vasculitis (2 cases) and toxic epidermal necrolysis (4 cases). Those with toxic epidermal necrolysis had 100% mortality.

  15. [Characteristics of the development of drug addiction and toxicomania in adolescents].

    Science.gov (United States)

    Lukacher, G Ia; Makshantseva, N V

    1988-01-01

    The study involved 152 adolescents which had abused narcotic and toxic substances once, occasionally or regularly. Males aged 15 to 16 years displayed highest occurrence rate of the abuse. Drug addiction and toxicomania were established in 6% of subjects. Volatile stuff and tranquilizers were most frequent in use. Microsocial adversities were experienced by all the subjects. Besides, an "altered background" is characteristic of drug addicts and toxicomania patients. The fact of narcotic and toxic substances usage as euphorigenic agents deserves due attention of narcologists, pedagogues, sociologists. Biologically conditioned risk factors conducive to drug addiction and toxicomania should be investigated.

  16. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Vu, D H; Bolhuis, M S; Koster, R A; Greijdanus, B; de Lange, W C M; van Altena, R; Brouwers, J R B J; Uges, D R A; Alffenaar, J W C

    2012-01-01

    Linezolid is a promising antimicrobial agent for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its use is limited by toxicity. Therapeutic drug monitoring (TDM) may help to minimize toxicity while adequate drug exposure is maintained. Conventional plasma sampling and monitoring

  17. eMolTox: prediction of molecular toxicity with confidence.

    Science.gov (United States)

    Ji, Changge; Svensson, Fredrik; Zoufir, Azedine; Bender, Andreas

    2018-03-07

    In this work we present eMolTox, a web server for the prediction of potential toxicity associated with a given molecule. 174 toxicology-related in vitro/vivo experimental datasets were used for model construction and Mondrian conformal prediction was used to estimate the confidence of the resulting predictions. Toxic substructure analysis is also implemented in eMolTox. eMolTox predicts and displays a wealth of information of potential molecular toxicities for safety analysis in drug development. The eMolTox Server is freely available for use on the web at http://xundrug.cn/moltox. chicago.ji@gmail.com or ab454@cam.ac.uk. Supplementary data are available at Bioinformatics online.

  18. Drug interactions between common illicit drugs and prescription therapies.

    Science.gov (United States)

    Lindsey, Wesley T; Stewart, David; Childress, Darrell

    2012-07-01

    The aim was to summarize the clinical literature on interactions between common illicit drugs and prescription therapies. Medline, Iowa Drug Information Service, International Pharmaceutical Abstracts, EBSCO Academic Search Premier, and Google Scholar were searched from date of origin of database to March 2011. Search terms were cocaine, marijuana, cannabis, methamphetamine, amphetamine, ecstasy, N-methyl-3,4-methylenedioxymethamphetamine, methylenedioxymethamphetamine, heroin, gamma-hydroxybutyrate, sodium oxybate, and combined with interactions, drug interactions, and drug-drug interactions. This review focuses on established clinical evidence. All applicable full-text English language articles and abstracts found were evaluated and included in the review as appropriate. The interactions of illicit drugs with prescription therapies have the ability to potentiate or attenuate the effects of both the illicit agent and/or the prescription therapeutic agent, which can lead to toxic effects or a reduction in the prescription agent's therapeutic activity. Most texts and databases focus on theoretical or probable interactions due to the kinetic properties of the drugs and do not fully explore the pharmacodynamic and clinical implications of these interactions. Clinical trials with coadministration of illicit drugs and prescription drugs are discussed along with case reports that demonstrate a potential interaction between agents. The illicit drugs discussed are cocaine, marijuana, amphetamines, methylenedioxymethamphetamine, heroin, and sodium oxybate. Although the use of illicit drugs is widespread, there are little experimental or clinical data regarding the effects of these agents on common prescription therapies. Potential drug interactions between illicit drugs and prescription drugs are described and evaluated on the Drug Interaction Probability Scale by Horn and Hansten.

  19. The toxicity of rifampicin polylactic acid nanoparticles against Mycobacterium bovis BCG and human macrophage THP-1 cell line

    International Nuclear Information System (INIS)

    Erokhina, M; Rybalkina, E; Lepekha, L; Barsegyan, G; Onishchenko, G

    2015-01-01

    Tuberculosis is rapidly becoming a major health problem. The rise in tuberculosis incidence stimulates efforts to develop more effective delivery systems for the existing antituberculous drugs while decreasing the side effects. The nanotechnology may provide novel drug delivery tools allowing controlled drug release. Rifampicin is one of the main antituberculous drugs, characterized by high toxicity, and Poly (L-lactic acid) (PLLA) is a biodegradable polymer used for the preparation of encapsulated drugs. The aim of our work was to evaluate the toxicity of rifampicin-PLLA nanoparticles against Mycobacterium bovis BCG using human macrophage THP-1 cell line. Our data demonstrate that rifampicin-PLLA is effective against M. bovis BCG in the infected macrophages. The drug is inducing the dysfunction of mitochondria and apoptosis in the macrophages and is acting as a potential substrate of Pgp thereby modulating cell chemosensitivity. The severity of the toxic effects of the rifampicin-PLLA nanoparticles is increasing in a dose-dependent manner. We suggest that free rifampicin induces death of M. bovis BCG after PLLA degradation and diffusion from phago-lysosomes to cytoplasm causing mitochondria dysfunction and affecting the Pgp activity. (paper)

  20. [Extrapyramidal toxicity caused by metoclopramide and clebopride: study of voluntary notifications of adverse effects to the Spanish Drug Surveillance System].

    Science.gov (United States)

    Cuena Boy, R; Maciá Martínez, M A

    1998-03-31

    To clarify if there is any basis for the hypothesis that Clebopride leads to more extrapyramidal reactions than Metoclopramide. Observational, longitudinal, retrospective and comparative study of two series of cases. The entire Spanish healthcare system. Those notified to the Spanish Drug watch system as possibly having suffered an adverse reaction to Metoclopramide (n = 98) or Clebopride (n = 123) between 1/1/1990 and 10/6/1997. None. 84.3% of suspected adverse reactions to Clebopride and 51.6% of those to Metoclopramide had a non-hospital precedence (P Clebopride, there was extrapyramidal toxicity (P = 0.021). There is a basis for the hypothesis that Clebopride causes more extrapyramidal reactions than Metoclopramide. It was reasonable to realize a study based on this hypothesis.

  1. Salicytamide: a New Anti-inflammatory Designed Drug Candidate.

    Science.gov (United States)

    Guedes, Karen Marinho Maciel; Borges, Rosivaldo Santos; Fontes-Júnior, Enéas Andrade; Silva, Andressa Santa Brigida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Pinto, Ana Carla Godinho; Silva, Mallone Lopes; Queiroz, Luana Melo Diogo; Vieira, José Luís Fernandes; Sousa, Pergentino José Cunha; Maia, Cristiane Socorro Ferraz

    2018-04-13

    Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test's inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test's neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10-25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.

  2. Personalized Medicine: Pharmacogenomics and Drug Development

    Directory of Open Access Journals (Sweden)

    Somayeh Mirsadeghi

    2017-03-01

    Full Text Available Personalized medicine aims is to supply the proper drug to the proper patient within the right dose. Pharmacogenomics (PGx is to recognize genetic variants that may influence drug efficacy and toxicity. All things considered, the fields cover a wide area, including basic drug discovery researches, the genetic origin of pharmacokinetics and pharmacodynamics, novel drug improvement, patient genetic assessment and clinical patient administration. At last, the objective of Pharmacogenomics is to anticipate a patient’s genetic response to a particular drug as a way of presenting the best possible medical treatment. By predicting the drug response of an individual, it will be possible to increase the success of therapies and decrease the incidence of adverse side effect.

  3. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  4. Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib

    Directory of Open Access Journals (Sweden)

    Stefania Gorini

    2018-01-01

    Full Text Available Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.

  5. Ultrasound-guided drug delivery in cancer

    Directory of Open Access Journals (Sweden)

    Sayan Mullick Chowdhury

    2017-07-01

    Full Text Available Recent advancements in ultrasound and microbubble (USMB mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  6. Comprehensive Analysis of Homologous Proteins for Specific Drug ...

    African Journals Online (AJOL)

    ... minimize drug failures by predicting drug efficacy and toxicity. One of the most important pathogenic bacterium is Aeromonas species which causes tissue damage, acute gastroenteritis and neonatal septicemia. Bacterial proteins are the ultimate target to inhibit their growth and these are the executors of cellular function.

  7. Recreational drugs of abuse.

    Science.gov (United States)

    Albertson, Timothy E

    2014-02-01

    The use of recreational drugs of abuse continues to expand without limitations to national boundaries, social status, race, or education. Beyond the prevalence of illicit drug use and dependence, their contribution to the global burden of disease and death are large and troubling. All medical providers should be aware of the evolving drugs of abuse and their medical and social consequences. In addition to heroin and stimulants such as cocaine and methamphetamine, new designer stimulants called "bath salts" and cannabinoids called "spice," along with the abuse of prescription drugs and volatile substances, are now widely recognized problems in many societies. The wide variety and continuingly expanding clinical manifestations of toxicity of recreational drugs of abuse is not widely appreciated by clinicians. This edition attempts to summarize six major classes of drugs of abuse and their clinical effects with special emphasis on their immunological and respiratory effects.

  8. Automated evaluation of pharmaceutically active ionic liquids’ (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri

    International Nuclear Information System (INIS)

    Costa, Susana P.F.; Justina, Vanessa D.; Bica, Katharina; Vasiloiu, Maria; Pinto, Paula C.A.G.; Saraiva, M. Lúcia M.F.S.

    2014-01-01

    Highlights: • IL-APIs toxicity on humans and aquatic environment was evaluated by inhibition assays. • The inhibition assays were implemented through automated screening bioassays. • Automation of bioassays enabled a rigorous control of the reaction conditions. • EC 50 obtained provide vital information on IL-APIs safety and potential use as drugs. -- Abstract: The toxicity of 16 pharmaceutical active ionic liquids (IL-APIs) was evaluated by automated approaches based on sequential injection analysis (SIA). The implemented bioassays were centered on the inhibition of human carboxylesterase 2 and Vibrio fischeri, in the presence of the tested compounds. The inhibitory effects were quantified by calculating the inhibitor concentration required to cause 50% of inhibition (EC 50 ). The EC 50 values demonstrated that the cetylpyridinium group was one of the most toxic cations and that the imidazolium group was the less toxic. The obtained results provide important information about the safety of the studied IL-APIs and their possible use as pharmaceutical drugs. The developed automated SIA methodologies are robust screening bioassays, and can be used as a generic tools to identify the (eco)toxicity of the structural elements of ILs, contributing to a sustainable development of drugs

  9. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  10. Acute and subacute toxicity of {sup 18}F-FDG; Toxicidade aguda e subaguda do radiofarmaco {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Danielle Maia

    2013-07-01

    Before starting clinical trials of a new drug, it is necessary to perform a battery of safety tests for assessing human risk. Radiopharmaceuticals like any new drug must be tested taking into account its specificity, duration of treatment and especially the toxicity of both parties, the unlabeled molecule and its radionuclide, apart from impurities emanating from radiolysis. Regulatory agencies like the Food and Drug Administration - USA (FDA) and the European Medicine Agency (EMEA), establish guidelines for the regulation of production and research of radiopharmaceuticals. In Brazil the production of radiopharmaceuticals was not regulated until the end of 2009, when were established by the National Agency for Sanitary Surveillance (ANVISA) resolutions No. 63, which refers to the Good Manufacturing Practices of Radiopharmaceuticals and No. 64 which seeks the registration of record radiopharmaceuticals. To obtain registration of radiopharmaceuticals are necessary to prove the quality, safety, efficacy and specificity of the drug . For the safety of radiopharmaceuticals must be presented studies of acute toxicity, subacute and chronic toxicity as well as reproductive, mutagenic and carcinogenic. Nowadays IPEN-CNEN/SP produces one of the most important radiopharmaceutical of nuclear medicine, the {sup 18}F-FDG, which is used in many clinical applications, particularly in the diagnosis and staging of tumors. The objective of this study was to evaluate the systemic toxicity (acute/ subacute) radiopharmaceutical {sup 18}F-FDG in an in vivo test system, as recommended by the RDC No. 64, which will serve as a model for protocols toxicity of radiopharmaceuticals produced at IPEN. The following tests were performed: tests of acute and subacute toxicity, biodistribution studies of {sup 18}F-FDG, comet assay and reproductive toxicity. In acute toxicity, healthy rats were injected . (author)

  11. A review on the study of bioreductive drugs

    International Nuclear Information System (INIS)

    Chen Xiaojing; Jin Yizun

    2003-01-01

    Hypoxia is a feature that exists in most solid tumors. Bio-reductive drugs are pro-drugs that can selectively target the hypoxia cells in tumors. In reductive environment, they are reductively metabolized to generate toxic species. There are 3 main classes of bio-reductive drugs: the nitro-aromatics, N-oxides and quinones. Recently, bio-reductive drugs were combined with GDEPT for the treatment of cancer, in addition to radiation and the chemotherapeutic agents. Bio-reductive drugs will play a significant role in future cancer therapy

  12. Protein Nanoscaffolds for Delivering Toxic Inorganic Cargo to Cancer Cells

    Science.gov (United States)

    Cioloboc, Daniela

    Targeted delivery of anticancer drugs or prodrugs to tumors can minimize systemic toxicity and side effects. This study develops platforms for targeted delivery of two potentially less systemically toxic prodrugs by exploiting the native and/or bioinorganic properties of two ferritins, both of which function naturally as iron storage proteins. Two delivery approaches were investigated. The first system was designed to serve as either an enhancement or alternative to traditional photodynamic therapy by generating hydroxyl radical in addition to singlet oxygen as the toxic reactive oxygen species. This system used Escherichia coli bacterioferritin (Bfr) loaded with 2,500 irons and multiple zinc-porphyrin (ZnP) photosensitizers. Ferrous iron was released by photoreduction of ferric iron stored within the Bfr protein shell. Hydroxyl radicals were generated via the Fenton reaction between hydrogen peroxide and the released ferrous iron. The outer surface of the Bfr protein shell was coated with peptides that specifically bind to a receptor known to be overexpressed in many tumor cells and tumor vasculature. The iron-loaded peptide-ZnP-Bfr was endocytosed by melanoma cells, where it showed photo-triggered release of iron and light-dependent cytotoxicity. The second system, built around human heavy chain ferritin (HFn), was loaded with arsenate as a less toxic "prodrug" and designed to release arsenic in its toxic, therapeutically effective reduced form, arsenic trioxide (ATO). The Hfn shell was coated with peptides targeting receptors that are hyperexpressed in triple negative breast cancers. The arsenate/iron-loaded-Hfn was endocytosed by a breast cancer cell line and showed cytotoxicity equivalent to that of free ATO on an arsenic basis, whereas the "empty" or iron-only loaded Hfn showed no cytotoxicity. Although HFn has previously been used to deliver organic drugs and imaging agents, these new results demonstrate that both Bfr and HFn can be manipulated to function

  13. From actually toxic to highly specific – novel drugs against poxviruses

    Directory of Open Access Journals (Sweden)

    Schnierle Barbara

    2007-01-01

    Full Text Available Abstract The potential use of variola virus, the causative agent of smallpox, as a bioweapon and the endemic presence of monkeypox virus in Africa demonstrate the need for better therapies for orthopoxvirus infections. Chemotherapeutic approaches to control viral infections have been less successful than those targeting bacterial infections. While bacteria commonly reproduce themselves outside of cells and have metabolic functions against which antibiotics can be directed, viruses replicate in the host cells using the cells' metabolic pathways. This makes it very difficult to selectively target the virus without damaging the host. Therefore, the development of antiviral drugs against poxviruses has initially focused on unique properties of the viral replication cycle or of viral proteins that can be selectively targeted. However, recent advances in molecular biology have provided insights into host factors that represent novel drug targets. The latest anti-poxvirus drugs are kinase inhibitors, which were originally developed to treat cancer progression but in addition block egress of poxviruses from infected cells. This review will summarize the current understanding of anti-poxvirus drugs and will give an overview of the development of the latest second generation poxvirus drugs.

  14. Mouse precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury.

    Science.gov (United States)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Merema, Marjolijn T; Groothuis, Geny M M

    2012-09-17

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 μM) and clozapine (45 μM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 μM) and olanzapine (45 μM). However, the other IDILI-related drugs tested [diclofenac (200 μM), carbamazepine (400 μM), and troglitazone (30 μM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine

  15. Behavioral effects of ketamine and toxic interactions with psychostimulants

    Directory of Open Access Journals (Sweden)

    Yamamoto Keiichi

    2006-03-01

    Full Text Available Abstract Background The anesthetic drug ketamine (KT has been reported to be an abused drug and fatal cases have been observed in polydrug users. In the present study, considering the possibility of KT-enhanced toxic effects of other drugs, and KT-induced promotion of an overdose without making the subject aware of the danger due to the attenuation of several painful subjective symptoms, the intraperitoneal (i.p. KT-induced alterations in behaviors and toxic interactions with popular co-abused drugs, the psychostimulants cocaine (COC and methamphetamine (MA, were examined in ICR mice. Results A single dose of KT caused hyperlocomotion in a low (30 mg/kg, i.p. dose group, and hypolocomotion followed by hyperlocomotion in a high (100 mg/kg, i.p. dose group. However, no behavioral alterations derived from enhanced stress-related depression or anxiety were observed in the forced swimming or the elevated plus-maze test. A single non-fatal dose of COC (30 mg/kg, i.p. or MA (4 mg/kg, i.p. caused hyperlocomotion, stress-related depression in swimming behaviors in the forced swimming test, and anxiety-related behavioral changes (preference for closed arms in the elevated plus-maze test. For the COC (30 mg/kg or MA (4 mg/kg groups of mice simultaneously co-treated with KT, the psychostimulant-induced hyperlocomotion was suppressed by the high dose KT, and the psychostimulant-induced behavioral alterations in the above tests were reversed by both low and high doses of KT. For the toxic dose COC (70 mg/kg, i.p.- or MA (15 mg/kg, i.p.-only group, mortality and severe seizures were observed in some animals. In the toxic dose psychostimulant-KT groups, KT attenuated the severity of seizures dose-dependently. Nevertheless, the mortality rate was significantly increased by co-treatment with the high dose KT. Conclusion Our results demonstrated that, in spite of the absence of stress-related depressive and anxiety-related behavioral alterations following a single

  16. Phenytoin toxicity secondary to an oxcarbazepine-phenytoin 2C19 interaction.

    Science.gov (United States)

    Soskin, David P; Kane, Ari J; Stern, Theodore A

    2010-01-01

    Polytherapy is common in the management of bipolar disorder, as are the side effects associated with this treatment strategy. The authors review the literature on drug-drug interactions involving oxcarbazepine and identify specific mechanisms that may have clinical importance. The authors provide a case report of a patient who developed phenytoin toxicity associated with an oxcarbazepine-phenytoin interaction. Co-administration of phenytoin and oxcarbazepine resulted in toxic levels of phenytoin. Therefore, the patient's daily dosage of oxcarbazepine and phenytoin were reduced. Although oxcarbazepine is an inducer of the 3A4 isoenzyme, it acts as an inhibitor of the 2C19 isoenzyme, and it can raise levels of other agents, for example, phenytoin, that are also metabolized by this isoenzyme.

  17. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects.

    Science.gov (United States)

    Lagorce, David; Sperandio, Olivier; Galons, Hervé; Miteva, Maria A; Villoutreix, Bruno O

    2008-09-24

    Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.

  18. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  19. Drug interactions in primary health care in the George subdistrict ...

    African Journals Online (AJOL)

    2012-02-15

    Feb 15, 2012 ... Drug-drug interactions are a recognised cause of morbidity and mortality ..... or fatal if the interaction increases toxicity or reduces the intended effect of the ... antihypertensive effect of angiotensin-converting enzyme inhibitors ...

  20. Bioalerts: a python library for the derivation of structural alerts from bioactivity and toxicity data sets.

    Science.gov (United States)

    Cortes-Ciriano, Isidro

    2016-01-01

    Assessing compound toxicity at early stages of the drug discovery process is a crucial task to dismiss drug candidates likely to fail in clinical trials. Screening drug candidates against structural alerts, i.e. chemical fragments associated to a toxicological response prior or after being metabolized (bioactivation), has proved a valuable approach for this task. During the last decades, diverse algorithms have been proposed for the automatic derivation of structural alerts from categorical toxicity data sets. Here, the python library bioalerts is presented, which comprises functionalities for the automatic derivation of structural alerts from categorical (dichotomous), e.g. toxic/non-toxic, and continuous bioactivity data sets, e.g. [Formula: see text] or [Formula: see text] values. The library bioalerts relies on the RDKit implementation of the circular Morgan fingerprint algorithm to compute chemical substructures, which are derived by considering radial atom neighbourhoods of increasing bond radius. In addition to the derivation of structural alerts, bioalerts provides functionalities for the calculation of unhashed (keyed) Morgan fingerprints, which can be used in predictive bioactivity modelling with the advantage of allowing for a chemically meaningful deconvolution of the chemical space. Finally, bioalerts provides functionalities for the easy visualization of the derived structural alerts.

  1. Organelle targeting: third level of drug targeting

    Directory of Open Access Journals (Sweden)

    Sakhrani NM

    2013-07-01

    Full Text Available Niraj M Sakhrani, Harish PadhDepartment of Cell and Molecular Biology, BV Patel Pharmaceutical Education and Research Development (PERD Centre, Gujarat, IndiaAbstract: Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.Keywords: intracellular drug delivery, cancer chemotherapy, therapeutic index, cell penetrating peptides

  2. Microreactor for electrochemical conversion: in drug screening and proteomics

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus

    2016-01-01

    The majority of marketed drugs are metabolized through oxidation by enzymes of the cytochrome P450 family, thereby producing phase I metabolites. For pharmaceutical companies it is essential to thoroughly screen candidate drugs for potentially toxic metabolites, in order to avoid high costs

  3. Acute toxicity of subcutaneously administered vitamin E isomers delta- and gamma-tocotrienol in mice.

    Science.gov (United States)

    Swift, Sibyl N; Pessu, Roli L; Chakraborty, Kushal; Villa, Vilmar; Lombardini, Eric; Ghosh, Sanchita P

    2014-01-01

    The toxicity of parenterally administered vitamin E isomers, delta-tocotrienol (DT3) and gamma-tocotrienol (GT3), was evaluated in male and female CD2F1 mice. In an acute toxicity study, a single dose of DT3 or GT3 was administered subcutaneously in a dose range of 200 to 800 mg/kg. A mild to moderately severe dermatitis was observed clinically and microscopically in animals at the injection site at doses above 200 mg/kg. The severity of the reaction was reduced when the drug concentration was lowered. Neither drug produced detectable toxic effects in any other tissue at the doses tested. Based on histopathological analysis for both DT3 and GT3, and macroscopic observations of inflammation at the injection site, a dose of 300 mg/kg was selected as the lowest toxic dose in a 30-day toxicity study performed in male mice. At this dose, a mild skin irritation occurred at the injection site that recovered completely by the end of the experimental period. At a dose of 300 mg/kg of DT3 or GT3, no adverse effects were observed in any tissues or organs. © The Author(s) 2014.

  4. The evaluation of the abuse liability of drugs.

    Science.gov (United States)

    Johanson, C E

    1990-01-01

    In order to place appropriate restrictions upon the availability of certain therapeutic agents to limit their abuse, it is important to assess abuse liability, an important aspect of drug safety evaluation. However, the negative consequences of restriction must also be considered. Drugs most likely to be tested are psychoactive compounds with therapeutic indications similar to known drugs of abuse. Methods include assays of pharmacological profile, drug discrimination procedures, self-administration procedures, and measures of drug-induced toxicity including evaluations of tolerance and physical dependence. Furthermore, the evaluation of toxicity using behavioural end-points is an important component of the assessment, and it is generally believed that the most valid procedure in this evaluation is the measurement of drug self-administration. However, even this method rarely predicts the extent of abuse of a specific drug. Although methods are available which appear to measure relative abuse liability, these procedures are not validated for all drug classes. Thus, additional strategies, including abuse liability studies in humans, modelled after those used with animals, must be used in order to make a more informed prediction. Although there is pressure to place restrictions on new drugs at the time of marketing, in light of the difficulty of predicting relative abuse potential, a better strategy might be to market a drug without restrictions, but require postmarketing surveillance in order to obtain more accurate information on which to base a final decision.

  5. Ethambutol/Linezolid Toxic Optic Neuropathy.

    Science.gov (United States)

    Libershteyn, Yevgeniya

    2016-02-01

    To report a rare toxic optic neuropathy after long-term use of two medications: ethambutol and linezolid. A 65-year-old man presented to the Miami Veterans Affairs Medical Center in December 2014 for evaluation of progressive vision decrease in both eyes. The patient presented with best-corrected visual acuities of 20/400 in the right eye and counting fingers at 5 feet in the left eye. Color vision was significantly reduced in both eyes. Visual fields revealed a cecocentral defect in both eyes. His fundus and optic nerve examination was unremarkable. Because vision continued to decline after discontinuation of ethambutol, linezolid was also discontinued, after which vision, color vision, and visual fields improved. Because of these findings, the final diagnosis was toxic optic neuropathy. Final visual outcome was 20/30 in the right eye and 20/40 in the left eye. Drug-associated toxic optic neuropathy is a rare but vision-threatening condition. Diagnosis is made based on an extensive case history and careful clinical examination. The examination findings include varying decrease in vision, normal pupils and extraocular muscles, and unremarkable fundoscopy, with the possibility of swollen optic discs in the acute stage of the optic neuropathy. Other important findings descriptive of toxic optic neuropathy include decreased color vision and cecocentral visual field defects. This case illustrates the importance of knowledge of all medications and/or substances a patient consumes that may cause a toxic reaction and discontinuing them immediately if the visual functions are worsening or not improving.

  6. Preclinical evaluations of norcantharidin-loaded intravenous lipid microspheres with low toxicity.

    Science.gov (United States)

    Lin, Xia; Zhang, Bo; Zhang, Keru; Zhang, Yu; Wang, Juan; Qi, Na; Yang, Shenshen; He, Haibing; Tang, Xing

    2012-12-01

    The aim of this study was to perform a systematic preclinical evaluation of norcantharidin (NCTD)-loaded intravenous lipid microspheres (NLM). Pharmacokinetics, biodistribution, antitumor efficacy and drug safety assessment (including acute toxicity, subchronic toxicity, hemolysis testing, intravenous stimulation and injection anaphylaxis) of NLM were carried out in comparison with the commercial product disodium norcantharidate injection (NI). The pharmacokinetics of NLM in rats was similar to that of NI, and a non-linear correlation was observed between AUC and dose. A comparable antitumor efficacy of NLM and NI was observed in mice inoculated with A549, BEL7402 and BCAP-37 cell lines. It was worth noting that the NLM produced a lower drug concentration in heart compared with NI, and significantly reduced the cardiac and renal toxicity. The LD(50) of NLM was twice higher than that of NI. In NLM, over 80% of NCTD was loaded in the lipid phase or bound with phospholipids. Thus, NCTD was sequestered by direct contacting with body fluids and largely avoided distribution into tissues, consequently leading to significantly reduced cardiac and renal toxicity. These preclinical results suggested that NLM could be a useful potential carrier for parenteral administration of NCTD, while providing a superior safety profile.

  7. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabrizio [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Lainez, Guillermo [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Limones-Herrero, Daniel [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Coloma, M. Dolores; Escobar, Javier [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Jiménez, M. Consuelo [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Miranda, Miguel A., E-mail: mmiranda@qim.upv.es [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); and others

    2016-12-15

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  8. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    International Nuclear Information System (INIS)

    Palumbo, Fabrizio; Garcia-Lainez, Guillermo; Limones-Herrero, Daniel; Coloma, M. Dolores; Escobar, Javier; Jiménez, M. Consuelo; Miranda, Miguel A.

    2016-01-01

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  9. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  10. Clinical toxicology of newer recreational drugs.

    Science.gov (United States)

    Hill, Simon L; Thomas, Simon H L

    2011-10-01

    be based on clinical effects as either primarily stimulant, entactogenic or hallucinogenic, although most drugs have a combination of such effects. CLINICAL TOXICOLOGY: Piperazines, phenethylamines, tryptamines and piperidines have actions at multiple central nervous system (CNS) receptor sites, with patterns of effects varying between agents. Predominantly stimulant drugs (e.g. benzylpiperazine, mephedrone, naphyrone, diphenylprolinol) inhibit monoamine (especially dopamine) reuptake and are characteristically associated with a sympathomimetic toxidrome. Entactogenic drugs (e.g. phenylpiperazines, methylone) provoke central serotonin release, while newer hallucinogens (e.g. 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT), 2,5-dimethoxy-4-bromoamfetamine (DOB)) are serotonin receptor agonists. As a result, serotoninergic effects predominate in toxicity. There are limited reliable data to guide clinicians managing patients with toxicity due to these substances. The harms associated with emerging recreational drugs are not fully documented, although it is clear that they are not without risk. Management of users with acute toxic effects is pragmatic and primarily extrapolated from experience with longer established stimulant or hallucinogenic drugs such as amfetamines, 3,4-methylenedioxymethamfetamine (MDMA) and lysergic acid diethylamide (LSD).

  11. Drug interactions at the human placenta: what is the evidence?

    Directory of Open Access Journals (Sweden)

    Miriam eRubinchik-Stern

    2012-07-01

    Full Text Available Pregnant women (and their fetuses are treated with a significant number of prescription and nonprescription medications. Interactions among those drugs may affect their efficacy and toxicity in both mother and fetus. Whereas interactions that result in altered drug concentrations in maternal plasma are detectable, those involving modulation of placental transfer mechanisms are rarely reflected by altered drug concentrations in maternal plasma. Therefore, they are often overlooked. Placental-mediated interactions are possible because the placenta is not only a passive diffusional barrier, but also expresses a variety of influx and efflux transporters and drug metabolizing enzymes. Current data on placental-mediated drug interactions are limited. In rodents, pharmacological or genetic manipulations of placental transporters significantly affect fetal drug exposure. In contrast, studies in human placentae suggest that the magnitude of such interactions is modest in most cases. Nevertheless, under certain circumstances, such interactions may be of clinical significance. This review describes currently known mechanisms of placental-mediated drug interactions and the potential implications of such interactions in humans. Better understanding of those mechanisms is important for minimizing fetal toxicity from drugs while improving their efficacy when directed to treat the fetus.

  12. Nanosuspension Technology for Solubilizing Poorly Soluble Drugs

    OpenAIRE

    Deoli Mukesh

    2012-01-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. It is estimated that around 40% of drugs in the pipeline cannot be delivered through the preferred route or in some cases, at all owing to poor water solubility. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor1 EL). To date, nanoscale systems f...

  13. Emerging Frontiers in Drug Delivery.

    Science.gov (United States)

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact.

  14. Toxicity Studies of the Crude Aqueous Root Extract of Albizzia ...

    African Journals Online (AJOL)

    acer

    drugs commonly used today are of herbal origin. Higher ... stored in small, capped plastic container at ... Acute Toxicity Studies: The limit test dose, ..... may be due to factors other than kidney problem ... Protein (total protein) in serum, urine.

  15. Toxicity and toxicokinetics of metformin in rats

    International Nuclear Information System (INIS)

    Quaile, Michael P.; Melich, David H.; Jordan, Holly L.; Nold, James B.; Chism, Jack P.; Polli, Joseph W.; Smith, Glenn A.; Rhodes, Melissa C.

    2010-01-01

    Metformin is a first-line drug for the treatment of type 2 diabetes (T2D) and is often prescribed in combination with other drugs to control a patient's blood glucose level and achieve their HbA1c goal. New treatment options for T2D will likely include fixed dose combinations with metformin, which may require preclinical combination toxicology studies. To date, there are few published reports evaluating the toxicity of metformin alone to aid in the design of these studies. Therefore, to understand the toxicity of metformin alone, Crl:CD(SD) rats were administered metformin at 0, 200, 600, 900 or 1200 mg/kg/day by oral gavage for 13 weeks. Administration of ≥ 900 mg/kg/day resulted in moribundity/mortality and clinical signs of toxicity. Other adverse findings included increased incidence of minimal necrosis with minimal to slight inflammation of the parotid salivary gland for males given 1200 mg/kg/day, body weight loss and clinical signs in rats given ≥ 600 mg/kg/day. Metformin was also associated with evidence of minimal metabolic acidosis (increased serum lactate and beta-hydroxybutyric acid and decreased serum bicarbonate and urine pH) at doses ≥ 600 mg/kg/day. There were no significant sex differences in mean AUC 0-24 or C max nor were there significant differences in mean AUC 0-24 or C max following repeated dosing compared to a single dose. The no observable adverse effect level (NOAEL) was 200 mg/kg/day (mean AUC 0-24 = 41.1 μg h/mL; mean C max = 10.3 μg/mL based on gender average week 13 values). These effects should be taken into consideration when assessing potential toxicities of metformin in fixed dose combinations.

  16. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    International Nuclear Information System (INIS)

    Rauth, A.M.; Mohindra, J.K.

    1981-01-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, high drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC

  17. Acute health problems due to recreational drug use in patients presenting to an urban emergency department in Switzerland

    OpenAIRE

    Liakoni, Evangelia; Dolder, Patrick C.; Rentsch, Katharina; Liechti, Matthias E.

    2015-01-01

    QUESTIONS UNDER STUDY: To describe acute toxicity of recreational drugs including novel psychoactive substances. METHODS: We included all cases presenting at the emergency department (ED) of the University Hospital of Basel, Switzerland, between October 2013 and September 2014 with acute toxicity due to self-reported recreational drug use or with symptoms/signs consistent with acute toxicity. Isolated ethanol intoxications were excluded. Intoxications were confirmed with immunoassa...

  18. Antithyroid drugs as a factor influencing the outcome of radioiodine therapy in Graves' disease and toxic nodular goitre?

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, C.; Schneider, P.; Koerber-Hafner, N.; Haenscheid, H.; Reiners, C. [Wuerzburg Univ. (Germany). Abt. fuer Nuklearmedizin

    2001-09-01

    There is controversy over the factors that may influence the outcome of radioiodine therapy for benign thyroid diseases. Antithyroid medication has been claimed to negatively influence the effectiveness of radioiodine therapy in Graves' disease. In a longitudinal study, we assessed the influence of sex, age, antithyroid drugs, target radiation dose, target mass, applied activity, delivered dose, interval between last meal and application, and TSH, FT{sub 3} and FT{sub 4} levels on the outcome of radioiodine therapy. One hundred and forty-four patients (111 female, 33 male) suffering from Graves' disease (GD) and 563 patients (434 female, 129 male) with toxic nodular goitre (TNG) were entered in the study and followed up until 8 months after therapy. Treatment was defined as successful when the TSH level was found to be normal or elevated. Ninety-eight GD patients and 418 TNG patients were successfully treated. Forward stepwise multiple regression analysis models retained only the target mass in GD and the applied activity in TNG as significantly associated with the outcome of therapy. The predictive value of all variables involved was extremely low in both disease groups. Whereas concomitant antithyroid medication had no influence in GD, it adversely influenced radioiodine therapy of TNG. This effect may be attributed to a radioiodine ''steal phenomenon'' induced by TSH-stimulated normal thyroid tissue, which causes overestimation of the uptake in toxic nodules. (orig.)

  19. Toxic spongiform leucoencephalopathy after inhaling heroin vapour

    International Nuclear Information System (INIS)

    Weber, W.; Henkes, H.; Kuehne, D.; Moeller, P.; Bade, K.

    1998-01-01

    This is a report of clinical, CT and MRI findings in a patient with toxic spongiform leucoencephalopathy after heroin ingestion. The disease is observed in drug addicts who inhale pre-heated heroin. The clinical onset, which usually occurs some days or even longer after the last heroin consumption, is characterized by a cerebellar syndrome. The cerebellar hemispheres, the cerebellar and cerebral peduncles and the pyramidal tract may be affected. Spongiform demyelination is the morphological substrate of the lesions, which are not contrast enhancing, hypodense on CT and hyperintense on T2-weighted MRI. The frequently perfect symmetry of the affection of functional systems points to a toxic and/or metabolic pathophysiological mechanism. (orig.)

  20. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs

    Directory of Open Access Journals (Sweden)

    Ram Manohar Basnet

    2017-03-01

    Full Text Available Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC50 calculated in zebrafish embryos and lethal doses (LD50 in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds.

  1. Rational drug design paradigms: the odyssey for designing better drugs.

    Science.gov (United States)

    Kellici, Tahsin; Ntountaniotis, Dimitrios; Vrontaki, Eleni; Liapakis, George; Moutevelis-Minakakis, Panagiota; Kokotos, George; Hadjikakou, Sotiris; Tzakos, Andreas G; Afantitis, Antreas; Melagraki, Georgia; Bryant, Sharon; Langer, Thierry; Di Marzo, Vincenzo; Mavromoustakos, Thomas

    2015-01-01

    Due to the time and effort requirements for the development of a new drug, and the high attrition rates associated with this developmental process, there is an intense effort by academic and industrial researchers to find novel ways for more effective drug development schemes. The first step in the discovery process of a new drug is the identification of the lead compound. The modern research tendency is to avoid the synthesis of new molecules based on chemical intuition, which is time and cost consuming, and instead to apply in silico rational drug design. This approach reduces the consumables and human personnel involved in the initial steps of the drug design. In this review real examples from our research activity aiming to discover new leads will be given for various dire warnings diseases. There is no recipe to follow for discovering new leads. The strategy to be followed depends on the knowledge of the studied system and the experience of the researchers. The described examples constitute successful and unsuccessful efforts and reflect the reality which medicinal chemists have to face in drug design and development. The drug stability is also discussed in both organic molecules and metallotherapeutics. This is an important issue in drug discovery as drug metabolism in the body can lead to various toxic and undesired molecules.

  2. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    Science.gov (United States)

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  3. Antiretroviral therapy: current drugs.

    Science.gov (United States)

    Pau, Alice K; George, Jomy M

    2014-09-01

    The rapid advances in drug discovery and the development of antiretroviral therapy is unprecedented in the history of modern medicine. The administration of chronic combination antiretroviral therapy targeting different stages of the human immunodeficiency virus' replicative life cycle allows for durable and maximal suppression of plasma viremia. This suppression has resulted in dramatic improvement of patient survival. This article reviews the history of antiretroviral drug development and discusses the clinical pharmacology, efficacy, and toxicities of the antiretroviral agents most commonly used in clinical practice to date. Published by Elsevier Inc.

  4. Functionalized mesoporous silicon for targeted-drug-delivery.

    Science.gov (United States)

    Tabasi, Ozra; Falamaki, Cavus; Khalaj, Zahra

    2012-10-01

    The present work concerns a preliminary step in the production of anticancer drug loaded porous silicon (PSi) for targeted-drug-delivery applications. A successful procedure for the covalent attachment of folic acid, polyethylene glycol (PEG) and doxorubicin to hydrophilic mesoporous silicon layers is presented. A systematic approach has been followed to obtain the optimal composition of the N,N'-dicyclohexylcarbodiimide (DCC)/N-hydroxysuccimide (NHS) in dimethylsulfoxide (DMSO) solution for the surface activation process of the undecylenic acid (UD) grafted molecules to take place with minimal undesired byproduct formation. The effect of reactant concentration and kind of solvent (aqueous or DMSO) on the attachment of folic acid to the activated PSi layer has been investigated. The covalent attachment of the doxorubicin molecules to the PSi layer functionalized with folic acid and PEG is discussed. The drug release kinetics as a function of pH has been studied. The functionalized PSi particles show a high cytotoxicity compared to the equivalent amount of free drug. Cell toxicity tests show clearly that the incorporation of folate molecules increases substantially the toxicity of the loaded PSi particles. Accordingly this new functionalized PSi may be considered a proper candidate for targeted drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Intratumor heterogeneity alters most effective drugs in designed combinations.

    Science.gov (United States)

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2014-07-22

    The substantial spatial and temporal heterogeneity observed in patient tumors poses considerable challenges for the design of effective drug combinations with predictable outcomes. Currently, the implications of tissue heterogeneity and sampling bias during diagnosis are unclear for selection and subsequent performance of potential combination therapies. Here, we apply a multiobjective computational optimization approach integrated with empirical information on efficacy and toxicity for individual drugs with respect to a spectrum of genetic perturbations, enabling derivation of optimal drug combinations for heterogeneous tumors comprising distributions of subpopulations possessing these perturbations. Analysis across probabilistic samplings from the spectrum of various possible distributions reveals that the most beneficial (considering both efficacy and toxicity) set of drugs changes as the complexity of genetic heterogeneity increases. Importantly, a significant likelihood arises that a drug selected as the most beneficial single agent with respect to the predominant subpopulation in fact does not reside within the most broadly useful drug combinations for heterogeneous tumors. The underlying explanation appears to be that heterogeneity essentially homogenizes the benefit of drug combinations, reducing the special advantage of a particular drug on a specific subpopulation. Thus, this study underscores the importance of considering heterogeneity in choosing drug combinations and offers a principled approach toward designing the most likely beneficial set, even if the subpopulation distribution is not precisely known.

  6. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  7. Clinical Management of HIV Drug Resistance

    Science.gov (United States)

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  8. Severe overdosage with the antiepileptic drug oxcarbazepine

    Science.gov (United States)

    van Opstal, J M; Janknegt, R; Cilissen, J; L’Ortije, W H V M; Nel, J E; De Heer, F

    2004-01-01

    Few published human data are available concerning the acute toxicity of the new antiepileptic drug oxcarbazepine of which the metabolite 10- monohydroxy derivate (MHD) is the pharmacologically effective compound. Two hours after a documented overdosage of more than 100 tablets oxcarbazepine, the serum level of the parent compound was 10-fold higher than the therapeutic dosage (31.6 mg l−1). However, the concentration of MHD, which peaked 7 h after intake, was only twofold higher (59.0 mg l−1). No life-threatening situations occurred and the patient fully recovered. The fact that oxcarbazepine is a prodrug and that the formation of the active MHD metabolite is a rate-limiting process may contribute to the relative low toxicity of the drug in overdose. PMID:15327594

  9. Acute and subacute toxicity of 10B-paraboronophenylalanine

    International Nuclear Information System (INIS)

    Taniyama, K.; Fujiwara, H.; Kuno, T.; Saito, N.; Shuntoh, H.; Sakaue, M.; Tanaka, C.

    1989-01-01

    The acute and subacute toxicities of 10B-paraboronophenylalanine (10B-BPA) were investigated in the rat, according to the Good Laboratory Practice Standard for safety studies on drugs in Japan. In the acute toxicity test of 10B-BPA, LD50 values of acidic 10B-BPA for intraperitoneal and subcutaneous injections were 640 mg/kg for male and 710 mg/kg for female rats, and more than 1,000 mg/kg for male and female rats, respectively. The LD50 values of neutral 10B-BPA for intraperitoneal and subcutaneous injections were more than 3,000 mg/kg for male and female rats. The difference in LD50 values between acidic and neutral 10B-BPA may be attributed to the acidity of material. From the subacute toxicity test, in which the rats were injected daily subcutaneously for 28 days, the following toxic effects of 10B-BPA were observed. Increase in ketone level in the urine was induced in all rats treated with 10B-BPA. High dose of 10B-BPA (1,500 mg/kg) induced increase in spleen weight and reticulocyte count, and decrease in hemoglobin count, thereby suggesting that 10B-BPA causes hemolysis. Increases in the leukocyte count and the ratio of neutrophils and lymphocytes were also observed in rats treated with a high dose of 10B-BPA. This may be attributed to local reactions at the injection site. There were no significant differences in the findings between control rats and rats treated with a low dose of 10B-BPA (300 mg/kg). Thus, low doses of neutral 10B-BPA may be available for use as a drug

  10. Synthesis of β-cyclodextrin hydrogel nanoparticles for improving the solubility of dexibuprofen: characterization and toxicity evaluation.

    Science.gov (United States)

    Khalid, Qandeel; Ahmad, Mahmood; Minhas, Muhammad Usman

    2017-11-01

    This study was aimed to enhance aqueous solubility of dexibuprofen through designing β-cyclodextrin (βCD) hydrogel nanoparticles and to evaluate toxicological potential through acute toxicity studies in rats. Dexibuprofen is a non-steroidal analgesic and anti-inflammatory drug that is one of safest over the counter medications. However, its clinical effectiveness is hampered due to poor aqueous solubility. βCD hydrogel nanoparticles were prepared and characterized by percent yield, drug loading, solubilization efficiency, FTIR, XRD, DSC, FESEM and in-vitro dissolution studies. Acute oral toxicity study was conducted to assess safety of oral administration of prepared βCD hydrogel nanoparticles. βCD hydrogel nanoparticles dramatically enhanced the drug loading and solubilization efficiency of dexibuprofen in aqueous media. FTIR, TGA and DSC studies confirmed the formation of new and a stable nano-polymeric network and interactions of dexibuprofen with these nanoparticles. Resulting nanoparticles were highly porous with 287 nm in size. XRD analysis revealed pronounced reduction in crystalline nature of dexibuprofen within nanoparticles. Release of dexibuprofen in βCD hydrogel nanoparticles was significantly higher compared with dexibuprofen tablet at pH 1.2 and 6.8. In acute toxicity studies, no significant changes in behavioral, physiological, biochemical or histopathologic parameters of animals were observed. The efficient preparation, high solubility, excellent physicochemical characteristics, improved dissolution and non-toxic βCD hydrogel nanoparticles may be a promising approach for oral delivery of lipophilic drugs.

  11. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  12. Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs

    NARCIS (Netherlands)

    Gül, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic metabolites is important for drug discovery and development. Synthesis of drug metabolites is typically performed by organic synthesis or enzymatic methods, but is not always straightforward. Electrochemical (EC) methods are increasingly used to study drug

  13. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects

    Directory of Open Access Journals (Sweden)

    Miteva Maria A

    2008-09-01

    Full Text Available Abstract Background Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. Results This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. Conclusion We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules that can be easily tuned.

  14. Comparative systemic toxicity of ropivacaine and bupivacaine in nonpregnant and pregnant ewes.

    Science.gov (United States)

    Santos, A C; Arthur, G R; Wlody, D; De Armas, P; Morishima, H O; Finster, M

    1995-03-01

    Ropivacaine is a new amide local anesthetic, having therapeutic properties similar to those of bupivacaine but with a wider margin of safety. Bupivacaine is probably the most commonly used drug in obstetric epidural analgesia, even though laboratory studies have suggested that pregnancy increases the cardiotoxicity of bupivacaine but not of other local anesthetics. The current study was designed to reevaluate, in a random and blinded fashion, the systemic toxicity of bupivacaine and ropivacaine in nonpregnant and pregnant sheep. Chronically prepared nonpregnant and pregnant ewes were randomized to receive an intravenous infusion of ropivacaine or bupivacaine at a constant rate of 0.5 mg.kg-1.min-1 until circulatory collapse. The investigators were blinded to the identity of local anesthetic. Heart rate, arterial blood pressure, and cardiac rhythm were monitored throughout the study. Arterial blood samples were obtained before infusion and at the onset of toxic manifestations, which appeared in the following sequence: convulsions, hypotension, apnea, and circulatory collapse. Serum drug concentrations and protein binding were determined. Blood pH and gas tensions were measured. There were no significant differences between non-pregnant and pregnant animals in the doses or serum concentrations of either drug required to elicit toxic manifestations. In nonpregnant animals, similar doses and serum concentrations of ropivacaine and bupivacaine were associated with the onset of convulsions and circulatory collapse. In pregnant ewes, greater doses of ropivacaine as compared to bupivacaine were required to produce convulsions (7.5 +/- 0.5 vs. 5.0 +/- 0.6 mg.kg-1) and circulatory collapse (12.9 +/- 0.8 vs. 8.5 +/- 1.2 mg.kg-1). The corresponding serum concentrations of ropivacaine were similar to those of bupivacaine. Pregnancy did not affect the serum protein binding of either drug. The proportion of animals manifesting a malignant ventricular arrhythmia as the terminal

  15. Etanercept therapy for toxic epidermal necrolysis.

    Science.gov (United States)

    Paradisi, Andrea; Abeni, Damiano; Bergamo, Fabio; Ricci, Francesco; Didona, Dario; Didona, Biagio

    2014-08-01

    Toxic epidermal necrolysis (TEN) is a severe and potentially lethal drug reaction for which no standard treatment is available. To describe a case series of patients with TEN treated with a single dose of etanercept. We observed 10 consecutive patients with TEN. For each patient, we recorded the presence of comorbidities and all the drugs recently started (ie, in the last month). In all cases, 50 mg of etanercept was administered in a single subcutaneous injection. The clinical severity of disease was computed using the SCORe of Toxic Epidermal Necrosis (SCORTEN) scale. Using the probabilities of death linked to each level of SCORTEN score, we calculated the expected probability of death in our patients. Healing was defined as complete reepithelialization, and a time to healing curve was then obtained using the Kaplan-Meier method. All patients promptly responded to treatment, reaching complete reepithelialization without complications or side effects. The median time to healing was 8.5 days. This is a small, uncontrolled case series. These preliminary results suggest the possibility that tumor necrosis factor-alfa may be an effective target for control of TEN, a dangerous skin condition for which no effective cure has yet been found. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  16. Statin drug-drug interactions in a Romanian community pharmacy.

    Science.gov (United States)

    Badiu, Raluca; Bucsa, Camelia; Mogosan, Cristina; Dumitrascu, Dan

    2016-01-01

    Statins are frequently prescribed for patients with dyslipidemia and have a well-established safety profile. However, when associated with interacting dugs, the risk of adverse effects, especially muscular toxicity, is increased. The objective of this study was to identify, characterize and quantify the prevalence of the potential drug-drug interactions (pDDIs) of statins in reimbursed prescriptions from a community pharmacy in Bucharest. We analyzed the reimbursed prescriptions including statins collected during one month in a community pharmacy. The online program Medscape Drug Interaction Checker was used for checking the drug interactions and their classification based on severity: Serious - Use alternative, Significant - Monitor closely and Minor. 132 prescriptions pertaining to 125 patients were included in the analysis. Our study showed that 25% of the patients who were prescribed statins were exposed to pDDIs: 37 Serious and Significant interactions in 31 of the statins prescriptions. The statins involved were atorvastatin, simvastatin and rosuvastatin. Statin pDDIs have a high prevalence and patients should be monitored closely in order to prevent the development of adverse effects that result from statin interactions.

  17. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    Science.gov (United States)

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  18. Effects of synthetic and natural toxicants on livestock.

    Science.gov (United States)

    Shull, L R; Cheeke, P R

    1983-07-01

    Synthetic and natural toxicants are constituents of soil, air, water and foodstuffs. Their impact on animal agriculture has resulted from acute and chronic intoxication and residues transferred into meat, dairy and poultry products. Recent advances in analytical chemistry and the sciences associated with toxicology have allowed better assessment of the hazard of toxicants on animals including man. Historically, natural toxicants (phytotoxins, mycotoxins and minerals) that are associated with many common feedstuffs accounted for toxicity episodes of epidemic proportions. Most synthetic chemicals (pesticides, nonpesticidal organic chemicals and drugs) have been introduced in increasing numbers since the 1940's. In the 1960's and '70's, recognition of the need to control their environmental distribution stimulated the introduction of numerous laws and regulations. In the last decade, several problematic synthetic chemicals have been banned, particularly those found to persist in the environment or those confirmed or suspected as carcinogens in humans. At the farm level, the development of various preventative management strategies has decreased the exposure of livestock to natural toxicants. In the future, the impact of natural toxicants on animal agriculture is expected to lessen as their existence, etiology and toxicology are determined. On the other hand, synthetic chemicals will continue to threaten animal health as greater numbers and quantities are released into the environment. These challenges should stimulate a greater involvement of animal scientists in toxicology.

  19. [Acute onset pulmonary toxicity associated to amiodarone].

    Science.gov (United States)

    Ferreira, Pedro Gonçalo; Saraiva, Fátima; Carreira, Cláudia

    2012-01-01

    Amiodarone is a potent anti-arrhythmic drug with a well-known potential chronic pulmonary toxicity. We describe a case of acute pulmonary toxicity (APT) induced by amiodarone in a 57 year old patient submitted to a perfusion of 900 mg in just 6 hours, to control an auricular flutter with rapid ventricular response. During the administration, the patient developed hemodynamic instability and oxygen dessaturation that led to an electrical cardioversion with return of sinus rhythm. Still, the patient continued in progressive respiratory deterioration with acute bilateral infiltrates on chest x-ray and apparent normal cardiac filling pressures confirmed by echocardiography. Anon-cardiogenic pulmonar edema progressing to clinico-physiological ARDS criteria was diagnosed. Expeditive therapeutic measures were undertaken, namely by initiation of non-invasive positive airway pressure support, that attained a good result.Albeit rare, amiodarone-induced APT might have severe consequences, namely progression to ALI/ARDS with a high mortality index.As it is a frequently prescribed drug, there should be a high clinical suspicion towards this phenomenon, allowing precocious therapeutic measures to be taken in a timely fashion to prevent the associated unfavorable outcome.

  20. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.

    2012-01-01

    The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725

  1. Radiotherapy and 'new' drugs-new side effects?

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Maihoefer, Cornelius; Krause, Mechthild; Rödel, Claus; Budach, Wilfried; Belka, Claus

    2011-01-01

    Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments. Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms. Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported. The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity

  2. Influence of drugs with antioxidant properties on the state of the sperm antioxidant system in men with excretory-toxic forms of infertility

    Directory of Open Access Journals (Sweden)

    O.K. Onufrovych

    2013-10-01

    Full Text Available Since the development of many disorders of the reproductive function in men involves processes of free radical oxidation, the purpose of this study was to form an evaluation of the pro- and antioxidant status of sperm and to restore its biological usefulness in men with excretory-toxic forms of infertility by using drugs with antioxidant properties. It is shown that excretory-toxic forms of infertility in men are mostly caused by such infectious agents as Chlamydia (22%, Chlamydia + Ureaplasma (16%, Chlamydia + Trichomonas (13%, Ureaplasma (10%. This reduces the total number of sperm in the ejaculate by 2.7 times, and motility by 1.8 times. The number of abnormal forms increases by 1.75 times. With the development of chronic inflammation of the male sex organs sperm lipid peroxidation increases by 1.3 times while the activity of glutathione peroxidase decreases (by 2.3 times and that of glutathione reductase (by 1.7 times. We observed a close correlation between the low biological quality of sperm (low concentration, low number and motility of sperm in the ejaculate with activation of lipid peroxidation and inhibition of activity of the glutathione antioxidant system. In the case of superoxide dismutase, the negative impact of reactive oxygen species on this enzyme was not observed. A course of drugs with antioxidant properties – vitamin E, vitamin C and zinc sulfate leads to improvement in the indicators on the spermagram (mostly sperm mobility and morphology, to reduction of the number of peroxide compounds and activation of the glutathione antioxidant system. In this case, the activity of glutathione peroxidase is increased by 1.5 times and the activity of glutathione reductase by 1.3 times. The activity of superoxide dismutase at the same time approaches the norm for zoospermia. The data obtained show that one of the pathogenic factors of the chronic inflammation of male sex organs, considered as a main developmental reason for infertility

  3. How Many Drugs Are Catecholics

    Directory of Open Access Journals (Sweden)

    Da-Peng Yang

    2007-04-01

    Full Text Available By examination of the 8659 drugs recorded in the Comprehensive Medicinal Chemistry (CMC database, 78 catecholics (including five pyrogallolics were identified, of which 17 are currently prescribed by FDA. Through analyzing the substitutent patterns, ClogPs and O-H bond dissociation enthalpies(BDEs of the catecholic drugs, some molecular features that may benefit circumventing the toxicity of catecholics were revealed: i strong electron-donating substituents are excluded; ii ClogP 3; iii an energy penalty exists for quinone formation. Besides, the present analyses also suggest that the clinical usage and dosage of currently prescribed catecholic drugs are of importance in designing or screening catecholic antioxidants.

  4. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index.

    Science.gov (United States)

    Wasserman, Sean; Meintjes, Graeme; Maartens, Gary

    2016-10-01

    Linezolid is an oxazolidinone with potent activity against M tuberculosis, and improves culture conversion and cure rates when added to treatment regimens for drug resistant tuberculosis. However, linezolid has a narrow therapeutic window, and the optimal dosing strategy that minimizes the substantial toxicity associated with linezolid's prolonged use in tuberculosis treatment has not been determined, limiting the potential impact of this anti-mycobacterial agent. This paper aims to review and summarize the current knowledge on linezolid for the treatment of drug-resistant tuberculosis. The focus is on the pharmacokinetic-pharmacodynamic determinants of linezolid's efficacy and toxicity in tuberculosis, and how this relates to defining an optimal dose. Mechanisms of linezolid toxicity and resistance, and the potential role of therapeutic drug monitoring are also covered. Expert commentary: Prospective pharmacokinetic-pharmacodynamic studies are required to define optimal therapeutic targets and to inform improved linezolid dosing strategies for drug-resistant tuberculosis.

  5. Management of cisplatin toxicity and chromosomal aberration by vitamin E in male rats

    International Nuclear Information System (INIS)

    Ali, S.E.; Mohamed, N.E.; Salama, M.A.

    2007-01-01

    Cisplatin is one of the most active antineoplastic drugs showing a broad therapeutic activity spectrum against different types of human neoplasms. To elvaute the subacute toxicity of the drug and to test the probable preventive effect of vitamin E in rats, forty-eight male albino rats were used in this study. Animals were classified into four groups, control, vitamin E, cisplatin and vitamin E with cisplatin. Vitamin E was administered orally at a dose of 2 mg/rat for two weeks prior to cisplatin intraperitoneal injection (5 mg/kg as a single dose) and then administration of vitamin E which was continued for two another weeks (end of experiment). The changes in body weight, counts of RBC and WBC, lipid peroxide, Na + , K + , chromosomal aberration and aldosterone hormone were recorded. Cisplatin administration caused 57.4% and 60% mortality at 3 and 5 weeks intervals. Regular intake of vitamin E induced significant role against the physiological disorders and chromosomal alterations occurred after cisplatin drug administration. The present study is directed to demonstrate the toxic effect of cisplatin on mortality, body weight, blood cells, aldosterone hormone, lipid peroxidation, Na + , K + , urea, creatinia as well as on chromosomal pattern and the efficacy of vitamin E in modulating cisplatin toxicity

  6. Metabonomics and drug development.

    Science.gov (United States)

    Ramana, Pranov; Adams, Erwin; Augustijns, Patrick; Van Schepdael, Ann

    2015-01-01

    Metabolites as an end product of metabolism possess a wealth of information about altered metabolic control and homeostasis that is dependent on numerous variables including age, sex, and environment. Studying significant changes in the metabolite patterns has been recognized as a tool to understand crucial aspects in drug development like drug efficacy and toxicity. The inclusion of metabonomics into the OMICS study platform brings us closer to define the phenotype and allows us to look at alternatives to improve the diagnosis of diseases. Advancements in the analytical strategies and statistical tools used to study metabonomics allow us to prevent drug failures at early stages of drug development and reduce financial losses during expensive phase II and III clinical trials. This chapter introduces metabonomics along with the instruments used in the study; in addition relevant examples of the usage of metabonomics in the drug development process are discussed along with an emphasis on future directions and the challenges it faces.

  7. Toxicological relationships between proteins obtained from protein target predictions of large toxicity databases

    International Nuclear Information System (INIS)

    Nigsch, Florian; Mitchell, John B.O.

    2008-01-01

    The combination of models for protein target prediction with large databases containing toxicological information for individual molecules allows the derivation of 'toxiclogical' profiles, i.e., to what extent are molecules of known toxicity predicted to interact with a set of protein targets. To predict protein targets of drug-like and toxic molecules, we built a computational multiclass model using the Winnow algorithm based on a dataset of protein targets derived from the MDL Drug Data Report. A 15-fold Monte Carlo cross-validation using 50% of each class for training, and the remaining 50% for testing, provided an assessment of the accuracy of that model. We retained the 3 top-ranking predictions and found that in 82% of all cases the correct target was predicted within these three predictions. The first prediction was the correct one in almost 70% of cases. A model built on the whole protein target dataset was then used to predict the protein targets for 150 000 molecules from the MDL Toxicity Database. We analysed the frequency of the predictions across the panel of protein targets for experimentally determined toxicity classes of all molecules. This allowed us to identify clusters of proteins related by their toxicological profiles, as well as toxicities that are related. Literature-based evidence is provided for some specific clusters to show the relevance of the relationships identified

  8. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity

    International Nuclear Information System (INIS)

    Kostadinova, Radina; Boess, Franziska; Applegate, Dawn; Suter, Laura; Weiser, Thomas; Singer, Thomas; Naughton, Brian; Roth, Adrian

    2013-01-01

    Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity

  9. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, Radina; Boess, Franziska [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Applegate, Dawn [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Suter, Laura; Weiser, Thomas; Singer, Thomas [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Naughton, Brian [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Roth, Adrian, E-mail: adrian_b.roth@roche.com [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland)

    2013-04-01

    Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity

  10. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    International Nuclear Information System (INIS)

    Ashley, Neil; Poulton, Joanna

    2009-01-01

    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  11. [Rhabdomyolysis and severe hepatotoxicity due to a drug-drug interaction between ritonavir and simvastatin. Could we use the most cost-effective statin in all human immunodeficiency virus-infected patients?].

    Science.gov (United States)

    Bastida, Carla; Also, Maria Antonia; Pericas, Juan Manuel; Letang, Emili; Tuset, Montse; Miró, Josep Maria

    2014-11-01

    Drugs like statins may induce rhabdomyolysis. Simvastatin and lovastatin have a high hepatic metabolism and their potential toxicity could be increased by interactions with other drugs that reduce their metabolism. A case-report is presented of an HIV-infected patient treated with antiretroviral drugs who developed a rhabdomyolysis-induced renal failure and liver toxicity when simvastatin was substituted for atorvastatin. A literature review is also presented. The patient required hospital admission and showed a favorable response after hydration and urine alkalinization. There were 4 additional cases published of which there was one death. Drug-drug interactions can increase the risk of statin induced rhabdomyolysis. In order to evaluate them properly, physicians at all levels of clinical care should be aware of all drugs prescribed to their patients and the contraindicated combinations. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Verantwoording en kosteneffectiviet van therapeutic drug monitoring (1) : Betere behandeling voor minder geld

    NARCIS (Netherlands)

    Touw, D.J.; Neef, C.; Vinks, A.A.

    2003-01-01

    There are a number of effective but highly toxic drugs that exhibit a narrow therapeutic index and marked intersubject pharmacokinetic variability. Optimal therapy with such drugs requires therapeutic drug monitoring (TDM) in order to safely obtain the desired clinical effects. A systematic review

  13. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    Science.gov (United States)

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  14. The role of metabolism in diclofenac-induced intestinal toxicity in rat and human in vitro

    NARCIS (Netherlands)

    Niu, Xiaoyu; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    The use of Diclofenac (DCF), a non-steroidal anti-inflammatory drug is associated with severe gastro-intestinal side-effects. The mechanisms of drug-induced intestinal toxicity are largely unknown due to the lack of in vitro models. In vivo rat studies suggested that reactive metabolites of DCF

  15. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  16. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations.

    Science.gov (United States)

    Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj

    2016-08-01

    Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.

  17. Photo-translocation of anti-HIV-1 drugs into TZM-bl cells

    CSIR Research Space (South Africa)

    Khanyile, T

    2013-04-01

    Full Text Available Targeted drug delivery into HIV-1 infected cells offers a reduction in toxicity and side effect. Using a femtosecond (fs) laser of different beam shapes anti-HIV-1 drugs are efficiently delivered into TZM-bl cells....

  18. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.

    Science.gov (United States)

    Zhang, Yongbin; Petibone, Dayton; Xu, Yang; Mahmood, Meena; Karmakar, Alokita; Casciano, Dan; Ali, Syed; Biris, Alexandru S

    2014-05-01

    Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.

  19. [Data-mining characteristics of adverse drug reactions and pharmacovi-gilance of Chinese patent drugs including Aconitum herbs].

    Science.gov (United States)

    Zhang, Xiao-Meng; Li, Fan; Zhang, Bing; Chen, Xiao-Fen; Piao, Jing-Zhu

    2018-01-01

    The common Aconitum herbs in clinical application mainly include Aconiti Radix(Chuanwu), Aconiti Kusnezoffii Radix(Caowu) and Aconiti Lateralis Radix Praeparaia(Fuzi), all of which have toxicity. Therefore, the safety of using Chinese patent drugs including Aconitum herbs has become an hot topic in clinical controversy. Based on the data-mining methods, this study explored the characteristics and causes of adverse drug reactions/events (ADR/ADE) of the Chinese patent drugs including Aconitum, in order to provide pharmacovigilance and rational drug use suggestions for clinical application. The detailed ADR/ADE reports about the Chinese patent drugs including Aconitum herbs were retrieved in the domestic literature databases since 1984 to now. The information extraction and data-mining were conducted based on the platforms of Microsoft office Excel 2016, Clementine 12.0 and Cytoscape 3.3.0. Finally, 78 detailed ADR/ADE reports involving a total of 30 varieties were included. 92.31% ADR/ADE were surely or likely led by the Chinese patent drugs including Aconitum, mostly involving multiple system/organ damages with good prognosis, and even 1 case of death. The incidence of included ADRs/ADEs was associated with various factors such as the patient idiosyncratic, drug toxicity, as well as clinical medication. The patient age was most closely related to ADR/ADEs, and those aged from 60 to 69 were more easily suffered from the ADRs/ADEs of Chinese patent drugs including Aconitum. The probability of ADR/ADEs for the drugs including Chuanwu or Caowu was greater than that of Fuzi, and the using beyond the instructions dose was the most important potential safety hazard in the clinical medication process. For the regular and characteristics of ADR/ADEs led by Chinese patent drugs including Aconitum, special attention shall be paid to the elder patients or with the patients with allergies; strictly control the dosage and course of treatment, strengthen the safety medication

  20. Differential involvement of mitochondrial dysfunction, cytochrome P450 activity, and active transport in the toxicity of structurally related NSAIDs

    NARCIS (Netherlands)

    van Leeuwen, J.S.; Unlü, B; Vermeulen, N.P.E.; Vos, J.C.

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of pain and inflammation. However, this group of drugs is associated with serious adverse drug reactions. Previously, we studied the mechanisms underlying toxicity of the NSAID diclofenac using Saccharomyces cerevisiae

  1. Toxic spongiform leucoencephalopathy after inhaling heroin vapour

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.; Henkes, H.; Kuehne, D. [Klinik fuer Allgemeine Roentgendiagnostik und Neuroradiologie, Alfried-Krupp-Krankenhaus, Alfried Krupp Strasse 21, D-45117, Essen (Germany); Moeller, P.; Bade, K. [Neurologische Klinik, Knappschafts-Krankenhaus, D-45657 Recklinghausen (Germany)

    1998-06-02

    This is a report of clinical, CT and MRI findings in a patient with toxic spongiform leucoencephalopathy after heroin ingestion. The disease is observed in drug addicts who inhale pre-heated heroin. The clinical onset, which usually occurs some days or even longer after the last heroin consumption, is characterized by a cerebellar syndrome. The cerebellar hemispheres, the cerebellar and cerebral peduncles and the pyramidal tract may be affected. Spongiform demyelination is the morphological substrate of the lesions, which are not contrast enhancing, hypodense on CT and hyperintense on T2-weighted MRI. The frequently perfect symmetry of the affection of functional systems points to a toxic and/or metabolic pathophysiological mechanism. (orig.) With 2 figs., 2 tabs., 26 refs.

  2. Rapid and Simultaneous Determination of Acetylsalicylic Acid, Paracetamol, and Their Degradation and Toxic Impurity Products by HPLC in Pharmaceutical Dosage Forms

    OpenAIRE

    AKAY, Cemal

    2008-01-01

    Aims: Determinations of drug impurity and drug degradation products are very important from both pharmacological and toxicological perspectives. Establishment of monitoring methods for impurities and degradation products during pharmaceutical development is necessary because of their potential toxicity. The aim of this study was to develop a rapid and simultaneous determination method for paracetamol and acetylsalicylic acid (ACA) and their degradation and toxic impurity products by high perf...

  3. Transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma: its research progress

    International Nuclear Information System (INIS)

    Zhao Yan; Han Guohong; Bai Wei; Fan Daiming

    2012-01-01

    Transarterial chemoembolization (TACE) has been the main treatment for patients with intermediate-stage hepatocellular carcinoma (HCC). However, the clinical application of TACE is limited due to the technical deficiencies, such as uncontrolled local drug delivery and systemic toxicity. Recently, the new drug-eluting beads (DEB), loading with doxorubicin, have be used in the TACE procedures. This new technique can not only maintain the local drug level for quite a long time and thus get a higher objective response, but also decrease the systemic toxicity. Transarterial chemoembolization with drug-eluting beads (DEB-TACE) have already been widely used abroad, and more related clinical trials are underway to clarify its advantages. This paper aims to make a comprehensive review in the respects of its characteristics and the latest research progress in DEB-TACE. (authors)

  4. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  5. Hydroxychloroquine binding to cytoplasmic domain of Band 3 in human erythrocytes: Novel mechanistic insights into drug structure, efficacy and toxicity.

    Science.gov (United States)

    Nakagawa, Mizuki; Sugawara, Kotomi; Goto, Tatsufumi; Wakui, Hideki; Nunomura, Wataru

    2016-05-13

    Hydroxychloroquine (HCQ) is a widely used drug in the treatment of autoimmune diseases, such as arthritis and systemic lupus erythematosus. It has also been prescribed for the treatment of malaria owing to its lower toxicity compared to its closely related compound chloroquine (CQ). However, the mechanisms of action of HCQ in erythrocytes (which bind preferentially this drug) have not been documented and the reasons underlying the lower side effects of HCQ compared to CQ remain unclear. Here we show that, although the activity of erythrocyte lactate dehydrogenase (LDH), but not GAPDH, was inhibited by both HCQ and CQ in vitro, LDH activity in erythrocytes incubated with 20 mM HCQ was not significantly reduced within 5 h in contrast to CQ did. Using HCQ coupled Sepharose chromatography (HCQ-Sepharose), we identified Band 3, spectrin, ankyrin, protein 4.1R and protein 4.2 as HCQ binding proteins in human erythrocyte plasma membrane. Recombinant cytoplasmic N-terminal 43 kDa domain of Band 3 bound to HCQ-Sepharose and was eluted with 40 mM (but not 20 mM) HCQ. Band 3 transport activity was reduced by only 23% in the presence of 20 mM HCQ. Taken together, these data demonstrate that HCQ binds to the cytoplasmic N-terminal domain of Band 3 in human erythrocytes but does not inhibit dramatically its transport activity. We hypothesize that the trapping of HCQ on Band 3 contributes to the lower side effects of the drug on energy production in erythrocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Pharmacokinetic alterations in pregnancy and use of therapeutic drug monitoring].

    Science.gov (United States)

    Panchaud, Alice; Weisskopf, Etienne; Winterfeld, Ursula; Baud, David; Guidi, Monia; Eap, Chin B; Csajka, Chantal; Widmer, Nicolas

    2014-01-01

    Following the thalidomide tragedy, pharmacological research in pregnant women focused primarily on drug safety for the unborn child and remains only limited regarding the efficacy and safety of treatment for the mother. Significant physiological changes during pregnancy may yet affect the pharmacokinetics of drugs and thus compromise its efficacy and/or safety. Therapeutic drug monitoring (TDM) would maximize the potential effectiveness of treatments, while minimizing the potential risk of toxicity for the mother and the fetus. At present, because of the lack of concentration-response relationship studies in pregnant women, TDM can rely only on individual assessment (based on an effective concentration before pregnancy) and remains reserved only to unexpected situations such as signs of toxicity or unexplained inefficiency. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  7. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.

    Science.gov (United States)

    Zangabad, Parham Sahandi; Mirkiani, Soroush; Shahsavari, Shayan; Masoudi, Behrad; Masroor, Maryam; Hamed, Hamid; Jafari, Zahra; Taghipour, Yasamin Davatgaran; Hashemi, Hura; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active targeting can be attached that are recognized by cognate receptors over-expressed on the target cells of tissues. Secondly, modification can be used to impart a stimulus-responsive or "smart" character to the liposomes, whereby the cargo is released on demand only when certain internal stimuli (pH, reducing agents, specific enzymes) or external stimuli (light, magnetic field or ultrasound) are present. Here, we review the field of smart liposomes for drug delivery applications.

  8. Toxic agents causing cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario

    2012-01-01

    The cerebellum is particularly vulnerable to intoxication and poisoning, especially so the cerebellar cortex and Purkinje neurons. In humans, the most common cause of a toxic lesion to the cerebellar circuitry is alcohol related, but the cerebellum is also a main target of drug exposure (such as anticonvulsants, antineoplastics, lithium salts, calcineurin inhibitors), drug abuse and addiction (such as cocaine, heroin, phencyclidine), and environmental toxins (such as mercury, lead, manganese, toluene/benzene derivatives). Although data for the prevalence and incidence of cerebellar lesions related to intoxication and poisoning are still unknown in many cases, clinicians should keep in mind the list of agents that may cause cerebellar deficits, since toxin-induced cerebellar ataxias are not rare in daily practice. Moreover, the patient's status may require immediate therapies when the intoxication is life-threatening. 2012 Elsevier B.V. All rights reserved.

  9. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  10. Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain.

    Science.gov (United States)

    Roy, Upal; Drozd, Vadym; Durygin, Andriy; Rodriguez, Jesse; Barber, Paul; Atluri, Venkata; Liu, Xiaohua; Voss, Thomas G; Saxena, Surendra; Nair, Madhavan

    2018-01-25

    Human Immunodeficiency Virus Type 1 (HIV-1) remains one of the leading causes of death worldwide. Present combination antiretroviral therapy has substantially improved HIV-1 related pathology. However, delivery of therapeutic agents to the HIV reservoir organ like Central nervous system (CNS) remains a major challenge primarily due to the ineffective transmigration of drugs through Blood Brain Barrier (BBB). The recent advent of nanomedicine-based drug delivery has stimulated the development of innovative systems for drug delivery. In this regard, particular focus has been given to nanodiamond due to its natural biocompatibility and non-toxic nature-making it a more efficient drug carrier than other carbon-based materials. Considering its potential and importance, we have characterized unmodified and surface-modified (-COOH and -NH 2 ) nanodiamond for its capacity to load the anti-HIV-1 drug efavirenz and cytotoxicity, in vitro. Overall, our study has established that unmodified nanodiamond conjugated drug formulation has significantly higher drug loading capacity than surface-modified nanodiamond with minimum toxicity. Further, this nanodrug formulation was characterized by its drug dissolution profile, transmigration through the BBB, and its therapeutic efficacy. The present biological characterizations provide a foundation for further study of in-vivo pharmacokinetics and pharmacodynamics of nanodiamond-based anti-HIV drugs.

  11. "Not for human consumption": a review of emerging designer drugs.

    Science.gov (United States)

    Musselman, Megan E; Hampton, Jeremy P

    2014-07-01

    Synthetic, or "designer" drugs, are created by manipulating the chemical structures of other psychoactive drugs so that the resulting product is structurally similar but not identical to illegal psychoactive drugs. Originally developed in the 1960s as a way to evade existing drug laws, the use of designer drugs has increased dramatically over the past few years. These drugs are deceptively packaged as "research chemicals," "incense," "bath salts," or "plant food," among other names, with labels that may contain warnings such as "not for human consumption" or "not for sale to minors." The clinical effects of most new designer drugs can be described as either hallucinogenic, stimulant, or opioid-like. They may also have a combination of these effects due to designer side-chain substitutions. The easy accessibility and rapid emergence of new designer drugs have created challenges for health care providers when treating patients presenting with acute toxicity from these substances, many of which can produce significant and/or life-threatening adverse effects. Moreover, the health care provider has no way to verify the contents and/or potency of the agent ingested because it can vary between packages and distributors. Therefore, a thorough knowledge of the available designer drugs, common signs and symptoms of toxicity associated with these agents, and potential effective treatment modalities are essential to appropriately manage these patients. © 2014 Pharmacotherapy Publications, Inc.

  12. CPP-Assisted Intracellular Drug Delivery, What Is Next?

    Directory of Open Access Journals (Sweden)

    Junxiao Ye

    2016-11-01

    Full Text Available For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs, the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.

  13. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.

    Science.gov (United States)

    Tan, Yong; Ko, Joshua; Liu, Xinru; Lu, Cheng; Li, Jian; Xiao, Cheng; Li, Li; Niu, Xuyan; Jiang, Miao; He, Xiaojuan; Zhao, Hongyan; Zhang, Zhongxiao; Bian, Zhaoxiang; Yang, Zhijun; Zhang, Ge; Zhang, Weidong; Lu, Aiping

    2014-07-29

    We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.

  14. Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery.

    Science.gov (United States)

    Liu, Zhihong; Wang, Yutao; Zhang, Na

    2012-07-01

    During the past decades, polymer-drug conjugates are one of the hottest topics in novel drug development fields. Amphiphilic polymer-drug conjugates in aqueous solution could form micelles or micelle-like nanoassemblies. Compared with polymer-drug conjugates and the micelles into which drugs are physically entrapped, micelles or micelle-like nanoassemblies based on polymer-drug conjugates bring several additional advantages, including increased drug-loading capacity, enhanced intracellular uptake, reduced systemic toxicity, and improved therapeutic efficacy. This review focuses on recent progress achieved in the research field of micelles or micelle-like nanoassemblies based on polymer-drug conjugates. Firstly, properties of polymers, drugs, and linkers which could be used to build polymer-drug conjugate micelles or micelle-like nanoassemblies are summarized. Then, the characterization methods are described. Finally, the drug-targeting mechanisms are discussed. Micelles or micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform have the potential to achieve medical treatments with enhanced therapeutic effect. The application of micelles or micelle-like nanoassemblies based on polymer-drug conjugates may give new life to old active compounds abandoned due to their low solubility problems. For clinical application, there is a need to further optimize the properties of the polymer, drug, and linker.

  15. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  16. ABC gene-ranking for prediction of drug-induced cholestasis in rats

    Directory of Open Access Journals (Sweden)

    Yauheniya Cherkas

    Full Text Available As legacy toxicogenomics databases have become available, improved data mining approaches are now key to extracting and visualizing subtle relationships between toxicants and gene expression. In the present study, a novel “aggregating bundles of clusters” (ABC procedure was applied to separate cholestatic from non-cholestatic drugs and model toxicants in the Johnson & Johnson (Janssen rat liver toxicogenomics database [3]. Drug-induced cholestasis is an important issue, particularly when a new compound enters the market with this liability, with standard preclinical models often mispredicting this toxicity. Three well-characterized cholestasis-responsive genes (Cyp7a1, Mrp3 and Bsep were chosen from a previous in-house Janssen gene expression signature; these three genes show differing, non-redundant responses across the 90+ paradigm compounds in our database. Using the ABC procedure, extraneous contributions were minimized in comparisons of compound gene responses. All genes were assigned weights proportional to their correlations with Cyp7a1, Mrp3 and Bsep, and a resampling technique was used to derive a stable measure of compound similarity. The compounds that were known to be associated with rat cholestasis generally had small values of this measure relative to each other but also had large values of this measure relative to non-cholestatic compounds. Visualization of the data with the ABC-derived signature showed a very tight, essentially identically behaving cluster of robust human cholestatic drugs and experimental cholestatic toxicants (ethinyl estradiol, LPS, ANIT and methylene dianiline, disulfiram, naltrexone, methapyrilene, phenacetin, alpha-methyl dopa, flutamide, the NSAIDs–—indomethacin, flurbiprofen, diclofenac, flufenamic acid, sulindac, and nimesulide, butylated hydroxytoluene, piperonyl butoxide, and bromobenzene, some slightly less active compounds (3′-acetamidofluorene, amsacrine, hydralazine, tannic acid, some

  17. Linking Drugs to Obscure Illnesses

    DEFF Research Database (Denmark)

    Bennett, Charles L; Starko, Karen M; Thomsen, Henrik S

    2012-01-01

    Identification of serious adverse drug reactions (sADRS) associated with commonly used drugs can elude detection for years. Reye's syndrome (RS), nephrogenic systemic fibrosis (NSF), and pure red cell aplasia (PRCA) among chronic kidney disease (CKD) patients were recognized in 1951, 2000, and 1998......-savings considerations, and a European regulatory requirement requiring removal of albumin as a stabilizer, led to toxicity. Overall, 81, 13, and 17 years elapsed between drug introduction into practice and identification of a causal relationship for aspirin, erythropoietin, and gadodiamide, respectively. A substantial...... decline in new cases of these sADRs occurred within two years of identification of the offending drug. Clinicians should be vigilant for sADRs, even for frequently-prescribed pharmaceuticals, particularly in settings where formulation or regulatory changes have occurred, or when over-the-counter, off...

  18. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    OpenAIRE

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, w...

  19. Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Saednia, Shahnaz; Saien, Javad; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: ssaednia@gmail.com [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kazem-Rostami, Masoud [Young Researchers Club and Elite, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Sadeghpour, Mahdieh [Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Borazjani, Maryam Kiani [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of)

    2013-07-15

    Drug delivery systems based on polymer-drug conjugates give an improved treatment with lower toxicity or side effects and be used for the treatment of different diseases. Conjugates of biodegradable poly(styrene-alt-maleic anhydride) (PSMA), with a therapeutic agents such as amantadine hydrochloride, amlodipine, gabapentin, zonisamide and mesalamine, were afforded by the formation of the amide bonds of the amino drugs that reacted with the PSMA anhydride groups. The amounts of covalently conjugated drugs were determined by a {sup 1}H NMR spectroscopic method, and the in vitro release rate in buffer solution (pH 1.3) was studied at body temperature 37 Degree-Sign C. In kinetic studies, different dissolution models were examined to obtain drug release data and the collected data were well-fitted to the Korsmeyer-Peppas equation, revealing a dominant Fickian diffusion mechanism for drug release under the in vitro conditions. (author)

  20. Toxic effects of non-steroidal anti-inflammatory agents in rats ...

    African Journals Online (AJOL)

    The toxicosis of some non-steroidal anti-inflammatory drugs, piroxicam, indomethacin, phenylbutazone, and aspirin, which occasionally are locally used in Nigeria as rodenticides have been evaluated in rats using changes in the serum biochemical and haematological parameters as indices of toxicity. In the study, no ...

  1. Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening. Review.

    Science.gov (United States)

    Geamănu Pancă, A; Popa-Cherecheanu, A; Marinescu, B; Geamănu, C D; Voinea, L M

    2014-09-15

    Hydroxychloroquine sulfate (HCQ, Plaquenil) is an analogue of chloroquine (CQ), an antimalarial agent, used for the treatment of systemic lupus erythematosus, rheumatoid arthritis and other autoimmune disorders. Its use has been associated with severe retinal toxicity, requiring a discontinuation of therapy. Because it presents potential secondary effects including irreversible maculopathy, knowledge of incidence, risk factors, drug toxicity and protocol screening of the patients it represents important data for the ophthalmologists. Thus, it is imperative that rheumatologists, medical internists and ophthalmologists are aware of the toxicity from hydroxychloroquine they should also be careful to minimize its occurrence and effects.

  2. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery.

    Science.gov (United States)

    Patel, Viral; Sharma, Om Prakash; Mehta, Tejal

    2018-04-01

    Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.

  3. The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans

    Science.gov (United States)

    Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered

  4. The role of Abcb5 alleles in susceptibility to haloperidol-induced toxicity in mice and humans.

    KAUST Repository

    Zheng, Ming

    2015-02-03

    We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study.A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered.ABCB5 alleles alter susceptibility to

  5. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy.

    Science.gov (United States)

    Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; López-Cabrera, Yessica; Querejeta, Enrique; Trujillo-Ferrara, José G

    2014-01-01

    Boron-containing compounds (BCCs), particularly boron containing acids (BCAs), have become attractive moieties or molecules in drug development. It has been suggested that when functional groups with boron atoms are added to well-known drugs, the latter are conferred with greater potency and efficacy in relation to their target receptors. However, the use of BCAs in drug development is limited due to the lack of a toxicological profile. Consequently, the aim of the present study was to evaluate the acute toxicity of boric and boronic acids. Thus, a determination was made of the lethal dose (LD50) of test compounds in male CD1 mice, as well as the effective dose required to negatively affect spontaneous motor activity and to produce notable behavioral abnormalities. After treatment of animals at different doses, macroscopic observations were made from a necropsy, and Raman scattering spectroscopic studies were carried out on brain tissue samples. In general, the results show that most of the tested BCAs have very low toxicity, evidenced by the high doses required to induce notable toxic effects (greater than 100 mg/kg of body weight for all compounds, except for 3-thyenilboronic acid). Such toxic effects, presumably mediated by action on the CNS, include eye damage, gastrointestinal effects (e.g., gastric-gut dilatation and fecal retention), sedation, hypnosis and/or trembling. This preliminary toxicological profile suggests that BCAs can be considered potential therapeutic agents or moieties to be added to other compounds in the development of new drugs. Future studies are required to explore possible chronic toxicity of BCCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A survey of the effects of Raha® and Berberin medicine in toxic and sub toxic doses compare with Clonidine medicine on reducing symptoms of morphine withdrawal

    Directory of Open Access Journals (Sweden)

    Mohammad.J Khoshnood

    2010-09-01

    Full Text Available Background: Opiate withdrawal refers to the wide range of symptoms that occur after stopping or dramatically reducing opiate drugs after heavy and prolonged use. The aim of the present study was to determine the effects of Raha and Berberin medicine in toxic and sub toxic doses compare with Clonidine medicine on reducing symptoms of morphine withdrawal in Syrian mice.Materials and Method: 140 Syrian mice (weight range 70-90 gr were divided randomly into 2 groups; first group; n1=35(receiving drug =21, control=14 & second group; n2=105 (receiving drug=91, control=14. Animals were treated by injected increasing doses of morphine sulfate for physical dependence. Then withdrawal syndrome was induced by administration of Naloxone. In order to evaluate the effect of Raha Berberin and Clonidine on morphine withdrawal syndrome in Syrian mice and also amount of total alkaloids and Berberin value in the Raha® were measured.Result: Total of average of alkaloid and Berberin value was 120, 5.72 mg, respectively in 5 ml of the Raha®. The rate of alcohol in Raha® was shown by using the USP procedure which was 19.34 percent. Toxic doses of Raha® and Berberin were 4, 40 mg/kg, respectively. Results indicated that, Raha increases significantly the percent of occurrence of ptosis and immobility were compared with control group (distilled water receiver (p=0.016. The occurrence rate of sniffing, grooming and rearing behavior in Raha and Berberin treated groups compared with control group, within 15min period, was not found statistically significant (p=0.089.Conclusion: Based on our study both Raha® and Berberin in any dilution had no effect on reducing signs of opioid withdrawal syndrome. According to the lack of its effect in mice, further studies should be undertaken for prescription of this drug in human

  7. Heart Toxicity Related to Herbs and Dietary Supplements: Online Table of Case Reports. Part 4 of 5.

    Science.gov (United States)

    Brown, Amy C

    2017-10-05

    The purpose of this review was to create an online research summary table of heart toxicity case reports related to dietary supplements (DS; includes herbs). Documented PubMed case reports of DS appearing to contribute to heart-related problems were used to create a "Toxic Table" that summarized the research (1966 to April, 2016, and cross-referencing). Keywords included "herb," "dietary supplement," and cardiac terms. Case reports were excluded if they were herb combinations (some exceptions), Chinese herb mixtures, teas of mixed herb contents, mushrooms, poisonous plants, self-harm (e.g. suicide), excess dose (except vitamins/minerals), drugs or illegal drugs, drug-herbal interactions, and confounders of drugs or diseases. The spectrum of heart toxicities included hypertension, hypotension, hypokalemia, bradycardia, tachycardia, arrhythmia, ventricular fibrillation, heart attack, cardiac arrest, heart failure, and death. Heart related problems were associated with approximately seven herbs: Four traditional Chinese medicine herbs - Don quai (Angelica sinensis), Jin bu huan (Lycopodium serratum), Thundergod vine or lei gong teng (Tripterygium wilfordii Hook F), and Ting kung teng (Erycibe henryi prain); one an Ayruvedic herb - Aswagandha, (Withania somnifera); and two North American herbs - blue cohosh (Caulophyllum thalictroides), and Yohimbe (Pausinystalia johimbe). Aconitum and Ephedra species are no longer sold in the United States. The DS included, but are not limited to five DS - bitter orange, caffeine, certain energy drinks, nitric oxide products, and a calming product. Six additional DS are no longer sold. Licorice was the food related to heart problems. The online "Toxic Table" forewarns clinicians, consumers and the DS industry by listing DS with case reports related to heart toxicity. It may also contribute to Phase IV post marketing surveillance to diminish adverse events that Government officials use to regulate DS.

  8. Ecotoxicogenomic assessment of diclofenac toxicity in soil

    International Nuclear Information System (INIS)

    Chen, Guangquan; Braver, Michiel W. den; Gestel, Cornelis A.M. van; Straalen, Nico M. van; Roelofs, Dick

    2015-01-01

    Diclofenac is widely used as nonsteroidal anti-inflammatory drug leaving residues in the environment. To investigate effects on terrestrial ecosystems, we measured dissipation rate in soil and investigated ecotoxicological and transcriptome-wide responses in Folsomia candida. Exposure for 4 weeks to diclofenac reduced both survival and reproduction of F. candida in a dose-dependent manner. At concentrations ≥200 mg/kg soil diclofenac remained stable in the soil during a 21-day incubation period. Microarrays examined transcriptional changes at low and high diclofenac exposure concentrations. The results indicated that development and growth were severely hampered and immunity-related genes, mainly directed against bacteria and fungi, were significantly up-regulated. Furthermore, neural metabolic processes were significantly affected only at the high concentration. We conclude that diclofenac is toxic to non-target soil invertebrates, although its mode of action is different from the mammalian toxicity. The genetic markers proposed in this study may be promising early markers for diclofenac ecotoxicity. - Highlights: • Diclofenac is toxic to the non-target soil invertebrate Folsomia candida. • Diclofenac mainly caused mortality and thus only indirectly affected reproduction. • Diclofenac mode of action in F. candida was checked with gene expression profiling. • Diclofenac significantly affected development, growth and immune related processes. • Diclofenac nervous system activity in F. candida was different from that in mammals. - Diclofenac is toxic to non-target soil invertebrates with a mode of action clearly different from mammalian toxicity

  9. Evaluation of Patients Hospitalized in Intensive Care Unit Due to Drug-Related Suicide Attempt and Access to Drugs: A Single Center Prospective Study

    Directory of Open Access Journals (Sweden)

    Fatih Doğu Geyik

    2014-06-01

    Full Text Available Aim: We aimed to evaluate patients who were hospitalized in our intensive care unit due to drug-related suicide attempt (medical or insecticides and their access to these drugs. Methods: We prospectively recorded the demographic characteristics and medical data of 50 patients (32 females and 18 males who were hospitalized in our intensive care unit due to drug-related suicide attempt. Results: 66% of subjects were between the ages of 15 and 24 years with a mean age of 25.4±8.8 years. Multiple drug overdose was observed in 28% of patients. The unemployment rate was higher for women than men (p<0.001. Men obtained drugs from pharmacy more often than women (27.8% vs 6.2%, p=0,03. Of the patients, 86% got the drugs from home medicine cabinet while this rate was 93% among women (n=30. The level of toxicity was higher among patients who got the drugs from pharmacy than in those who used drugs at home (p=0.06. The length of stay in the intensive care unit was longer among patients with toxic level of medication (p=0.001. Conclusion: Patients usually use drugs or insecticides available at home to commit suicide. We believe that in patients with risk of suicide attempt, access to drugs should be limited and state regulations should be applied. (The Me­di­cal Bul­le­tin of Ha­se­ki 2014; 52:111-5

  10. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    International Nuclear Information System (INIS)

    Shen Chong; Meng Qin; Schmelzer, Eva; Bader, Augustinus

    2009-01-01

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 μM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 μM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to β-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  11. Protein Complex Production from the Drug Discovery Standpoint.

    Science.gov (United States)

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  12. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Science.gov (United States)

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing

    2011-01-01

    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  13. In vivo and in vitro toxicity of nanogold conjugated snake venom protein toxin GNP-NKCT1

    Directory of Open Access Journals (Sweden)

    Partha Pratim Saha

    2014-01-01

    Full Text Available Research on nanoparticles has created interest among the biomedical scientists. Nanoparticle conjugation aims to target drug delivery, increase drug efficacy and imaging for better diagnosis. Toxicity profile of the nanoconjugated molecules has not been studied well. In this communication, the toxicity profile of snake venom cytotoxin (NKCT1, an antileukemic protein toxin, was evaluated after its conjugation with gold nanoparticle (GNP-NKCT1. Gold nanoparticle conjugation with NKCT1 was done with NaBH4 reduction method. The conjugated product GNP-NKCT1 was found less toxic than NKCT1 on isolated rat lymphocyte, mice peritoneal macrophage, in culture, which was evident from the MTT/Trypan blue assay. Peritoneal mast cell degranulation was in the order of NKCT1 > GNP-NKCT1. The in vitro cardiotoxicity and neurotoxicity were increased in case of NKCT1 than GNP-NKCT1. On isolated kidney tissue, NKCT1 released significant amount of ALP and γ-GT than GNP-NKCT1. Gold nanoconjugation with NKCT1 also reduced the lethal activity in mice. In vivo acute/sub-chronic toxicity studies in mice showed significant increase in molecular markers due to NKCT1 treatment, which was reduced by gold nanoconjugation. Histopathology study showed decreased toxic effect of NKCT1 in kidney tissue after GNP conjugation. The present study confirmed that GNP conjugation significantly decreased the toxicity profile of NKCT1. Further studies are in progress to establish the molecular mechanism of GNP induced toxicity reduction.

  14. Biocombatibility and in vivo toxicity assessment of multilayered polymer encapsulated lanthanide doped particles

    International Nuclear Information System (INIS)

    Dhanya, C.R.; Sri Sivakumar; Jaishree, J.; Abraham, Annie

    2013-01-01

    Layer-by-layer (LbL) deposition technique has led to the development of multilayered multifunctional nanoparticles that can prove to be promising system for directed drug delivery. Recently, surface functionalized Lanthanide doped nanoparticles have been explored as a candidate for biomedical applications like bio-detection, fluorescence imaging and drug delivery. The toxicity behaviors of biomedical devices proposed for therapeutic use in human must be checked for their toxicity behaviors in animal models. Here, we have presented an initial systematic animal toxicity study of polymer encapsulated lanthanide doped particle in Swiss Albino mice. Polymer coated LNPs with concentration of 100 nM in PBS was administered intravenously through tail vein according to body weight (4μl/g). Animal behavior, survival and animal mass, were monitored and evaluated over short-term (one week) and long-term (one month) periods, after which animals were euthanized. Blood was collected for evaluating clinical biochemistry (SGOT and SGPT) and hematological parameters, and tissues (liver and kidney) for organ histology. Results demonstrated normal serum clinical biochemistry in animals for both short and long time exposure. Histological examination of LNP treated mice also showed normal histology of liver and kidney even after one month of administration. Similar results were obtained for hematological evaluation. Results exhibited the systemic nontoxic nature of the polymer encapsulated lanthanide particles and their suitability as a tool for tumor targeted drug delivery. (author)

  15. Evaluation of Anti-Inflammatory Drug-Conjugated Silicon Quantum Dots: Their Cytotoxicity and Biological Effect

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2013-01-01

    Full Text Available Silicon quantum dots (Si-QDs have great potential for biomedical applications, including their use as biological fluorescent markers and carriers for drug delivery systems. Biologically inert Si-QDs are less toxic than conventional cadmium-based QDs, and can modify the surface of the Si-QD with covalent bond. We synthesized water-soluble alminoprofen-conjugated Si-QDs (Ap-Si. Alminoprofen is a non-steroid anti-inflammatory drug (NSAID used as an analgesic for rheumatism. Our results showed that the “silicon drug” is less toxic than the control Si-QD and the original drug. These phenomena indicate that the condensed surface integration of ligand/receptor-type drugs might reduce the adverse interaction between the cells and drug molecules. In addition, the medicinal effect of the Si-QDs (i.e., the inhibition of COX-2 enzyme was maintained compared to that of the original drug. The same drug effect is related to the integration ratio of original drugs, which might control the binding interaction between COX-2 and the silicon drug. We conclude that drug conjugation with biocompatible Si-QDs is a potential method for functional pharmaceutical drug development.

  16. Drugs in breast milk.

    Science.gov (United States)

    Hervada, A R; Feit, E; Sagraves, R

    1978-09-01

    The amount of drug excreted into breast milk is dependent upon the lipid solubility of the medication, the mechanism of transport, the degree of ionization, and change in plasma pH. The higher the lipid solubility, the greater the concentration in human milk. The majority of drugs are transported into mammary blood capillaries by passive diffusion. The rest are transported by reverse pinocytosis. Once the drug has entered the epithelial cells of breast tissue, the drug molecules are excreted into the human milk by active transport, passive diffusion, or apocrine secretion. The amount of free (active) drug available for transport depends on the degree of protein binding the plasma pH. Another factor affecting excretion of drugs is the time when breast feeding occurs. In the 1st few days of life, when colostrum is present, water-soluble drugs pass through the breast more easily than afterwards when milk is produced. Then lipid-soluble drugs cross in higher concentrations. The effect on nursing infants is dependent on the amount excreted into the milk, the total amount absorbed by the infant, and the toxicity of the drug. The use of the following drugs in breast feeding mothers is reviewed: anticoagulants, antihypertensives and diuretics, antimicrobials, drugs affecting the central nervous system (alcohol, chloral hydrate, meprobamate, lithium, and aspirin), marijuana, other drugs (antihistamines, atropine, ergot alkaloids, laxatives, nicotine, iodides, propylthiouracil, theophylline), hormones (insulin, thyroxine, and oral contraceptives), and radiopharmaceuticals.

  17. A mapping of drug space from the viewpoint of small molecule metabolism.

    Directory of Open Access Journals (Sweden)

    James Corey Adams

    2009-08-01

    Full Text Available Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the "effect space" comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism.

  18. A mapping of drug space from the viewpoint of small molecule metabolism.

    Science.gov (United States)

    Adams, James Corey; Keiser, Michael J; Basuino, Li; Chambers, Henry F; Lee, Deok-Sun; Wiest, Olaf G; Babbitt, Patricia C

    2009-08-01

    Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the "effect space" comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism.

  19. Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity

    International Nuclear Information System (INIS)

    Cordero, Mario D.; Moreno-Fernandez, Ana Maria; Gomez-Skarmeta, Jose Luis; Miguel, Manuel de; Garrido-Maraver, Juan; Oropesa-Avila, Manuel; Rodriguez-Hernandez, Angeles; Navas, Placido; Sanchez-Alcazar, Jose Antonio

    2009-01-01

    Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q 10 and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q 10 , decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q 10 and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity

  20. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The bioaccumulation and toxicity induced by gold nanoparticles in ...

    African Journals Online (AJOL)

    It is essential to characterize the bioaccumulation and toxicity of gold nanoparticles (GNPs) in blood prior to using them in drug delivery, diagnostics, and treatment. The aim of the present study was to evaluate the blood absorbance spectra after intraperitoneal administration of 50 μl of 10, 20, and 50 nm GNPs in rat for ...

  2. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  3. Sildenafil and tadalafil in simulated chlorination conditions: Ecotoxicity of drugs and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Temussi, Fabio; DellaGreca, Marina; Pistillo, Paola; Previtera, Lucio; Zarrelli, Armando [UdR Napoli 4 INCA, Dipartimento di Scienze Chimiche, Complesso Universitario di Monte Sant' Angelo, Università Federico II, Via Cintia, I-80126 Napoli (Italy); Criscuolo, Emma; Lavorgna, Margherita; Russo, Chiara [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy); Isidori, Marina, E-mail: marina.isidori@unina2.it [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy)

    2013-10-01

    Chlorination experiments on two drugs (sildenafil and tadalafil) were performed mimicking the conditions of a typical wastewater treatment process. The main transformation products were isolated by chromatographic techniques (Thin Layer Chromatography (TLC), Column Chromatography (CC), High Performance Liquid Chromatography (HPLC)) and fully characterized employing Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) analyses. The environmental effects of the parent compounds and transformation products were evaluated using an overall toxicity approach that considered aquatic acute and chronic toxicity on Brachionus calyciflorus and Ceriodaphnia dubia as well as mutagenesis and genotoxicity on bacterial strains. The results revealed that both parent drugs did not show high acute and chronic toxicity for the organisms utilized in the bioassays while, chronic exposure to chlorine derivatives caused inhibition of growth population on rotifers and crustaceans. A mutagenic potential was found for all the compounds investigated. - Highlights: • Simulated disinfection process of pharmaceuticals was performed. • Toxicity and genotoxicity of sildenafil, tadalafil and their derivatives were evaluated. • Chlorine derivatives caused chronic toxicity on rotifers and crustaceans. • A mutagenic potential was found for all the compounds investigated.

  4. Beyond platinum: synthesis, characterization, and in vitro toxicity of Cu(II-releasing polymer nanoparticles for potential use as a drug delivery vector

    Directory of Open Access Journals (Sweden)

    Harris Alesha

    2011-01-01

    Full Text Available Abstract The field of drug delivery focuses primarily on delivering small organic molecules or DNA/RNA as therapeutics and has largely ignored the potential for delivering catalytically active transition metal ions and complexes. The delivery of a variety of transition metals has potential for inducing apoptosis in targeted cells. The chief aims of this work were the development of a suitable delivery vector for a prototypical transition metal, Cu2+, and demonstration of the ability to impact cancer cell viability via exposure to such a Cu-loaded vector. Carboxylate-functionalized nanoparticles were synthesized by free radical polymerization and were subsequently loaded with Cu2+ via binding to particle-bound carboxylate functional groups. Cu loading and release were characterized via ICP MS, EDX, XPS, and elemental analysis. Results demonstrated that Cu could be loaded in high weight percent (up to 16 wt.% and that Cu was released from the particles in a pH-dependent manner. Metal release was a function of both pH and the presence of competing ligands. The toxicity of the particles was measured in HeLa cells where reductions in cell viability greater than 95% were observed at high Cu loading. The combined pH sensitivity and significant toxicity make this copper delivery vector an excellent candidate for the targeted killing of disease cells when combined with an effective cellular targeting strategy.

  5. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance.

    NARCIS (Netherlands)

    Cnubben, N.H.; Wortelboer, H.M.; Zanden, J.J. van; Rietjens, I.M.; Bladeren, P.J. van

    2005-01-01

    Membrane transport proteins belonging to the ATP-binding cassette (ABC) family of transport proteins play a central role in the defence of organisms against toxic compounds, including anticancer drugs. However, for compounds that are designed to display a toxic effect, this defence system diminishes

  6. Consensus-based evaluation of clinical significance and management of anticancer drug interactions

    NARCIS (Netherlands)

    Jansman, F.G.A.; Reyners, A.K.L.; van Roon, E.N.; Smorenburg, C.H.; Helgason, H.H.; le Comte, M.; Wensveen, B.M.; van den Tweel, A.M.A.; de Blois, M.; Kwee, W.; Kerremans, A.L.; Brouwers, J.R.B.J.

    Background: Anticancer drug interactions can affect the efficacy and toxicity of anticancer treatment and that of the interacting drugs. However, information on the significance, prevention, and management of these interactions is currently lacking. Objective: The purpose of this study was to assess

  7. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes

    International Nuclear Information System (INIS)

    Lacaze, Emilie; Pédelucq, Julie; Fortier, Marlène; Brousseau, Pauline; Auffret, Michel; Budzinski, Hélène; Fournier, Michel

    2015-01-01

    The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment. - Highlights: • Psychotropic drugs and antibiotics affect the immune system of Mytilus edulis. • Genotoxic and immunotoxic endpoints were relevant to assess pharmaceuticals toxicity. • DNA metabolism is a highly sensitive target for pharmaceuticals. • Fluoxetine and paroxetine were the most toxic compounds on mussel hemocytes. - Psychotropic drugs and antibiotics have the potential to cause immune toxicity and genotoxicity on Mytilus edulis hemocytes

  8. Antileishmanial, toxicity, and phytochemical evaluation of medicinal plants collected from Pakistan.

    Science.gov (United States)

    Shah, Naseer Ali; Khan, Muhammad Rashid; Nadhman, Akhtar

    2014-01-01

    Leishmaniasis is an important parasitic problem and is in focus for development of new drugs all over the world. Objective of the present study was to evaluate phytochemical, toxicity, and antileishmanial potential of Jurinea dolomiaea, Asparagus gracilis, Sida cordata, and Stellaria media collected from different areas of Pakistan. Dry powder of plants was extracted with crude methanol and fractionated with n-hexane, chloroform, ethyl acetate, n-butanol, and water solvents in escalating polarity order. Qualitative phytochemical analysis of different class of compounds, that is, alkaloids, saponins, terpenoids, anthraquinones, cardiac glycosides, coumarins, phlobatannins, flavonoids, phenolics, and tannins, was tested. Its appearance was observed varying with polarity of solvent used for fractionation. Antileishmanial activity was performed against Leishmania tropica KWH23 promastigote. Potent antileishmanial activity was observed for J. dolomiaea methanol extract (IC50 = 10.9 ± 1.1 μ g/mL) in comparison to other plant extracts. However, J. dolomiaea "ethyl acetate fraction" was more active (IC50 = 5.3 ± 0.2 μ g/mL) against Leishmania tropica KWH23 among all plant fractions as well as standard Glucantime drug (6.0 ± 0.1 μ g/mL). All the plants extract and its derived fraction exhibited toxicity in safety range (LC50 > 100) in brine shrimp toxicity evaluation assay.

  9. Impact of biomarker development on drug safety assessment

    International Nuclear Information System (INIS)

    Marrer, Estelle; Dieterle, Frank

    2010-01-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative and 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.

  10. A probabilistic approach to identify putative drug targets in biochemical networks.

    NARCIS (Netherlands)

    Murabito, E.; Smalbone, K.; Swinton, J.; Westerhoff, H.V.; Steuer, R.

    2011-01-01

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual

  11. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be [Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O and N2, Herestraat 49 — bus 921, 3000 Leuven (Belgium); Richert, Lysiane, E-mail: l.richert@kaly-cell.com [KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim (France); Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be [Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O and N2, Herestraat 49 — bus 921, 3000 Leuven (Belgium); Annaert, Pieter, E-mail: Pieter.Annaert@pharm.kuleuven.be [Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O and N2, Herestraat 49 — bus 921, 3000 Leuven (Belgium)

    2014-01-01

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation by hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug

  12. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    International Nuclear Information System (INIS)

    Chatterjee, Sagnik; Richert, Lysiane; Augustijns, Patrick; Annaert, Pieter

    2014-01-01

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation by hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug

  13. HLA-G 3′UTR Polymorphisms Predict Drug-Induced G3-4 Toxicity Related to Folinic Acid/5-Fluorouracil/Oxaliplatin (FOLFOX4) Chemotherapy in Non-Metastatic Colorectal Cancer

    Science.gov (United States)

    Garziera, Marica; Virdone, Saverio; De Mattia, Elena; Scarabel, Lucia; Cecchin, Erika; Polesel, Jerry; D’Andrea, Mario; Pella, Nicoletta; Buonadonna, Angela; Favaretto, Adolfo; Toffoli, Giuseppe

    2017-01-01

    Polymorphisms in drug-metabolizing enzymes might not completely explain inter-individual differences in toxicity profiles of patients with colorectal cancer (CRC) that receive folinic acid/5-fluorouracil/oxaliplatin (FOLFOX4). Recent data indicate that the immune system could contribute to FOLFOX4 outcomes. In light of the immune inhibitory nature of human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, we aimed to identify novel genomic markers of grades 3 and 4 (G3-4) toxicity related to FOLFOX4 therapy in patients with CRC. We retrospectively analyzed data for 144 patients with stages II-III CRC to identify HLA-G 3′ untranslated region (3′UTR) polymorphisms and related haplotypes and evaluate their impact on the risk of developing G3-4 toxicities (i.e., neutropenia, hematological/non-hematological toxicity, neurotoxicity) with logistic regression. The rs1610696-G/G polymorphism was associated with increased risk of G3-4 neutropenia (OR = 3.76, p = 0.015) and neurotoxicity (OR = 8.78, p = 0.016); rs371194629-Ins/Ins was associated with increased risk of neurotoxicity (OR = 5.49, p = 0.027). HLA-G 3′UTR-2, which contains rs1610696-G/G and rs371194629-Ins/Ins polymorphisms, was associated with increased risk of G3-4 neutropenia (OR = 3.92, p = 0.017) and neurotoxicity (OR = 11.29, p = 0.009). A bootstrap analysis confirmed the predictive value of rs1610696 and rs371194629, but the UTR-2 haplotype was validated only for neurotoxicity. This exploratory study identified new HLA-G 3′UTR polymorphisms/haplotypes as potential predictive markers of G3-4 toxicities in CRC. PMID:28653974

  14. HLA-G 3′UTR Polymorphisms Predict Drug-Induced G3-4 Toxicity Related to Folinic Acid/5-Fluorouracil/Oxaliplatin (FOLFOX4 Chemotherapy in Non-Metastatic Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Marica Garziera

    2017-06-01

    Full Text Available Polymorphisms in drug-metabolizing enzymes might not completely explain inter-individual differences in toxicity profiles of patients with colorectal cancer (CRC that receive folinic acid/5-fluorouracil/oxaliplatin (FOLFOX4. Recent data indicate that the immune system could contribute to FOLFOX4 outcomes. In light of the immune inhibitory nature of human leukocyte antigen-G (HLA-G, a non-classical major histocompatibility complex (MHC class I molecule, we aimed to identify novel genomic markers of grades 3 and 4 (G3-4 toxicity related to FOLFOX4 therapy in patients with CRC. We retrospectively analyzed data for 144 patients with stages II-III CRC to identify HLA-G 3′ untranslated region (3′UTR polymorphisms and related haplotypes and evaluate their impact on the risk of developing G3-4 toxicities (i.e., neutropenia, hematological/non-hematological toxicity, neurotoxicity with logistic regression. The rs1610696-G/G polymorphism was associated with increased risk of G3-4 neutropenia (OR = 3.76, p = 0.015 and neurotoxicity (OR = 8.78, p = 0.016; rs371194629-Ins/Ins was associated with increased risk of neurotoxicity (OR = 5.49, p = 0.027. HLA-G 3′UTR-2, which contains rs1610696-G/G and rs371194629-Ins/Ins polymorphisms, was associated with increased risk of G3-4 neutropenia (OR = 3.92, p = 0.017 and neurotoxicity (OR = 11.29, p = 0.009. A bootstrap analysis confirmed the predictive value of rs1610696 and rs371194629, but the UTR-2 haplotype was validated only for neurotoxicity. This exploratory study identified new HLA-G 3′UTR polymorphisms/haplotypes as potential predictive markers of G3-4 toxicities in CRC.

  15. Evaluation of Sub-acute Oral Toxicity of Lithium Carbonate Microemulsion (Nano Size) on Liver and Kidney of Mice

    Science.gov (United States)

    Kalantari, Heibatullah; Salimi, Anayatollah; Rezaie, Anahita; Jazayeri Shushtari, Fereshteh; Goudarzi, Mehdi

    2015-01-01

    Background: The development of drug delivery systems has improved the therapeutic and toxic properties of existing drugs in therapy. Microemulsion systems are novel vehicles for drug delivery, which have been developed in recent years. These systems are currently of interest to the pharmaceutical scientist because of their considerable potential to act as drug delivery vehicles by incorporating into a wide range of drug molecules. Although these systems improved solubility and bioavailability of drugs, they may have potential toxic effects on the body organs. Objectives: The purpose of this study was to examine a possible hepatotoxic and nephrotoxic effect of lithium carbonate microemulsion (LCME) in a mice model. Materials and Methods: Eighty male Swiss albino mice were randomly allocated to eight experimental groups, as follows: Group 1, as negative control group were treated orally with normal saline (0.9% NaCl); Group 2, received microemulsion base without drug as control group; Groups 3 to 5, received lithium carbonate (LC) solution in doses of 50, 100, and 200 mg/kg, respectively; Groups 6 to 8, received LCME orally in doses of 50, 100, and 200 mg/kg, respectively. All drugs were administered orally for ten consecutive days. Serum glutamate pyruvate aminotransferase (SGPT), serum glutamate oxaloacetate aminotransferase (SGOT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and plasma creatinine (Cr), as markers of liver and kidney toxicity in treated mice, were measured. Furthermore, the changes of tissue were assessed by histopathologic examination. Results: The findings showed that serum activity of ALP, SGOT, and SGPT and the levels of BUN and Cr in microemulsion base group was greater than normal saline group. However, this difference was not significant. Administration of LC and LCME in all doses resulted in a significant increase in the levels of BUN and serum activity of SGOT and SGPT in comparison to normal saline group (P < 0

  16. Amiodarone pulmonary toxicity: Case report

    Directory of Open Access Journals (Sweden)

    Vasić Nada

    2014-01-01

    Full Text Available Introduction. Amiodarone, an antiarrhythmic drug, which contains iodine compound, has a tendency to accumulate in some organs including the lungs. This is age, drug dosage and therapy duration dependent. Case Outline. We present a case of a 73-year-old man, a smoker, who was admitted as emergency case due to severe dyspnea, tachypnea with signs of cyanosis and respiratory insufficiency. Chest x-ray revealed bilateral diffuse pulmonary shadows in the middle and upper parts of the lungs, similar to those in tuberculosis. His illness history showed chronic obstructive pulmonary disease, arterial hypertension, and atrial fibrillation which has been treated with amiodarone for six years. Sputum smears were negative for mycobacteria, and by the diagnostic elimination method for specific, non-specific and malignant disease the diagnosis of amiodarone pulmonary toxicity was made. Fiberoptic bronchoscopy and pathohistological findings of bronchiolitis obliterans organizing pneumonia confirmed the diagnosis. As the first therapeutic approach, amiodarone therapy was stopped. Then, systemic therapy with methylprednisolone 21 (sodium succinate 40 mg i.v. daily during the first two weeks was initiated and continued with daily dose of methylprednisolone 30 mg orally during the next three months. The patient showed a marked subjective improvement during the first week, which was followed by the improvement of respiratory function and withdrawal of pulmonary changes with complete radiographic and CT resolution after eight months. Conclusion. Amiodarone pulmonary toxicity should be taken into consideration, especially in elderly patients with respiratory symptoms and pulmonary changes, even if only a low dose of amiodarone is administred over a longer time period.

  17. Hydrosilylated Porous Silicon Particles Function as an Intravitreal Drug Delivery System for Daunorubicin

    Science.gov (United States)

    Hartmann, Kathrin I.; Nieto, Alejandra; Wu, Elizabeth C.; Freeman, William R.; Kim, Jae Suk; Chhablani, Jay; Sailor, Michael J.

    2013-01-01

    Abstract Purpose To evaluate in vivo ocular safety of an intravitreal hydrosilylated porous silicon (pSi) drug delivery system along with the payload of daunorubicin (DNR). Methods pSi microparticles were prepared from the electrochemical etching of highly doped, p-type Si wafers and an organic linker was attached to the Si-H terminated inner surface of the particles by thermal hydrosilylation of undecylenic acid. DNR was bound to the carboxy terminus of the linker as a drug-loading strategy. DNR release from hydrosilylated pSi particles was confirmed in the excised rabbit vitreous using liquid chromatography–electrospray ionization–multistage mass spectrometry. Both empty and DNR-loaded hydrosilylated pSi particles were injected into the rabbit vitreous and the degradation and safety were studied for 6 months. Results The mean pSi particle size was 30×46×15 μm with an average pore size of 15 nm. Drug loading was determined as 22 μg per 1 mg of pSi particles. An ex vivo drug release study showed that intact DNR was detected in the rabbit vitreous. An in vivo ocular toxicity study did not reveal clinical or pathological evidence of any toxicity during a 6-month observation. Hydrosilylated pSi particles, either empty or loaded with DNR, demonstrated a slow elimination kinetics from the rabbit vitreous without ocular toxicity. Conclusions Hydrosilylated pSi particles can host a large quantity of DNR by a covalent loading strategy and DNR can be slowly released into the vitreous without ocular toxicity, which would appear if an equivalent quantity of free drug was injected. PMID:23448595

  18. Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors.

    Science.gov (United States)

    Alessandrino, F; Tirumani, S H; Krajewski, K M; Shinagare, A B; Jagannathan, J P; Ramaiya, N H; Di Salvo, D N

    2017-07-01

    The purpose of this review is to familiarise radiologists with the spectrum of hepatic toxicity seen in the oncology setting, in view of the different systemic therapies used in cancer patients. Drug-induced liver injury can manifest in various forms, and anti-neoplastic agents are associated with different types of hepatotoxicity. Although chemotherapy-induced liver injury can present as hepatitis, steatosis, sinusoidal obstruction syndrome, and chronic parenchymal damages, molecular targeted therapy-associated liver toxicity ranges from mild liver function test elevation to fulminant life-threatening acute liver failure. The recent arrival of immune checkpoint inhibitors in oncology has introduced a new range of immune-related adverse events, with differing mechanisms of liver toxicity and varied imaging presentation of liver injury. High-dose chemotherapy regimens for haematopoietic stem cell transplantation are associated with sinusoidal obstruction syndrome. Management of hepatic toxicity depends on the clinical scenario, the drug in use, and the severity of the findings. In this article, we will (1) present the most common types of oncological drugs associated with hepatic toxicity and associated liver injuries; (2) illustrate imaging findings of hepatic toxicities and the possible differential diagnosis; and (3) provide a guide for management of these conditions. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  20. Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity.

    Directory of Open Access Journals (Sweden)

    Christopher J Folts

    2016-12-01

    Full Text Available Neurodegenerative lysosomal storage disorders (LSDs are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD], a central nervous system (CNS-penetrant protective agent rescued myelin and oligodendrocyte (OL progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.

  1. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  2. Toxicity management of angiogenesis inhibitors: resolution of expert panel

    Directory of Open Access Journals (Sweden)

    Pavel O. Rumiantsev

    2017-12-01

    Full Text Available On 22 June 2017 in St. Petersburg the expert panel was held on the topic “Management of toxicity of angiogenesis inhibitors”, which discussed current issues of systemic therapy of advanced differentiated thyroid cancer resistant to radioactive iodine therapy, advanced kidney cancer and questions of efficacy and safety of new target drugs in the treatment of these diseases. The reports and discussions of experts raised the following questions: 1. Own experience of using lenvatinib in patients with differentiated thyroid cancer refractory to therapy with radioactive iodine and kidney cancer. 2. Profile of efficacy and safety of modern targeted therapy with multikinase inhibitors. 3. Prophylaxis and management of predictable toxicity.

  3. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    Science.gov (United States)

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  4. Our Approach to Toxic Epidermal Necrolysis and Review of Current Treatment Alternatives

    Directory of Open Access Journals (Sweden)

    Fatih Uygur

    2008-09-01

    Full Text Available Toxic epidermal necrolysis (TEN is a clinical entity which has a 30 to 40 % mortality rate, with necrolysis affecting the entire epidermis. Antibiotics, nonsteroidal anti-inflammatory drugs and anticonvulsants are offender drugs in TEN etiology. A standard treatment protocol with proven efficacy is still lacking. In this study, current treatment practice and our treatment strategy for TEN is discussed and eight patients treated in our clinic between the years 2001 and 2008 are reviewed.

  5. A six-month prospective study to find out the treatment outcome, prognosis and offending drugs in toxic epidermal necrolysis from an urban institution in Kolkata

    Directory of Open Access Journals (Sweden)

    Sudip Das

    2013-01-01

    Full Text Available Toxic epidermal necrolysis is the life-threatening dermatological emergency, most often an adverse cutaneous drug reaction with high mortality. A 6-month prospective study was conducted in our institution to find out the offending drugs, to assess the prognosis on admission using SCORTEN: Severity of illness score and to find out the treatment outcome. Anticonvulsants, NSAIDs and sulphonamides are the common offending agents; but in our study, 2 were due to homeopathic medicines. Out of 20 patients, on the date of admission SCORTEN prognostic score was 2 in 11 patients, 3 in 8 patients and 4 in 1 patient. Eighteen patients were treated with dexamethasone intramuscular injection and 2 patients got intravenous immunoglobulin (IVIG. All patients survived without any mortality. Though improvement was slightly faster with IVIG, early administration of corticosteroids was also of encouraging efficacy and should be considered in developing countries due to low cost. No mortality in our study suggests need to validate the SCORTEN index in our country in a large number of patients.

  6. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    International Nuclear Information System (INIS)

    Dalmas, Deidre A.; Scicchitano, Marshall S.; Mullins, David; Hughes-Earle, Angela; Tatsuoka, Kay; Magid-Slav, Michal; Frazier, Kendall S.; Thomas, Heath C.

    2011-01-01

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid and high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip® analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan™) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: ► A gene panel was developed to help predict rat drug-induced mesenteric MAN. ► A gene panel was identified following treatment of rats with 28

  7. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation

    NARCIS (Netherlands)

    D. Kuypers (Dirk); Y. le Meur (Yann); M. Cantarovich (Marcelo); M.J. Tredger (Michael); S.E. Tett (Susan); D. Cattaneo (Dario); B. Tönshoff (Burkhard); D.W. Holt (David); J. Chapman (Jeremy); T. van Gelder (Teun)

    2010-01-01

    textabstractWith the increasing use of mycophenolic acid (MPA) in solid organ transplantation, the need for more accurate drug dosing has become evident. Personalized immunosuppressive therapy requires better strategies for avoidance of drug-related toxicity while maintaining efficacy. Few studies

  8. Therapeutic drug monitoring in pregnancy.

    Science.gov (United States)

    Matsui, Doreen M

    2012-10-01

    Therapeutic drug monitoring (TDM) is commonly recommended to optimize drug dosing regimens of various medications. It has been proposed to guide therapy in pregnant women, in whom physiological changes may lead to altered pharmacokinetics resulting in difficulty in predicting the appropriate drug dosage. Ideally, TDM may play a role in enhancing the effectiveness of treatment while minimizing toxicity of both the mother and fetus. Monitoring of drug levels may also be helpful in assessing adherence to prescribed therapy in selected cases. Limitations exist as therapeutic ranges have only been defined for a limited number of drugs and are based on data obtained in nonpregnant patients. TDM has been suggested for anticonvulsants, antidepressants, and antiretroviral drugs, based on pharmacokinetic studies that have shown reduced drug concentrations. However, there is only relatively limited (and sometimes inconsistent) information regarding the clinical impact of these pharmacokinetic changes during pregnancy and the effect of subsequent dose adjustments. Further studies are required to determine whether implementation of TDM during pregnancy improves outcome and is associated with any benefit beyond that achieved by clinical judgment alone. The cost effectiveness of TDM programs during pregnancy also remains to be examined.

  9. Drug dosing in chronic kidney disease.

    Science.gov (United States)

    Gabardi, Steven; Abramson, Stuart

    2005-05-01

    Patients with chronic kidney disease (CKD) are at high risk for adverse drug reactions and drug-drug interactions. Drug dosing in these patients often proves to be a difficult task. Renal dysfunction-induced changes in human pathophysiology regularly results may alter medication pharmacodynamics and handling. Several pharmacokinetic parameters are adversely affected by CKD, secondary to a reduced oral absorption and glomerular filtration; altered tubular secretion; and reabsorption and changes in intestinal, hepatic, and renal metabolism. In general, drug dosing can be accomplished by multiple methods; however, the most common recommendations are often to reduce the dose or expand the dosing interval, or use both methods simultaneously. Some medications need to be avoided all together in CKD either because of lack of efficacy or increased risk of toxicity. Nevertheless, specific recommendations are available for dosing of certain medications and are an important resource, because most are based on clinical or pharmacokinetic trials.

  10. COMPARATIVE STUDY FOR SUBCHRONIC TOXICITY OF VASELINE OIL AND GLYCELAX

    Directory of Open Access Journals (Sweden)

    A. V. Voronkov

    2016-01-01

    Full Text Available Contemporary therapeutic approaches offer a wide range of laxative agents, which are often used without a control, exceeding the regime recommended. Therefore, the comparative study for subchronic toxicity of both drugs from this group (Vaseline oil and Glycelax appears interesting.The aim of the study was the comparison of a toxic influence of 14-days application of the drugs under study.Methods. The drugs were studied in two doses: higher therapeutic, and toxic, which 10 times exceeds therapeutic dose. We used “Polispektr-8/B” electrocardiograph, BC 2800vet (Mindray hematologic veterinary analyzer, BS-380 (Mindray biochemical analyzer, CL-50 urine analyzer. After the animals autopsy we determined organs’ coefficient (heart, lungs, spleen, liver, stomach, kidneys, adrenals.Results. While studying the ECG of female rats, amplitude of R wave increased after they got Glycelax in both doses. Female rats who got Vaseline oil this index decreased at minimum dose and increased at maximum dose. After Glycelax application, male rats had an increased activity of alanine aminotransferase. After Vaseline oil application at maximum dose, female rats had alkaline phosphatase activity lowered. Female rats, which got a maximum dose of Vaseline oil had a total protein lowered. Glycelax at maximum dose increased the content of bilirubin and its fractions in male and female rats, while Vaseline oil application at maximum dose increased the content of bilirubin in female rats. Male rats which got Glycelax had hemoglobin and hematocrit level increased.Conclusion. At long-term application of Vaseline oil, animals of both genders had heart disorders with possible development of arrhythmia, hepatotoxic effect, lipid exchange dysfunction. After excessive use of Glycelax the above mentioned is added with possible hemoglobin and rheological blood properties level decrease.

  11. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs.

    Science.gov (United States)

    Hrynchak, Ivanna; Sousa, Emília; Pinto, Madalena; Costa, Vera Marisa

    2017-05-01

    Anticancer drugs are presently guarantying more survivors as a result of more powerful drugs or combinations of drugs used in therapy. Thus, it has become more crucial to study and overcome the side effects of these therapies. Cardiotoxicity is one of the most relevant side effects on the long-term cancer survivors, because of its high social and economic impact. Drug metabolism can result in active metabolites or toxic metabolites that can lead to important side effects. The metabolites of anticancer drugs are possible culprits of cardiotoxicity; however, the cardiotoxicity of many of the metabolites in several drug classes was not yet suitably studied so far. On the other hand, the use of prodrugs that are bioactivated through metabolism can be a good alternative to obtain more cardio safe drugs. In this review, the methods to obtain and study metabolites are summarized and their application to the study of a group of anticancer drugs with acknowledged cardiotoxicity is highlighted. In this group of drugs, doxorubicin (DOX, 1), mitoxantrone (MTX, 2), cyclophosphamide (CTX, 3) and 5-fluorouracil (5-FU, 4) are included, as well as the tyrosine kinase inhibitors, such as imatinib (5), sunitinib (6) and sorafenib (7). Only with the synthesis and purification of considerable amounts of the metabolites can reliable studies be performed, either in vitro or in vivo that allow accurate conclusions regarding the cardiotoxicity of anticancer drug metabolites and then pharmacological prevention or treatment of the cardiac side effects can be done.

  12. Modulation of the toxicity and antitumour activity of alkylating drugs by steroids.

    OpenAIRE

    Shepherd, R.; Harrap, K. R.

    1982-01-01

    The steroids prednisolone and progesterone significantly altered the therapeutic indices of the alkylating agents, nitrogen mustard, melphalan, cyclophosphamide, phenyl acetic mustard and chlorambucil. For nitrogen mustard, chlorambucil and phenyl acetic mustard, prednisolone reduced host toxicity in the rat and enhanced the antitumour effectiveness against alkylating-agent-resistant strains of the Yoshida sarcoma and Walker carcinosarcoma. Progesterone also increased the therapeutic index of...

  13. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery.

    Science.gov (United States)

    Kassem, Ahmed Alaa

    2018-02-06

    Drug toxicity and inefficacy are commonly experienced problems with drug therapy failure. To face these problems, extensive research work took place aiming to design new dosage forms for drug delivery especially nanoparticulate systems. These systems are designed to increase the quantity of the therapeutic molecule delivered to the desired site concurrently with reduced side effects. In order to achieve this objective, nanocarriers must principally display suitable drug vehiculization abilities and a controlled biological destiny of drug molecules. Only the intelligent design of the nanomedicine will accomplish these fundamentals. The present review article is dedicated to the discussion of the important fundamentals to be considered in the fabrication of nanomedicines. These include the therapeutic agent, the nanocarrier and the functionalization moieties. Special consideration is devoted to the explanation and compilation of highly potential fabrication approaches assisting how to control the in vivo destiny of the nanomedicine. Finally, some nanotechnology-based drug delivery systems, for the development of nanomedicine, are also discussed. The nanotechnology-based drug delivery systems showed remarkable outcomes based on passive and active targeting as well as improvement of the drug pharmacodynamic and pharmacokinetic profiles. Multifunctional nanocarrier concept affords a revolutionary drug delivery approach for maximizing the efficacy, safety and monitoring the biological fate of the therapeutic molecule. Nanomedicines may enhance the efficacy of therapeutic molecules and reduce their toxic effects. Meanwhile, further research works are required to rightly optimize (and define) the effectiveness, nanotoxicity, in vivo destiny and feasibility of these nanomedicines which, from a preclinical standpoint, are actually promising. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Nonconvulsive status epilepticus and Creutzfeldt–Jakob-like EEG changes in a case of lithium toxicity

    Directory of Open Access Journals (Sweden)

    B.K. Madhusudhan

    2014-01-01

    This case highlights the importance of therapeutic drug-level monitoring of lithium, especially where toxicity is suspected, and the important role electroencephalography plays in diagnosing NCSE and its management.

  15. Curcumin Modulates α-Synuclein Aggregation and Toxicity

    Science.gov (United States)

    2012-01-01

    In human beings, Parkinson’s disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases. PMID:23509976

  16. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  17. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line.

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2015-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease.Genetically engineered parasitic strains are used for high throughput screening (HTS of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6 and was validated against a series of known anti-trypanosomatid drugs.We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.

  18. Drug delivery approaches for breast cancer

    Directory of Open Access Journals (Sweden)

    Singh SK

    2017-08-01

    Full Text Available Santosh Kumar Singh,1 Shriti Singh,2 James W Lillard Jr,1 Rajesh Singh1 1Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA; 2Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India Abstract: Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach. Keywords: breast cancer, nanoparticles, drug delivery systems

  19. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    Introduction: The high failure rate of drug candidates due to toxicity, during clinical trials, is a critical issue in drug discovery. Network biology has become a promising approach, in this regard, using the increasingly large amount of biological and chemical data available and combining...... it with bioinformatics. With this approach, the assessment of chemical safety can be done across multiple scales of complexity from molecular to cellular and system levels in human health. Network biology can be used at several levels of complexity. Areas covered: This review describes the strengths and limitations...... of network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  20. Microtubule destabilising agents: far more than just antimitotic anticancer drugs

    OpenAIRE

    Bates, Darcy; Eastman, Alan

    2016-01-01

    Vinca alkaloids have been approved as anticancer drugs for more than 50 years. They have been classified as cytotoxic chemotherapy drugs that act during cellular mitosis, enabling them to target fast growing cancer cells. With the evolution of cancer drug development there has been a shift towards new “targeted” therapies to avoid the side effects and general toxicities of “cytotoxic chemotherapies” such as the vinca alkaloids. Due to their original classification, many have overlooked the fa...

  1. Acute health problems due to recreational drug use in patients presenting to an urban emergency department in Switzerland.

    Science.gov (United States)

    Liakoni, Evangelia; Dolder, Patrick C; Rentsch, Katharina; Liechti, Matthias E

    2015-01-01

    To describe acute toxicity of recreational drugs including novel psychoactive substances. We included all cases presenting at the emergency department (ED) of the University Hospital of Basel, Switzerland, between October 2013 and September 2014 with acute toxicity due to self-reported recreational drug use or with symptoms/signs consistent with acute toxicity. Isolated ethanol intoxications were excluded. Intoxications were confirmed with immunoassays and liquid chromatography coupled with mass spectrometry (LC-MS/MS), which also detected novel psychoactive substances. Among the 47,767 attendances at the ED, 216 were directly related to acute toxicity of recreational drugs. The mean patient age was 31 years and 69% were male. Analytical drug confirmation was available in 180 cases. Most presentations were related to cocaine (36%), cannabis (31%), opioids (13%), 3,4-methylenedioxy-methamphetamine (MDMA, 9%), other amphetamines (7%), benzodiazepines (7%), and lysergic acid diethylamide (LSD, 5%). The substances most commonly detected analytically were cannabis (37%), cocaine (33%), opioids (29%), benzodiazepines (21%), and amphetamines including MDMA (13%). Notably, there were only two cases of novel psychoactive substances (2,5-dimethoxy-4-bromophenethylamine [2C-B] and pentylone). The most frequent symptoms were tachycardia (31%), anxiety (27%), nausea or vomiting (23%), and agitation (22%). Severe complications included myocardial infarction (2), psychosis (10), seizures (10), and 1 fatality. Most patients were discharged home (68%), 8% were admitted to intensive care and 9% were referred to psychiatric care. Medical problems related to illicit drugs mostly concerned cocaine and cannabis and mainly involved sympathomimetic toxicity and/or psychiatric disorders. ED presentations associated with novel psychoactive substances appeared to be relatively rare.

  2. [Study on liver targeted drug delivery system of the effective anticancer component from Bolbstemma paniculatum].

    Science.gov (United States)

    Sun, Yi-Yi; Ll, Tong-Hui; Tang, Chen-Kang; Zhu, Zi-Ping; Chi, Qun; Hou, Shi-Xiang

    2005-06-01

    To study the liver targeted drug delivery system of TBMS--the effective anticancer component from Bolbstemma paniculatum, and to discuss the system's function of decreasing toxicity. BCA was used as carrier material. The preparation through overall feedback dynamic techniques. The properties of preparation and toxicology were also technology of nanoparticles was optimized studied. Thenanoparticles' targeting in mice vivo was observed with transmission electron microscopy. The function of decreasing toxicity was researched by the XXTX-2000 automatic quantitative analysis management system. D50 was 0.68 microm. Drug-loading rate and entrapment rate were 37.3% and 88.6% respectively. The release in vitro accorded with Weibull equation. The reaching release balance time and the t 1/2 extended 26 times and 19 times respectively comparing with injection. Nanoparticles mainly distributed in liver tissue. Their toxicity to lung and liver was evidently lower than injection. Nanoparticles' LD50 exceeded injection's by 13.5% and their stimulus was much lower than injection. The TBMS can be targeted to liver by liver targeted drug delivery system. At the same time, the problem about the toxicity hindering clinical application could be solved, which lays the foundation for the further studies on TBMS.

  3. Thyroid cancer in toxic and non-toxic multinodular goiter

    Directory of Open Access Journals (Sweden)

    Cerci C

    2007-01-01

    Full Text Available Background : Many authors have claimed that hyperthyroidism protects against thyroid cancer and believed that the incidence of malignancy is lower in patients with toxic multinodular goiter (TMG than in those with non-toxic multinodular goiter. But in recent studies, it was reported that the incidence of malignancy with TMG is not as low as previously thought. Aim : To compare the thyroid cancer incidence in patients with toxic and non-toxic multinodular goiter. Settings and Design : Histology reports of patients treated surgically with a preoperative diagnosis of toxic and non-toxic multinodular goiter were reviewed to identify the thyroid cancer incidence. Patients having a history of neck irradiation or radioactive iodine therapy were excluded from the study. Materials and Methods : We reviewed 294 patients operated between 2001-2005 from toxic and non-toxic multinodular goiter. One hundred and twenty-four of them were toxic and 170 were non-toxic. Hyperthyroidism was diagnosed by elevated tri-iodothyroinine / thyroxine ratios and low thyroid-stimulating hormone with clinical signs and symptoms. All patients were evaluated with ultrasonography and scintigraphy and fine needle aspiration biopsy. Statistical Analysis Used : Significance of the various parameters was calculated by using ANOVA test. Results : The incidence of malignancy was 9% in the toxic and 10.58% in the non-toxic multinodular goiter group. Any significant difference in the incidence of cancer and tumor size between the two groups could not be detected. Conclusions : The incidence of malignancy in toxic multinodular goiter is not very low as thought earlier and is nearly the same in non-toxic multinodular goiter.

  4. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    Science.gov (United States)

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  5. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Science.gov (United States)

    Abedini, Andisheh; Plesner, Annette; Cao, Ping; Ridgway, Zachary; Zhang, Jinghua; Tu, Ling-Hsien; Middleton, Chris T; Chao, Brian; Sartori, Daniel J; Meng, Fanling; Wang, Hui; Wong, Amy G; Zanni, Martin T; Verchere, C Bruce; Raleigh, Daniel P; Schmidt, Ann Marie

    2016-01-01

    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI: http://dx.doi.org/10.7554/eLife.12977.001 PMID:27213520

  6. [Cinnamon rolls are not associated with admission for toxic or alcoholic hepatitis in a Danish liver referral centre].

    Science.gov (United States)

    Gr Ønbæk, Henning; Borre, Mette

    2014-12-08

    Cinnamon contains cumarin, which may be toxic to the liver. EU-regulations standardardize the amount of cinnamon in pastry including cinnamon rolls. The aim of the study was to investigate if cinnamon intake from pastry was associated with toxic or alcoholic hepatitis. We registered 58 patients with toxic hepatitis, 38 (66%) women and 20 (34%) men with a median age of 51 (range: 32-80) and 53 (range: 18-78) years, respectively. A total of 22 patients had primarily cholestasis and 36 had hepatitis biochemically. The duration of toxic liver disease from admission to normalization of liver enzymes was similar in the two groups (3.5 ± 3.5 vs 3.6 ± 3.5 months). Toxic hepatitis was most often caused by drugs e.g. NSAID (n = 15; 26%), antibiotics (n = 9; 16%), alternative medicine (n = 7; 12%) and Antabuse (n = 5; 9%). We registered eight patients admitted with severe alcoholic hepatitis, five men and three women, median age of 60 (range: 34-67) years. Alcoholic hepatitis was associated with high alcohol intake. None of the patients with toxic or alcoholic hepatitis reported of excessive intake of cinnamon rolls and there was no evidence of cinnamon added to alcohol of alternative medicine products. Intake of cinnamon from cinnamon rolls is not associated with admission for toxic or alcoholic hepatitis. However, for the diagnosis of toxic liver diseases including alcohol it is very important to have patient information regarding any new drugs, alternative medicine and alcohol intake. Further, other causes of liver diseases should be excluded. not relevant. not relevant.

  7. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  8. Spirulina maxima Protects Liver From Isoniazid and Rifampicin Drug Toxicity.

    Science.gov (United States)

    Jatav, Santosh Kumar; Kulshrestha, Archana; Zacharia, Anish; Singh, Nita; Tejovathi, G; Bisen, P S; Prasad, G B K S

    2014-07-01

    Hepatotoxicity associated with isoniazid and rifampicin is one of the major impediments in antituberculosis therapy. The present study explored the prophylactic and therapeutic efficacies of Spirulina maxima in isoniazid and rifampicin induced hepatic damage in a rat model. Hepatic damage induced in Wistar rats by isoniazid and rifampicin resulted in significant alterations in biomarkers of liver function, namely, bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, and oxidative stress markers such as superoxide dismutase, catalase, glutathione, and thiobarbituric acid reactive substances. Co-administration of Spirulina maxima along with antituberculosis drugs protected liver from hepatotoxicity due to isoniazid and rifampicin. Administration of Spirulina maxima consecutively for 2 weeks to hepatodamaged animals resulted in restoration of hepatic function as evident from normalization of serum markers of liver function. Thus, the present study revealed remarkable prophylactic and therapeutic potential of Spirulina maxima. Co-administration of Spirulina maxima and antituberculosis drugs is advantageous as it provides extra nutritional benefit. © The Author(s) 2014.

  9. FDA toxicity databases and real-time data entry

    International Nuclear Information System (INIS)

    Arvidson, Kirk B.

    2008-01-01

    Structure-searchable electronic databases are valuable new tools that are assisting the FDA in its mission to promptly and efficiently review incoming submissions for regulatory approval of new food additives and food contact substances. The Center for Food Safety and Applied Nutrition's Office of Food Additive Safety (CFSAN/OFAS), in collaboration with Leadscope, Inc., is consolidating genetic toxicity data submitted in food additive petitions from the 1960s to the present day. The Center for Drug Evaluation and Research, Office of Pharmaceutical Science's Informatics and Computational Safety Analysis Staff (CDER/OPS/ICSAS) is separately gathering similar information from their submissions. Presently, these data are distributed in various locations such as paper files, microfiche, and non-standardized toxicology memoranda. The organization of the data into a consistent, searchable format will reduce paperwork, expedite the toxicology review process, and provide valuable information to industry that is currently available only to the FDA. Furthermore, by combining chemical structures with genetic toxicity information, biologically active moieties can be identified and used to develop quantitative structure-activity relationship (QSAR) modeling and testing guidelines. Additionally, chemicals devoid of toxicity data can be compared to known structures, allowing for improved safety review through the identification and analysis of structural analogs. Four database frameworks have been created: bacterial mutagenesis, in vitro chromosome aberration, in vitro mammalian mutagenesis, and in vivo micronucleus. Controlled vocabularies for these databases have been established. The four separate genetic toxicity databases are compiled into a single, structurally-searchable database for easy accessibility of the toxicity information. Beyond the genetic toxicity databases described here, additional databases for subchronic, chronic, and teratogenicity studies have been prepared

  10. Emerging drugs of abuse.

    Science.gov (United States)

    Nelson, Michael E; Bryant, Sean M; Aks, Steven E

    2014-02-01

    Many new emerging drugs of abuse are marketed as legal highs despite being labeled "not for human consumption" to avoid regulation. The availability of these substances over the Internet and in "head shops" has lead to a multitude of emergency department visits with severe complications including deaths worldwide. Despite recent media attention, many of the newer drugs of abuse are still largely unknown by health care providers. Slight alterations of the basic chemical structure of substances create an entirely new drug no longer regulated by current laws and an ever-changing landscape of clinical effects. The purity of each substance with exact pharmacokinetic and toxicity profiles is largely unknown. Many of these substances can be grouped by the class of drug and includes synthetic cannabinoids, synthetic cathinones, phenethylamines, as well as piperazine derivatives. Resultant effects generally include psychoactive and sympathomimetic-like symptoms. Additionally, prescription medications, performance enhancing medications, and herbal supplements are also becoming more commonly abused. Most new drugs of abuse have no specific antidote and management largely involves symptom based goal directed supportive care with benzodiazepines as a useful adjunct. This paper will focus on the history, epidemiology, clinical effects, laboratory analysis, and management strategy for many of these emerging drugs of abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Toxic element contamination of natural health products and pharmaceutical preparations.

    Directory of Open Access Journals (Sweden)

    Stephen J Genuis

    Full Text Available BACKGROUND: Concern has recently emerged regarding the safety of natural health products (NHPs-therapies that are increasingly recommended by various health providers, including conventional physicians. Recognizing that most individuals in the Western world now consume vitamins and many take herbal agents, this study endeavored to determine levels of toxic element contamination within a range of NHPs. METHODS: Toxic element testing was performed on 121 NHPs (including Ayurvedic, traditional Chinese, and various marine-source products as well as 49 routinely prescribed pharmaceutical preparations. Testing was also performed on several batches of one prenatal supplement, with multiple samples tested within each batch. Results were compared to existing toxicant regulatory limits. RESULTS: Toxic element contamination was found in many supplements and pharmaceuticals; levels exceeding established limits were only found in a small percentage of the NHPs tested and none of the drugs tested. Some NHPs demonstrated contamination levels above preferred daily endpoints for mercury, cadmium, lead, arsenic or aluminum. NHPs manufactured in China generally had higher levels of mercury and aluminum. CONCLUSIONS: Exposure to toxic elements is occurring regularly as a result of some contaminated NHPs. Best practices for quality control-developed and implemented by the NHP industry with government oversight-is recommended to guard the safety of unsuspecting consumers.

  12. The risk of contamination of food with toxic substances present in animal feed

    NARCIS (Netherlands)

    Kan, C.A.; Meijer, G.A.L.

    2007-01-01

    Toxic substances such as dioxins, mycotoxins, heavy metals, pesticides, veterinary drugs and polycyclic aromatic hydrocarbons are almost ubiquitous in the environment. Thus, they are also present in ingredients for animal feed. Adequate risk management depends on knowledge of absorption, metabolism,

  13. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    International Nuclear Information System (INIS)

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-01-01

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development

  14. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kejian, E-mail: kejian.wang.bio@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China); Weng, Zuquan [Japan National Institute of Occupational Safety and Health, Kawasaki (Japan); Sun, Liya [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China); Sun, Jiazhi; Zhou, Shu-Feng [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States); He, Lin, E-mail: helin@Bio-X.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China)

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development.

  15. Alimentary, metabolic and toxic osteopathies in adults

    Energy Technology Data Exchange (ETDEWEB)

    Ellegast, H.H.

    1986-12-01

    Skeletal changes in deficient or badly balanced nutrition (alimentary osteopathies) and osseous changes accompanying chronic desease of internal organs and metabolic disorders (metabolic osteopathies) are discussed. Basically, the classical generalised skeletal changes such as osteoporosis, osteomalacia, fibroosteoclacia and sklerosis of the bone can occur in their pure form or as a combination of two or more of these disorders. Finally the exogenic toxic osteopathies are discussed, nowadays fluorosis being the most important. Other external factors may be drugs like methotrexate and antiepileptic medications.

  16. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  17. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  18. Polymer nanogels: a versatile nanoscopic drug delivery platform

    Science.gov (United States)

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  19. Applications of nanoparticle systems in drug delivery technology

    Directory of Open Access Journals (Sweden)

    Syed A.A. Rizvi

    2018-01-01

    Full Text Available The development of nanoparticle-based drug formulations has yielded the opportunities to address and treat challenging diseases. Nanoparticles vary in size but are generally ranging from 100 to 500 nm. Through the manipulation of size, surface characteristics and material used, the nanoparticles can be developed into smart systems, encasing therapeutic and imaging agents as well as bearing stealth property. Further, these systems can deliver drug to specific tissues and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug related toxicity and increase patient’s compliance with less frequent dosing. Nanotechnology has proven beneficial in the treatment of cancer, AIDS and many other disease, also providing advancement in diagnostic testing.

  20. Drug induced rhabdomyolysis

    Science.gov (United States)

    Hohenegger, Martin

    2012-01-01

    Rhabdomyolysis is a clinical condition of potential life threatening destruction of skeletal muscle caused by diverse mechanisms including drugs and toxins. Given the fact that structurally not related compounds cause an identical phenotype pinpoints to common targets or pathways, responsible for executing rhabdomyolysis. A drop in myoplasmic ATP paralleled with sustained elevations in cytosolic Ca2+ concentration represents a common signature of rhabdomyolysis. Interestingly, cardiac tissue is hardly affected or only secondary, as a consequence of imbalance in electrolytes or acid–base equilibrium. This dogma is now impaired by compounds, which show up with combined toxicity in heart and skeletal muscle. In this review, cases of rhabdomyolysis with novel recently approved drugs will be explored for new target mechanisms in the light of previously described pathomechanisms. PMID:22560920

  1. Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer-based pharmaceuticals

    OpenAIRE

    McNerny, Daniel Q.; Leroueil, Pascale R.; Baker, James R.

    2010-01-01

    Dendrimer conjugates for pharmaceutical development are capable of enhancing the local delivery of cytotoxic drugs. The ability to conjugate different targeting ligands to the dendrimer allows for the cytotoxic drug to be focused at the intended target cell while minimizing collateral damage in normal cells. Dendrimers offer several advantages over other polymer conjugates by creating a better defined, more monodisperse therapeutic scaffold. Toxicity from the dendrimer, targeted and nonspecif...

  2. Microfluidics Enables Small-Scale Tissue-Based Drug Metabolism Studies With Scarce Human Tissue

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Verpoorte, Elisabeth; Groothuis, Geny M. M.; Merema, M.T.

    2011-01-01

    Early information on the metabolism and toxicity properties of new drug candidates is crucial for selecting the right candidates for further development. Preclinical trials rely on cell-based in vitro tests and animal studies to characterize the in vivo behavior of drug candidates, although neither

  3. Toxicity of polymeric nanoparticles in vivo and in vitro

    Science.gov (United States)

    Voigt, Nadine; Henrich-Noack, Petra; Kockentiedt, Sarah; Hintz, Werner; Tomas, Jürgen; Sabel, Bernhard A.

    2014-06-01

    Polybutylcyanoacrylate nanoparticles (PBCA NPs) are candidates for a drug delivery system, which can cross the blood-brain barrier (BBB). Because little is known about their toxicity, we exposed cells to PBCA NPs in vitro and in vivo and monitored their life and death assays. PBCA NPs were fabricated with different surfactants according to the mini-emulsion technique. Viabilities of HeLa and HEK293 cells after NP incubation were quantified by analysing cellular metabolic activity (MTT-test). We then repetitively injected i.v. rhodamine-labelled PBCA NP variations into rats and monitored the survival and morphology of retrogradely labelled neurons by in vivo confocal neuroimaging (ICON) for five weeks. To test for carrier-efficacy and safety, PBCA NPs loaded with Kyotorphin were injected in rats, and a hot plate test was used to quantify analgesic effects. In vitro, we found dose-dependent cell death which was, however, only detectable at very high doses and mainly seen in the cultures incubated with NPs fabricated with the tensids SDS and Tween. However, the in vivo experiments did not show any NP-induced neuronal death, even with particles which were toxic at high dose in vitro, i.e. NPs with Tween and SDS. The increased pain threshold at the hot plate test demonstrated that PBCA NPs are able to cross the BBB and thus comprise a useful tool for drug delivery into the central nervous system (CNS). Our findings showing that different nanoparticle formulations are non-toxic have important implications for the value of NP engineering approaches in medicine.

  4. Neonates need tailored drug formulations.

    Science.gov (United States)

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  5. First-line antiretroviral drug discontinuations in children.

    Directory of Open Access Journals (Sweden)

    Melony Fortuin-de Smidt

    Full Text Available There are a limited number of paediatric antiretroviral drug options. Characterising the long term safety and durability of different antiretrovirals in children is important to optimise management of HIV infected children and to determine the estimated need for alternative drugs in paediatric regimens. We describe first-line antiretroviral therapy (ART durability and reasons for discontinuations in children at two South African ART programmes, where lopinavir/ritonavir has been recommended for children <3 years old since 2004, and abacavir replaced stavudine as the preferred nucleoside reverse transcriptase inhibitor in 2010.We included children (<16 years at ART initiation who initiated ≥3 antiretrovirals between 2004-2014 with ≥1 follow-up visit on ART. We estimated the incidence of first antiretroviral discontinuation using Kaplan-Meier analysis. We determined the reasons for antiretroviral discontinuations using competing risks analysis. We used Cox regression to identify factors associated with treatment-limiting toxicity.We included 3579 children with median follow-up duration of 41 months (IQR 14-72. At ART initiation, median age was 44 months (IQR 13-89 and median CD4 percent was 15% (IQR 9-21%. At three and five years on ART, 72% and 26% of children respectively remained on their initial regimen. By five years on ART, the most common reasons for discontinuations were toxicity (32%, treatment failure (18%, treatment simplification (5%, drug interactions (3%, and other or unspecified reasons (18%. The incidences of treatment limiting toxicity were 50.6 (95% CI 46.2-55.4, 1.6 (0.5-4.8, 2.0 (1.2-3.3, and 1.3 (0.6-2.8 per 1000 patient years for stavudine, abacavir, efavirenz and lopinavir/ritonavir respectively.While stavudine was associated with a high risk of treatment-limiting toxicity, abacavir, lopinavir/ritonavir and efavirenz were well-tolerated. This supports the World Health Organization recommendation to replace stavudine with

  6. Antileishmanial, Toxicity, and Phytochemical Evaluation of Medicinal Plants Collected from Pakistan

    Directory of Open Access Journals (Sweden)

    Naseer Ali Shah

    2014-01-01

    Full Text Available Leishmaniasis is an important parasitic problem and is in focus for development of new drugs all over the world. Objective of the present study was to evaluate phytochemical, toxicity, and antileishmanial potential of Jurinea dolomiaea, Asparagus gracilis, Sida cordata, and Stellaria media collected from different areas of Pakistan. Dry powder of plants was extracted with crude methanol and fractionated with n-hexane, chloroform, ethyl acetate, n-butanol, and water solvents in escalating polarity order. Qualitative phytochemical analysis of different class of compounds, that is, alkaloids, saponins, terpenoids, anthraquinones, cardiac glycosides, coumarins, phlobatannins, flavonoids, phenolics, and tannins, was tested. Its appearance was observed varying with polarity of solvent used for fractionation. Antileishmanial activity was performed against Leishmania tropica KWH23 promastigote. Potent antileishmanial activity was observed for J. dolomiaea methanol extract (IC50=10.9±1.1 μg/mL in comparison to other plant extracts. However, J. dolomiaea “ethyl acetate fraction” was more active (IC50=5.3±0.2 μg/mL against Leishmania tropica KWH23 among all plant fractions as well as standard Glucantime drug (6.0±0.1 μg/mL. All the plants extract and its derived fraction exhibited toxicity in safety range (LC50 >100 in brine shrimp toxicity evaluation assay.

  7. Improved distribution and reduced toxicity of adriamycin bound to albumin-heparin microspheres

    NARCIS (Netherlands)

    Cremers, Harry; Cremers, H.F.M.; Bayon, L.G.; Verrijk, R.; Wesseling, M.M.; Wondergem, J.; Heuff, G.; Kwon, G.S.; Bae, Y.H.; Feijen, Jan; Kim, S.W.

    1995-01-01

    Adriamycin (ADR) was formulated in albumin-heparin conjugate microspheres (AHCMS) to improve site-specific delivery and to reduce the toxicity of the drug. The effect of formulating ADR in AHCMS was investigated upon intrahepatic administration to male Wag/Rij rats. After intraveno-portal (i.v.p.)

  8. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  9. Toxic epidermal necrolysis.

    Science.gov (United States)

    Pereira, Frederick A; Mudgil, Adarsh Vijay; Rosmarin, David M

    2007-02-01

    Toxic epidermal necrolysis (TEN) is an unpredictable, life-threatening drug reaction associated with a 30% mortality. Massive keratinocyte apoptosis is the hallmark of TEN. Cytotoxic T lymphocytes appear to be the main effector cells and there is experimental evidence for involvement of both the Fas-Fas ligand and perforin/granzyme pathways. Optimal treatment for these patients remains to be clarified. Discontinuation of the offending drug and prompt referral to a burn unit are generally agreed upon steps. Beyond that, however, considerable controversy exists. Evidence both pro and con exists for the use of IVIG, systemic corticosteroid, and other measures. There is also evidence suggesting that combination therapies may be of value. All the clinical data, however, is anecdotal or based on observational or retrospective studies. Definitive answers are not yet available. Given the rarity of TEN and the large number of patients required for a study to be statistically meaningful, placebo controlled trials are logistically difficult to accomplish. The absence of an animal model further hampers research into this condition. This article reviews recent data concerning clinical presentation, pathogenesis and treatment of TEN. At the conclusion of this learning activity, participants should have acquired a more comprehensive knowledge of our current understanding of the classification, clinical presentation, etiology, pathophysiology, prognosis, and treatment of TEN.

  10. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug.

    Science.gov (United States)

    Carlyle, Wenda C; McClain, James B; Tzafriri, Abraham R; Bailey, Lynn; Zani, Brett G; Markham, Peter M; Stanley, James R L; Edelman, Elazer R

    2012-09-28

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (pstent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Body pushing, prescription drugs and hospital admission.

    Science.gov (United States)

    Byard, Roger W; Kenneally, Michaela

    2017-09-01

    A 39-year-old man died of multi-organ failure complicating mixed drug toxicity that included methadone, oxazepam, oxycodone and nitrazepam. His past medical history involved alcohol and poly-substance abuse with chronic self-harm and suicidal ideation. There had been multiple hospital admissions for drug overdoses. At autopsy the most unusual finding was of two packages of 10 tablets each, wrapped in thin plastic film within the rectum. The insertion of drugs into body orifices and cavities has been termed body pushing to distinguish it from body packing where illicit drugs are wrapped and swallowed for transport and smuggling, and body stuffing where small amounts of loosely wrapped or unwrapped drugs are swallowed to conceal evidence from police. This case demonstrates that body pushing may not always involve illicit drugs or attempted concealment from police or customs officials. It appears that the drugs had been hidden to ensure an additional supply during the time of residence in hospital. The extent to which body pushing is currently being used by patients to smuggle drugs into secure medical facilities is yet to be determined.

  12. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  13. Is biological aging accelerated in drug addiction?

    Science.gov (United States)

    Bachi, Keren; Sierra, Salvador; Volkow, Nora D; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-02-01

    Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.

  14. Antimicrobial potential of two traditional herbometallic drugs against certain pathogenic microbial species.

    Science.gov (United States)

    Wijenayake, A U; Abayasekara, C L; Pitawala, H M T G A; Bandara, B M R

    2016-09-15

    Mineral based preparations are widely used for centuries as antimicrobial agents. However, the efficacy and the mode of action of mineral based preparations are uncertain due to the insufficient antimicrobial studies. Arogyawardhana Vati (AV) and Manikya Rasa (MR) are such two Rasashastra herbo-minerallic drugs commonly in India and other countries in South Asia. Despite of their well known traditional use of skin diseases, reported antimicrobial and mineralogical studies are limited. Therefore, in this study antimicrobial activities of the drugs and their organic, inorganic fractions were evaluated against Pseudomonas aeruginosa, Escherischia coli, Staphylococcus aureus, Methecilline Resistance Staphylococcus aureus - MRSA and Candida albicans. Antimicrobial activity of the drugs, their inorganic residues and organic extracts were determined using four assay techniques viz agar well diffusion, modified well diffusion, Miles and Misra viable cell counting and broth turbidity measurements. Mineralogical constituents of the drugs were determined using X-ray diffraction, while total cation constituents and water soluble cation constituents were determined using inductively coupled plasma-mass spectrometer and the atomic absorption spectrophotometer respectively. Thermogravimetric analysis was used to determine the weight percentages of organic and inorganic fraction of the drugs. Particle sizes of the drugs were determined using the particle size analyzer. AV and MR drugs showed antibacterial activity against both gram positive and gram negative bacterial species when analyzed separately. Inorganic residues of the drugs and organic extracts showed activity at least against two or more bacterial species tested. All tested components were inactive against C. albicans. Common mineral constituents of drugs are cinnabar, biotite and Fe-rich phases. Drugs were rich in essential elements such as Na, K, Ca, Mg and Fe and toxic elements such as Zn, Cu and As. However, the

  15. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

    Directory of Open Access Journals (Sweden)

    Vaks Lilach

    2011-12-01

    Full Text Available Abstract Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.

  16. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment

    Directory of Open Access Journals (Sweden)

    Giovanni Sotgiu

    2015-03-01

    Full Text Available In this article we describe the key role of tuberculosis (TB treatment, the challenges (mainly the emergence of drug resistance, and the opportunities represented by the correct approach to drug dosage, based on the existing control and elimination strategies. In this context, the role and contribution of therapeutic drug monitoring (TDM is discussed in detail. Treatment success in multidrug-resistant (MDR TB cases is low (62%, with 7% failing or relapsing and 9% dying and in extensively drug-resistant (XDR TB cases is even lower (40%, with 22% failing or relapsing and 15% dying. The treatment of drug-resistant TB is also more expensive (exceeding €50 000 for MDR-TB and €160 000 for XDR-TB and more toxic if compared to that prescribed for drug-susceptible TB. Appropriate dosing of first- and second-line anti-TB drugs can improve the patient's prognosis and lower treatment costs. TDM is based on the measurement of drug concentrations in blood samples collected at appropriate times and subsequent dose adjustment according to the target concentration. The ‘dried blood spot’ technique offers additional advantages, providing the rationale for discussions regarding a possible future network of selected, quality-controlled reference laboratories for the processing of dried blood spots of difficult-to-treat patients from reference TB clinics around the world.

  17. Interactions between recreational drugs and antiretroviral agents.

    Science.gov (United States)

    Antoniou, Tony; Tseng, Alice Lin-In

    2002-10-01

    concomitant PIs, and patients should be monitored for signs of toxicity and/or loss of analgesia. PIs should not be coadministered with midazolam and triazolam, since prolonged sedation may occur. Interactions between agents commonly prescribed for patients with HIV and recreational drugs can occur, and may be associated with serious clinical consequences. Clinicians should encourage open dialog with their patients on this topic, to avoid compromising antiretroviral efficacy and increasing the risk of drug toxicity.

  18. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    International Nuclear Information System (INIS)

    Liu, Cong; Sekine, Shuichi; Ito, Kousei

    2016-01-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.

  19. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@faculty.chiba-u.jp; Ito, Kousei

    2016-07-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.

  20. Learning lessons from drugs that have recently entered the market.

    Science.gov (United States)

    Teague, Simon J

    2011-05-01

    Which projects in the drug discovery field are most likely to be successful? In this article, I provide guidelines for answering this question by examining recent drug market entrants in detail, in particular their route of administration, trial design, novelty, therapeutic target and toxicities. I identify targets, trials and organizations as the key issues that are currently leading to the poor productivity in the pharmaceutical industry. Here, I outline some solutions and reasons for optimism, and suggest that the key determinants for success in drug discovery can be defined by studying recently launched drugs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Classification and occurrence of clinically significant drug interactions with irinotecan and oxaliplatin in patients with metastatic colorectal cancer

    NARCIS (Netherlands)

    Jansman, FGA; Idzinga, FSF; Smit, WM; de Graaf, JC; Coenen, JLLM; Sleijfer, DT; Brouwers, JRBJ

    Background: Pharmacokinetic and pharmacodynamic drug interactions with cytotoxic drugs may significantly influence the efficacy and toxicity of chemotherapy. Objective: The purpose of this study was to identify drug interactions with irinotecan and oxaliplatin reported in the literature, to assess

  2. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin.

    Science.gov (United States)

    Ntie-Kang, Fidele; Lifongo, Lydia L; Mbah, James A; Owono Owono, Luc C; Megnassan, Eugene; Mbaze, Luc Meva'a; Judson, Philip N; Sippl, Wolfgang; Efange, Simon M N

    2013-01-01

    Drug metabolism and pharmacokinetics (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. The use of computer modelling to predict the DMPK and toxicity properties of a natural product library derived from medicinal plants from Central Africa (named ConMedNP). Material from some of the plant sources are currently employed in African Traditional Medicine. Computer-based methods are slowly gaining ground in this area and are often used as preliminary criteria for the elimination of compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of discovery of a drug. In the present study, we present an in silico assessment of the DMPK and toxicity profile of a natural product library containing ~3,200 compounds, derived from 379 species of medicinal plants from 10 countries in the Congo Basin forests and savannas, which have been published in the literature. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination and toxicity (ADMET) of the compounds. This survey demonstrated that about 45% of the compounds within the ConMedNP compound library are compliant, having properties which fall within the range of ADME properties of 95% of currently known drugs, while about 69% of the compounds have ≤ 2 violations. Moreover, about 73% of the compounds within the corresponding "drug-like" subset showed compliance. In addition to the verified levels of "drug-likeness", diversity and the wide range of measured biological activities, the compounds from medicinal plants in Central Africa show interesting DMPK profiles and hence could represent an important starting point for hit/lead discovery.

  3. Cyclosporine toxicity in immunosuppressed streptozotocin-diabetic nonhuman primates

    International Nuclear Information System (INIS)

    Wijkstrom, Martin; Kirchhof, Nicole; Graham, Melanie; Ingulli, Elizabeth; Colvin, Robert B.; Christians, Uwe; Hering, Bernhard J.; Schuurman, Henk-Jan

    2005-01-01

    Streptozotocin (STZ) is widely applied in animal models of insulin-dependent diabetes mellitus. Adverse effects of STZ mainly concern liver and kidney. In nonhuman primates a single 100-150 mg/kg dose invariably induces diabetes with only rare adverse effects. We report one animal with renal failure necessitating sacrifice. Body weight (age) might be a confounding factor, i.e. older animals might be more vulnerable to STZ-related toxicity. We therefore recommended to administer STZ on a mg/m 2 basis and not on a mg/kg basis. In our islet transplantation program nonhuman primates with STZ-induced diabetes received transplants under chronic immunosuppression including calcineurin inhibitors (cyclosporine, tacrolimus), drugs in the rapamycin class affecting growth factor-induced cell proliferation, and the sphingosine 1-phosphate receptor antagonist FTY720. Four animals developed renal failure and had to be sacrificed, most likely caused by cyclosporine. Kidney histology was typical for cyclosporine toxicity including thrombotic microangiopathy in glomeruli and fibrinoid necrosis of arteries, and for STZ toxicity including acute tubular necrosis and accumulations of erythroid precursors. This adverse effect was observed at a pharmacologically active cyclosporine exposure. Additionally, six diabetic animals without major adverse effects during cyclosporine or tacrolimus treatment are presented. We conclude that cyclosporine facilitates renal dysfunction in animals with STZ-induced diabetes, presumably related to an increased vulnerability to a toxic insult after STZ administration

  4. Acute lethal toxicity following passive immunization for treatment of murine cryptococcosis.

    Science.gov (United States)

    Savoy, A C; Lupan, D M; Manalo, P B; Roberts, J S; Schlageter, A M; Weinhold, L C; Kozel, T R

    1997-01-01

    Passive immunization with monoclonal antibodies (MAbs) specific for the major capsular polysaccharide of Cryptococcus neoformans alters the course of murine cryptococcosis. During studies of passive immunization for treatment of murine cryptococcosis, we noted the occurrence of an acute, lethal toxicity. Toxicity was characterized by scratching, lethargy, respiratory distress, collapse, and death within 20 to 60 min after injection of antibody. The toxic effect was observed only in mice with a cryptococcal infection and was reduced or absent in the early and late stages of disease. The clinical course and histopathology were consistent with those for shock. There was considerable variation between mouse strains in susceptibility to toxicity. Swiss Webster mice from the Charles River colony were most susceptible, followed by C3H/He, BALB/c, and C57BL/6 mice. DBA/2 mice and Swiss Webster mice from the Simonsen colony were resistant. Acute toxicity was mimicked by injection of preformed complexes of MAb and purified polysaccharide. The toxic effect was also produced by injection of MAbs into mice that were preloaded with polysaccharide. The toxic effect was not blocked by treatment of mice with chloropheniramine or anti-tumor necrosis factor alpha antibodies or by depletion of complement components via pretreatment with cobra venom factor. Toxicity was reduced by treatment of mice with high doses of epinephrine, dexamethasone, or chlorpromazine. Finally, the toxic effect was completely blocked by treatment of mice with the platelet-activating factor antagonist WEB 2170 BS or by pretreatment of mice with the liposome-encapsulated drug dichloromethylene diphosphonate, a procedure which depletes macrophages from the spleen and liver. PMID:9125564

  5. 3D in vitro technology for drug discovery.

    Science.gov (United States)

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  6. Integrated proteomic and transcriptomic investigation of the acetaminophen toxicity in liver microfluidic biochip.

    Directory of Open Access Journals (Sweden)

    Jean Matthieu Prot

    Full Text Available Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes. These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations.

  7. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng, E-mail: quanshengzhou@yahoo.com; Cao, Zhifei, E-mail: hunancao@163.com

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  8. Effects of protein-calorie malnutrition and refeeding on fluorouracil toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Gamelli, R.L.; Foster, R.S. Jr.

    1983-10-01

    Mice were used to study the effects of protein-calorie malnutrition and its reversal on granulocyte-macrophage production and fluorouracil's toxic effect on bone marrow. An in vitro quantitative clonal culture technique for bone marrow granulocyte-macrophage progenitor cells (GM-CFC) was used. Animals on a protein-free but otherwise complete diet for ten days had a significant contraction in total marrow cellularity and GM-CFC numbers paralleling the animal's weight loss. The acute toxic effect of fluorouracil on bone marrow was not increased in protein-deprived animals. On refeeding, there was a biphasic response in the degree of toxic effect on marrow. Animals refed for one day had significantly increased fluorouracil-related marrow abnormalities. However, animals refed for four days, when marrows were repleted, were partially protected from the drug's cytotoxic effects. The increased sensitivity in mice refed for one day was related to more GM-CFC in active DNA synthesis.

  9. Alimentary, metabolic and toxic osteopathies in adults

    International Nuclear Information System (INIS)

    Ellegast, H.H.

    1986-01-01

    Skeletal changes in deficient or badly balanced nutrition (alimentary osteopathies) and osseous changes accompanying chronic desease of internal organs and metabolic disorders (metabolic osteopathies) are discussed. Basically, the classical generalised skeletal changes such as osteoporosis, osteomalacia, fibroosteoclacia and sklerosis of the bone can occur in their pure form or as a combination of two or more of these disorders. Finally the exogenic toxic osteopathies are discussed, nowadays fluorosis being the most important. Other external factors may be drugs like methotrexate and antiepileptic medications. (orig.) [de

  10. Mechanistic review of drug-induced steatohepatitis

    International Nuclear Information System (INIS)

    Schumacher, Justin D.; Guo, Grace L.

    2015-01-01

    Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structure with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents. - Highlights: • Reviewed the mechanisms underlying drug-induced steatohepatitis for many compounds • Mitochondrial dysfunction is critical in the development of drug-induced steatohepatitis. • Majority of drugs that induce steatohepatitis are cationic amphiphilic drugs. • Chemotherapeutics that induce CASH are cationic amphiphilic drugs. • Majority of drugs that induce steatohepatitis are carnitine palmitoyltransferase-I inhibitors.

  11. Mechanistic review of drug-induced steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Justin D., E-mail: Justin.d.schumacher@rutgers.edu; Guo, Grace L.

    2015-11-15

    Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structure with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents. - Highlights: • Reviewed the mechanisms underlying drug-induced steatohepatitis for many compounds • Mitochondrial dysfunction is critical in the development of drug-induced steatohepatitis. • Majority of drugs that induce steatohepatitis are cationic amphiphilic drugs. • Chemotherapeutics that induce CASH are cationic amphiphilic drugs. • Majority of drugs that induce steatohepatitis are carnitine palmitoyltransferase-I inhibitors.

  12. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna.

    Science.gov (United States)

    Puckowski, Alan; Stolte, Stefan; Wagil, Marta; Markiewicz, Marta; Łukaszewicz, Paulina; Stepnowski, Piotr; Białk-Bielińska, Anna

    2017-05-01

    Nowadays, residual amounts of many pharmaceuticals can be found in various environmental compartments including surface and ground waters, soils and sediments as well as biota. Even though they undergo degradability, their environmental discharge is relatively continuous, thus they may be regarded as quasi-persistent contaminants, and are also frequently regarded as emerging organic pollutants. Benzimidazoles, especially flubendazole (FLU) and fenbendazole (FEN), represent two anthelmintic drugs belonging to this group. Although their presence in environmental matrices has been reported, there is relatively little data concerning their (eco)toxicological impact. Furthermore, no data is available on their mixture toxicity. FLU and FEN have been found to have a strong impact on an environmentally important non-target organism - Daphnia magna. Moreover, these compounds are usually present in the environment as a part of pharmaceutical mixtures. Therefore, there is a need to evaluate their mixture toxicity, which was the main aim of this study. Single substance toxicity tests were carried out in parallel with mixture studies of FLU and FEN, with the application of two well established concepts of Concentration Addition (CA) and Independent Action (IA). As a result, both models (CA and IA) were found to underestimate the toxicity of mixtures, however CA yielded more accurate predictions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Membrane specific drugs as radiosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Mishra, K.P.; Shenoy, M.A.; Singh, B.B.; Srinivasan, V.T.; Verma, N.C.

    1981-01-01

    Procaine, paracetamol, and chlorpromazine showed inhibition of post irradiation repair. The chlorpromazie effect could be further augmented by treatment of cells with procaine. Chlorpromazine was also found to be preferentially toxic to hypoxid bacterial cells, and the survivors showed extreme radiosensitivity to gamma rays. Chlorpromazine was found to inhibit tumour growth in swiss mice when given intraperitoneally as well as when injected directly into the tumour. When combined with single x-ray doses, significant radiosensitization was observed in two in vivo tumours sarcoma 180A and fibrosarcoma. These results indicated that chlorpromazine may prove a good drug for combined chemo-radiotherapy of solid tumours. Investigations continued studying various aspects such as effectiveness in other tumour lines, distribution in healthy and tumour bearing animals, hyperthermia and drug combination effects, and encapsulation of the drug in artificial liposomes and blood cells. (ERB)

  14. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1.

    Science.gov (United States)

    Kollinerová, S; Dostál, Z; Modrianský, M

    2017-04-01

    Etoposide is commonly used as a monotherapy or in combination with other drugs for cancer treatments. In order to increase the drug efficacy, ceaseless search for novel combinations of drugs and supporting molecules is under way. MiRNAs are natural candidates for facilitating drug effect in various cell types. We used several systems to evaluate the effect of miR-29 family on etoposide toxicity in HeLa cells. We show that miR-29b significantly increases etoposide toxicity in HeLa cells. Because Mcl-1 protein has been recognized as a miR-29 family target, we evaluated downregulation of Mcl-1 protein splicing variant expression induced by miR-29 precursors and confirmed a key role of Mcl-1 protein in enhancing etoposide toxicity. Despite downregulation of Mcl-1 by all three miR-29 family members, only miR-29b significantly enhanced etoposide toxicity. We hypothesized that this difference may be linked to the change in Mcl-1L/Mcl-1S ratio induced by miR-29b. We hypothesized that the change could be due to miR-29b nuclear shuttling. Using specifically modified miR-29b sequences with enhanced cytosolic and nuclear localization we show that there is a difference, albeit statistically non-significant. In conclusion, we show that miR-29b has the synergistic effect with etoposide treatment in the HeLa cells and that this effect is linked to Mcl-1 protein expression and nuclear shuttling of miR-29b. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity.

    Science.gov (United States)

    Murphy, Cormac D; Sandford, Graham

    2015-04-01

    Fluorine's unique physicochemical properties make it a key element for incorporation into pharmacologically active compounds. Its presence in a drug can alter a number of characteristics that affect ADME-Tox, which has prompted efforts at improving synthetic fluorination procedures. This review describes the influence of fluorine on attributes such as potency, lipophilicity, metabolic stability and bioavailablility and how the effects observed are related to the physicochemical characteristics of the element. Examples of more recently used larger scale synthetic methods for introduction of fluorine into drug leads are detailed and the potential for using biological systems for fluorinated drug production is discussed. The synthetic procedures for carbon-fluorine bond formation largely still rely on decades-old technology for the manufacturing scale and new reagents and methods are required to meet the demands for the preparation of structurally more complex drugs. The improvement of in vitro and computational methods should make fluorinated drug design more efficient and place less emphasis on approaches such as fluorine scanning and animal studies. The introduction of new fluorinated drugs, and in particular those that have novel fluorinated functional groups, should be accompanied by rigorous environmental assessment to determine the nature of transformation products that may cause ecological damage.

  16. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  17. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  18. Identification and management of physical health problems among an injecting drug using population

    OpenAIRE

    Patton, Robert

    2013-01-01

    Injecting drug use is highly prevalent in London and is associated with specific physical health problems. These problems are related to the toxicity of the substances, their mode of consumption and as a consequence of the drug taking lifestyle. Hepatitis B and C viral infections are common among drug users due to sharing of both needles and other drug taking paraphernalia. Hepatitis B infection can be prevented by immunisation. Hepatitis C infection can interact with alcohol consumption to a...

  19. Steven johnsons syndrome and toxic epidermal necrolysis: A review

    Directory of Open Access Journals (Sweden)

    Sri ram Anne

    2014-12-01

    Full Text Available Toxic epidermal necrolysis (TEN and Stevens Johnson Syndrome (SJS are severe adverse cutaneous drug reactions that predominantly involve the skin and mucous membranes. They are characterized by mucocutaneous tenderness and typically hemorrhagic erosions, erythema and more or less severe epidermal detachment presenting as blisters and areas of denuded skin. Drugs are assumed or identified as the main cause of SJS/TEN in most cases, but Mycoplasma pneumoniae and Herpes simplex virus infections are well documented causes alongside rare cases in which the etiology remains unknown. Several drugs are at "high" risk of inducing TEN/SJS including: Allopurinol, Trimethoprim-sulfamethoxazole and other sulfonamide-antibiotics, aminopenicillins, cephalosporins, quinolones, carbamazepine, phenytoin, phenobarbital and NSAID's of the oxicam-type. Differential diagnosis includes linear IgA dermatosis and paraneoplastic pemphigus, pemphigus vulgaris and bullous pemphigoid, acute generalized exanthematous pustulosis (AGEP, disseminated fixed bullous drug eruption and staphyloccocal scalded skin syndrome (SSSS. Due to the high risk of mortality, management of patients with SJS/TEN requires rapid diagnosis, identification and interruption of the culprit drug, specialized supportive care ideally in an intensive care unit, and consideration of immunomodulating agents such as high-dose intravenous immunoglobulin therapy.

  20. [Research Progress on Forensic Toxicology of Z-drugs].

    Science.gov (United States)

    Zhang, Yong-zhi; He, Hong-yuan; She, Cai-meng; Lian, Jie

    2015-08-01

    The Z-drugs (zolpidem, zopiclone, and zaleplon), as the innovative hypnotics, have an improvement over the traditional benzodiazepines in the management of insomnia. Z-drugs have significant hypnotic effects by reducing sleep latency and improving sleep quality, though duration of sleep may not be significantly increased. As benzodiazepines, Z-drugs exert their effects through increasing the transmission of γ-aminobutyric acid. Z-drugs overdose are less likely to be fatal, more likely would result in poisoning. Z-drugs can be detected in blood, urine, saliva, and other postmortem specimens through liquid chromatography-mass spectrometry techniques. Zolpidem and zaleplon exhibit significant postmortem redistribution. Z-drugs have improved pharmacokinetic profiles, but incidence of neuropsychiatric sequelae, poisoning, and death may prove to be similar to the other hypnotics. This review focuses on the pharmacology and toxicology of Z-drugs with respect to their adverse effect profile and toxicity and toxicology data in the field of forensic medicine.

  1. Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Guillermo eGervasini

    2012-11-01

    Full Text Available The efficacy of chemotherapy in pediatric acute lymphoblastic leukemia (ALL patients has significantly increased in the last twenty years; as a result, the focus of research is slowly shifting from trying to increase survival rates to reduce chemotherapy-related toxicity.At the present time, the cornerstone of therapy for ALL is still formed by a reduced number of drugs with a highly toxic profile. In recent years, a number of genetic polymorphisms have been identified that can play a significant role in modifying the pharmacokinetics and pharmacodynamics of these drugs. The best example is that of the TPMT gene, whose genotyping is being incorporated to clinical practice in order to individualize doses of mercaptopurine. However, there are additional genes that are relevant for the metabolism, activity and/or transport of other chemotherapy drugs that are widely use in ALL, such as methotrexate, cyclophosphamide, vincristine, L-asparaginase, etoposide, cytarabine or cytotoxic antibiotics. These genes can also be affected by genetic alterations that could therefore have clinical consequences.In this review we will discuss recent data on this field, with special focus on those polymorphisms that could be used in clinical practice to tailor chemotherapy for ALL in order to reduce the occurrence of serious adverse effects.

  2. Toxicity prediction of compounds from turmeric (Curcuma longa L).

    Science.gov (United States)

    Balaji, S; Chempakam, B

    2010-10-01

    Turmeric belongs to the ginger family Zingiberaceae. Currently, cheminformatics approaches are not employed in any of the spices to study the medicinal properties traditionally attributed to them. The aim of this study is to find the most efficacious molecule which does not have any toxic effects. In the present study, toxicity of 200 chemical compounds from turmeric were predicted (includes bacterial mutagenicity, rodent carcinogenicity and human hepatotoxicity). The study shows out of 200 compounds, 184 compounds were predicted as toxigenic, 136 compounds are mutagenic, 153 compounds are carcinogenic and 64 compounds are hepatotoxic. To cross validate our results, we have chosen the popular curcumin and found that curcumin and its derivatives may cause dose dependent hepatotoxicity. The results of these studies indicate that, in contrast to curcumin, few other compounds in turmeric which are non-mutagenic, non-carcinogenic, non-hepatotoxic, and do not have any side-effects. Hence, the cost-effective approach presented in this paper could be used to filter toxic compounds from the drug discovery lifecycle. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tiele Caprioli, E-mail: tiele@enq.ufrgs.br [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil); Pizzolato, Tânia Mara [Chemical Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Arenzon, Alexandre [Ecology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Segalin, Jeferson [Biotechnology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Lansarin, Marla Azário [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil)

    2015-01-01

    Photocatalytic degradation of rosuvastatin, which is a drug that has been used to reduce blood cholesterol levels, was studied in this work employing ZnO as catalyst. The experiments were carried out in a temperature-controlled batch reactor that was irradiated with UV light. Preliminary the effects of the photocatalyst loading, the initial pH and the initial rosuvastatin concentration were evaluated. The experimental results showed that rosuvastatin degradation is primarily a photocatalytic process, with pseudo-first order kinetics. The byproducts that were generated during the oxidative process were identified using nano-ultra performance liquid chromatography tandem mass spectrometry (nano-UPLC–MS/MS) and acute toxicity tests using Daphnia magna were done to evaluate the toxicity of the untreated rosuvastatin solution and the reactor effluent. - Highlights: • The photocatalytic degradation of rosuvastatin was studied under UV irradiation. • Commercial catalyst ZnO was used. • Initial rosuvastatin concentration, photocatalyst loading and pH were evaluated. • The byproducts generated during the oxidative process were detected and identified. • Acute toxicity tests using Daphnia magna were carried out.

  4. Green tea, red wine and lemon extracts reduce experimental tumor growth and cancer drug toxicity.

    Science.gov (United States)

    Zaletok, S P; Gulua, L; Wicker, L; Shlyakhovenko, V A; Gogol, S; Orlovsky, O; Karnaushenko, O V; Verbinenko, A; Milinevska, V; Samoylenko, O; Todor, I; Turmanidze, T

    2015-12-01

    To evaluate antitumor effect of plant polyphenol extracts from green tea, red wine lees and/or lemon peel alone and in combination with antitumor drugs on the growth of different transplanted tumors in experimental animals. Green tea extract (GTE) was prepared from green tea infusion. GTE-based composites of red wine (GTRW), lemon peel (GTRWL) and/or NanoGTE as well as corresponding nanocomposites were prepared. The total polyphenolics of the different GTE-based extracts ranged from 18.0% to 21.3%. The effects of GTE-based extracts were studied in sarcoma 180, Ehrlich carcinoma, B16 melanoma, Ca755 mammary carcinoma, P388 leukemia, L1210 leukemia, and Guerin carcinoma (original, cisplatin-resistant and doxorubicin-resistant variants). The extracts were administered as 0.1% solution in drinking water (0.6-1.0 mg by total polyphenolics per mouse per day and 4.0-6.3 mg per rat per day). Tumor growth inhibition (TGI) in mice treated with NanoGTE, cisplatin or cisplatin + NanoGTE was 27%, 55% and 78%, respectively, in Sarcoma 180%, 21%, 45% and 59%, respectively, in Ehrlich carcinoma; and 8%, 13% and 38%, respectively in B16 melanoma. Composites of NanoGTE, red wine, and lemon peel (NanoGTRWL) enhanced the antitumor effects of cyclophosphamide in mice with Ca755 mammary carcinoma. The treatment with combination of NanoGTE and inhibitors of polyamines (PA) synthesis (DFMO + MGBG) resulted in significant TGI of P388 leukemia (up to 71%) and L1210 leukemia. In rats transplanted with Guerin carcinoma (parental strain), treatment with GTRW or GTE alone resulted in 25-28% TGI vs. 55-68% TGI in cisplatin-treated animals. The inhibition observed in the case of combination of GTE or GTRW with cisplatin was additive giving 81-88% TGI. Similar effects were observed when combinations of the cytostatics with GTE (or NanoGTE) were tested against cisplatin- or doxorubicin-resistant Guerin carcinoma. Moreover, the plant extracts lowered side toxicity of the drugs. Treatment with GTE

  5. Modern toxic antipersonnel projectiles.

    Science.gov (United States)

    Gaillard, Yvan; Regenstreif, Philippe; Fanton, Laurent

    2014-12-01

    In the spring of 1944, Kurt von Gottberg, the SS police chief in Minsk, was shot and injured by 2 Soviet agents. Although he was only slightly injured, he died 6 hours later. The bullets were hollow and contained a crystalline white powder. They were 4-g bullets, semi-jacketed in cupronickel, containing 28 mg of aconitine. They were later known as akonitinnitratgeschosse. The Sipo (the Nazi security police) then ordered a trial with a 9-mm Parabellum cartridge containing Ditran, an anticholinergic drug with hallucinogenic properties causing intense mental confusion. In later years, QNB was used and given the NATO code BZ (3-quinuclidinyl-benzylate). It was proven that Saddam Hussein had this weapon (agent 15) manufactured and used it against the Kurds. Serbian forces used the same type of weapon in the Bosnian conflict, particularly in Srebrenica.The authors go on to list the Cold War toxic weapons developed by the KGB and the Warsaw pact countries for the discreet elimination of dissidents and proindependence leaders who had taken refuge in the West. These weapons include PSZh-13 launchers, the Troika electronic sequential pistol, and the ingenious 4-S110T captive piston system designed by the engineer Stechkin. Disguised as a cigarette case, it could fire a silent charge of potassium cyanide. This rogues gallery also includes the umbrella rigged to inject a pellet of ricin (or another phytalbumin of similar toxicity, such as abrin or crotin) that was used to assassinate the Bulgarian writer and journalist Georgi Markov on September 7, 1978, in London.During the autopsy, the discovery of a bullet burst into 4 or 5 parts has to make at once suspecting the use of a toxic substance. Toxicological analysis has to look for first and foremost aconitine, cyanide, suxamethonium, Ditran, BZ, or one of the toxic phytalbumins. The use of such complex weapons has to make suspect a powerful organization: army, secret service, terrorism. The existence of the Russian UDAR spray

  6. Mefloquine use, psychosis, and violence: a retinoid toxicity hypothesis.

    Science.gov (United States)

    Mawson, Anthony

    2013-07-15

    Mefloquine use has been linked to severe gastrointestinal and neuropsychiatric adverse effects, including cognitive disturbances, anxiety, depression, psychosis, and violence. The adverse effects of the drug are thought to result from the secondary consequences of hepatocellular injury; in fact, mefloquine is known to cause a transient, anicteric chemical hepatitis. However, the mechanism of mefloquine-associated liver damage and the associated neuropsychiatric and behavioral effects of the drug are not well understood. Mefloquine and other 8-amino-quinolines are the only antimalarial drugs that target the liver-stage malaria parasites, which selectively absorb vitamin A from the host. Vitamin A is also stored mainly in the liver, in potentially poisonous concentrations. These observations suggest that both the therapeutic effectiveness of mefloquine and its adverse effects are related to the ability of the 8-aminoquinolines to alter the metabolism of retinoids (vitamin A and its congeners). Several lines of evidence support the hypothesis that mefloquine neurotoxicity and other adverse effects reflect an endogenous form of hypervitaminosis A due to a process involving: mefloquine-induced dehydrogenase inhibition; the accumulation of retinoids in the liver; retinoid-induced hepatocellular damage; the spillage of stored retinoids into the circulation; and the transport of these compounds to the gut and brain in toxic concentrations. The retinoid hypothesis could be tested clinically by comparing cases of mefloquine toxicity and untreated controls in terms of retinoid profiles (retinol, retinyl esters, percent retinyl esters, and retinoic acid). Subject to such tests, retinoid profiling could provide an indicator for assessing mefloquine-associated adverse effects.

  7. Ecotoxicogenomic assessment of diclofenac toxicity in soil.

    Science.gov (United States)

    Chen, Guangquan; den Braver, Michiel W; van Gestel, Cornelis A M; van Straalen, Nico M; Roelofs, Dick

    2015-04-01

    Diclofenac is widely used as nonsteroidal anti-inflammatory drug leaving residues in the environment. To investigate effects on terrestrial ecosystems, we measured dissipation rate in soil and investigated ecotoxicological and transcriptome-wide responses in Folsomia candida. Exposure for 4 weeks to diclofenac reduced both survival and reproduction of F. candida in a dose-dependent manner. At concentrations ≥ 200 mg/kg soil diclofenac remained stable in the soil during a 21-day incubation period. Microarrays examined transcriptional changes at low and high diclofenac exposure concentrations. The results indicated that development and growth were severely hampered and immunity-related genes, mainly directed against bacteria and fungi, were significantly up-regulated. Furthermore, neural metabolic processes were significantly affected only at the high concentration. We conclude that diclofenac is toxic to non-target soil invertebrates, although its mode of action is different from the mammalian toxicity. The genetic markers proposed in this study may be promising early markers for diclofenac ecotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine

    Directory of Open Access Journals (Sweden)

    Luciano Rezende Vilela

    2015-01-01

    Full Text Available Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD, protects against cocaine toxicity. URB597 (1.0 mg/kg abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.

  9. The influence of toxicity constraints in models of chemotherapeutic protocol escalation

    KAUST Repository

    Boston, E. A. J.

    2011-04-06

    The prospect of exploiting mathematical and computational models to gain insight into the influence of scheduling on cancer chemotherapeutic effectiveness is increasingly being considered. However, the question of whether such models are robust to the inclusion of additional tumour biology is relatively unexplored. In this paper, we consider a common strategy for improving protocol scheduling that has foundations in mathematical modelling, namely the concept of dose densification, whereby rest phases between drug administrations are reduced. To maintain a manageable scope in our studies, we focus on a single cell cycle phase-specific agent with uncomplicated pharmacokinetics, as motivated by 5-Fluorouracil-based adjuvant treatments of liver micrometastases. In particular, we explore predictions of the effectiveness of dose densification and other escalations of the protocol scheduling when the influence of toxicity constraints, cell cycle phase specificity and the evolution of drug resistance are all represented within the modelling. For our specific focus, we observe that the cell cycle and toxicity should not simply be neglected in modelling studies. Our explorations also reveal the prediction that dose densification is often, but not universally, effective. Furthermore, adjustments in the duration of drug administrations are predicted to be important, especially when dose densification in isolation does not yield improvements in protocol outcomes. © The author 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  10. Preparation of slow release anticancer drug by means of radiation technique and IT's therapeutic effect on sold tumor of mice

    International Nuclear Information System (INIS)

    Li Ximing; Shen Weiming; Liu Chengjie; Hu Xu

    1991-01-01

    In order to minimize the toxic effect of chemotherapy of malignant tumors, the authors use a method of radiation induced cast polymerization of hydrophilic monomer at low temperature for immobilization the anticancer drug, 5-Fluorouracil, into the polymer matrix. The anticancer drug-polymer composite called slow release anticancer drug was used for treatment the transplantable squamous cell carcinoma in mice 615 and the transplantable sarcoma (S180) in Kunming mice. There were marked difference between the treated group and the control group. That is the higher inhibition ratio and lower toxic effect were reported

  11. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  12. Pediatric drug formulations: a review of challenges and progress.

    NARCIS (Netherlands)

    Ivanovska, V.; Rademaker, C.M.A.; Dijk, L. van; Mantel-Teeuwisse, A.K.

    2014-01-01

    Children differ from adults in many aspects of pharmacotherapy, including capabilities for drug administration, medicine-related toxicity, and taste preferences. It is essential that pediatric medicines are formulated to best suit a child’s age, size, physiologic condition, and treatment

  13. Toxicology in the use, misuse and abuse of food, drugs and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, P.L.; Chambers, C.M.; Gitter, S.

    1983-01-01

    The present proceedings containing 77 papers were presented at a meeting of the European Society of Toxicology held in Tel Aviv, March 21-24, 1982. The topics were: Effects of foreign substances on blood, drugs of abuse with special reference to marijuana and phencyclidine, toxic agents in food, xenobiotics, novel and new techniques in toxicology and miscellaneous toxic effects. Individual abstracts are prepared of 11 papers.

  14. A methylcellulose microculture assay for the in vitro assessment of drug toxicity on granulocyte/macrophage progenitors (CFU-GM).

    Science.gov (United States)

    Pessina, Augusto; Croera, Cristina; Bayo, Maria; Malerba, Ilaria; Passardi, Laura; Cavicchini, Loredana; Neri, Maria G; Gribaldo, Laura

    2004-03-01

    reduction of the amount of drug needed for testing, which is crucial for screening new molecules, when many different toxicological tests have to be carried out. The microassay is therefore a useful and reproducible tool for screening compounds (chemicals, drugs and xenobiotics) for potential haematotoxicity directly on human myeloid progenitors, and could contribute significantly to reducing the use of animals in toxicity testing.

  15. Nanomedicinal products: a survey on specific toxicity and side effects

    Directory of Open Access Journals (Sweden)

    Brand W

    2017-08-01

    Full Text Available Walter Brand,1,* Cornelle W Noorlander,1,* Christina Giannakou,2,3 Wim H De Jong,2 Myrna W Kooi,1 Margriet VDZ Park,2 Rob J Vandebriel,2 Irene EM Bosselaers,4 Joep HG Scholl,5 Robert E Geertsma2 1Centre for Safety of Substances and Products, 2Centre for Health Protection, National Institute for Public Health and the Environment (RIVM, Bilthoven, 3Department of Toxicogenomics, Maastricht University, Maastricht, 4Section Pharmacology, Toxicology and Pharmacokinetics, Medicines Evaluation Board (CBG-MEB, Utrecht, 5Research & Analysis Department, Netherlands Pharmacovigilance Centre Lareb, ‘s-Hertogenbosch, the Netherlands *These authors contributed equally to this work Abstract: Due to their specific properties and pharmacokinetics, nanomedicinal products (NMPs may present different toxicity and side effects compared to non-nanoformulated, conventional medicines. To facilitate the safety assessment of NMPs, we aimed to gain insight into toxic effects specific for NMPs by systematically analyzing the available toxicity data on approved NMPs in the European Union. In addition, by comparing five sets of products with the same active pharmaceutical ingredient (API in a conventional formulation versus a nanoformulation, we aimed to identify any side effects specific for the nano aspect of NMPs. The objective was to investigate whether specific toxicity could be related to certain structural types of NMPs and whether a nanoformulation of an API altered the nature of side effects of the product in humans compared to a conventional formulation. The survey of toxicity data did not reveal nanospecific toxicity that could be related to certain types of structures of NMPs, other than those reported previously in relation to accumulation of iron nanoparticles (NPs. However, given the limited data for some of the product groups or toxicological end points in the analysis, conclusions with regard to (a lack of potential nanomedicine-specific effects need to be

  16. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  17. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.

    Directory of Open Access Journals (Sweden)

    Xiaoxi B Lin

    Full Text Available CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1 with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the

  18. Acute toxic neuropathy mimicking guillain barre syndrome

    Directory of Open Access Journals (Sweden)

    Muhammed Jasim Abdul Jalal

    2015-01-01

    Full Text Available Case: A 30 year old male presented with numbness of palms and soles followed by weakness of upper limbs and lower limbs of 5 days duration, which was ascending and progressive. Three months back he was treated for oral and genital ulcers with oral steroids. His ulcers improved and shifted to indigenous medication. His clinical examination showed polyneuropathy. CSF study did not show albuminocytological dissociation. Nerve conduction study showed demyelinating polyneuropathy. His blood samples and the ayurvedic drug samples were sent for toxicological analysis. Inference: Acute toxic neuropathy - Arsenic

  19. Accidental drug deaths in Fulton County, Georgia, 2002: characteristics, case management and certification issues.

    Science.gov (United States)

    Graham, Jason K; Hanzlick, Randy

    2008-09-01

    Historically, the duty of the medical examiner in assigning cause and manner of death in drug-related death cases has been fraught with controversial challenges. The lack of standardization in certifying drug-related deaths may involve differences among practicing forensic pathologists in their approach to such cases. The central objectives of the present study include characterization of current drug death patterns and the variability among medical examiners with respect to autopsy performance and death certification practices in one county medical examiner's office. Death certificates, scene information/investigative reports, autopsy reports, and toxicological laboratory results for each of the 100 cases of drug-related death occurring in 2002 in Fulton County, Georgia were reviewed. Comparison of overall autopsy rates and autopsy rates in drug-related death cases for each medical examiner individually and for the group collectively was performed. In examining cocaine-related deaths (most common), statistical analysis was performed for comparison of drug concentrations (cocaine and benzoylecgonine) between deaths certified as cocaine toxicity (poisoning) versus cocaine-complicating disease or causing an adverse event such as cerebral hemorrhage. Causes of accidental drug deaths included cocaine 40%, mixed drug intoxication 37%, opioids 10%, ethanol 7%, and prescription medication (nonopioid) 5%. Overall total autopsy rates in 2002 for each of the 6 independent medical examiners ranged from 51% to 69% (mean 64%), whereas autopsy rates in drug-related death ranged from 55% to 91% (mean 81%). In review of the subset of 40 cocaine-related deaths, 25% were certified as cocaine toxicity (poisoning), with the remaining 75% certified as cocaine-complicating disease or causing and adverse event. Autopsy rates in cocaine-related deaths were as follows: cocaine toxicity 80%, cocaine-complicating disease 77.3%, and cocaine causing adverse event 62.5%. Thirty-eight percent of

  20. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions

    NARCIS (Netherlands)

    Breedveld, Pauline; Zelcer, Noam; Pluim, Dick; Sönmezer, Ozgür; Tibben, Matthijs M.; Beijnen, Jos H.; Schinkel, Alfred H.; van Tellingen, Olaf; Borst, Piet; Schellens, Jan H. M.

    2004-01-01

    The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an