WorldWideScience

Sample records for drug release properties

  1. Mesoporous hydroxyapatite: Preparation, drug adsorption, and release properties

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    2014-11-14

    Mesoporous hydroxyapatite (HA) was synthesized through gas–liquid chemical precipitation method at ambient temperature without any template. Structure, morphology and pore size distribution of HA were analyzed via X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution electron microscopy and N{sub 2} adsorption/desorption. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug adsorption and release behavior of HA. The kinetics of DOX adsorption on HA followed the pseudo-second-order rate expression. Adsorption isotherms at various temperatures were obtained, and the equilibrium data fitted the Langmuir model. The values of thermodynamic parameters (Gibbs free energy, entropy, and enthalpy changes) demonstrated that the adsorption process was spontaneous and endothermic. In vitro pH-responsive (pH = 7.4, 5.8) controlled release was investigated. DOX-loaded HA showed a slow, long-term, and steady release rate. The release rate at pH5.8 was larger than that at pH7.4. Consequently, the as-prepared mesoporous HA has potential applications in controlled drug delivery systems. - Highlights: • Mesoporous HA was synthesized by a simple precipitation method without any template. • The kinetics of adsorption followed the pseudo-second-order rate expression. • Thermodynamics investigation showed that adsorption was spontaneous and endothermic. • DOX-loaded HA showed a long-term, steady, and pH-controlled release rate.

  2. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide Hydrogels for Transdermal Delivery

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2017-07-01

    Full Text Available Novel poly (ethylene oxide (PEO hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID, diclofenac sodium (DIC and ibuprofen (IBU via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM, swelling studies, differential scanning calorimetry (DSC, fourier transform infrared spectroscopy (FT-IR, tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.

  3. Preparation and properties of a drug sustained-release hydrogel film

    International Nuclear Information System (INIS)

    Yue Ling; Yang Zhanshan; Yang Shuqin; Li Qinghua

    2009-01-01

    A hydrogel film of drug sustained-release was prepared to accelerate wound healing. The hydrogel films containing drug or not were prepared by the freezing and thawing process. Their properties such as the physicochemical property and the drug release behavior in vitro were studied. Effect of the freezing and thawing process on antimicrobial efficacy of the gentamicin was evaluated by diffusion method. The results indicate that swelling ratio of the hydrogel films freezed for 4h is 841.21% and their gel fraction, tensile strength and elongation at break is 96.10%, 0.222 MPa and 673.50% respectively. The antimicrobial efficacy of the gentamicin has no change. The hydrogel film contained gentamicin releases the antibiotic to peak during 6 h with the cumulative drug release rate of 59.57%. The drug releases continually up to the 5th day. The drug delivery conforms to Higuchi kinetic equation, and mechanism of the drug release is matrix diffusion. The results show that the hydrogel film prepared by the freezing and thawing process display satisfactory physicochemical properties and can be used as a drug delivery system. (authors)

  4. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams.

    Science.gov (United States)

    Zhao, Yanjun; Brown, Marc B; Jones, Stuart A

    2010-01-04

    Nanocarriers may act as useful tools to deliver therapeutic agents to the skin. However, balancing the drug-particle interactions; to ensure adequate drug loading, with the drug-vehicle interactions; to allow efficient drug release, presents a significant challenge using traditional semi-solid vehicles. The aim of this study was to determine how the physicochemical properties of nanoparticles influenced minoxidil release pre and post dose application when formulated as a simple aqueous suspension compared to dynamic hydrofluoroalkane (HFA) foams. Minoxidil loaded lipid nanoparticles (LN, 1.4 mg/ml, 50 nm) and polymeric nanoparticles with a lipid core (PN, 0.6 mg/ml, 260 nm) were produced and suspended in water to produce the aqueous suspensions. These aqueous suspensions were emulsified with HFA using pluronic surfactant to generate the foams. Approximately 60% of the minoxidil loaded into the PN and 80% of the minoxidil loaded into the LN was released into the external aqueous phase 24h after production. Drug permeation was superior from the PN, i.e. it was the particle that retained the most drugs, irrespective of the formulation method. Premature drug release, i.e. during storage, resulted in the performance of the topical formulation being dictated by the thermodynamic activity of the solubilised drug not the particle properties.

  5. Preparation of microspheres for slow release drug by radiation-induced suspension polymerization and their properties

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Kaetsu, Isao

    1982-01-01

    The polymer microspheres containing drugs as drug delivery system were made by means of suspension-polymerization by radiation at low temperature by using glass-forming monomers which have stable supercooling properties and large polymerizability at low temperature. The particle distribution depended on the kind of monomer. It was found that the entrapping yield of drug in polymer microspheres increased with increasing viscosity of monomer and that the maximum value on the particle size distribution curve was also shifted to large particle diameter side. In the case of trimethylolpropane trimethacrylate monomer (43 cps), TMPT, the entrapping yield of drug reached 74% and the maximum value in particle size distribution curve appeared in the neighborhood of 105 to 210 mu m ranges. On the other hand, those values in neopentyl glycol dimethacrylate monomer (4 cps) were 12% in former and 44 -- 105 mu m in the latter. The release phenomenon of drugs from polymer microspheres was investigated. for example, the cumulative amount of mitomycin C (water soluble drug) released from TMPT polymer microsphere was about 90% after 30-day dissolution, while in the case of water-insoluble drug such as testosterone the amount of release was about 49% after 40-day dissolution. In all cases, the release rate is constant during the experimental period. Therefore, it was concluded that the release of drugs from polymer microspheres obtained in this study is possible over the long periods. (author)

  6. Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles.

    Science.gov (United States)

    Thauvin, Cédric; Schwarz, Bettina; Delie, Florence; Allémann, Eric

    2017-11-15

    Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans ® ) or polysorbates (Tweens ® ), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

    Science.gov (United States)

    Keshavarz, M; Kaffashi, B

    2014-12-01

    The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations.

  8. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    International Nuclear Information System (INIS)

    Meerod, Siraprapa; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2015-01-01

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown

  9. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  10. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  11. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam); Tran, Van-Thanh [Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City (Viet Nam); Duan, Wei [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Phuong Ha-Lien, E-mail: phuong.tran1@deakin.edu.au [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Thao Truong-Dinh, E-mail: ttdthao@hcmiu.edu.vn [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-10-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  12. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    International Nuclear Information System (INIS)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi; Tran, Van-Thanh; Duan, Wei; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-01-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  13. Production and Investigation of Controlled Drug Release Properties of Tamoxifen Loaded Alginate-Gum Arabic Microbeads

    Directory of Open Access Journals (Sweden)

    Rukiye Yavaşer

    2016-08-01

    Full Text Available The entrapment of tamoxifen onto alginate-gum arabic beads and the production of controlled drug release was investigated in this study. The polymeric system that would provide the controlled release of tamoxifen was formed using alginate and gum arabic. In the first phase of the study, the optimization of the alginate-gum arabic beads production was conducted; then the study continued with drug entrapment experiments. Tamoxifen entrapment yield was found to be approximately 90% of initial tamoxifen concentration. In vitro drug release experiments were performed in simulated gastric juice and intestinal fluid where the tamoxifen release was 20% and 53% of the initial drug present, respectively. As a result of this study, it is expected that a valuable contribution to the field of controlled drug release system production is realized.

  14. Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zi Gu

    2014-05-01

    Full Text Available The synthesis method of layered double hydroxides (LDHs determines nanoparticles’ performance in biomedical applications. In this study, hydrothermal treatment as an important synthesis technique has been examined for its influence on the physicochemical properties and the drug release rate from drug-containing LDHs. We synthesised MgAl–LDHs intercalated with non-steroidal anti-inflammatory drugs (i.e., naproxen, diclofenac and ibuprofen using a co-precipitation method with or without hydrothermal treatment (150 °C, 4 h. After being hydrothermally treated, LDH–drug crystallites increased in particle size and crystallinity, but did not change in the interlayer anion orientation, gallery height and chemical composition. The drug release patterns of all studied LDH–drug hybrids were biphasic and sustained. LDHs loaded with diclofenac had a quicker drug release rate compared with those with naproxen and ibuprofen, and the drug release from the hydrothermally-treated LDH–drug was slower than the freshly precipitated LDH–drug. These results suggest that the drug release of LDH–drugs is influenced by the crystallite size of LDHs, which can be controlled by hydrothermal treatment, as well as by the drug molecular physicochemical properties.

  15. Effects of process variables on micromeritic properties and drug release of non-degradable microparticles

    Directory of Open Access Journals (Sweden)

    Mitra Jelvehgari

    2011-06-01

    Full Text Available Introduction: The purpose of this investigation was to evaluate microencapsulated controlled release preparation of theophylline using Eudragit RS 100 as the retardant material with high entrapment efficiency. Methods: Microspheres were prepared by the emulsion-solvent evaporation method. A mixed solvent system consisting of methanol and acetone and light liquid paraffin as oily phase were chosen. Sucrose stearate was used as the surfactant to stabilize the emulsification process. The prepared microspheres were characterized by drug loading, Fourier-transform infrared spectroscopy (FTIR, differential scanning colorimetry (DSC and scanning electron microscopy (SEM. The in vitro release studies were performed at pH 1.2 and 7.4 aqueous medium. Results: Increasing the concentration of emulsifier, sucrose fatty acid ester F-70, decreased the particle size which contributed to increased drug release rate. The drug loading microparticle Eudragit RS100 (1:6 showed 60-75% of entrapment and mean particle size 205.93-352.76 µm. The results showed that, an increase in the ratio of polymer: drug (F5, 6: 1 resulted in a reduction in the release rate of the drug which may be attributed to the hydrophobic nature of the polymer. Conclusion: The release of theophylline is influenced by the drug to polymer ratio and particle size. Drug release is controlled by diffusion and the best-fit release kinetic is Higuchi model.

  16. Effects of process variables on micromeritic properties and drug release of non-degradable microparticles.

    Science.gov (United States)

    Jelvehgari, Mitra; Barar, Jaleh; Nokhodchi, Ali; Shadrou, Sanam; Valizadeh, Hadi

    2011-01-01

    The purpose of this investigation was to evaluate microencapsulated controlled release preparation of theophylline using Eudragit RS 100 as the retardant material with high entrapment efficiency. Microspheres were prepared by the emulsion-solvent evaporation method. A mixed solvent system consisting of methanol and acetone and light liquid paraffin as oily phase were chosen. Sucrose stearate was used as the surfactant to stabilize the emulsification process. The prepared microspheres were characterized by drug loading, Fourier-transform infrared spectroscopy (FTIR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in vitro release studies were performed at pH 1.2 and 7.4 aqueous medium. Increasing the concentration of emulsifier, sucrose fatty acid ester F-70, decreased the particle size which contributed to increased drug release rate. The drug loading microparticle Eudragit RS100(1:6) showed 60-75% of entrapment and mean particle size 205.93-352.76 μm.The results showed that, an increase in the ratio of polymer: drug (F5, 6: 1) resulted in a reduction in the release rate of the drug which may be attributed to the hydrophobic nature of the polymer. The release of theophylline is influenced by the drug to polymer ratio and particle size. Drug release is controlled by diffusion and the best-fit release kinetic is Higuchi model.

  17. Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates

    Directory of Open Access Journals (Sweden)

    Yujiao Xie

    2018-03-01

    Full Text Available New amphiphilic liquid crystal (LC polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR spectrum, 1H NMR, gel permeation chromatographic (GPC, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, polarizing optical microscope (POM, and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td, glass temperature (Tg, and isotropic temperature (Ti increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX, together with drug release tracking, were evaluated by dynamic light scattering (DLS, SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications.

  18. Montmorillonite/Poly (L-Lactide microcomposite spheres as reservoirs of antidepressant drugs and their controlled release property

    Directory of Open Access Journals (Sweden)

    Shalini Rajkumar

    2015-10-01

    Full Text Available This work evaluates intercalation of Nortriptyline (NT and Venlafaxine (VFX in an interlayer gallery of Na+-MMT (Montmorillonite, which was further compounded with Poly (L-Lactide (PLLA to form microcomposite spheres (MPs for oral controlled drug delivery. The XRD patterns, thermal and spectroscopic analyses indicated intercalation of drugs into the MMT interlayer that was stabilized by electrostatic interaction. No significant changes in structural and functional properties of drugs were found in the MMT layers. In vitro drug release studies showed controlled release pattern.

  19. Tailored beads made of dissolved cellulose - Investigation of their drug release properties

    DEFF Research Database (Denmark)

    Yildir, Emrah; Kolakovic, Ruzica; Genina, Natalja

    2013-01-01

    In the frame of this work, we have investigated drug entrapping and release abilities of new type of porous cellulose beads (CBs) as a spherical matrix system for drug delivery. For that purpose, CBs prepared with three different methods were used as drug carriers and three compounds, anhydrous...... theophylline (Thp), riboflavin 5′-phosphate sodium (RSP) and lidocaine hydrochloride monohydrate (LiHCl) were used as model drug substances. The loading procedure was carried out by immersing swollen empty beads into the solutions of different concentrations of model drugs. The morphology of empty and loaded...... beads was examined using a field emission scanning electron microscopy (FE-SEM). Near-infrared (NIR) imaging was performed to identify the drug distributions on and within the loaded CBs. The drug amount incorporated into CBs was examined spectrophotometrically and in vitro drug release studies were...

  20. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release.

    Science.gov (United States)

    Hamed, Rania; Al Baraghthi, Tamadur; Sunoqrot, Suhair

    2016-11-21

    Drug release from hydroxypropyl methylcellulose (HPMC) hydrophilic matrix tablets is controlled by drug diffusion through the gel layer of the matrix-forming polymer upon hydration, matrix erosion or combination of diffusion and erosion mechanisms. In this study, the relationship between viscoelastic properties of the gel layer of swollen intact matrix tablets and drug release was investigated. Two sets of quetiapine fumarate (QF) matrix tablets were prepared using the high viscosity grade HPMC K4M at low (70 mg/tablet) and high (170 mg/tablet) polymer concentrations. Viscoelastic studies using a controlled stress rheometer were performed on swollen matrices following hydration in the dissolution medium for predetermined time intervals. The gel layer of swollen tablets exhibited predominantly elastic behavior. Results from the in vitro release study showed that drug release was strongly influenced by the viscoelastic properties of the gel layer of K4M tablets, which was further corroborated by results from water uptake studies conducted on intact tablets. The results provide evidence that the viscoelastic properties of the gel layer can be exploited to guide the selection of an appropriate matrix-forming polymer, to better understand the rate of drug release from matrix tablets in vitro and to develop hydrophilic controlled-release formulations.

  1. Preparation of 5-fluorouracil loaded chitosan microparticle and its drug release properties

    Directory of Open Access Journals (Sweden)

    Li Mingming

    2017-01-01

    Full Text Available Chitosan is one kind of good biocompatible polymer and is suitble for drug carriers. Preparation of 5-fluorouracil (5-Fu loaded chitosan (CS particles and in vitro release experiment were performed using ionic crosslinking method with sodium tripolyphosphate (TPP as crosslinker. The optimal preparing parameters were verified by 5-Fu release experiments. The drug loading, and release behavior of drug loaded microparticles in vitro were investigated. The optimal preparation conditions were: the temperature 25°C, the ratio of CS to TPP 5:1, the CS concentration 1.5g/L, stirring speed 650rpm. Under these conditions, the drug loading of particles was up to 45%.

  2. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  3. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  4. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2016-05-01

    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  5. Physicochemical properties and drug release behavior of biguanidino and O-carboxymethyl chitosan microcapsules.

    Science.gov (United States)

    Huo, Weiqiang; Zhang, Weixin; Wang, Wei; Zhou, Xiaohua

    2014-09-01

    Two types of microcapsules (MCs) were prepared by the emulsion cross-linking method, where biguanidino chitosan (BGCS)and O-carboxymethyl chitosan (O-CMCS) served as the wall materials, and the antibacterial agent 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine (PyTNH) served as a model water-soluble drug. The physicochemical performance of the MCs and their drug release behavior were investigated by Fourier transform infrared spectroscopy, thermogravimetric analysis/derivative thermogravimetric analysis, scanning electron microscopy, and swelling and in vitro drug release studies of the two MCs with unmodified chitosan-MCs (CS-MCs) used as the control. The results indicated that the degree of cross-linking, encapsulation efficiency, and thermal stability of the shell wall of the BGCS-microcapsules (BGCS-MCs) were much higher than those of the control and the O-CMCS-microcapsules (CMCS-MCs), owing to the reduction of steric hindrance and development of the conjugation effect in the cross-linking process. Studies on the swelling and in vitro drug-release behavior revealed a sustained release effect of the BGCS-MCs. Moreover, the CMCS-MCs were found to exhibit a pH-dependent drug release behavior, which can be attributed to the successive formation of H-bonds and repulsive forces with the change in the pH of the medium. Based on these results, the swelling-release models and the drug release kinetics of BGCS-MCs and CMCS-MCs are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synthesis, characterization and drug release properties of 3D chitosan/clinoptilolite biocomposite cryogels.

    Science.gov (United States)

    Dinu, Maria Valentina; Cocarta, Ana Irina; Dragan, Ecaterina Stela

    2016-11-20

    Three-dimensional (3D) biocomposites based on chitosan (CS) and clinoptilolite (CPL) were prepared by cryogelation and their potential application as drug carriers was investigated. Variation of CPL content from 0 to 33wt.% allowed the formation of biocomposites with heterogeneous morphologies consisting of randomly distributed pores. The further increase of CPL content led to ordered porous architectures where parallel pore channels were observed. The CPL content had a strong influence on water uptake, as well as on the cumulative release of diclofenac sodium (DS) and indomethacin (IDM). It was demonstrated that the drug delivery preferentially takes place in phosphate buffer saline (pH 7.4) in comparison to simulated gastric fluid (pH 1.2), where only a reduced drug release was observed. The drug release mechanism dominating these systems is described as a pseudo-Fickian diffusion, but it changes to non-Fickian release when 33wt.% of CPL was entrapped into the CS matrix or when IDM was loaded into biocomposites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hangyi; Wang, Qingqing; Li, Guohui [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Qiu, Yuyu [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Laboratory of Natural Medicine, Wuxi Medical School, Jiangnan University (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China)

    2017-05-01

    A simple and cost-effective way to prepare water-stable zein-based nanofibers for potential drug delivery was presented in this article. Corn protein zein was co-electrospun with hydrophobic ethyl cellulose. Indomethacin, as a model drug, was incorporated in situ into the composite nanofibers. Scanning electron microscopy and element mapping revealed the morphologies of drug-loaded nanofibers and drug distribution, respectively. Fourier transform infrared spectra confirmed the physical blending among the components. Differential scanning calorimetry and X-ray diffraction demonstrated the physical state of drug and polymers in the nanofiber matrix. The composite nanofibers showed a sustained diffusion-controlled release according to the results of in vitro dissolution tests. - Highlights: • A simple, non-toxic and cost-effective way to improve water stability of zein nanofibers was proposed. • Electrospun zein/ethyl cellulose nanofibers with improved water stability and mechanical strength were prepared. • Indomethacin was homogeneously distributed in the zein/ethyl cellulose nanofibers with no aggregation or cluster. • The zein/ethyl cellulose nanofibers presented a sustained drug release profile, following Fickican diffusion mechanism.

  8. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug.

    Science.gov (United States)

    Surwase, Sachin S; Munot, Neha M; Idage, Bhaskar B; Idage, Susheela B

    2017-06-01

    Gemcitabine is used as a first-line drug for treating many solid tumours. However, it suffers from a major drawback of strong side effects and short plasma half-life because of degradation by enzyme when administered intravenously. Polyesters and copolyesters are the most widely used and preferred class of biodegradable polymer. In the present work, efforts have been made to prepare poly(ethylene glycol) monomethoxy ether-poly(L-lactide) (mPEG-PLLA), a biodegradable amphiphilic copolymer with a view to improve the entrapment and tuned release of hydrophilic drug gemcitabine. The different mPEG-PLLA copolymers were synthesized with the varying ratios of mPEG and characterized by different techniques namely FTIR and 1 H NMR spectroscopy, solution viscosity, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). Gemcitabine-loaded nanoparticles were prepared using mPEG-PLLA copolymers by two methods i.e. nanoprecipitation and double emulsion solvent evaporation. The nanoprecipitation method showed very less entrapment and polymer solubility in the acetone-water mixture leading to uncontrolled polymer precipitation. The difficulties encountered in the nanoprecipitation method were overcome with the help of the double emulsion (w/o/w) solvent evaporation technique. It has been observed from the results that biodegradable copolymer nanoparticles protect the drug from degradation and also help in controlling the release of encapsulated drug. The properties of nanoparticles can be tailored by varying the composition of mPEG in order to get improved entrapment efficiency and desired drug release. The nanoparticles were assessed for their in vitro cytotoxicity (MTT and FACS) and cellular uptake (fluorescence microscopy) study which showed very promising results. Nanoparticles were also studied for their in vivo release after intravenous administration to Wistar albino rats, which successfully showed controlled drug release for more than 14 days.

  9. Employment of the porous particles for preparation of the capsules containing aspirin and drug release property

    International Nuclear Information System (INIS)

    Hosoi, Fumio; Makuuchi, Keizo; Saito, Kenji; Koishi, Masumi.

    1985-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the rate of release of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate or methacrylic acid was treated with porous particles, pre-irradiated with γ-ray from 60 Co, in the presence of aspirin. Release of aspirin from modified particles was tested with 50 % methanol solution and/or pH 5.2 buffer solution of acetic acid. The amount of aspirin released from capsules increased with time and reached a constant values after 140 h. The amount of aspirin absorbed in porous particles was increased with graft polymerization. In addition, absorption of aspirin in porous particles was significantly enhanced by treating the particle surface with TiO 2 before irradiation. The amount of aspirin released was linearly to the square root of time. It was concluded that the diffusion of aspirin through the polymer matrix was the rate limiting step. (author)

  10. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  11. [Technological and pharmacotherapeutic properties of selected drugs with modified release of diclofenac sodium].

    Science.gov (United States)

    Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2012-01-01

    Diclofenac and its sodium salt is one of the best-known and popular therapeutic agents from the group of NSAIDs used in medicine in many various pharmaceutical forms. Therapeutic products containing diclofenac sodium salt in doses of 100 mg and 75 mg with a qualitatively and quantitatively diversified share of excipients and a variable dosage form of the drug (solid capsules, tablets with modified release) were subjected to technological and pharmaceutical analysis. The effect of solid formulation components of polymer character making the core and the coating of the pharmaceutical form of therapeutic products on the disintegration time and pharmaceutical availability in pharmacopoeial receptor fluids was estimated. Market therapeutic products with diclofenac sodium in doses of 75 mg and 100 mg, technological analysis of the drug dosage form was conducted, disintegration time of solid oral dosage forms of the drug with diclofenac sodium salt was examined and research on pharmaceutical availability of diclofenac sodium salt from tested therapeutic products was conducted using the acid phase and the buffer phase according to the FP standards for delayed release enteral dosage forms. The experimental data was supplemented with the statistical analysis. There are three formulations in the form of solid capsules and one formulation in the form of a coated tablet. All therapeutic products bear features of a dosage form of modified release of diclofenac sodium salt, frequently of a delayed release formula in the duodenum or the small intestine with regard to the limitation of typical undesirable effects after taking NSAIDs. Considerable diversity between solid capsules and the tablet with modified release during disintegration or hydration and swelling has been observed. In the environment of a receptor fluid--purified water (pH = 7) the capsule Dicloberl retard disintegrates at the fastest rate in 5,49 minutes, and then in the order: DicloDuo 75 mg--8,13 minutes and

  12. A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties.

    Science.gov (United States)

    Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil

    2014-10-01

    To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Morphologic characterization and properties of a nanocomposite matrix of polyvinylpyrrolidone and sodium bentonite for hydrophilic drug controlled release

    International Nuclear Information System (INIS)

    Almeida, Dario B.R. de; Tavares, Maria I.B.; Iulianelli, Gisele C.V.

    2015-01-01

    For several years, research in drug formulation field have been focused in seeking systems that enable a more efficient release of drug and greater time of acting. Aiming to bring numerous benefits to the patient and advantages for the pharmaceutical industry. Leading to greater acceptance and use by society. In this study polymer nanocomposites based on PVP and bentonite clay will be obtained with the drug Metformin, a known hydrophilic hypoglycemiating drug, in order to improve its properties and pharmacokinetics. This mixture will be obtained through spray drying, especially suited for administration of tablets. The characteristics of these materials are being studied by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). (author)

  14. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.

    Science.gov (United States)

    Zhou, Gang; Luo, Zhigang; Fu, Xiong

    2014-08-13

    An ionic liquid microemulsion consisting of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF₆), surfactant TX-100, 1-butanol, and water was prepared. The water-in-[Bmim]PF₆ (W/IL), bicontinuous, and [Bmim]PF₆-in-water (IL/W) microregions of the microemulsion were identified by conductivity measurements. Starch nanoparticles with a mean diameter of 91.4 nm were synthesized with epichlorohydrin as cross-linker through W/IL microemulsion cross-linking reaction at 50 °C for 4 h. Fourier transform infrared spectroscopy (FTIR) data demonstrated the formation of cross-linking bonds in starch molecules. Scanning electron microscopy (SEM) revealed that starch nanoparticles were spherical and that some particles showed aggregation formation. Furthermore, drug loading and releasing properties of starch nanoparticles were investigated with mitoxantrone hydrochloride as a drug model. This work provides an efficient and environmentally friendly approach for the preparation of starch nanoparticles, which is beneficial to their further application.

  15. Characterization of physicochemical properties of hydroxypropyl methylcellulose (HPMC) type 2208 and their influence on prolonged drug release from matrix tablets.

    Science.gov (United States)

    Devjak Novak, S; Šporar, E; Baumgartner, S; Vrečer, F

    2012-07-01

    The key physicochemical properties of functional excipients should be identified, and the influence of their variability on the properties of the final dosage form should be evaluated during the development phase. Excipients produced by different manufacturers and/or by different manufacturing processes should have comparable properties. Hydroxypropyl methylcellulose (HPMC) with a high molecular weight is a functional excipient often used in solid matrix systems with prolonged release of active pharmaceutical ingredients (API). This study investigates whether HPMC manufactured by two manufacturers using different chemical procedures differs in particle-size distribution, particle shape, particle morphology, chemical composition, and dissolution of diclofenac sodium as a model drug. NIR spectroscopy was introduced and calibration models were developed to detect physical differences among HPMC batches from two different origins. The physical differences between HPMC samples were additionally confirmed with scanning electron microscopy (SEM), gas chromatography (GC) measurements, and dissolution testing of hydrophilic matrix tablets. Our results prove that, even if HPMC polymers manufactured from two different sources comply with the pharmacopeial specification, they significantly differ in physicochemical properties and thus influence the properties of the formulated dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release

    International Nuclear Information System (INIS)

    Kanungo, Ivy; Fathima, Nishter Nishad; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2013-01-01

    Formulation of biodegradable collagen–poly-ε-caprolactone (PCL) based biomaterials for the sustained release of insulin is the main objective of the present work. PCL has been employed to modulate the physico-chemical behavior of collagen to control the drug release. Designed formulations were employed to statistically optimize insulin release parameter profile at different collagen to PCL molar ratios. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to investigate the effect of PCL on hydration dynamics of the collagen molecule, which in turn changes the dissolution parameters of the drug from the systems. Drug entrapment efficiency has been found to be maximum for collagen to PCL molar ratio of 1:2 (> 90%). In vitro dissolution test reveals that 99% of the drug was released from composite at collagen to PCL molar ratio of 1:3 and 1:4 within 2 h, which indicates that hydrophobicity of the matrix results in weak interaction between lipophilic drug and carrier materials. The least burst release was observed for collagen to PCL molar ratio at 1:2 as synergistic interactions between collagen and PCL was maximum at that particular polymer–polymer ratios. The drug release data indicates super case-II transport of drug (n > 1.0). - Graphical abstract: Collagen–poly-ε-caprolactone based biomaterials for the sustained release of insulin were formulated. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to elucidate the effect of PCL on the structure of the collagen and in vitro drug release. The drug release data fitted to the kinetic model indicates super case-II transport due to the combination of diffusion and polymer relaxation/dissolution (n > 1.0). - Highlights: • Poly-ε-caprolactone influences physico-chemical behavior of collagen. • Poly-ε-caprolactone influences in vitro drug release mechanism from biocomposites.

  17. Mechanical properties and modeling of drug release from chlorhexidine-containing etch-and-rinse adhesives.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Reis, Alessandra; Malaquias, Pamela; Pereira, Fabiane; Farago, Paulo Vitor; Meier, Marcia Margarete; Loguercio, Alessandro D

    2014-04-01

    To evaluate the effects of chlorhexidine (CHX) addition in different concentrations into simplified etch-and-rinse adhesives on the ultimate tensile strength (UTS), water sorption (WS), solubility (SO) and the rate of CHX release over time. We added CHX diacetate to Ambar [AM] (FGM) and XP Bond [XP] (Dentsply) in concentrations of 0, 0.01, 0.05, 0.1 and 0.2 wt%. For UTS (n=10 for each group), adhesive specimens were constructed in an hourglass shape metallic matrix with cross-sectional area of 0.8 mm(2). Half of specimens were tested after 24 h and the other half after 28 days of water storage in tension of 0.5 mm/min. For WS and SO (n=10 for each group), adhesive discs (5.8 mm×1.0 mm) were prepared into a mold. After desiccation, we weighed and stored the cured adhesive specimens in distilled water for evaluation of the WS, SO and the cumulative release of CHX over a 28-day period. For CHX release (n=10 for each group), spectrophotometric measurements of storage solution were performed to examine the release kinetics of CHX. We subjected data from each test to ANOVA and Tukey' test (α=0.05). XP Bond adhesive showed significantly more WS and SO and lower UTS than Ambar. In general, the addition of CHX did not alter WS, SO and UTS of the adhesives. XP showed a higher CHX release than AM (p<0.05) in all concentrations and the final amount of CHX release was directly proportional to the initial CHX concentration added to the adhesives. After 28 days of water storage, approximately 20% of CHX was released from XP and 8.0-12.0% from AM. Addition of CHX to commercial adhesive is a feasible method to provide a controlled release of CHX over time without jeopardizing WS, SO and UTS of the adhesives. Manufacturers should consider adding CHX to commercial adhesives to provide a controlled release of CHX over time. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  19. Preparation and its drug release property of radiation-polymerized poly(methyl methacrylate) capsule including potassium chloride

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1979-01-01

    Porous flat circular capsules including KCl as a drug were prepared by radiation-induced polymerization of methyl methacrylate at room temperature in the presence of polyethylene glycol No. 600. The porous structure can be controlled by the methyl methacrylate-polyethylene glycol No. 600 composition. The amount of drug released was linearly related to the square root of time. The magnitude of drug release increased roughly in proportional to the water content of capsule, which can be related to porosity in the capsule. (author)

  20. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression.

    Science.gov (United States)

    Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis

    2018-02-01

    Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2  = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2  = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2  = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.

  1. Real-time Monitoring of Sustained Drug Release using the Optical Properties of Porous Silicon Photonic Crystal Particles

    Science.gov (United States)

    Wu, E.C.; Andrew, J.S.; Cheng, L; Freeman, W.R.; Pearson, L; Sailor, M.J.

    2011-01-01

    A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 micrometers thick and 35 micrometers across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change. PMID:21122914

  2. Characterization of physicochemical properties of hydroxypropyl methylcellulose (HPMC) type 2208 and their influence on prolonged drug release from matrix tablets

    OpenAIRE

    Devjak Novak, Sabina; Šporar, Elena; Vrečer, Franc; Baumgartner, Saša

    2015-01-01

    The key physicochemical properties of functional excipients should be identified, and the influence of their variability on the properties of the final dosage form should be evaluated during the development phase. Excipients produced by different manufacturers and/or by differentb manufacturing processes should have comparable properties. Hydroxypropyl methylcellulose (HPMC) with a high molecular weight is a functional excipient often used in solid matrix systems with prolonged release of act...

  3. Evaluations of dielectric property and drug release profile of 5-FU patches based on plasma charged electrets

    Science.gov (United States)

    Wang, YUAN; Hejuan, LIANG; Ping, HUANG; Xiaoqiang, AN; Jian, JIANG; Lili, CUI

    2018-05-01

    In the present study, the electret 5-fluorouracil patch was developed, the effective surface potential, piezoelectric coefficient d 33, open-circuit thermally stimulated discharge (TSD) current spectra and shear adhesion of the patch were measured. The drug release profile of the patch was determined by using high performance liquid chromatography method. A stable potential difference which was positively dependent on the surface potential of the electret was generated on two sides of the patch. The measurements of d 33 coefficient, TSD current spectra and adhesion performance showed that the electrostatic field of the electret could cause polarization and cohesive strength decreasing of the matrix molecules, change the distribution and interaction of the drug molecules in patch, therefore to increase the release of drug from the transdermal patch.

  4. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  5. THE STUDY ON THE EFFECT OF FORMULATION VARIABLES ON IN VITRO FLOATING TIME AND THE RELEASE PROPERTIES OF A FLOATING DRUG DELIVERY SYSTEM BY A STATISTICAL OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    C. NARENDRA

    2008-03-01

    Full Text Available The present investigation concerns the evaluation of the effect of formulation variables on in vitro floating time and the release properties in developing a floating drug delivery system (FDDS containing a highly water soluble drug metoprolol tartrate (MT in the presence of a gas generating agent. A 32 full factorial design was employed in formulating the FDDS containing hydroxyl propylmethylcellulose (HPMC K4M and sodium carboxymethylcellulose (NaCMC as swellable polymers. Drug-to-polymer ratio and polymer-to-polymer ratio were included as independent variables. The main effect and the interaction terms were quantitatively evaluated by a quadratic model to predict formulations with the floating time desired, and the release properties. It was found that only drug-to-polymer ratio and its quadratic term were found to be significantly affective for all the response variables. Non-Fickian transport was confirmed as a release mechanism from the optimized formulations. The desirability function was used to optimize the response variables, each having a different target, and the observed responses were highly agreed with experimental values. The results demonstrate the feasibility of the model in the development of FDDS containing a highly water-soluble drug MT.

  6. Preparation and Sustained-Release Property of Triblock Copolymer/Calcium Phosphate Nanocomposite as Nanocarrier for Hydrophobic Drug

    Directory of Open Access Journals (Sweden)

    Cao Shao-Wen

    2010-01-01

    Full Text Available Abstract The P123/ACP nanocomposite with sizes less than 100 nm consisting of triblock copolymer P123 and amorphous calcium phosphate (ACP has been prepared by using an aqueous solution containing CaCl2, (NH43PO4, and P123 at room temperature. The P123/ACP nanocomposite is used as the nanocarrier for hydrophobic drug ibuprofen, based on the combined advantages of both amphiphilic block copolymer and calcium phosphate delivery system. The P123/ACP nanocomposite has a much higher ibuprofen loading capacity (148 mg/g than the single-phase calcium phosphate nanostructures. The drug release percentage of the P123/ACP nanocomposite in simulated body fluid reaches about 100% in a period of 156 h, which is much slower than that of single-phase calcium phosphate nanostructures. It is expected that the P123/ACP nanocomposite is promising for the application in the controlled delivery of hydrophobic drugs.

  7. Microwave Activation of Drug Release

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór

    Due to current limitations in control of pharmaceutical drug release in the body along with increasing medicine use, methods of externally-controlled drug release are of high interest. In this thesis, the use of microwaves is proposed as a technique with the purpose of externally activating...... setup, called the microwave activation system has been developed and tested on a body phantom that emulates the human torso. The system presented in this thesis, operates unobtrusively, i.e. without physically interfering with the target (patient). The torso phantom is a simple dual-layered cylindrical...... the phantom is of interest for disclosing essential information about the limitations of the concept, the phantom and the system. For these purposes, a twofold operation of the microwave activation system was performed, which are reciprocal of each other. In the first operation phase, named mapping...

  8. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  9. Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels.

    Science.gov (United States)

    Maharana, Vivek; Gaur, Deepanjali; Nayak, Suraj K; Singh, Vinay K; Chakraborty, Subhabrata; Banerjee, Indranil; Ray, Sirsendu S; Anis, Arfat; Pal, Kunal

    2017-11-01

    The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Drug Release Mechanism of Slightly Soluble Drug from ...

    African Journals Online (AJOL)

    theophylline (THP) as drug in drug to clay ratios of 1:2, 3:4 and 1:1. The formulations were characterized for drug release and loading. Dependent and independent kinetic models were employed to analyze the drug release data. Fourier transform infrared spectroscopy (FTIR) was used for the structural characterization of ...

  12. POLYURETHANE COMPOSITES AS DRUG CARRIERS:: RELEASE PATTERNS

    Directory of Open Access Journals (Sweden)

    M. V. Grigoreva

    2013-10-01

    Full Text Available Biodegradable polyurethanes attract interest of those developing composite materials for biomedical applications. One of their features is their ability to serve as carriers, or matrixes, for medicines and other bioactive compounds to produce a therapeutic effect in body through targeted and/or prolonged delivery of these compounds in the process of their controlled release from matrix. The review presents polyurethane composites as matrices for a number of drugs. The relation between structure of the composites and their degradability both in vitro and in vivo and the dependence of drug release kinetics on physicochemical properties of polyurethane matrix are highlighted. The release of drugs (cefazolin, naltrexone and piroxicam from the composites based on cross-linked polyurethanes (synthesized from laprols, Mw between 1,500 and 2,000 Da and toluylene diisocyanate demonstrated more or less the same pattern (about 10 days in vitro and three to five days in vivo. In contrast, the composites with dioxydine based on a linear polyurethanes (synthesized from oligotetramethilene glycol, Mw 1,000 Da, diphenylmethane-4,4’-diisocyanate and 1,4-butanediol retained their antimicrobial activity at least 30 days. They also showed a significantly higher breaking strength as compared to that of the composites based on cross-linked polyurethanes.

  13. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles.

    Science.gov (United States)

    Gutiérrez, M F; Malaquias, P; Matos, T P; Szesz, A; Souza, S; Bermudez, J; Reis, A; Loguercio, A D; Farago, P V

    2017-03-01

    To evaluate the effect of addition of copper nanoparticles (CN) at different concentrations into a two-step etch-and-rinse (2-ER) adhesive on antimicrobial activity (AMA), copper release (CR), ultimate tensile strength (UTS), degree of conversion (DC), water sorption (WS), solubility (SO), as well as the immediate (IM) and 1-year resin-dentin bond strength (μTBS) and nanoleakage (NL). Seven adhesives were formulated according to the addition of CN (0, 0.0075, 0.015, 0.06, 0.1, 0.5 and 1wt%) in adhesive. The AMA was evaluated against Streptococcus mutans using agar diffusion assay. For CR, WS and SO, specimens were constructed and tested for 28 days. For UTS, specimens were tested after 24h and 28 days. For DC, specimens were constructed and tested after 24h by FTIR. After enamel removal, the ER was applied to dentin. After composite resin build-ups, specimens were sectioned to obtain resin-dentin sticks. For μTBS and NL, specimens were tested after 24h and 1-year periods. All data were submitted to statistical analysis (α=0.05). The addition of CN provided AMA to the adhesives at all concentrations. Higher CR was observed in adhesives with higher concentration of CN. UTS, DC, WS and SO were not influenced. For μTBS an increase was observed in 0.1 and 0.5% copper group. For NL, a significant decrease was observed in all groups in comparison with control group. After 1-year, no significant reductions of μTBS and no significant increases of NL were observed for copper containing adhesives compared to the control group. The addition of CN in concentrations up to 1wt% in the 2-ER adhesive may be an alternative to provide AMA and preserve the bonding to dentin, without reducing adhesives' mechanical properties evaluated. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  15. Understanding Drug Release Data through Thermodynamic Analysis

    Directory of Open Access Journals (Sweden)

    Marjorie Caroline Liberato Cavalcanti Freire

    2017-06-01

    Full Text Available Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas–Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability.

  16. Understanding Drug Release Data through Thermodynamic Analysis

    Science.gov (United States)

    Freire, Marjorie Caroline Liberato Cavalcanti; Alexandrino, Francisco; Marcelino, Henrique Rodrigues; Picciani, Paulo Henrique de Souza; Silva, Kattya Gyselle de Holanda e; Genre, Julieta; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Sócrates Tabosa

    2017-01-01

    Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas–Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability. PMID:28773009

  17. Understanding Drug Release Data through Thermodynamic Analysis.

    Science.gov (United States)

    Freire, Marjorie Caroline Liberato Cavalcanti; Alexandrino, Francisco; Marcelino, Henrique Rodrigues; Picciani, Paulo Henrique de Souza; Silva, Kattya Gyselle de Holanda E; Genre, Julieta; Oliveira, Anselmo Gomes de; Egito, Eryvaldo Sócrates Tabosa do

    2017-06-13

    Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas-Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability.

  18. A study on programmed drug release from tablets

    NARCIS (Netherlands)

    Veen, Jacoba van der

    1993-01-01

    This thesis shows the extension of the applicability of the megaloporous system for drugs with different physico-chemical properties, like solubility and pK.. Procaine HC1, a highly soluble drug, can successfully be formulated in the programmed release megaloporous system, by using Carnauba wax,

  19. Influence of polymeric subcoats on the drug release properties of tablets powder-coated with pre-plasticized Eudragit L 100-55.

    Science.gov (United States)

    Sauer, Dorothea; Watts, Alan B; Coots, Lonique B; Zheng, Weijia C; McGinity, James W

    2009-02-09

    The aim of the study was to investigate the properties of sodium valproate tablets that were dry powder-coated with pre-plasticized Eudragit L 100-55. Polyethylene glycol 3350 (PEG 3350) was used as primer to facilitate initial coating powder adhesion. Solubility parameters were employed to determine the wetting properties of the PEG 3350 primer. Additional PEG 3350 within the powder coating formulation was required to enable powder adhesion to the tablet cores. The application of a subcoat of either Eudragit E PO or Eudragit RL PO facilitated adhesion of the enteric polymer to the tablet cores and reduced the amount PEG 3350 required in the coating formulation. Since reduction of the PEG 3350 content produced less water-vapor permeable films, the enteric coating level necessary to control the drug release was decreased. PEG 3350 and Methocel K4M were incorporated in both Eudragit E PO and Eudragit RL PO subcoating formulations as pore forming agents. The influence of the pore forming excipients on physicochemical properties of free powder-cast films was investigated. The miscibility of the PEG 3350 and Methocel K4M in the film coating was correlated with their ability to function as pore forming agent.

  20. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  1. Analysis of drug effects on neurotransmitter release

    International Nuclear Information System (INIS)

    Rowell, P.; Garner, A.

    1986-01-01

    The release of neurotransmitter is routinely studied in a superfusion system in which serial samples are collected and the effects of drugs or other treatments on the amount of material in the superfusate is determined. With frequent sampling interval, this procedure provides a mechanism for dynamically characterizing the release process itself. Using automated data collection in conjunction with polyexponential computer analysis, the equation which describes the release process in each experiment is determined. Analysis of the data during the nontreated phase of the experiment allows an internal control to be used for accurately assessing any changes in neurotransmitter release which may occur during a subsequent treatment phase. The use of internal controls greatly improves the signal to noise ratio and allows determinations of very low concentrations of drugs on small amounts of tissue to be made. In this presentation, the effects of 10 μM nicotine on 3 H-dopamine release in rat nucleus accumbens is described. The time course, potency and efficacy of the drug treatment is characterized using this system. Determinations of the exponential order of the release as well as the rate constants allow one to study the mechanism of the release process. A description of 3 H-dopamine release in normal as well as Ca ++ -free medium is presented

  2. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations.

    Science.gov (United States)

    Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw

    2017-04-30

    The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.

  4. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xin Hua

    Full Text Available Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF. An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  5. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Science.gov (United States)

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  6. Formulation design of an HPMC-based sustained release tablet for pyridostigmine bromide as a highly hygroscopic model drug and its in vivo/in vitro dissolution properties.

    Science.gov (United States)

    Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho

    2007-11-01

    Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 2(3) full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the T(max) was prolonged (from 0.65 +/- 0.082 hr to 4.83 +/- 1.60 hr) and AUC(0-t) (from 734.88 +/- 230.68 ng/ml.hr to 1153.34 +/- 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.

  7. Release behavior of drugs from various natural gums and polymers.

    Science.gov (United States)

    Singh, Anupama; Sharma, Pramod Kumar; Malviya, Rishabha

    2011-01-01

    Polymers are the high molecular weight compounds of natural or synthetic origin, widely used in drug delivery of formulations. These polymers are further classified as hydrophilic or hydrophobic in nature. Depending upon this characteristic, polymers exhibit different release behavior in different media. This property plays an important role in the selection of polymers for controlled, sustained or immediate release formulations. The review highlights the literatures related to the research made on several polymers regarding the release kinetics which made them a novel approach for modifying the action of the particular formulation.

  8. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Chakkarapani, Prabu [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Subbiah, Latha, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Palanisamy, Selvamani; Bibiana, Arputha [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO{sub 3}-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO{sub 3}-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy.

  9. Comparative study of some mechanical and release properties of ...

    African Journals Online (AJOL)

    The mechanical and release properties of paracetamol tablets formulated with cashew gum (CAG), povidone (PVP) and gelatin (GEL) as binders were studied and compared. The parameters studied were tensile strength (TS), brittle fracture index (BFI), friability (F), disintegration time (DT) and percentage drug released ...

  10. Controlled release and angiotensin-converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine-layered double hydroxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Hussein Al Ali SH

    2012-04-01

    Full Text Available Samer Hasan Hussein Al Ali1, Mothanna Al-Qubaisi2, Mohd Zobir Hussein1,3, Maznah Ismail2,4, Zulkarnain Zainal1, Muhammad Nazrul Hakim51Department of Chemistry, Faculty of Science, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 4Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, 5Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaBackground: The intercalation of perindopril erbumine into Zn/Al-NO3-layered double hydroxide resulted in the formation of a host-guest type of material. By virtue of the ion-exchange properties of layered double hydroxide, perindopril erbumine was released in a sustained manner. Therefore, this intercalated material can be used as a controlled-release formulation.Results: Perindopril was intercalated into the interlayers and formed a well ordered, layered organic-inorganic nanocomposite. The basal spacing of the products was expanded to 21.7 Å and 19.9 Å by the ion-exchange and coprecipitation methods, respectively, in a bilayer and a monolayer arrangement, respectively. The release of perindopril from the nanocomposite synthesized by the coprecipitation method was slower than that of its counterpart synthesized by the ion-exchange method. The rate of release was governed by pseudo-second order kinetics. An in vitro antihypertensive assay showed that the intercalation process results in effectiveness similar to that of the antihypertensive properties of perindopril.Conclusion: Intercalated perindopril showed better thermal stability than its free counterpart. The resulting material showed sustained-release properties and can therefore be used as a controlled-release formulation.Keywords: perindopril erbumine, layered double hydroxides, ion-exchange, coprecipitation, sustained release, angiotensin-converting enzyme

  11. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes.

    Science.gov (United States)

    Kushner, Joseph; Langdon, Beth A; Hicks, Ian; Song, Daniel; Li, Fasheng; Kathiria, Lalji; Kane, Anil; Ranade, Gautam; Agarwal, Kam

    2014-02-01

    The impact of filler-lubricant particle size ratio variation (3.4-41.6) on the attributes of an immediate-release tablet was compared with the impacts of the manufacturing method used (direct compression or dry granulation) and drug loading (1%, 5%, and 25%), particle size (D[4,3]: 8-114 μm), and drug type (theophylline or ibuprofen). All batches were successfully manufactured, except for direct compression of 25% drug loading of 8 μm (D[4,3]) drug, which exhibited very poor flow properties. All manufactured tablets possessed adequate quality attributes: tablet weight uniformity 1 MPa, friability ≤ 0.2% weight loss, and disintegration time impact on blend and granulation particle size and granulation flow, whereas drug property variation dominated blend flow, ribbon solid fraction, and tablet quality attributes. Although statistically significant effects were observed, the results of this study suggest that the manufacturability and performance of this immediate-release tablet formulation is robust to a broad range of variation in drug properties, both within-grade and extra-grade excipient particle size variations, and the choice of manufacturing method. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  13. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides

    International Nuclear Information System (INIS)

    Zhang Hui; Zou Kang; Guo Shaohuan; Duan Xue

    2006-01-01

    A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interaction involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45. - Graphical abstract: Based on XRD, FT-IR and Raman spectra analyses, it is suggested that captopril (Cpl) exists as its disulphide metabolites in the interlayer of Mg-Al-LDHs via hydrogen bonding between guest carboxylate function and hydroxyl group of the host layers. A schematic supramolecular structure of Cpl intercalates involving a vertical orientation of Cpl disulphide-containing S-S bond between the layers with carboxylate anions pointing to both hydroxide layers is presented

  14. Controlled drug release from bifunctionalized mesoporous silica

    Science.gov (United States)

    Xu, Wujun; Gao, Qiang; Xu, Yao; Wu, Dong; Sun, Yuhan; Shen, Wanling; Deng, Feng

    2008-10-01

    Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.

  15. Influence of the composition of hydroxypropyl cellulose/maleic acid-alt-styrene copolymer blends on their properties as matrix for drug release

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Poly(carboxylic acid-polysaccharide compositions have been found suitable for obtaining drug formulations with controlled release, most formulations being therapeutically efficacious, stable, and non-irritant. The influence of the characteristics of the aqueous solutions from which the polymer matrix is prepared (i.e. the total concentration of polymer in solutions and the mixing ratio between the partners, hydroxypropyl cellulose, HPC and maleic acid-alternating-styrene copolymer, MAc-alt-S on the kinetics of some drugs release in acidic environment (pH = 2 has been followed by ‘in vitro’ dissolution tests. It has been established that the kinetics of procaine hydrochloride release from HPC/MAc-alt-S matrix depends on its composition; the diffusion exponent, n is close to 0.5 for matrices where one of the components is in large excess and n~0.02 for middle composition range. The lower value of diffusion exponent for middle composition range could be caused by the so called ‘burst effect’, therefore the kinetic evaluation is difficult.

  16. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. EQCM verification of the concept of drug immobilization and release from conducting polymer matrix

    International Nuclear Information System (INIS)

    Krukiewicz, Katarzyna; Bednarczyk-Cwynar, Barbara; Turczyn, Roman; Zak, Jerzy K.

    2016-01-01

    Highlights: • Disuccinyl derivative of anti-cancer drug, betulin, was immobilized in PEDOT matrix. • EQCM was used to monitor the processes of drug immobilization and release. • SEM, EDS and IR confirmed the presence of drug in polymer matrix. • The release of drug was performed with and without application of external potential. • Potentiodynamic stimulation was more efficient that potentiostatic release. - Abstract: Local drug delivery based on conducting polymer carriers is an innovative approach of medical treatment joining the concept of regional release of biomolecules with ion-exchange properties of conjugated polymers. In this study, we have applied electrochemical quartz crystal microbalance (EQCM) to monitor the process of three-step immobilization and release of anti-cancer drug, disuccinyl derivative of betulin, in PEDOT matrix. Each step of this process has been carefully investigated, i.e. electrochemical polymerization of monomer in the absence of drug, removal of primary dopant during the process of matrix reduction and drug incorporation during the process of matrix oxidation. The release of drug from PEDOT matrix has been performed via three paths, i.e. spontaneous release with no application of external potential, active release under potentiostatic conditions and active release under potentiodynamic conditions. EDS elemental analysis, scanning electron microscopy, IR and Raman spectroscopies, have been used to analyze structural and surface properties of drug-loaded PEDOT matrices.

  18. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  19. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

    Science.gov (United States)

    Li, Longfei; Chen, Lin; Zhang, Huan; Yang, Yongzhen; Liu, Xuguang; Chen, Yongkang

    2016-04-01

    Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150 nm with a typical core-shell structure, and the thickness of the coating layer is approximately 50 nm. TMMIPs also displayed obvious magnetic properties and thermo-sensitivity. The adsorption results show that the prepared TMMIPs exhibit good adsorption capacity (up to 96.53 mg/g at 25 °C) and recognition towards 5-FU. The studies on 5-FU loading and release in vitro suggest that the release rate increases with increasing temperature. Meanwhile, adsorption mechanisms were explored by using a computational analysis to simulate the imprinted site towards 5-FU. The interaction energy between the imprinted site and 5-FU is -112.24 kJ/mol, originating from a hydrogen bond, Van der Waals forces and a hydrophobic interaction between functional groups located on 5-FU and a NIPAM monomer. The electrostatic potential charges and population analysis results suggest that the imprinted site of 5-FU can be introduced on the surface of TMMIPs, confirming their selective adsorption behavior for 5-FU. Copyright © 2015. Published by Elsevier B.V.

  20. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release

    Science.gov (United States)

    Zhang, Shengjian; Qian, Xiaoqing; Zhang, Linlin; Peng, Weijun; Chen, Yu

    2015-04-01

    The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports on a generic construction strategy to achieve a multiple stimuli-responsive theranostic system for cancer simply by optimizing the chemical compositions of inorganic nanoplatforms to avoid the tedious and complicated synthetic procedure for traditional organic or organic/inorganic nanosystems. Based on the ``breaking up'' nature of manganese oxides and specific features of the carbonaceous framework to interact with aromatic drug molecules, manganese oxide nanoparticles were elaborately integrated into hollow mesoporous carbon nanocapsules by a simple in situ framework redox strategy to realize concurrent pH-sensitive T1-weighted magnetic resonance imaging (MRI) and pH-/HIFU-responsive on-demand drug release. The ultrasensitive disease-triggered MRI performance has been successfully demonstrated by a 52.5-fold increase of longitudinal relaxivity (r1 = 10.5 mM-1 s-1) and on nude mice 4T1 xenograft. The pH- and HIFU-triggered doxorubicin release and enhanced therapeutic outcome against multidrug resistance of cancer cells were systematically confirmed. In particular, the fabricated inorganic composite nanocapsules were found to feature unique biological behaviours, such as antimetastasis effect, extremely low hemolysis against red blood cells and high in vivo histocompatibility. This report on the successful construction of a pure inorganic nanosystem with multiple stimuli-responsivenesses may pave the way to new methods for the development of intelligent nanofamilies for cancer therapy.The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports

  1. Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles

    International Nuclear Information System (INIS)

    Khoee, Sepideh; Hassanzadeh, Salman; Goliaie, Bahram

    2007-01-01

    BAB amphiphilic triblock copolymers consisting of poly(ethylene glycol) (B) (PEG) as the hydrophilic segment and different polyesters (A) as the hydrophobic block were prepared by a polycondensation reaction as efficient model core-shell nanoparticles to assay the effect of interactions between the hydrophobic drug and the polyesteric core in terms of drug loading content and release profile. PEG-poly(hexylene adipate)-PEG (PEG-PHA-PEG) and PEG-poly(butylene adipate)-PEG (PEG-PBA-PEG) to PEG-poly(ethylene adipate)-PEG (PEG-PEA-PEG) core-shell type nanoparticles entrapping quercetin (an anticarcinogenic, allergy inhibitor and antibacterial agent), were prepared by a nanoprecipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. It was found that the obtained nanoparticles showed a smooth surface and spherical shape with controllable sizes in the range of 64-74 nm, while drug loading varied from 7.24% to 19% depending on the copolymer composition and the preparation conditions. The in vitro release behaviour exhibited a sustained release and was affected by the polymer-drug interactions. UV studies revealed the presence of hydrogen bonding as the main existing interaction between quercetin and polyesters in the nanosphere cores

  2. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    Science.gov (United States)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  3. Sustained Release of a Water-Soluble Drug from Directly ...

    African Journals Online (AJOL)

    Okra gum was evaluated as a controlled-release agent in modified release matrices in comparison with sodium carboxymethylcellulose (NaCMC) using aspirin as the model drug. Tablets were produced by direct compression and the in vitro drug release was assessed under conditions similar to those in the gastrointestinal ...

  4. Parameters to be Considered in the Simulation of Drug Release ...

    African Journals Online (AJOL)

    Purpose: Drug microparticles may be microencapsulated with water-insoluble polymers to obtain controlled release, which may be further determined by the particle distribution. The purpose of this study was to determine the drug release parameters needed for the theoretical prediction of the release profiles of single ...

  5. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Tailored sequential drug release from bilayered calcium sulfate composites

    International Nuclear Information System (INIS)

    Orellana, Bryan R.; Puleo, David A.

    2014-01-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  7. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  8. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  9. Plasticisation of amylodextrin by moisture : Consequences for drug release from tablets

    NARCIS (Netherlands)

    Steendam, Rob; Eissens, Anco C.E.; Frijlink, Henderik W.; Lerk, Coenraad F.

    2000-01-01

    Moisture influences the consolidation behaviour of amylodextrin powders and the porosity and mechanical strength of compacts thereof. The aim of this study is to relate moisture content and compact properties to drug release characteristics of amylodextrin tablets. Therefore, amylodextrin tablets

  10. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A REVIEW ON CONTROLLED DRUG RELEASE FORMULATION: SPANSULES

    OpenAIRE

    Rinky Maurya; Dr. Pramod Kumar Sharma; Rishabha Malviya

    2014-01-01

    Spansules are a dosage form which was considered as one of the Advanced Drug Delivery System. Multidrug preparations can be delivered easily by spansules or granules in capsule technology. This type of delivery system designed to release a drug or a medicament at two or more different rates or in different span of time. A quick/slow release system provides an initial release of drug followed by a constant rate of drug release over a extended period or a defined period of time and in slow/quic...

  12. Effect of Anionic Polymers on Drug Loading and Release from ...

    African Journals Online (AJOL)

    Purpose: To develop and characterize solid lipid nanoparticle (SLN) systems containing dextran sulfate or sodium ... SLNs. Drug release from SLNs is also dependent on the polymer type. ..... nanoparticles for parenteral drug delivery. Adv.

  13. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  14. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    Science.gov (United States)

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Development and Optimization of controlled drug release ...

    African Journals Online (AJOL)

    The aim of this study is to develop and optimize an osmotically controlled drug delivery system of diclofenac sodium. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active drugs. Drug delivery from these systems, to a large extent, is independent of the physiological factors ...

  16. The drug release study of ceftriaxone from porous hydroxyapatite scaffolds.

    Science.gov (United States)

    Al-Sokanee, Zeki N; Toabi, Abedl Amer H; Al-Assadi, Mohammed J; Alassadi, Erfan A S

    2009-01-01

    Hydroxyapatite (HAP) is an important biomedical material that is used for grafting osseous defects. It has an excellent bioactivity and biocompatibility properties. To isolate hydroxyapatite, pieces of cleaned cattle's bone were heated at different temperature range from 400 degrees C up to 1,200 degrees C. A reasonable yield of 60.32% w/w HAP was obtained at temperature range from 1,000 degrees C to 1,200 degrees C. Fourier transform infrared spectra and the thermogravimetric measurement showed a clear removal of organic at 600 degrees C as well as an excellent isolation of HAP from the bones which was achieved at 1,000-1,200 degrees C. This was also confirmed from X-ray diffraction of bone sample heated at 1,200 degrees C. The concentration ions were found to be sodium, potassium, lithium, zinc, copper, iron, calcium, magnesium, and phosphate present in bones within the acceptable limits for its role in the bioactivity property of HAP. Glucose powder was used as a porosifier. Glucose was novel and excellent as porogen where it was completely removed by heating, giving an efficient porosity in the used scaffolds. The results exhibited that the ceftriaxone drug release was increased with increasing the porosity. It was found that a faster, higher, and more regular drug release was obtained from the scaffold with a porosity of 10%.

  17. Drug release kinetic analysis and prediction of release data via polymer molecular weight in sustained release diltiazem matrices.

    Science.gov (United States)

    Adibkia, K; Ghanbarzadeh, S; Mohammadi, G; Khiavi, H Z; Sabzevari, A; Barzegar-Jalali, M

    2014-03-01

    This study was conducted to investigate the effects of HPMC (K4M and K100M) as well as tragacanth on the drug release rate of diltiazem (DLTZ) from matrix tablets prepared by direct compression method.Mechanism of drug transport through the matrices was studied by fitting the release data to the 10 kinetic models. 3 model independent parameters; i. e., mean dissolution time (MDT), mean release rate (MRR) and release rate efficacy (RE) as well as 5 time point approaches were established to compare the dissolution profiles. To find correlation between fraction of drug released and polymer's molecular weight, dissolution data were fitted into two proposed equations.All polymers could sustain drug release up to 10 h. The release data were fitted best to Peppas and Higuchi square root kinetic models considering squared correlation coefficient and mean percent error (MPE). RE and MRR were decreased when polymer to drug ratio was increased. Conversely, t60% was increased with raising polymer /drug ratio. The fractions of drug released from the formulations prepared with tragacanth were more than those formulated using the same amount of HPMC K4M and HPMC K100M.Preparation of DLTZ matrices applying HPMCK4M, HPMC K100M and tragacanth could effectively extend the drug release. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Drug Release Studies from Caesalpinia pulcherrima Seed Polysaccharide.

    Science.gov (United States)

    Jeevanandham, Somasundaram; Dhachinamoorthi, Duraiswamy; Bannoth Chandra Sekhar, Kothapalli

    2011-01-01

    This study examines the controlled release behavior of both water-soluble (acetaminophen, caffeine, theophylline and salicylic acid) and water insoluble (indomethacin) drugs derived from Caesalpinia pulcherrima seed Gum isolated from Caesalpinia pulcherrima kernel powder. It further investigates the effect of incorporating diluents such as microcrystalline cellulose and lactose on caffeine release. In addition the effect the gum's (polysaccharide) partial cross-linking had on release of acetaminophen was examined. Applying the exponential equation, the soluble drugs mechanism of release was found to be anomalous. The insoluble drugs showed a near case II or zero order release mechanism. The rate of release in descending order was caffeine, acetaminophen, theophylline, salicylic acid and indomethacin. An increase in the release kinetics of the drug was observed on blending with diluents. However, the rate of release varied with the type and amount of blend within the matrix. The mechanism of release due to effect of diluents was found to be anomalous. The rate of drug release decreased upon partial cross-linking and the mechanism of release was found to be of super case II.

  19. Modelling of drug release from ensembles of aspirin microcapsules ...

    African Journals Online (AJOL)

    Purpose: In order to determine the drug release profile of an ensemble of aspirin crystals or microcapsules from its particle distribution a mathematical model that considered the individual release characteristics of the component single particles was developed. The model assumed that under sink conditions the release ...

  20. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  1. POLYCAPROLACTONE-POLY (ETHYLENE GLYCOL) BLOCK COPOLYMER Ⅲ DRUG RELEASE BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    BEI Jianzhong; WANG Zhifeng; WANG Shenguo

    1995-01-01

    The drug release behavior of degradable polymer - polycaprolactone-poly (ethylene glycol)block copolymer(PCE) in vitro was investigated by using 5-Fluoro-uracil (5-Fu) as a model drug under a condition of pH 7.4 at 37℃. It is found that the release rate of 5-Fu from PCE increased with increasing polyether content of the copolymer. The results show that the increasing polyether content of the copolymer caused increasing hydrophilicity and decreasing crystallinity of the PCE copolymer. Thus, the drug release behavior and the degradable property of the PCE can be controlled by adjusting the composition of the copolymer.

  2. Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes

    International Nuclear Information System (INIS)

    Hamlekhan, Azhang; Shokuhfar, Tolou; Sinha-Ray, Suman; Yarin, Alexander L; Takoudis, Christos; Mathew, Mathew T; Sukotjo, Cortino

    2015-01-01

    Formation of titanium dioxide nanotubes (TNTs) on a titanium surface holds great potential for promoting desirable cellular response. However, prolongation of drug release from these nano-reservoirs remains to be a challenge. In our previous work TNTs were successfully loaded with a drug. In this study the effect of TNTs dimensions on prolongation of drug release is quantified aiming at the introduction of a simple novel technique which overcomes complications of previously introduced methods. Different groups of TNTs with different lengths and diameters are fabricated. Samples are loaded with a model drug and rate of drug release over time is monitored. The relation of the drug release rate to the TNT dimensions (diameter, length, aspect ratio and volume) is established. The results show that an increase in any of these parameters increases the duration of the release process. However, the strongest parameter affecting the drug release is the aspect ratio. In fact, TNTs with higher aspect ratios release drug slower. It is revealed that drug release from TNT is a diffusion-limited process. Assuming that diffusion of drug in (Phosphate-Buffered Saline) PBS follows one-dimensional Fick’s law, the theoretical predictions for drug release profile is compatible with our experimental data for release from a single TNT. (paper)

  3. Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.

    Science.gov (United States)

    Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal

    2016-01-01

    The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.

  4. Microchips and controlled-release drug reservoirs.

    Science.gov (United States)

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  5. Synthesis of attapulgite/N-isopropylacrylamide and its use in drug release

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaomo [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Zhong, Hui, E-mail: huizhong@hytc.edu.cn [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Li, Xiaorong, E-mail: lxr206206@163.com [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Jia, Feifei [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Cheng, Zhipeng; Zhang, Lili; Yin, Jingzhou; An, Litao [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Guo, Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2014-12-01

    Environmentally sensitive hydrogels as one of the most potential drug delivery systems have gained considerable interest in recent years. In the present study, we synthesized a newly temperature-responsive composite hydrogel based on attapulgite (ATP) and poly (N-isopropylacrylamide) (PNIPAM) as the localized drug carriers for drug delivery. The as-prepared ATP/PNIPAM hydrogel has large aperture which significantly improved the quantity of adsorption of drugs, exhibiting the excellent properties of drug release. The scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) were used to characterize the ATP/PNIPAM. The swelling/deswelling behaviors and the release of ciprofloxacin lactate were studied. When the temperature was below the low critical solution temperature (LCST), the swelling property of hydrogels was excellent and the swelling rate was large. And, the drug release rate increased with the increase of the content of attapulgite in the composite hydrogel when it was put in the buffer solution (pH 7.38) at 37.0 °C. Therefore, the composite hydrogels might be very useful for its application in biomedical fields. - Highlights: • Attapulgite/N-isopropylacrylamide hydrogels were synthesized and characterized. • The swelling property of hydrogels was excellent when temperature was below 34.0 °C. • The composite hydrogels were used for the release of ciprofloxacin lactate. • The drug release rate increased with the increase of the content of attapulgite.

  6. Functionality Effect of Pressure Sensitive Adhesives on In Vitro Drug Release Behavior of Fentanyl Drug in an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S.M. Taghizadeh

    2009-12-01

    Full Text Available Some formulations of drug in adhesive transdermal drug delivery systems (TDDSs( with different functional and non-functional acrylic pressure sensitive adhesives PSAs( were prepared. For this purpose fentanyl was used as a drug component. The effects of PSAs type on skin permeation and in vitro drug release from devices were evaluated using hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices (peel strength and tack values( were obtained. It was found that TDDS with –COOH functional PSA had the lowest steady state flux. Drug release was followed by Higuchi's kinetic model. Adhesion properties of the samples were improved by addition of functional PSA in the formulations.

  7. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  8. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    Science.gov (United States)

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. The influence of granulating solvents on drug release from tablets ...

    African Journals Online (AJOL)

    ... significantly lower than the other wet granulated tablets, but higher than the matrix tablets. The granulating solvent influenced the release of drug which increased with increase in the water content. Key Words: Grewia gum: Granulating solvents; Release mechanisms. Journal of Pharmacy and Bioresources Vol.1(1) 2004: ...

  10. Modulatory effect of polymer type and composition on drug release ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effects of polymer type and composition on drug release from the matrix of diclofenac sodium sustained release tablets formulated using three different granulation methods. Ten (10) batches of diclofenac sodium tablets (F01 - F10) were prepared by melt granulation, ...

  11. Drug Release Studies from Caesalpinia pulcherrima Seed Polysaccharide

    OpenAIRE

    Jeevanandham, Somasundaram; Dhachinamoorthi, Duraiswamy; Bannoth Chandra Sekhar, Kothapalli

    2011-01-01

    This study examines the controlled release behavior of both water-soluble (acetaminophen, caffeine, theophylline and salicylic acid) and water insoluble (indomethacin) drugs derived from Caesalpinia pulcherrima seed Gum isolated from Caesalpinia pulcherrima kernel powder. It further investigates the effect of incorporating diluents such as microcrystalline cellulose and lactose on caffeine release. In addition the effect the gum?s (polysaccharide) partial cross-linking had on release of aceta...

  12. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  13. 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior.

    Science.gov (United States)

    Karimi, Ali Reza; Tarighatjoo, Mahsa; Nikravesh, Golara

    2017-12-01

    In this work, 1,3,5-triazine-2,4,6-tribenzaldehyde was synthesized and chosen as the cross-linking agent for preparation of novel thermo- and pH-responsive hydrogels based on chitosan. The cross-linking proceeds through formation of imine bond by reaction of amino groups of chitosan with aldehyde groups of the cross-linker. The various amounts (6, 10, 14% w/w) of the cross-linker were used with respect to chitosan to produce three 1,3,5-triazine-2,4,6-tribenzaldehyde cross-linked chitosans. Then, their hydrogel nanocomposites were prepared by crosslinking of chitosan with 1,3,5-triazine-2,4,6-tribenzaldehyde in the presence of 0.1% and 0.3% (w/w) multi-walled carbon nanotubes (MWCNTs). The structure and properties of the hydrogels and their nanocomposites were characterized by FT-IR, 1 H NMR and scanning electron microscopy (SEM). The swelling behavior of prepared hydrogels and their nanocomposites at different pHs and temperatures was investigated. The results showed that they exhibit a pH and temperature-responsive swelling ratio. The swelling behavior of the prepared chitosan hydrogels was strongly dependent on the amounts of cross-linker and MWCNTs. In vitro controlled release behavior of metronidazole model drug was studied with prepared hydrogels and nanocomposite hydrogels. The pH, temperature and wt% of MWCNTs were found to strongly influence the drug release behavior of the hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biodegradable hollow fibres for the controlled release of drugs

    NARCIS (Netherlands)

    Schakenraad, J.M.; Oosterbaan, J.A.; Nieuwenhuis, P.; Molenaar, I.; Olijslager, J.; Potman, W.; Eenink, M.J.D.; Feijen, Jan

    1988-01-01

    Biodegradable hollow fibres of poly-l-lactic acid (PLLA) filled with a suspension of the contraceptive hormone levonorgestrel in castor oil were implanted subcutaneously in rats to study the rate of drug release, rate of biodegradation and tissue reaction caused by the implant. The in vivo drug

  15. Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide

    DEFF Research Database (Denmark)

    Svagan, Anna Justina; Müllertz, Anette; Löbmann, Korbinian

    2017-01-01

    OBJECTIVES: This study aimed to prepare a furosemide-loaded sustained release cellulose nanofibre (CNF)-based nanofoams with buoyancy. METHODS: Dry foams consisting of CNF and the model drug furosemide at concentrations of 21% and 50% (w/w) have been prepared by simply foaming a CNF-drug suspension...... followed by drying. The resulting foams were characterized towards their morphology, solid state properties and dissolution kinetics. KEY FINDINGS: Solid state analysis of the resulting drug-loaded foams revealed that the drug was present as an amorphous sodium furosemide salt and in form of furosemide...... form I crystals embedded in the CNF foam cell walls. The foams could easily be shaped and were flexible, and during the drug release study, the foam pieces remained intact and were floating on the surface due to their positive buoyancy. Both foams showed a sustained furosemide release compared...

  16. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study

    International Nuclear Information System (INIS)

    Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.; Denton, Kelley; Tao Zhimin; Asefa, Tewodros

    2009-01-01

    The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of ∼2.7-3.3 nm and moderate to high surface areas up to ∼1000 m 2 /g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for

  17. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    International Nuclear Information System (INIS)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-01-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties. (papers)

  18. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  19. Radiation crosslinked hydrogels as sustained release drug delivery systems

    International Nuclear Information System (INIS)

    Pekala, W.; Rosiak, J.; Rucinska-Rybus, A.; Burczak, K.; Galant, S.; Czolczynska, T.

    1986-01-01

    Radiation methods have been used for: i/modification of vascular prostheses, ii/ obtaining burn dressing materials enabling controlled drug release, iii/ the preparation of polymer ocular insert discs. The surface of polyester vascular prostheses, has been modified by deposition of acrylamide and inducing its polymerization in the solid state by γ-radiation. As a result of this treatment, tightness of the prosthesis walls and its surface hydrophilicity have been improved. Toxicological examinations and blood hemolysis studies of modified prostheses showed its good biocompatibility. Various burn dressings have been prepared and the most promising of all investigated turned to be composition consisting of a cotton gauze base and an active polyacrylamide hydrogel layer with addition of glycerin and immobilized Provital/protein preparation/. Preliminary clinical evaluations of this particular dressing showed that the process of burn healing is indeed fast and fully satisfactory. Ocular insert discs made of polymer and containing pilocarpin hydrochloride which is released at controlled rate have been prepared. It has been found that high hydrophilicity and good swelling properties of the ocular insert discs made possible to incorporate pilocarpin hydrochloride into hydrogel matrix. This work has been carried out under IAEA research contract RB 3379/R-1 POL. (author)

  20. Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns.

    Science.gov (United States)

    Shah, Shefaat Ullah; Shah, Kifayat Ullah; Rehman, Asimur; Khan, Gul Majid

    2011-04-01

    The objective of the study was to formulate and evaluate controlled release polymeric tablets of Diclofenac Potassium for the release rate, release patterns and the mechanism involved in the release process of the drug. Formulations with different types and grades of Ethyl Cellulose Ether derivatives in several drug-to-polymer ratios (D:P) were compressed into tablets using the direct compression method. In vitro drug release studies were performed in phosphate buffer (pH 7.4) as dissolution medium by using USP Method-1 (Rotating Basket Method). Similarity factor f2 and dissimilarity factor f1 were applied for checking the similarities and dissimilarities of the release profiles of different formulations. For the determination of the release mechanism and drug release kinetics various mathematical/kinetic models were employed. It was found that all of the Ethocel polymers could significantly slow down the drug release rate with Ethocel FP polymers being the most efficient, especially at D:P ratios of 10:03 which lead towards the achievement of zero or near zero order release kinetics.

  1. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  2. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    Science.gov (United States)

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  3. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  4. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  5. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    International Nuclear Information System (INIS)

    Xia Shengjie; Ni Zheming; Xu Qian; Hu Baoxiang; Hu Jun

    2008-01-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena - , Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena - , Lis - were much longer compared with Cap - , Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented. - Graphical abstract: A series of antihypertensive drugs including Enalpril, Lisinopril, Captopril and Ramipril were intercalated into Zn/Al-NO 3 -LDHs successfully by coprecipitation or ion-exchange technique. We focus on the structure, thermal property and low/controlled release property of as-synthesized drug-LDH composite intended for the possibility of applying these LDH-antihypertensive nanohybrids in drug delivery and controlled release systems

  6. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying.

    Science.gov (United States)

    Cao, Yang; Liu, Fengqiu; Chen, Yuli; Yu, Tao; Lou, Deshuai; Guo, Yuan; Li, Pan; Wang, Zhigang; Ran, Haitao

    2017-09-20

    Silk fibroin (SF), a FDA-approved natural protein, is renowned for its great biocompatibility, biodegradability, and mechanical properties. SF-based nanoparticles provide new options for drug delivery with their tunable drug loading and release properties. To take advantage of the features of carrier polymers, we present a one-step electrospraying method that combines SF, polyvinyl alcohol (PVA) and therapeutic drugs without an emulsion process. A distinct core-shell structure was obtained with the PVA core and silk shell after the system was properly set up. The model drug, doxorubicin, was encapsulated in the core with a greater than 90% drug encapsulation efficiency. Controllable drug release profiles were achieved by alternating the PVA/SF ratio. Although the initial burst release of the drug was minimized by the SF coating, a large number of drug molecules remained entrapped by the carrier polymers. To promote and trigger drug release on demand, low intensity focused ultrasound (US) was applied. The US was especially advantageous for accelerating the drug diffusion and release. The apoptotic activity of MDA-MB-231 cells incubated with drug-loaded nanoparticles was found to increase with time. In addition, we also observed PVA/SF nanoparticles that could elicit a drug release in response to pH.

  7. A New Drug Release Method in Early Development of Transdermal Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Bing Cai

    2012-01-01

    Full Text Available In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2 were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.

  8. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    Science.gov (United States)

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  9. Imaging neurotransmitter release by drugs of abuse.

    Science.gov (United States)

    Martinez, Diana; Narendran, Rajesh

    2010-01-01

    Previous studies have shown that imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers that are specific for brain dopamine receptors can be used to indirectly image the change in the levels of neurotransmitters within the brain. Most of the studies in addiction have focused on dopamine, since the dopamine neurons that project to the striatum have been shown to play a critical role in mediating addictive behavior. These imaging studies have shown that increased extracellular dopamine produced by psychostimulants can be measured with PET and SPECT. However, there are some technical issues associated with imaging changes in dopamine, and these are reviewed in this chapter. Among these are the loss of sensitivity, the time course of dopamine pulse relative to PET and SPECT imaging, and the question of affinity state of the receptor. In addition, animal studies have shown that most drugs of abuse increase extracellular dopamine in the striatum, yet not all produce a change in neurotransmitter that can be measured. As a result, imaging with a psychostimulant has become the preferred method for imaging presynaptic dopamine transmission, and this method has been used in studies of addiction. The results of these studies suggest that cocaine and alcohol addiction are associated with a loss of dopamine transmission, and a number of studies show that this loss correlates with severity of disease.

  10. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    Science.gov (United States)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  11. Development of novel small molecules for imaging and drug release

    Science.gov (United States)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  12. Mathematical modeling of drug release from lipid dosage forms.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2011-10-10

    Lipid dosage forms provide an interesting potential for controlled drug delivery. In contrast to frequently used poly(ester) based devices for parenteral administration, they do not lead to acidification upon degradation and potential drug inactivation, especially in the case of protein drugs and other acid-labile active agents. The aim of this article is to give an overview on the current state of the art of mathematical modeling of drug release from this type of advanced drug delivery systems. Empirical and semi-empirical models are described as well as mechanistic theories, considering diffusional mass transport, potentially limited drug solubility and the leaching of other, water-soluble excipients into the surrounding bulk fluid. Various practical examples are given, including lipid microparticles, beads and implants, which can successfully be used to control the release of an incorporated drug during periods ranging from a few hours up to several years. The great benefit of mechanistic mathematical theories is the possibility to quantitatively predict the effects of different formulation parameters and device dimensions on the resulting drug release kinetics. Thus, in silico simulations can significantly speed up product optimization. This is particularly useful if long release periods (e.g., several months) are targeted, since experimental trial-and-error studies are highly time-consuming in these cases. In the future it would be highly desirable to combine mechanistic theories with the quantitative description of the drug fate in vivo, ideally including the pharmacodynamic efficacy of the treatments. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  14. Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses.

    Science.gov (United States)

    Morris, Aaron H; Mahal, Rajwant S; Udell, Jillian; Wu, Michelle; Kyriakides, Themis R

    2017-10-01

    Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrostimulated Release of Neutral Drugs from Polythiophene Nanoparticles: Smart Regulation of Drug-Polymer Interactions.

    Science.gov (United States)

    Puiggalí-Jou, Anna; Micheletti, Paolo; Estrany, Francesc; Del Valle, Luis J; Alemán, Carlos

    2017-09-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles are loaded with curcumin and piperine by in situ emulsion polymerization using dodecyl benzene sulfonic acid both as a stabilizer and a doping agent. The loaded drugs affect the morphology, size, and colloidal stability of the nanoparticles. Furthermore, kinetics studies of nonstimulated drug release have evidenced that polymer···drug interactions are stronger for curcumin than for piperine. This observation suggests that drug delivery systems based on combination of the former drug with PEDOT are much appropriated to show an externally tailored release profile. This is demonstrated by comparing the release profiles obtained in presence and absence of electrical stimulus. Results indicate that controlled and time-programmed release of curcumin is achieved in a physiological medium by applying a negative voltage of -1.25 V to loaded PEDOT nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    Energy Technology Data Exchange (ETDEWEB)

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Ani, C.J. [Department of Theoretical Physics, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Odusanya, O.S. [Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Federal Capital Territory (Nigeria); Oni, Y. [Department of Chemistry, Bronx Community College, New York, NY (United States); Anuku, N. [Department of Chemistry, Bronx Community College, New York, NY (United States); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Malatesta, K. [Department of Chemistry, Bronx Community College, New York, NY (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering 1 Olden Street, Princeton, NJ 08544 (United States)

    2014-09-01

    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10{sup −12} m{sup 2}/s and 4.8 × 10{sup −6} m{sup 2}/s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug.

  17. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    International Nuclear Information System (INIS)

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Ani, C.J.; Odusanya, O.S.; Oni, Y.; Anuku, N.; Malatesta, K.; Soboyejo, W.O.

    2014-01-01

    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10 −12 m 2 /s and 4.8 × 10 −6 m 2 /s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug

  18. A magnetic nanoparticle stabilized gas containing emulsion for multimodal imaging and triggered drug release.

    Science.gov (United States)

    Guo, Wei; Li, Diancheng; Zhu, Jia-an; Wei, Xiaohui; Men, Weiwei; Yin, Dazhi; Fan, Mingxia; Xu, Yuhong

    2014-06-01

    To develop a multimodal imaging guided and triggered drug delivery system based on a novel emulsion formulation composed of iron oxide nanoparticles, nanoscopic bubbles, and oil containing drugs. Iron oxide paramagnetic nanoparticles were synthesized and modified with surface conjugation of polyethylenimide (PEI) or Bovine Serum Albumin (BSA). Both particles were used to disperse and stabilize oil in water emulsions containing coumarin-6 as the model drug. Sulfur hexafluoride was introduced into the oil phase to form nanoscopic bubbles inside the emulsions. The resulted gas containing emulsions were evaluated for their magnetic resonance (MR) and ultrasound (US) imaging properties. The drug release profile triggered by ultrasound was also examined. We have successfully prepared the highly integrated multi-component emulsion system using the surface modified iron oxide nanoparticles to stabilize the interfaces. The resulted structure had distinctive MR and US imaging properties. Upon application of ultrasound waves, the gas containing emulsion would burst and encapsulated drug could be released. The integrated emulsion formulation was multifunctional with paramagnetic, sono-responsive and drug-carrying characteristics, which may have potential applications for disease diagnosis and imaging guided drug release.

  19. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    Science.gov (United States)

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J

    2011-01-01

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s -1 . Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  2. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Science.gov (United States)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J.

    2011-02-01

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s - 1. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  3. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J, E-mail: Thomas_Webster@Brown.edu [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2011-02-25

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s{sup -1}. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  4. Development of sustained and dual drug release co-extrusion formulations for individual dosing.

    Science.gov (United States)

    Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg

    2015-01-01

    In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Control of drug releasing from biodegradable polymer drug delivery system by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo

    1999-01-01

    In order to introduce the drug to the target organ, we developed a gel to control the drug releasing velocity by response to change of temperature by means of γ-ray irradiation to gelatin-GMA modified dextran mixture aqueous solution. A certain level of molecular weight of drug is necessary. The response to the temperature (change of drug releasing velocity) was affected by the concentration of gelatin and the modification rate of GMA. The Higuchi equation was applied to the releasing of β-galactosidase from gelatin-dextran gel and the releasing velocity was calculated. The releasing velocity decreased with increasing GMA modification rate at 37degC and 15degC. The releasing velocity of β-galactosidase decreased with increasing the concentration of gelatin at 15degC, but the velocity increased with increasing the concentration at 37degC. These results indicated that the good drug releasing conditions are obtained by controlling the GMA modification rate and the concentration of gelatin. (S.Y.)

  6. RELEASE AND MUCOADHESION PROPERTIES OF DICLOFENAC MATRIX TABLETS FROM NATURAL AND SYNTHETIC POLYMER BLENDS.

    Science.gov (United States)

    Odeniyi, Michael A; Khan, Nasir H; Peh, Kok K

    2015-01-01

    The delayed release and mucoadhesive properties of Cedrela gum and hydroxypropylmethylcellulose blend in diclofenac sodium tablet formulations were evaluated. Tablets were prepared by direct compression and the crushing strength and detachment force were found to increase from 74.49 ± 1.22 to 147.25 ± 2.57 N and 0.302 ± 0.36 to 1.141 ± 0.05 N from low to high level of polymers, respectively. The release kinetics followed Korsmeyer-Peppas release and the n varied between 0.834 and 1.273, indicating that the release mechanism shifts from Fickian to super case I (anomalous release). The drug release profile fits a pulsatile-release pattern characterized by a lag time followed by a more or less rapid and complete drug release. The Cedrela gum-hydroxypropylmethylcelluse blend tablets delayed diclofenac release for 2 h and sustained the release for 12 h. The polymer blend delayed drug release in the 0.1 M HCl simulating gastric environment and subsequent release pH 6.8 phosphate buffer.

  7. Evaluation of gum mastic (Pistacia lentiscus as a microencapsulating and matrix forming material for sustained drug release

    Directory of Open Access Journals (Sweden)

    Dinesh M. Morkhade

    2017-09-01

    Full Text Available In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS and diltiazem hydrochloride (DLTZ were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 µm and 50–87%, respectively. Increase in mastic: drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation, and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.

  8. Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

    Directory of Open Access Journals (Sweden)

    Like Zeng

    2011-01-01

    Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

  9. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    Science.gov (United States)

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of

  10. Contact lenses as drug controlled release systems: a narrative review

    Directory of Open Access Journals (Sweden)

    Helena Prior Filipe

    2016-06-01

    Full Text Available ABSTRACT Topically applied therapy is the most common way to treat ocular diseases, however given the anatomical and physiological constraints of the eye, frequent dosing is required with possible repercussions in terms of patient compliance. Beyond refractive error correction, contact lenses (CLs have, in the last few decades emerged as a potential ophthalmic drug controlled release system (DCRS. Extensive research is underway to understand how to best modify CLs to increase residence time and bioavailability of drugs within therapeutic levels on the ocular surface.These devices may simultaneously correct ametropia and have a role in managing ophthalmic disorders that can hinder CL wear such as dry eye, glaucoma, ocular allergy and cornea infection and injury. In this narrative review the authors explain how the ocular surface structures determine drug diffusion in the eye and summarize the strategies to enhance drug residence time and bioavailability. They synthesize findings and clinical applications of drug soaked CLs as DCRS combined with delivery diffusion barriers, incorporation of functional monomers, ion related controlled release, molecular imprinting, nanoparticles and layering. The authors draw conclusions about the impact of these novel ophthalmic agents delivery systems in improving drug transport in the target tissue and patient compliance, in reducing systemic absorption and undesired side effects, and discuss future perspectives.

  11. FACTORS AFFECTING THE RELEASE RATE OF A HIGHLY SOLUBLE DRUG FROM A PROGRAMMED RELEASE MEGALOPOROUS SYSTEM

    NARCIS (Netherlands)

    VANDERVEEN, C; MENGER, NR; LERK, CF

    The present study reports on the successful incorporation of a highly soluble drug, procaine HCl, in a programmed-release megaloporous system. This solid two-phase system is composed of housing phase matrix granules (HMG), controlling liquid penetration into the system, and of restraining phase

  12. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  13. Influence of Surface Chemistry on the Release of an Antibacterial Drug from Nanostructured Porous Silicon.

    Science.gov (United States)

    Wang, Mengjia; Hartman, Philip S; Loni, Armando; Canham, Leigh T; Bodiford, Nelli; Coffer, Jeffery L

    2015-06-09

    Nanostructured mesoporous silicon possesses important properties advantageous to drug loading and delivery. For controlled release of the antibacterial drug triclosan, and its associated activity versus Staphylococcus aureus, previous studies investigated the influence of porosity of the silicon matrix. In this work, we focus on the complementary issue of the influence of surface chemistry on such properties, with particular regard to drug loading and release kinetics that can be ideally adjusted by surface modification. Comparison between drug release from as-anodized, hydride-terminated hydrophobic porous silicon and the oxidized hydrophilic counterpart is complicated due to the rapid bioresorption of the former; hence, a hydrophobic interface with long-term biostability is desired, such as can be provided by a relatively long chain octyl moiety. To minimize possible thermal degradation of the surfaces or drug activity during loading of molten drug species, a solution loading method has been investigated. Such studies demonstrate that the ability of porous silicon to act as an effective carrier for sustained delivery of antibacterial agents can be sensitively altered by surface functionalization.

  14. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy.

    Science.gov (United States)

    Zhou, Zhuxian; Ma, Xinpeng; Murphy, Caitlin J; Jin, Erlei; Sun, Qihang; Shen, Youqing; Van Kirk, Edward A; Murdoch, William J

    2014-10-06

    The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer-drug conjugates. Current dendrimer-drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer-drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrochemically controlled release of anticancer drug methotrexate using nanostructured polypyrrole modified with cetylpyridinium: Release kinetics investigation

    International Nuclear Information System (INIS)

    Alizadeh, Naader; Shamaeli, Ehsan

    2014-01-01

    A new simple strategy for direct electrochemical incorporation of chemotherapeutic methotrexate (MTX) into conductive polypyrrole (PPy) has been suggested for an electrochemically controlled loading and release system. Electropolymerization of MTX doped polypyrrole yielded poor quality with low efficiency of doping, but a well-doped, nanostructure and increased capacity of drug loading (24.5 mg g −1 ) has been obtained in the presence of cetylpyridinium (CP) as a modifier. When CP was preloaded onto PPy, the hydrophobic surface of the PPy serves as a backbone to which the hydrophobic chain of the CP can be attached. Electrostatic interaction between cationic CP with anionic MTX and aromatic interaction between pyridinium head of CP with pyrimidine and pyrazine rings of MTX increases drug doping. Then release kinetics were investigated at various applied potentials and temperatures. Kinetics analysis based on Avrami's equation showed that the drug release was controlled and accelerated by increasing temperature and negative potential and sustained by increasing positive potential. At open circuit condition, the release parameter (n) represented a diffusive mechanism and at applying electrochemical potentials, a first-order mode. Activation energy parameters (E a , ΔG ≠ , ΔH ≠ and ΔS ≠ ) and half-life time (t 1/2 ) of drug release are also analyzed as a function of applied potential. The nanostructured polymer films (PPy/CP/MTX) were characterized by several techniques: scanning electron microscopy, Furrier transforms Infrared, UV-vis spectroscopy. Overall, our results demonstrate that the PPy/CP/MTX films, combined with electrical stimulation, permit a programmable release of MTX by altering the interaction strength between the PPy/CP and MTX

  16. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    Science.gov (United States)

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  17. A concise review on smart polymers for controlled drug release.

    Science.gov (United States)

    Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali

    2016-06-01

    Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.

  18. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy

    Directory of Open Access Journals (Sweden)

    Fu X

    2017-05-01

    Full Text Available Xudong Fu,1 Xinjun Wang,1 Shaolong Zhou,1 Yanyan Zhang2 1The Fifth Affiliated Hospital of Zhengzhou University, 2School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Despite advances in controlled drug delivery, drug delivery systems (DDSs with controlled activated drug release and high spatial and temporal resolution are still required. Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. In this study, a near-infrared light-controlled “off–on” DDS with magnetic resonance imaging and magnetic targeting properties was developed using a hybrid nanoplatform (carbon nanotubes [CNTs]-iron oxide nanoparticle. Doxorubicin (DOX and distearoyl-sn-glycero-3-phosphoethanolamine-PEG were adsorbed onto CNTs-iron oxide nanoparticle, and then to avoid the unexpected drug release during circulation, 1-myristyl alcohol was used to encapsulate the CNTs–drug complex. Herein, multifunctional DOX-loaded nanoparticles (NPs with “off–on” state were developed. DOX-NPs showed an obvious “off–on” effect (temperature increase, drug release controlled by near-infrared light in vitro and in vivo. In the in vivo and in vitro studies, DOX-NPs exhibited excellent magnetic resonance imaging ability, magnetic targeting property, high biosafety, and high antitumor combined therapeutic efficacy (hyperthermia combined with chemotherapy. These results highlight the great potential of DOX-NPs in the treatment of cancer. Keywords: controlled drug release, magnetic targeting, MRI, combination therapy

  19. Inclusion of cefalexin in SBA-15 mesoporus material and release property

    International Nuclear Information System (INIS)

    Zhai, Qing-Zhou

    2012-01-01

    SBA-15 (Santa Barbara Amorphous-15) is a high ordered mesoporous material. It has the advantages of a non-toxic property, good hydrothermal stability and thermal stability, etc. Inside inner surface a lot of silanols exist. Pore diameter size is uniform and pore size distribution is narrow. This structural feature makes SBA-15 have a higher loading drug amount and be able to effectively extend the drug release cycle. In this paper, polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol was used as template and tetraethyl orthosilicate was used as silica source to prepare SBA-15 by hydrothermal synthesis method. Cefalexin was included in SBA-15 and the included cefalexin drug content was 158.72 mg/g. The composite materials were characterized by using chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared (IR) spectroscopy, and low temperature nitrogen adsorption–desorption. The results showed that cefalexin had been successfully included in host SBA-15 pore channels. Rational analyses of the release processes of cefalexin drug from the pores of SBA-15 to the simulated body fluid, simulated gastric juice and simulated intestinal fluid were made and sustained-release effects of the drug in complex system were studied. The results showed that in simulated body fluid within 1–5 h cefalexin was fast released and the cumulative release reached 50.00% at 5 h. In 15–20 h, the sustained release speed of cefalexin drug in the composite material decreased and the sustained-release cumulative amount reached 99.87% at 20 h. The release of cefalexin was basically complete. In simulated gastric fluid, composite material sustained-release ended at 4 h, the cumulative sustained release ratio reaching 26.10%. In simulated gastric fluid, the sustained-release was complete at 7 h, the cumulative sustained release ratio reaching 32.46%. The composite material of SBA-15 and cefalexin

  20. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    International Nuclear Information System (INIS)

    Wang Jiexin; Wang Zhihui; Chen Jianfeng; Yun, Jimmy

    2008-01-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N 2 adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 μm, and had a specific surface area of about 306 m 2 /g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties

  1. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption.

    Science.gov (United States)

    Kadry, Hossam; Al-Hilal, Taslim A; Keshavarz, Ali; Alam, Farzana; Xu, Changxue; Joy, Abraham; Ahsan, Fakhrul

    2018-04-20

    Three-dimensional printing (3DP), though developed for nonmedical applications and once regarded as futuristic only, has recently been deployed for the fabrication of pharmaceutical products. However, the existing feeding materials (inks and filaments) that are used for printing drug products have various shortcomings, including the lack of biocompatibility, inadequate extrudability and printability, poor drug loading, and instability. Here, we have sought to develop a filament using a single pharmaceutical polymer, with no additives, which can be multi-purposed and manipulated by computational design for the preparation of tablets with desired release and absorption patterns. As such, we have used hydroxypropyl-methylcellulose (HPMC) and diltiazem, a model drug, to prepare both drug-free and drug-impregnated filaments, and investigated their thermal and crystalline properties, studied the cytotoxicity of the filaments, designed and printed tablets with various infill densities and patterns. By alternating the drug-free and drug-impregnated filaments, we fabricated various types of tablets, studied the drug release profiles, and assessed oral absorption in rats. Both diltiazem and HPMC were stable at extrusion and printing temperatures, and the drug loading was 10% (w/w). The infill density, as well as infill patterns, influenced the drug release profile, and thus, when the infill density was increased to 100%, the percentage of drug released dramatically declined. Tablets with alternating drug-free and drug-loaded layers showed delayed and intermittent drug release, depending on when the drug-loaded layers encountered the dissolution media. Importantly, the oral absorption patterns accurately reproduced the drug release profiles and showed immediate, extended, delayed and episodic absorption of the drug from the rat gastrointestinal tract (GIT). Overall, we have demonstrated here that filaments for 3D printers can be prepared from a pharmaceutical polymer with no

  2. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release

    Science.gov (United States)

    Khalid, Asma; Mitropoulos, Alexander N.; Marelli, Benedetto; Tomljenovic-Hanic, Snjezana; Omenetto, Fiorenzo G.

    2015-01-01

    Nanoparticle (NP) based technologies have proved to be considerably beneficial for advances in biomedicine especially in the areas of disease detection, drug delivery and bioimaging. Over the last few decades, NPs have garnered interest for their exemplary impacts on the detection, treatment, and prevention of cancer. The full potential of these technologies are yet to be employed for clinical use. The ongoing research and development in this field demands single multifunctional composite materials that can be employed simultaneously for drug delivery and biomedical imaging. In this manuscript, a unique combination of silk fibroin (SF) and nanodiamonds (NDs) in the form of nanospheres are fabricated and investigated. The spheres were loaded with the anthracyline Doxorubicin (DoX) and the drug release kinetics for these ND-SF-DoX (NDSX) spheres were studied. NDs provided the fluorescence modality for imaging while the degradable SF spheres stabilized and released the drug in a controlled manner. The emission and structural properties of the spheres were characterized during drug release. The degradability of SF and the subsequent release of DoX from the spheres were monitored through fluorescence of NDs inside the spheres. This research demonstrates the enormous potential of the ND-SF nanocomposite platforms for diagnostic and therapeutic purposes, which are both important for pharmaceutical research and clinical settings. PMID:26819823

  3. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release

    International Nuclear Information System (INIS)

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-01-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326 °C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3 h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. - Highlights: • It's first time to prepare microencapsulation with gelatin and oxidized corn starch. • The microencapsulation material can be biodegradable completely. • The production technology of microcapsule is convenient. • This work explores the potential to use oxidized starch cross-linked gelatin. • The microencapsulation material can be used for drug release.

  5. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xugang; Yang, Mao; Shan, Zhihua [National Engineering Laboratory for Clean Technology Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065 (China); Mansouri, Shahnaz [Department of Chemical Engineering, Monash University, VIC 3800 (Australia); May, Bee K [School of Applied Science, RMIT University, 124 La Trobe St, Melbourne, VIC 3001 (Australia); Chen, Xiaodong [Department of Chemical Engineering, Monash University, VIC 3800 (Australia); School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University (China); Chen, Hui, E-mail: leather2088@sina.com [National Engineering Laboratory for Clean Technology Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065 (China); Department of Chemical Engineering, Monash University, VIC 3800 (Australia); Woo, Meng Wai, E-mail: meng.woo@monash.edu [Department of Chemical Engineering, Monash University, VIC 3800 (Australia)

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326 °C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3 h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. - Highlights: • It's first time to prepare microencapsulation with gelatin and oxidized corn starch. • The microencapsulation material can be biodegradable completely. • The production technology of microcapsule is convenient. • This work explores the potential to use oxidized starch cross-linked gelatin. • The microencapsulation material can be used for drug release.

  6. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices

    Directory of Open Access Journals (Sweden)

    Fernanda M. Carbinatto

    2014-02-01

    Full Text Available Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations, since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs. Objective: In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated. Methods: Cross-linked samples were characterized by their micromeritic properties (size and shape, density, angle of repose and flow rate and liquid uptake ability. Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated. Results: Cross-linked samples demonstrated size homogeneity and irregular shape, with liquid uptake ability insensible to pH. Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process. The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix. Conclusion: The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.

  7. A multifunctional β-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release

    International Nuclear Information System (INIS)

    Peng, Hongxia; Cui, Bin; Li, Guangming; Wang, Yingsai; Li, Nini; Chang, Zhuguo; Wang, Yaoyu

    2015-01-01

    We constructed a novel core–shell structured Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ @(β-CD) nanoparticles used as drug carrier to investigate the loading and controllable release properties of the chemotherapeutic drug etoposide (VP-16). The cavity of β-cyclodextrin is chemically inert, it can store etoposide molecules by means of hydrophobic interactions. The Fe 3 O 4 core and ZnO:Er 3+ ,Yb 3+ shell functioned successfully for magnetic targeting and up-conversion fluorescence imaging, respectively. In addition, the ZnO:Er 3+ ,Yb 3+ shell acts as a good microwave absorber with excellent microwave thermal response property for microwave triggered drug release (the VP-16 release of 18% under microwave irradiation for 15 min outclass the 2% within 6 h without microwave irradiation release). The release profile could be controlled by the duration and number of cycles of microwave application. This material therefore promises to be a useful noninvasive, externally controlled drug-delivery system in cancer therapy. - Graphical abstract: We functionalized a multifunctional core–shell Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ nanocarriers by adding β-cyclodextrin, which is capable of carrying drug molecules and triggered release of the drug by microwave treatment. - Highlights: • We constructed Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ @(β-CD) nanoparticles used as a drug carrier. • The nanoparticles have magnetic and up-conversion fluorescence properties. • The nanoparticles have excellent microwave thermal response property. • The nanocomposite could be a controllable drug release triggered by microwave

  8. 3D extrusion printing of high drug loading immediate release paracetamol tablets.

    Science.gov (United States)

    Khaled, Shaban A; Alexander, Morgan R; Wildman, Ricky D; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Roberts, Clive J

    2018-03-01

    The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Preparation and drug controlled release of porous octyl-dextran microspheres.

    Science.gov (United States)

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  10. Controlled drug release on amine functionalized spherical MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Szegedi, Agnes, E-mail: szegedi@chemres.hu [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67 (Hungary); Popova, Margarita; Goshev, Ivan [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Klebert, Szilvia [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67 (Hungary); Mihaly, Judit [Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67 (Hungary)

    2012-10-15

    MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin method and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: Black-Right-Pointing-Pointer Spherical MCM-41 modified by different amounts of APTES was studied. Black-Right-Pointing-Pointer Ibuprofen (IBU) adsorption and release characteristics was tested. Black-Right-Pointing-Pointer The ninhydrin reaction was used for the quantitative determination of amino groups. Black-Right-Pointing-Pointer Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. Black-Right-Pointing-Pointer Good correlation was found between the amino content and IBU adsorption capacity.

  11. Controlled drug release on amine functionalized spherical MCM-41

    International Nuclear Information System (INIS)

    Szegedi, Agnes; Popova, Margarita; Goshev, Ivan; Klébert, Szilvia; Mihály, Judit

    2012-01-01

    MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N 2 physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin method and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: ► Spherical MCM-41 modified by different amounts of APTES was studied. ► Ibuprofen (IBU) adsorption and release characteristics was tested. ► The ninhydrin reaction was used for the quantitative determination of amino groups. ► Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. ► Good correlation was found between the amino content and IBU adsorption capacity.

  12. Application of drug selective electrode in the drug release study of pH-responsive microgels.

    Science.gov (United States)

    Tan, Jeremy P K; Tam, Kam C

    2007-03-12

    The colloidal phenomenon of soft particles is becoming an important field of research due to the growing interest in using polymeric system in drug delivery. Previous studies have focused on techniques that require intermediate process step such as dialysis or centrifugation, which introduces additional errors in obtaining the diffusion kinetic data. In this study, a drug selective electrode was used to directly measure the concentration of procaine hydrochloride (PrHy) released from methacrylic acid-ethyl acrylate (MAA-EA) microgel, thereby eliminating the intermediate process step. PrHy selective membrane constructed using a modified poly (vinyl chloride) (PVC) membrane and poly (ethylene-co-vinyl acetate-co-carbon monoxide) as plasticizer exhibited excellent reproducibility and stability. The response was reproducible at pH of between 3 to 8.5 and the selectivity coefficients against various organic and inorganic cations were evaluated. Drug release was conducted using the drug electrode under different pHs and the release rate increased with pH. The release behavior of the system under different pH exhibited obvious gradient release characteristics.

  13. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    International Nuclear Information System (INIS)

    Valenti, G.; La Carta, S.; Rapisarda, M.; Carbone, D.; Recca, G.; Rizzarelli, P.; Mazzotti, G.; Giorgini, L.; Perna, S.; Di Gesù, R.

    2016-01-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ("1H-NMR, "1"3C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different

  14. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Science.gov (United States)

    Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.

    2016-05-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic

  15. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, G.; La Carta, S.; Rapisarda, M.; Carbone, D.; Recca, G.; Rizzarelli, P., E-mail: paola.rizzarelli@cnr.it [Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche Via P. Gaifami 18, 95129 Catania (Italy); Mazzotti, G.; Giorgini, L. [Dipartimento di Chimica Industriale «Toso Montanari», Università di Bologna Via Risorgimento 4, 40136 Bologna (Italy); Perna, S. [ST Microelectronics Srl, Stradale Primosole, 50–95121 Catania (Italy); Di Gesù, R. [Merck Serono S.p.A., Via L. Einaudi, 11–00012 Guidonia Montecelio, Rome (Italy)

    2016-05-18

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ({sup 1}H-NMR, {sup 13}C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of

  16. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Chenxin [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Zhixin [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Liu Xinye; Li Yao; Shi Yang; Zhang Di [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2011-03-15

    Research highlights: {yields} A responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. {yields} A combination of surface modification of CMK-3 and in situ internal polymerization of PNIPAM was used. {yields} The system exhibited a pronounced transition at around 20-25 deg. C. - Abstract: A novel responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. The polymer-functionalized CMK-3 was obtained by a combination of simple surface modification of CMK-3 and in situ internal polymerization of PNIPAM. The formation of the PNIPAM inside the CMK-3 was confirmed by thermal gravimetric analysis, Fourier transform-infrared spectroscopy, scanning and transmission electron microscopy and N{sub 2} adsorption/desorption measurements. Controlled drug release tests through the porous network of the PNIPAM functionalized CMK-3 were carried out by measuring the uptake and release of ibuprofen in vitro. The release profiles exhibited a pronounced transition at around 20-25 deg. C. This thermo-sensitive release property of this delivery system was further confirmed by temperature-variable hydrogen nuclear magnetic resonance analysis. The internal PNIPAM layers acted as a storage gate as well as a release switch in response to the stimuli of environment.

  17. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  18. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  19. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations

    Directory of Open Access Journals (Sweden)

    Adedokun Musiliu O.

    2014-09-01

    Full Text Available The binding properties of Eucalyptus gum obtained from the incised trunk of Eucalyptus tereticornis, were evaluated in paracetamol tablet formulations, in comparison with that of Gelatin B.P. In so doing, the compression properties were analyzed using density measurements and the compression equations of Heckel, Kawakita and Gurham. In our work, the mechanical properties of the tablets were assessed using the crushing strength and friability of the tablets, while the drug release properties of the tablets were assessed using disintegration and dissolution times. The results of the study reveal that tablet formulations incorporating Eucalyptus gum as binder, exhibited faster onset and higher amount of plastic deformation during compression than those containing gelatin. What is more, the Gurnham equation could be used as a substitute for the Kawakita equation in describing the compression properties of pharmaceutical tablets. Furthermore, the crushing strength, disintegration and dissolution times of the tablets increased with binder concentration, while friability values decreased. We noted that no significant differences in properties exist between formulations derived from the two binders (p > 0.05 exist. While tablets incorporating gelatin exhibited higher values for mechanical properties, Eucalyptus gum tablets had better balance between mechanical and release properties - as seen from the CSFR/Dt values. Tablets of good mechanical and release properties were prepared using Eucalyptus gum as a binder, and, therefore, it could serve as an alternative binder in producing tablets with good mechanical strength and fast drug release.

  20. Morphologic characterization and properties of a nanocomposite matrix of polyvinylpyrrolidone and sodium bentonite for hydrophilic drug controlled release; Caracterizacao morfologica e propriedades de uma matriz de nanocomposito de polivinilpirrolidona e bentonita sodica para potencial uso como matriz para liberacao controlada de farmacos hidrofilicos

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Dario B.R. de; Tavares, Maria I.B.; Iulianelli, Gisele C.V., E-mail: dario@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2015-07-01

    For several years, research in drug formulation field have been focused in seeking systems that enable a more efficient release of drug and greater time of acting. Aiming to bring numerous benefits to the patient and advantages for the pharmaceutical industry. Leading to greater acceptance and use by society. In this study polymer nanocomposites based on PVP and bentonite clay will be obtained with the drug Metformin, a known hydrophilic hypoglycemiating drug, in order to improve its properties and pharmacokinetics. This mixture will be obtained through spray drying, especially suited for administration of tablets. The characteristics of these materials are being studied by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). (author)

  1. Rhamnogalacturonan-I based microcapsules for targeted drug release

    DEFF Research Database (Denmark)

    Svagan, Anna J.; Kusic, Anja; De Gobba, Cristian

    2016-01-01

    Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms...... such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were...

  2. Nanoformulation and antibiotic releasing property of cefotaxime ...

    African Journals Online (AJOL)

    The objective of this study was to design nano-antibiotic to enhance their release from biomaterial agents. Cefotaxime was used as a model antibiotic substance in this carrier system. These nanoparticles were preformulated using different concentrations of polycaprolactone (PCL) and poly (vinyl alcohol) as coating material ...

  3. Modelling biocide release based on coating properties

    NARCIS (Netherlands)

    Erich, S.J.F.; Baukh, V.

    2016-01-01

    Growth of micro-organisms on coated substrates is a common problem, since it reduces the performance of materials, in terms of durability as well as aesthetics. In order to prevent microbial growth biocides are frequently added to coatings. Unfortunately, early release of these biocides reduces the

  4. Physical and Release Properties of Metronidazole Suppositories ...

    African Journals Online (AJOL)

    80, sodium salicylate and methylcellulose as adjuvants. The setting time, solidification point and melting range of the suppositories were determined, along with their crushing strength, disintegration time and the time for 80% of metronidazole to be released from the suppositories (t80). Results: The ranking of setting time for ...

  5. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Mu, Qingxin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Revia, Richard [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Wang, Kui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Zhou, Xuezhe [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Pauzauskie, Peter J. [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhou, Shuiqin [Department of Chemistry, The College of Staten Island, City University of New York, Staten Island NY 10314 USA; Zhang, Miqin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-01-25

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drug carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.

  6. Nanocapsule@xerogel microparticles containing sodium diclofenac: a new strategy to control the release of drugs.

    Science.gov (United States)

    da Fonseca, Letícia Sias; Silveira, Rodrigo Paulo; Deboni, Alberto Marçal; Benvenutti, Edilson Valmir; Costa, Tânia M H; Guterres, Sílvia S; Pohlmann, Adriana R

    2008-06-24

    The aim of this work was to evaluate the potentiality to control the drug release of a new architecture of microparticles organized at the nanoscopic scale by assembling polymeric nanocapsules at the surface of drug-loaded xerogels. Xerogel was prepared by sol-gel method using sodium diclofenac, as hydrophilic drug model, and coated by spray-drying. After coating, the surface areas decreased from 82 to 28 m(2)/g, the encapsulation efficiency was 71% and SEM analysis showed irregular microparticles coated by the nanocapsules. Formulation showed satisfactory gastro-resistance presenting drug release lower than 3% (60 min) in acid medium. In water, the pure drug dissolved 92% after 5 min, uncoated drug-loaded xerogel released 60% and nanocapsule coated drug-loaded xerogel 36%. After 60 min, uncoated drug-loaded xerogel released 82% and nanocapsule coated drug-loaded xerogel 62%. In conclusion, the new system was able to control the release of the hydrophilic drug model.

  7. Chitosan/alginate based multilayers to control drug release from ophthalmic lens.

    Science.gov (United States)

    Silva, Diana; Pinto, Luís F V; Bozukova, Dimitriya; Santos, Luís F; Serro, Ana Paula; Saramago, Benilde

    2016-11-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release

    International Nuclear Information System (INIS)

    Zhu Shenmin; Li Jingbo; Chen Yuhang; Chen Zhixin; Chen Chenxin; Li Yao; Cui Zhaowen; Zhang Di

    2012-01-01

    A thermo-responsive drug delivery system was reported based on grafting of stimuli-responsive poly(N-isopropylacrylamide) (PNIPA) on the surface of graphene oxide (GO) via atom transfer radical polymerization. The successful synthesis of PNIPA attached on GO (GO–PNIPA) was confirmed by X-ray photoelectron spectrum, X-ray diffraction, atomic force microscope, field-emission scanning electron microscopy, and transmission electron microscopy measurements. Control of drug release through the composite GO–PNIPA was performed by measuring the uptake and release of ibuprofen (IBU). It was found the delivery system demonstrated a much high IBU storage of 280 wt%, attributing to the formation of the hydrogen bonding between the polymers on the GO surface and IBU as well as the large number of internal cavities of the PNIPA chains. In vitro test of IBU release exhibited a narrow pronounced transition at around 22 °C, indicating an attractive thermo-sensitive release property of this delivery system. The strategy may pave the way for the use of GO in numerous applications, from drug delivery to thermally responsive micro- and nano-devices.

  9. Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn; Li Jingbo; Chen Yuhang [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites, School of Electronic, Information and Electrical Engineering (China); Chen Zhixin [University of Wollongong, Faculty of Engineering (Australia); Chen Chenxin; Li Yao; Cui Zhaowen; Zhang Di, E-mail: zhangdi@sjtu.edu.cn [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites, School of Electronic, Information and Electrical Engineering (China)

    2012-09-15

    A thermo-responsive drug delivery system was reported based on grafting of stimuli-responsive poly(N-isopropylacrylamide) (PNIPA) on the surface of graphene oxide (GO) via atom transfer radical polymerization. The successful synthesis of PNIPA attached on GO (GO-PNIPA) was confirmed by X-ray photoelectron spectrum, X-ray diffraction, atomic force microscope, field-emission scanning electron microscopy, and transmission electron microscopy measurements. Control of drug release through the composite GO-PNIPA was performed by measuring the uptake and release of ibuprofen (IBU). It was found the delivery system demonstrated a much high IBU storage of 280 wt%, attributing to the formation of the hydrogen bonding between the polymers on the GO surface and IBU as well as the large number of internal cavities of the PNIPA chains. In vitro test of IBU release exhibited a narrow pronounced transition at around 22 Degree-Sign C, indicating an attractive thermo-sensitive release property of this delivery system. The strategy may pave the way for the use of GO in numerous applications, from drug delivery to thermally responsive micro- and nano-devices.

  10. Kinetics of drug release from ointments: Role of transient-boundary layer.

    Science.gov (United States)

    Xu, Xiaoming; Al-Ghabeish, Manar; Krishnaiah, Yellela S R; Rahman, Ziyaur; Khan, Mansoor A

    2015-10-15

    In the current work, an in vitro release testing method suitable for ointment formulations was developed using acyclovir as a model drug. Release studies were carried out using enhancer cells on acyclovir ointments prepared with oleaginous, absorption, and water-soluble bases. Kinetics and mechanism of drug release was found to be highly dependent on the type of ointment bases. In oleaginous bases, drug release followed a unique logarithmic-time dependent profile; in both absorption and water-soluble bases, drug release exhibited linearity with respect to square root of time (Higuchi model) albeit differences in the overall release profile. To help understand the underlying cause of logarithmic-time dependency of drug release, a novel transient-boundary hypothesis was proposed, verified, and compared to Higuchi theory. Furthermore, impact of drug solubility (under various pH conditions) and temperature on drug release were assessed. Additionally, conditions under which deviations from logarithmic-time drug release kinetics occur were determined using in situ UV fiber-optics. Overall, the results suggest that for oleaginous ointments containing dispersed drug particles, kinetics and mechanism of drug release is controlled by expansion of transient boundary layer, and drug release increases linearly with respect to logarithmic time. Published by Elsevier B.V.

  11. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.

    Science.gov (United States)

    El-Aassar, M R; El Fawal, G F; Kamoun, Elbadawy A; Fouda, Moustafa M G

    2015-01-01

    In this work, hydrogel membrane composed of; kappa carrageenan (κC) and hyaluronic acid (HA) crosslinked with epichlorohydrine is produced. The optimum condition has been established based on their water absorption properties. Tensile strength (TS) and elongation (E%) for the formed films are evaluated. The obtained films were characterized by FTIR, scanning electron microscopy (SEM) and thermal analysis. All membranes were loaded with l-carnosine as a drug model. The swelling properties and kinetics of the release of the model drug from the crosslinked hydrogel membrane were monitored in buffer medium at 37°C. The equilibrium swelling of films showed fair dependency on the high presence of HA in the hydrogel. Moreover, the cumulative release profile increased significantly and ranged from 28% to 93%, as HA increases. SEM explored that, the porosity increased by increasing HA content; consequently, drug release into the pores and channels of the membranes is facilitated. In addition, water uptake % increased as well. A slight change in TS occurred by increasing the HA% to κC, while the highest value of strain for κC membrane was 498.38% by using 3% HA. The thermal stability of the κC/HA was higher than that of HA. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    Science.gov (United States)

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  13. Release properties of UC sub x and molten U targets

    CERN Document Server

    Roussière, B; Sauvage, J; Bajeat, O; Barre, N; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Lau, C; Lefort, H; Liang, C F; Le Blanc, F; Müller, A C; Obert, J; Pauwels, N; Potier, J C; Pougheon, F; Proust, J; Sorlin, O; Verney, D; Wojtasiewicz, A

    2002-01-01

    The release properties of UC sub x and molten U thick targets associated with a Nier-Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe.

  14. Chitosan nanoparticles as a modified diclofenac drug release system

    Science.gov (United States)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  15. Study of drug release and tablet characteristics of silicone adhesive matrix tablets.

    Science.gov (United States)

    Tolia, Gaurav; Li, S Kevin

    2012-11-01

    Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ampicillin-Ester Bonded Branched Polymers: Characterization, Cyto-, Genotoxicity and Controlled Drug-Release Behaviour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2014-06-01

    Full Text Available The development and characterization of novel macromolecular conjugates of ampicillin using branched biodegradable polymers has been described in this study. The conjugates have been prepared coupling the β-lactam antibiotic with branched polymer matrices based on the natural oligopeptide core. The cyto- and genotoxicity of the synthesized polymers were evaluated with a bacterial luminescence test, two protozoan assays and Salmonella typhimurium TA1535. The presence of a newly formed covalent bond between the drug and the polymer matrices was confirmed by 1H-NMR and FTIR studies. A drug content (15.6 and 10.2 mole % in the macromolecular conjugates has been determined. The obtained macromolecular products have been subjected to further in vitro release studies. The total percentage of ampicillin released after 21 days of incubation was nearly 60% and 14% and this resulted from the different physicochemical properties of the polymeric matrices. This is the first report on the application of branched biodegradable polymeric matrices for the covalent conjugation of ampicillin. The obtained results showed that the synthesized macromolecular drug-conjugates might slowly release the active drug molecule and improve the pharmacokinetics of ampicillin.

  17. Electrospinning of doxorubicin loaded silica/poly(ɛ-caprolactone) hybrid fiber mats for sustained drug release

    Science.gov (United States)

    El Gohary, Mohammed I.; El Hady, Bothaina M. Abd; Saeed, Aziza A. Al; Tolba, Emad; El Rashedi, Ahlam M. I.; Saleh, Safaa

    2018-06-01

    Loading of anticancer drugs into electrospun fiber matrices is a portentous approach for clinical treatment of diseased tissues or organs. In this study, doxorubicin hydrochloride (DOX) is added to silica nanoparticles () during the formation of via the sol-gel approach. The obtained nanoparticles are then added to poly(-caprolactone) (PCL) and poly(ethylene oxide) (PEO) blend before electrospinning process via different methods. The effects of DOX addition as a free form or as nanoparticles on physical and chemical properties of obtained PCL-PEO fibers, as well as release profiles are evaluated to give a continual DOX release for several days. The morphology observed with scanning electron microscope (FESEM) revealed significant changes in the average diameter of obtained fibers ranging from 2164 nm to 659 nm and distribution of drug-loaded nanoparticles in the final mats according to the mode of additions. With the same manner, the releasing performances of obtained mats are quite different. Therefore, fabrication of drug loaded mats would offer a powerful approach to minimize serious side effects for clinical patients and allows us to control the drug concentration in the bloodstream.

  18. Model for Microcapsule Drug Release with Ultrasound-Activated Enhancement.

    Science.gov (United States)

    Tsao, Nadia H; Hall, Elizabeth A H

    2017-11-14

    Microbubbles and microcapsules of silane-polycaprolactone (SiPCL) have been filled with a fluorescent acridium salt (lucigenin) as a model for a drug-loaded delivery vehicle. The uptake and delivery were studied and compared with similar microbubbles and microcapsules of silica/mercaptosilica (S/M/S). Positively charged lucigenin was encapsulated through an electrostatic mechanism, following a Type I Langmuir isotherm as expected, but with an additional multilayer uptake that leads to a much higher loading for the SiPCL system (∼280 μg/2.4 × 10 9 microcapsules compared with ∼135 μg/2.4 × 10 9 microcapsules for S/M/S). Whereas the lucigenin release from the S/M/S bubbles and capsules loaded below the solubility limit is consistent with diffusion from a monolithic structure, the SiPCL structures show distinct release patterns; the Weibull function predicts a general trend for diffusion from normal Euclidean space at short times tending toward diffusion out of fractal spaces with increasing time. As a slow release system, the dissolution time (T d ) increases from 1 to 2 days for the S/M/S and for the low concentration, loaded SiPCl vehicles to ∼10 days for the high loaded microcapsules. However, T d can be reduced on insonation to 2 days, indicating the potential to gain control over the local enhanced release with ultrasound. This was tested for a docetaxel model and its effect on C4-2B prostate cancer cells, showing improved cell toxicity for concentrations below the normal EC 50 in solution.

  19. SU-F-19A-08: Optimal Time Release Schedule of In-Situ Drug Release During Permanent Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Cormack, R; Ngwa, W; Makrigiorgos, G; Tangutoori, S; Rajiv, K; Sridhar, S

    2014-01-01

    Purpose: Permanent prostate brachytherapy spacers can be used to deliver sustained doses of radiosentitizing drug directly to the target, in order to enhance the radiation effect. Implantable nanoplatforms for chemo-radiation therapy (INCeRTs) have a maximum drug capacity and can be engineered to control the drug release schedule. The optimal schedule for sensitization during continuous low dose rate irradiation is unknown. This work studies the optimal release schedule of drug for both traditional sensitizers, and those that work by suppressing DNA repair processes. Methods: Six brachytherapy treatment plans were used to model the anatomy, implant geometry and calculate the spatial distribution of radiation dose and drug concentrations for a range of drug diffusion parameters. Three state partial differential equations (cells healthy, damaged or dead) modeled the effect of continuous radiation (radiosensitivities α,β) and cellular repair (time tr) on a cell population. Radiosensitization was modeled as concentration dependent change in α,β or tr which with variable duration under the constraint of fixed total drug release. Average cell kill was used to measure effectiveness. Sensitization by means of both enhanced damage and reduced repair were studied. Results: Optimal release duration is dependent on the concentration of radiosensitizer compared to the saturation concentration (csat) above which additional sensitization does not occur. Long duration drug release when enhancing α or β maximizes cell death when drug concentrations are generally over csat. Short term release is optimal for concentrations below saturation. Sensitization by suppressing repair has a similar though less distinct trend that is more affected by the radiation dose distribution. Conclusion: Models of sustained local radiosensitization show potential to increase the effectiveness of radiation in permanent prostate brachytherapy. INCeRTs with high drug capacity produce the greatest

  20. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release

    International Nuclear Information System (INIS)

    Sankoh, Supannee; Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Thavarungkul, Panote; Kanatharana, Proespichaya; Mak, Wing Cheung

    2017-01-01

    Highlights: • Pulsed electrode potential induced an in-situ drug release from dispersion of conducting polymer microcapsules. • Fast detection of the released drug within the colloid microenvironment. • Improved the efficiency of localized drug release at the electrode interface. - Abstract: Over the past decades, controlled drug delivery system remains as one of the most important area in medicine for various diseases. We have developed a new electrochemically controlled drug release system by combining colloid electrochemistry and electro-responsive microcapsules. The pulsed electrode potential modulation led to the appearance of two processes available for the time-resolved registration in colloid microenvironment: change of the electronic charge of microparticles (from 0.5 ms to 0.1 s) followed by the drug release associated with ionic equilibration (1–10 s). The dynamic electrochemical measurements allow the distinction of drug release associated with ionic relaxation and the change of electronic charge of conducting polymer colloid microparticles. The amount of released drug (methylene blue) could be controlled by modulating the applied potential. Our study demonstrated a surface-potential driven controlled drug release of dispersion of conducting polymer carrier at the electrode interfaces, while the bulk colloids dispersion away from the electrode remains as a reservoir to improve the efficiency of localized drug release. The developed new methodology creates a model platform for the investigations of surface potential-induced in-situ electrochemical drug release mechanism.

  1. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  2. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release

    International Nuclear Information System (INIS)

    Mahdavinia, Gholam Reza; Etemadi, Hossein

    2014-01-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe 3 O 4 nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing–thawing technique and subsequent with K + solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions. - Highlights: • In situ synthesis of magnetic kappa-carrageenan/PVA nanocomposite hydrogel. • Low salt sensitivity of magnetic nanocomposite hydrogels was observed. • The release of diclofenac sodium from hydrogels was pH-dependent. • The release of diclofenac sodium from magnetic hydrogels was affected by external magnetic field. • The hydrogels containing carrageenan component showed high mucoadhesiveness

  3. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavinia, Gholam Reza, E-mail: grmnia@maragheh.ac.ir; Etemadi, Hossein

    2014-12-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe{sub 3}O{sub 4} nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing–thawing technique and subsequent with K{sup +} solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions. - Highlights: • In situ synthesis of magnetic kappa-carrageenan/PVA nanocomposite hydrogel. • Low salt sensitivity of magnetic nanocomposite hydrogels was observed. • The release of diclofenac sodium from hydrogels was pH-dependent. • The release of diclofenac sodium from magnetic hydrogels was affected by external magnetic field. • The hydrogels containing carrageenan component showed high

  4. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets.

    Science.gov (United States)

    Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B

    2010-12-01

    Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.

  5. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization.

    Science.gov (United States)

    Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong

    2012-08-01

    Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.

  6. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    Science.gov (United States)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order

  7. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.

    Science.gov (United States)

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326°C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.

    Science.gov (United States)

    Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen

    2010-02-01

    Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.

  9. HPMA copolymer-drug conjugates with controlled tumor-specific drug release

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Roč. 18, č. 1 (2018), s. 1-15, č. článku 1700209. ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA17-13283S; GA ČR(CZ) GA17-08084S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : biodegradable spacer * controlled drug release * drug delivery systems Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.238, year: 2016

  10. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    Science.gov (United States)

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release.

    Science.gov (United States)

    Fundueanu, Gheorghe; Constantin, Marieta; Stanciu, Cristina; Theodoridis, Georgios; Ascenzi, Paolo

    2009-12-01

    Most pH-/temperature-responsive polymers for controlled release of drugs are used as cross-linked hydrogels. However, the solubility properties of the linear polymers below and above the lower critical solution temperature (LCST) are not exploited. Here, the preparation and characterization of poly (N-isopropylacrylamide-co-methacrylic acid-co-methyl methacrylate) (poly (NIPAAm-co-MA-co-MM)) and poly (N-isopropylacrylamide-co-acrylamide) (poly (NIPAAm-co-AAm)), known as "smart" polymers (SP), is reported. Both poly (NIPAAm-co-MA-co-MM) and poly (NIPAAm-co-AAm) display pH- and temperature-responsive properties. Poly (NIPAAm-co-MA-co-MM) was designed to be insoluble in the gastric fluid (pH = 1.2), but soluble in the intestinal fluid (pH = 6.8 and 7.4), at the body temperature (37 degrees C). Poly (NIPAAm-co-AAm) was designed to have a lower critical solution temperature (LCST) corresponding to 37 degrees C at pH = 7.4, therefore it is not soluble above the LCST. The solubility characteristics of these copolymers were exploited to modulate the rate of release of drugs by changing pH and/or temperature. These copolymers were solubilized with hydrophobic cellulose acetate butyrate (CAB) and vitamin B(12) (taken as a water soluble drug model system) in an acetone/methanol mixture and dispersed in mineral oil. By a progressive evaporation of the solvent, the liquid droplets were transformed into loaded CAB/SP microspheres. Differential scanning calorimetric studies and scanning electron microscopy analysis demonstrated that the polymeric components of the microspheres precipitated separately during solvent evaporation forming small microdomains. Moreover, vitamin B(12) was found to be molecularly dispersed in both microdomains with no specific affinity for any polymeric component of microspheres. The release of vitamin B(12) was investigated as a function of temperature, pH, and the CAB/SP ratio.

  12. Local drug delivery - the early Berlin experience: single drug administration versus sustained release.

    Science.gov (United States)

    Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena

    2011-05-01

    Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.

  13. In Situ Formation of Steroidal Supramolecular Gels Designed for Drug Release

    Directory of Open Access Journals (Sweden)

    Hana Bunzen

    2013-03-01

    Full Text Available In this work, a steroidal gelator containing an imine bond was synthesized, and its gelation behavior as well as a sensitivity of its gels towards acids was investigated. It was shown that the gels were acid-responsive, and that the gelator molecules could be prepared either by a conventional synthesis or directly in situ during the gel forming process. The gels prepared by both methods were studied and it was found that they had very similar macro- and microscopic properties. Furthermore, the possibility to use the gels as carriers for aromatic drugs such as 5-chloro-8-hydroxyquinoline, pyrazinecarboxamide, and antipyrine was investigated and the prepared two-component gels were studied with regard to their potential applications in drug delivery, particularly in a pH-controlled drug release.

  14. The Impact of Bubbles on Measurement of Drug Release from Echogenic Liposomes

    OpenAIRE

    Kopechek, Jonathan A.; Haworth, Kevin J.; Radhakrishnan, Kirthi; Huang, Shaoling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.

    2012-01-01

    Echogenic liposomes (ELIP) encapsulate gas bubbles and drugs within lipid vesicles, but the mechanisms of ultrasound-mediated drug release from ELIP are not well understood. The effect of cavitation activity on drug release from ELIP was investigated in flowing solutions using two fluorescent molecules: a lipophilic drug (rosiglitazone) and a hydrophilic drug substitute (calcein). ELIP samples were exposed to pulsed Doppler ultrasound from a clinical diagnostic ultrasound scanner at pressures...

  15. Drug-sensing hydrogels for the inducible release of biopharmaceuticals

    Science.gov (United States)

    Ehrbar, Martin; Schoenmakers, Ronald; Christen, Erik H.; Fussenegger, Martin; Weber, Wilfried

    2008-10-01

    Drug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor. Genetically engineered bacterial gyrase subunit B (GyrB) (ref. 4) coupled to polyacrylamide was dimerized by the addition of the aminocoumarin antibiotic coumermycin, resulting in hydrogel formation. Addition of increasing concentrations of clinically validated novobiocin (Albamycin) dissociated the GyrB subunits, thereby resulting in dissociation of the hydrogel and dose- and time-dependent liberation of the entrapped protein pharmaceutical VEGF121 for triggering proliferation of human umbilical vein endothelial cells. Pharmacologically controlled hydrogels have the potential to fulfil the promises of stimuli-sensing materials as smart devices for spatiotemporally controlled delivery of drugs within the patient.

  16. INVESTIGATION OF DRUG RELEASE FROM BIODEGRADABLE PLG MICROSPHERES: EXPERIMENT AND THEORY

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS, MALCOLM J. [Los Alamos National Laboratory; BERCHANE, NADER S. [Los Alamos National Laboratory; CARSON, KENNETH H. [Los Alamos National Laboratory; RICE-FICHT, ALLISON C. [Los Alamos National Laboratory

    2007-01-30

    Piroxicam containing PLG microspheres having different size distributions were fabricated, and in vitro release kinetics were determined for each preparation. Based on the experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the system size was increased. The mathematical model gave a good fit to the experimental release data.

  17. The Antimicrobial Properties of Zinc-Releasing Bioceramics

    Science.gov (United States)

    He, Xin

    Up to 80% of nosocomial infections are caused by biofilm-producing bacteria such as Staphylococci and Pseudomonas aeruginosa. These types of microorganisms can become resistant to antibiotics and are difficult to eliminate. As such, there is tremendous interest in developing bioactive implant materials that can help to minimize these post- operative infections. Using water-based chemistry, we developed an economical, biodegradable and biocompatible orthopedic implant material consisting of zinc- doped hydroxyapatite (HA), which mimics the main inorganic component of the bone. Because the crystallinity of HA is typically too compact for efficient drug release, we substituted calcium ions in HA with zinc during the synthesis step to perturb the crystal structure. An added benefit is that zinc itself is a microelement of the human body with anti-inflammatory property, and we hypothesized that Zn-doped HA is an inherently antibacterial material. All HA samples were synthesized by a co-precipitation method using aqueous solutions of Zinc nitrate, Calcium Nitrate, and Ammonium Phosphate. XRD data showed that Zn was successfully incorporated into the HA. The effectiveness of Zn-doped HA against a model biofilm-forming bacterium is currently being evaluated using a wild-type strain and a streptomycin- resistant strain of Pseudomonas syringae pv. papulans (Psp) which is a plant pathogen isolated from diseased apples. Key words: Hydroxyapatite, Zinc, Citrate, Pseudomonas, Antibacterial.

  18. Effects of interacting variables on the release properties of ...

    African Journals Online (AJOL)

    Purpose: The individual and interaction effects of formulation variables on the release of suppositories were investigated using a 23 factorial experimental design. The variables studied were nature of base (B), type of drug (D), and presence of surfactant (S). Method: Suppositories were formulated with theobroma oil and ...

  19. Sustained release nimesulide microparticles: evaluation of release modifying property of ethy

    International Nuclear Information System (INIS)

    Khan, S.A.; Ahmed, M.; Nisar-ur-Rehman; Madni, A.U.; Aamir, M.N.; Murtaza, G.

    2011-01-01

    Microencapsulated controlled-release preparations of nimesulide were formulated. Microparticles were prepared by modified phase separation (non-solvent addition) technique using different ratios of ethylcellulose. The microparticles (M/sub 1/, M/sub 2/, and M/sub 3/) were yellow, free flowing and spherical in shape with the particle size varying from 93.62 +- 14.15 to 104.19 +- 18.15 mu m. The t/sub 60%/of nimesulide release from microparticles was found to be 3 +- 0.6, 5 +- 0.6 and 8 +- 0.8 h for formulations M/sub 1/, M/sub 2/, and M/sub 3/, respectively. FT-IR, XRD, and thermal analysis were done which showed that there is no interaction between the polymer and drug. The mechanism of drug release from nimesulide microparticles was studied by using Higuchi and Korsmeyer-Peppas models. The value of coefficient of determination (R/sup 2/) for M/sub 1/, M/sub 2/, and M/sub 3/ indicates anomalous and case-II transport release mechanism. The dissolution data of designed system verified its ability to maintain plasma concentration without the need of frequent dosing. The Nimesulide microparticles prolonged drug release for 12 hours or longer. Based on the results of release studies, M/sub 3/ was opted as a suitable microparticulate formulation allowing the controlled release of nimesulide over a prolonged period of time. Moreover, its encapsulation efficiency was also comparable to the other two formulations (M/sub 1/ and M/sub 2/). In conclusion, the influence of polymer concentration should be considered during formulation development. (author)

  20. In vitro efficacy and release study with anti-inflammatory drugs incorporated in adhesive transdermal drug delivery systems.

    Science.gov (United States)

    Meyer, Stefanie; Peters, Nils; Mann, Tobias; Wolber, Rainer; Pörtner, Ralf; Nierle, Jens

    2014-04-01

    The topical application of two different anti-inflammatory extracts incorporated in adhesive transdermal drug delivery systems (TDDSs) was investigated. Therefore, anti-inflammatory properties and percutaneous absorption behavior of adhesive TDDSs were characterized in vitro conducting experiments with a dermatologically relevant human skin model. Anti-inflammatory efficacy against UV irradiation of both TDDSs was determined in vitro with EpiDerm™. The reduction of the release of proinflammatory cytokines by topically applied TDDSs was compared with the reduction during the presence of the specific cyclooxygenase inhibitor diclofenac in the culture medium. A similar anti-inflammatory efficacy of the topically applied TDDSs in comparison with the use of diclofenac in the culture medium should be achieved. Furthermore, percutaneous absorption in efficacy tests was compared with percutaneous absorption in diffusion studies with porcine cadaver skin. Both the topically applied TDDSs showed a significant anti-inflammatory activity. Permeation coefficients through the stratum corneum and the epidermis gained from the release studies on porcine cadaver skin (Magnolia: 2.23·10(-5) cm/h, licorice: 4.68·10(-6) cm/h) were approximately five times lower than the permeation coefficients obtained with the EpiDerm™ skin model (Magnolia: 9.48·10(-5) cm/h, licorice: 24.0·10(-6) cm/h). Therefore, an adjustment of drug doses during experiments with the EpiDerm™ skin model because of weaker skin barrier properties should be considered.

  1. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  2. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis.

    Science.gov (United States)

    Darwish, Kinda A; Mrestani, Yahya; Rüttinger, Hans-Hermann; Neubert, Reinhard H H

    2016-05-01

    Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane. The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD. The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol. The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

  3. Drug delivery properties of macroporous polystyrene solid foams.

    Science.gov (United States)

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  4. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    Science.gov (United States)

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  5. Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers

    Directory of Open Access Journals (Sweden)

    Stefano Salmaso

    2013-01-01

    Full Text Available Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the systemic side effects. By virtue of their small size they can be injected intravenously and disposed into the target tissues where they release the drug. Nanocarriers interact massively with the surrounding environment, namely, endothelium vessels as well as cells and blood proteins. Consequently, they are rapidly removed from the circulation mostly by the mononuclear phagocyte system. In order to endow nanosystems with long circulation properties, new technologies aimed at the surface modification of their physicochemical features have been developed. In particular, stealth nanocarriers can be obtained by polymeric coating. In this paper, the basic concept underlining the “stealth” properties of drug nanocarriers, the parameters influencing the polymer coating performance in terms of opsonins/macrophages interaction with the colloid surface, the most commonly used materials for the coating process and the outcomes of this peculiar procedure are thoroughly discussed.

  6. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Uros; Bele, Marjan [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Makovec, Darko; Campelj, Stanislav [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jamnik, Janko [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gaberscek, Miran [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia)], E-mail: miran.gaberscek@ki.si

    2009-10-15

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  7. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Maver, Uros; Bele, Marjan; Makovec, Darko; Campelj, Stanislav; Jamnik, Janko; Gaberscek, Miran

    2009-01-01

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  8. Polymer blend microspheres for controlled drug release: the techniques for preparation and characterization: a review article.

    Science.gov (United States)

    Dasan, K Priya; Rekha, C

    2012-11-01

    The use of polymers and their microspheres in drug delivery is well known for they are being widely used in the field of drug delivery. The polymer entraps a drug which is to be released in a predesigned manner in the body through biodegradation. The blending of polymers is one way of modifying and enhancing the properties of polymer- based products which is also a cost effective procedure rather than developing a new product. The molecular weight of the polymer, the composition of the blend, the sphere porosity and size, and drug distribution are found to be controllable factors on which drug delivery depends. Polymer blends are obtained by allowing two polymers to combine as one material which has the advantage of two or more polymers. Polymer microspheres are small spherical particles with diameters in the micrometer range between 1μm to 1000μm which are manufactured from various natural and synthetic materials. Microspheres are used to administer medication in a rate- controlled manner and sometimes in a targeted manner. This review presents various polymer blend- combinations in different ratios, the different processing techniques adopted and the details of their characterization through examples found in a literature survey. The characterization of the different polymer blends or microspheres showed changes in structure, increase in drug loading, encapsulation efficiency, biocompatibility and low cytotoxicity.

  9. Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism

    Directory of Open Access Journals (Sweden)

    Abeer M. El-Kady

    2015-01-01

    Full Text Available Bioactive glass nanoparticles were synthesized and tested for the first time as a new delivery system for sustained 5-fluorouracil (5-FU release. They were characterized by TEM, DTA, TGA, and FT-IR. The porosity % and specific surface area of glass nanoparticles were 85.59% and 378.36 m2/g, respectively. The in vitro bioactivity evaluation confirmed that bioactive glass disks prepared from these nanoparticles could induce hydroxyapatite layer over their surfaces in simulated body fluid. The in vitro drug release experiment indicated that glass nanoparticles could serve as long-term local delivery vehicles for sustained 5-FU release. The release profile of 5-FU showed an initial fast release stage followed by a second stage of slower release. The initial burst release of 5-FU in the first day was about 23% (28.92 mg·L−1 of the total amount of loaded 5-FU, while the final cumulative percentage of the 5-FU released after 32 days was about 45.6% (57.31 mg·L−1 of the total amount of loaded 5-FU. The application of different mathematical models indicated that 5-FU was released by diffusion controlled mechanism and suggested that its release rate was dependent on glass particles dissolution, changes of surface area as well as diameter of glass particles, and concentration of loaded drug.

  10. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  11. The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent.

    Science.gov (United States)

    Kim, Seong Min; Park, Sung-Bin; Bedair, Tarek M; Kim, Man-Ho; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2017-09-01

    Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nonlinearities in Drug Release Process from Polymeric Microparticles: Long-Time-Scale Behaviour

    Directory of Open Access Journals (Sweden)

    Elena Simona Bacaita

    2012-01-01

    Full Text Available A theoretical model of the drug release process from polymeric microparticles (a particular type of polymer matrix, through dispersive fractal approximation of motion, is built. As a result, the drug release process takes place through cnoidal oscillations modes of a normalized concentration field. This indicates that, in the case of long-time-scale evolutions, the drug particles assemble in a lattice of nonlinear oscillators occur macroscopically, through variations of drug concentration. The model is validated by experimental results.

  13. Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies

    Science.gov (United States)

    Kalwar, Kaleemullah; Zhang, Xuan; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan

    2017-12-01

    Electrospun nanofibers with sustained drug release are a challenge but it can be improved by using hydrophobic polymer. Polycaprolactone (PCL) is a hydrophobic and biocompatible polymer. In this work, we have proposed a drug release mechanism by preparation of ciprofloxacin (Cip)/Laponite (LAP) complex and then incorporation in PCL nanofibers through electrospinning technique. In addition, drug incorporation was confirmed by FTIR and morphology of electrospun nanofibers was revealed by SEM. Drug loading was measured by using spectrophotometer. PCL/LAP/Cip NFs proved sustained drug release as compared to PCL NFs and PCL/Cip NFs. Furthermore, PCL/LAP/Cip NFs were used as antimicrobial agent and higher effect measured.

  14. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  15. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications

    International Nuclear Information System (INIS)

    Desai, Salil; Perkins, Jessica; Harrison, Benjamin S.; Sankar, Jag

    2010-01-01

    Drug delivery and dosage concentrations are considered as major focal points in conventional as well as battlefield emergency medicine. The concept of localizing drug delivery via microcapsules is an evolving field to confine the adverse side effects of high concentration drug doses. This paper focuses on understanding release kinetics through biopolymer microcapsules for time-dependent drug release. Calcium alginate microcapsules were manufactured using a direct-write inkjet technique. Rhodamine 6G was used as the release agent to observe the release kinetics from calcium alginate beads in distilled water. A design of experiments was constructed to compare the effect of the microcapsule diameter and different concentrations of calcium chloride (M) and sodium alginate (%, w/v) solutions on the release kinetics profiles of the microcapsules. This research gives insight to identify favorable sizes of microcapsules and concentrations of sodium alginate and calcium chloride solutions for controlled release behavior of drug delivery microcapsules.

  16. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets.

    Science.gov (United States)

    Li, Liang; Wang, Linlin; Shao, Yang; Tian, Ye; Li, Conghao; Li, Ying; Mao, Shirui

    2013-08-01

    The aim of this study was to better understand the underlying drug release characteristics from matrix tablets based on the combination of chitosan (CS) and different types of carrageenans [kappa (κ)-CG, iota (ι)-CG, and lambda (λ)-CG]. Highly soluble trimetazidine hydrochloride (TH) was used as a model drug. First, characteristics of drug release from different formulations were investigated, and then in situ complexation capacity of CG with TH and CS was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Erosion and swelling of matrix were also characterized to better understand the drug-release mechanisms. Effects of pH and ionic strength on drug release were also studied. It was found that not only ι-CG and λ-CG could reduce the burst release of TH by the effect of TH-CG interaction, CS-ι-CG- and CS-λ-CG-based polyelectrolyte film could further modify the controlled-release behavior, but not CS-κ-CG. High pH and high ionic strength resulted in faster drug release from CS-κ-CG- and CS-ι-CG-based matrix, but drug release from CS-λ-CG-based matrix was less sensitive to pH and ionic strength. In conclusion, CS-λ-CG-based matrix tablets are quite promising as controlled-release drug carrier based on multiple mechanisms. Copyright © 2013 Wiley Periodicals, Inc.

  17. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  18. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    International Nuclear Information System (INIS)

    Li Fengxia; Li Xiaoli; Li Bin

    2011-01-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3 O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  19. Mechanochemical effect on swelling and drug release of natural polymer matrix tablets by X-ray computed tomography.

    Science.gov (United States)

    Hattori, Yusuke; Takaku, Tomomi; Otsuka, Makoto

    2018-03-25

    The relationships between the physicochemical properties of milled starch and drug release from tablets were investigated quantitatively using a drug release kinetic method and X-ray computed tomography (XCT). The samples were prepared from raw β-starch by milling in a planetary ball mill. The tablets, containing 5% theophylline (TH), 94% milled starch, and 1% magnesium stearate, were compressed at 6 kN. The drug-release and gel-forming processes were measured simultaneously using an original dissolution tester with an XCT instrument. Drug release from the tablet was delayed with increasing milling time, because the TH tablet formed a typical gel-layer on the outside of the tablet. The relationship between the crystallinity of milled starch and mean drug release time (MDT) for the TH tablets showed almost a straight inverse proportional relationship. The plots of MDT against area under the curve of the swelling ratio profiles of the TH tablets had a good straight line. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  1. Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs

    Energy Technology Data Exchange (ETDEWEB)

    Aldana, Ana Agustina, E-mail: aaldana@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Gonzalez, Agustin, E-mail: agustingonzalez@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Strumia, Miriam C., E-mail: mcs@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Martinelli, Marisa, E-mail: mmartinelli@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Cross-linked chitosan films using genipin and/or PVP. Black-Right-Pointing-Pointer Propranolol hydrochloride was used like a model drug to release studies. Black-Right-Pointing-Pointer Incorporating PVP improves mechanical and diffusion properties. Black-Right-Pointing-Pointer Ch-Gen 0.10% and Ch-Gen 0.10%-PVP have optimal behavior. - Abstract: The study of the physicochemical and functional properties of chitosan films cross-linked with genipin and poly(N-vinyl-2-pyrrolidone) (PVP) was performed in this work. Cross-linked films were prepared by casting method from acetic acid solutions. The structure and physical properties of the films were analyzed by infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ({sup 13}C NMR), differential scanning calorimetry (DSC) and mechanical testings. Propranolol hydrochloride was used like a model drug to determine the behavior of drug release from films. The drug release capacity was measured and compared with the degree of cross-linking, mechanical properties and swelling index. There was an appropriate balance of hydrophilicity, mechanical properties and diffusion by the incorporation of PVP into the networks cross-linked with genipin. The combination of both cross-linkers allows obtaining a soft and tough material potentially applicable as a controlled release. This research represents the first report where both cross-linkers, chemical and ionic agents, are used for obtaining films. These studies suggest that the chitosan films prepared here are promising drug delivery systems for buccal application, with thermal stability and acceptable mechanical properties. Buccal films may be preferred in terms of flexibility and comfort.

  2. Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs

    International Nuclear Information System (INIS)

    Aldana, Ana Agustina; González, Agustín; Strumia, Miriam C.; Martinelli, Marisa

    2012-01-01

    Highlights: ► Cross-linked chitosan films using genipin and/or PVP. ► Propranolol hydrochloride was used like a model drug to release studies. ► Incorporating PVP improves mechanical and diffusion properties. ► Ch–Gen 0.10% and Ch–Gen 0.10%–PVP have optimal behavior. - Abstract: The study of the physicochemical and functional properties of chitosan films cross-linked with genipin and poly(N-vinyl-2-pyrrolidone) (PVP) was performed in this work. Cross-linked films were prepared by casting method from acetic acid solutions. The structure and physical properties of the films were analyzed by infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 13 C NMR), differential scanning calorimetry (DSC) and mechanical testings. Propranolol hydrochloride was used like a model drug to determine the behavior of drug release from films. The drug release capacity was measured and compared with the degree of cross-linking, mechanical properties and swelling index. There was an appropriate balance of hydrophilicity, mechanical properties and diffusion by the incorporation of PVP into the networks cross-linked with genipin. The combination of both cross-linkers allows obtaining a soft and tough material potentially applicable as a controlled release. This research represents the first report where both cross-linkers, chemical and ionic agents, are used for obtaining films. These studies suggest that the chitosan films prepared here are promising drug delivery systems for buccal application, with thermal stability and acceptable mechanical properties. Buccal films may be preferred in terms of flexibility and comfort.

  3. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    Science.gov (United States)

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  4. Properties of Protein Drug Target Classes

    Science.gov (United States)

    Bull, Simon C.; Doig, Andrew J.

    2015-01-01

    Accurate identification of drug targets is a crucial part of any drug development program. We mined the human proteome to discover properties of proteins that may be important in determining their suitability for pharmaceutical modulation. Data was gathered concerning each protein’s sequence, post-translational modifications, secondary structure, germline variants, expression profile and drug target status. The data was then analysed to determine features for which the target and non-target proteins had significantly different values. This analysis was repeated for subsets of the proteome consisting of all G-protein coupled receptors, ion channels, kinases and proteases, as well as proteins that are implicated in cancer. Machine learning was used to quantify the proteins in each dataset in terms of their potential to serve as a drug target. This was accomplished by first inducing a random forest that could distinguish between its targets and non-targets, and then using the random forest to quantify the drug target likeness of the non-targets. The properties that can best differentiate targets from non-targets were primarily those that are directly related to a protein’s sequence (e.g. secondary structure). Germline variants, expression levels and interactions between proteins had minimal discriminative power. Overall, the best indicators of drug target likeness were found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for being membrane bound and the fraction of non-polar amino acids in their sequences. In terms of predicting potential targets, datasets of proteases, ion channels and cancer proteins were able to induce random forests that were highly capable of distinguishing between targets and non-targets. The non-target proteins predicted to be targets by these random forests comprise the set of the most suitable potential future drug targets, and should therefore be prioritised when building a drug development programme. PMID

  5. Synthesis of Thiolated Alginate and Evaluation of Mucoadhesiveness, Cytotoxicity and Release Retardant Properties

    Science.gov (United States)

    Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.

    2010-01-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  6. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    Science.gov (United States)

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  7. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger.

    Science.gov (United States)

    Karimi, Mahdi; Zangabad, Parham Sahandi; Mehdizadeh, Fatemeh; Malekzad, Hedieh; Ghasemi, Alireza; Bahrami, Sajad; Zare, Hossein; Moghoofei, Mohsen; Hekmatmanesh, Amin; Hamblin, Michael R

    2017-01-26

    Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.

  8. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    International Nuclear Information System (INIS)

    Ng, Loo-Teck; Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao

    2005-01-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs

  9. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Loo-Teck [School of Science, Food and Horticulture, University of Western Sydney, Locked bag 1797, Penrith South DC, NSW 1797 (Australia)]. E-mail: l.ng@uws.edu.au; Nakayama, Hiroshi [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan); Kaetsu, Isao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)]. E-mail: kaetsu@ned.kindai.ac.jp; Uchida, Kumao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)

    2005-06-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs.

  10. Near-infrared induced release for localized on-demand drug delivery

    NARCIS (Netherlands)

    Vertommen, M.A.M.E.

    2009-01-01

    By non-invasive external triggering of drug release from an implant, pulsewise administration can be realized according to the patient’s needs and at specific locations in the human body. In comparison to more traditional delivery forms (e.g. oral or by injection), externally triggered drug release

  11. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    Directory of Open Access Journals (Sweden)

    Wei Li Lee

    Full Text Available Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone (PCL coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose. The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  12. Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Saednia, Shahnaz; Saien, Javad; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: ssaednia@gmail.com [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kazem-Rostami, Masoud [Young Researchers Club and Elite, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Sadeghpour, Mahdieh [Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Borazjani, Maryam Kiani [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of)

    2013-07-15

    Drug delivery systems based on polymer-drug conjugates give an improved treatment with lower toxicity or side effects and be used for the treatment of different diseases. Conjugates of biodegradable poly(styrene-alt-maleic anhydride) (PSMA), with a therapeutic agents such as amantadine hydrochloride, amlodipine, gabapentin, zonisamide and mesalamine, were afforded by the formation of the amide bonds of the amino drugs that reacted with the PSMA anhydride groups. The amounts of covalently conjugated drugs were determined by a {sup 1}H NMR spectroscopic method, and the in vitro release rate in buffer solution (pH 1.3) was studied at body temperature 37 Degree-Sign C. In kinetic studies, different dissolution models were examined to obtain drug release data and the collected data were well-fitted to the Korsmeyer-Peppas equation, revealing a dominant Fickian diffusion mechanism for drug release under the in vitro conditions. (author)

  13. Design of tablets for the delayed and complete release of poorly water-soluble weak base drugs using SBE7M-β-CD as a solubilizing agent.

    Science.gov (United States)

    Rao, Venkatramana M; Zannou, Erika A; Stella, Valentino J

    2011-04-01

    The challenge of designing a delayed-release oral dosage form is significantly increased when the drug substance is poorly water soluble. This manuscript describes the design and characterization of a novel controlled-release film-coated tablet for the pH-triggered delayed and complete release of poorly water-soluble weak base drugs. Delivery of weak bases is specifically highlighted with the use of dipyridamole and prazosin as model compounds. Tailored delayed release is achieved with a combination of an insoluble but semipermeable polymer and an enteric polymer, such as cellulose acetate and hydroxypropyl cellulose phthalate, respectively, as coatings. The extent of the time lag prior to complete release depends on the film-coating composition and thickness. Complete release is achieved by the addition of a cyclodextrin, namely SBE7M-β-CD with or without a pH modifier added to the tablet core to ensure complete solubilization and release of the drug substance. The film-coating properties allow the complex formation/solubilization to occur in situ. Additionally, the drug release rate can be modulated on the basis of the cyclodextrin to drug molar ratio. This approach offers a platform technology for delayed release of potent but poorly soluble drugs and the release can be modulated by adjusting the film-coating composition and thickness and/or the cyclodextrin and pH modifier, if necessary. Copyright © 2010 Wiley-Liss, Inc.

  14. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  15. Relationship among reaction rate, release rate and efficiency of nanomachine-based targeted drug delivery.

    Science.gov (United States)

    Zhao, Qingying; Li, Min; Luo, Jun

    2017-12-04

    In nanomachine applications towards targeted drug delivery, drug molecules released by nanomachines propagate and chemically react with tumor cells in aqueous environment. If the nanomachines release drug molecules faster than the tumor cells react, it will result in loss and waste of drug molecules. It is a potential issue associated with the relationship among reaction rate, release rate and efficiency. This paper aims to investigate the relationship among reaction rate, release rate and efficiency based on two drug reception models. We expect to pave a way for designing a control method of drug release. We adopted two analytical methods that one is drug reception process based on collision with tumors and another is based on Michaelis Menten enzymatic kinetics. To evaluate the analytical formulations, we used the well-known simulation framework N3Sim to establish simulations. The analytical results of the relationship among reaction rate, release rate and efficiency is obtained, which match well with the numerical simulation results in a 3-D environment. Based upon two drug reception models, the results of this paper would be beneficial for designing a control method of nanomahine-based drug release.

  16. Magnetothermal release of payload from iron oxide/silica drug delivery agents

    Energy Technology Data Exchange (ETDEWEB)

    Luong, T.T., E-mail: thientai.luong@chem.kuleuven.be [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Hanoi National University of Education, Faculty of Chemistry, Xuan Thuy 136, Cau Giay, Hanoi (Viet Nam); Knoppe, S.; Bloemen, M.; Brullot, W.; Strobbe, R. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Locquet, J.-P. [KU Leuven, Department of Physics, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Verbiest, T. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium)

    2016-10-15

    The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. The system acts as a model to study drug delivery and payload release under magnetothermal heating. - Graphical abstract: The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. - Highlights: • Iron oxide/mesoporous-SiO{sub 2} core-shell NPs were synthesized. • The dye was covalently bound to SiO{sub 2} shells. • The release of dye under magnetothermal heating was studied. • The results are relevant for controlled drug release.

  17. Cyclodextrin Controlled Release of Poorly Water-Soluble Drugs from Hydrogels

    DEFF Research Database (Denmark)

    Woldum, Henriette Sie; Madsen, Flemming; Larsen, Kim Lambertsen

    2008-01-01

    The effect of 2-hydroxypropyl- -cyclodextrin and -cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation...... and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all -cyclodextrin complexes was limited. The load also was increased...

  18. Drug release from non-aqueous suspensions. II. The release of methylxanthines from paraffin suspensions

    NARCIS (Netherlands)

    Blaey, C.J. de; Fokkens, J.G.

    1984-01-01

    The release of 3 methylxanthines, i.e. caffeine, theobromine and theophylline, from suspensions in liquid paraffin to an aqueous phase was determined in an in vitro apparatus. The release rates were determined as a function of the pH of the aqueous phase. It was proved that the release process was

  19. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release.

    Science.gov (United States)

    Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing

    2017-05-01

    In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    International Nuclear Information System (INIS)

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-01-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and 1 H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  1. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jalvandi, Javid, E-mail: Javid.jlv@gmail.com [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); White, Max, E-mail: tamrak@bigpond.com [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Gao, Yuan, E-mail: Yuan.Gao@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Truong, Yen Bach, E-mail: Yen.truong@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Padhye, Rajiv, E-mail: rajiv.padhye@rmit.edu.au [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Kyratzis, Ilias Louis, E-mail: Louis.kyratzis@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and {sup 1}H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  2. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    OpenAIRE

    Muhammad Zaman; Junaid Qureshi; Hira Ejaz; Rai Muhammad Sarfraz; Hafeez ullah Khan; Fazal Rehman Sajid; Muhammad Shafiq ur Rehman

    2016-01-01

    Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes dif...

  3. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-10-01

    The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.

  4. Influence of different test parameters on in vitro drug release from topical diclofenac formulations in a vertical diffusion cell setup.

    Science.gov (United States)

    Klein, S

    2013-07-01

    In the past decades, the vertical diffusion cell has emerged as a useful device for testing drug release of topical dosage forms. However, to date neither a general USP method nor formulation-related monographs have been published in international pharmacopoeia. The purpose of the present work was to examine the influence of different test parameters in a vertical diffusion cell setup on in vitro drug release from semi-solid preparations for cutaneous application. Diclofenac was selected as the model compound. Release experiments were performed in a 7 ml Microett vertical diffusion cell system. Various test parameters, including the media composition and pH, degassing, membrane material and pore size, stirring speed and stirrer type, were varied. Results obtained with different test parameter settings clearly indicate that both drug properties and instrumental details can have a huge impact on the outcome of in vitro diffusion/drug release studies with the vertical diffusion cell. Thus, the selection of adequate test parameters is crucial for the success of the release experiments and, as shown in the present study, optimal test parameters/conditions need to be established and validated on a case by case study.

  5. Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles.

    Science.gov (United States)

    Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon

    2011-04-04

    A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.

    Science.gov (United States)

    Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun

    2018-03-07

    Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.

  7. The biowaiver extension for BCS class III drugs: the effect of dissolution rate on the bioequivalence of BCS class III immediate-release drugs predicted by computer simulation.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2010-08-02

    The Biopharmaceutical Classification System (BCS) guidance issued by the FDA allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release (IR) solid oral dosage forms only for BCS class I drugs. However, a number of drugs within BCS class III have been proposed to be eligible for biowaivers. The World Health Organization (WHO) has shortened the requisite dissolution time of BCS class III drugs on their Essential Medicine List (EML) from 30 to 15 min for extended biowaivers; however, the impact of the shorter dissolution time on AUC(0-inf) and C(max) is unknown. The objectives of this investigation were to assess the ability of gastrointestinal simulation software to predict the oral absorption of the BCS class I drugs propranolol and metoprolol and the BCS class III drugs cimetidine, atenolol, and amoxicillin, and to perform in silico bioequivalence studies to assess the feasibility of extending biowaivers to BCS class III drugs. The drug absorption from the gastrointestinal tract was predicted using physicochemical and pharmacokinetic properties of test drugs provided by GastroPlus (version 6.0). Virtual trials with a 200 mL dose volume at different drug release rates (T(85%) = 15 to 180 min) were performed to predict the oral absorption (C(max) and AUC(0-inf)) of the above drugs. Both BCS class I drugs satisfied bioequivalence with regard to the release rates up to 120 min. The results with BCS class III drugs demonstrated bioequivalence using the prolonged release rate, T(85%) = 45 or 60 min, indicating that the dissolution standard for bioequivalence is dependent on the intestinal membrane permeability and permeability profile throughout the gastrointestinal tract. The results of GastroPlus simulations indicate that the dissolution rate of BCS class III drugs could be prolonged to the point where dissolution, rather than permeability, would control the overall absorption. For BCS class III drugs with intestinal absorption patterns

  8. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  9. The effects of cyclodextrins on drug release from fatty suppository bases : II. In vivo observations

    NARCIS (Netherlands)

    Frijlink, H.W.; Eissens, Anko; Schoonen, Adelbert; Lerk, C.F.

    The effects of cyclodextrin complexation on the absorption of drugs from fatty suppositories was evaluated in human volunteers. Three model drugs: diazepam, ibuprofen and prednisolone were used. When diazepam was complexed with γ-cyclcodextrin the drug release from the fatty suppositories was

  10. Ultrasound-triggered local release of lipophilic drugs from a novel polymeric ultrasound contrast agent

    NARCIS (Netherlands)

    Kooiman, K.; Böhmer, M.R.; Emmer, M.; Vos, Hendrik J.; Chlon, C.; Foppen-Harteveld, M.; Versluis, Michel; de Jong, N.; van Wamel, A.; Hennink, W.E.; Feijen, J.; Sam, A.P.

    2008-01-01

    The advantage of ultrasound contrast agents (UCAs) as drug delivery systems is the ability to non-invasively control the local and triggered release of a drug or gene. In this study we designed and characterized a novel UCA-based drug delivery system, based on polymer-shelled microcapsules filled

  11. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach

    Science.gov (United States)

    Buyukozturk, Fulden; Di Maio, Selena; Budil, David E.; Carrier, Rebecca L.

    2014-01-01

    Purpose To mechanistically study and model the effect of lipids, either from food or self-emulsifying drug delivery systems (SEDDS), on drug transport in the intestinal lumen. Methods Simultaneous lipid digestion, dissolution/release, and drug partitioning were experimentally studied and modeled for two dosing scenarios: solid drug with a food-associated lipid (soybean oil) and drug solubilized in a model SEDDS (soybean oil and Tween 80 at 1:1 ratio). Rate constants for digestion, permeability of emulsion droplets, and partition coefficients in micellar and oil phases were measured, and used to numerically solve the developed model. Results Strong influence of lipid digestion on drug release from SEDDS and solid drug dissolution into food-associated lipid emulsion were observed and predicted by the developed model. 90 minutes after introduction of SEDDS, there was 9% and 70% drug release in the absence and presence of digestion, respectively. However, overall drug dissolution in the presence of food-associated lipids occurred over a longer period than without digestion. Conclusion A systems-based mechanistic model incorporating simultaneous dynamic processes occurring upon dosing of drug with lipids enabled prediction of aqueous drug concentration profile. This model, once incorporated with a pharmacokinetic model considering processes of drug absorption and drug lymphatic transport in the presence of lipids, could be highly useful for quantitative prediction of impact of lipids on bioavailability of drugs. PMID:24234918

  12. One-dimensional drug release from finite Menger sponges: In silico simulation

    International Nuclear Information System (INIS)

    Villalobos, Rafael; Dominguez, Armando; Ganem, Adriana; Vidales, Ana Maria; Cordero, Salomon

    2009-01-01

    The purpose of this work was to evaluate the consequences of the spatial distribution of components in pharmaceutical matrices type Menger sponge on the drug release kinetic from this kind of platforms by means of Monte Carlo computer simulation. First, six kinds of Menger sponges (porous fractal structures) with the same fractal dimension, d f =2.727, but with different random walk dimension, d w element of [2.149,3.183], were constructed as models of drug release device. Later, Monte Carlo simulation was used to describe drug release from these structures as a diffusion-controlled process. The obtained results show that drug release from Menger sponges is characterized by an anomalous behavior: there are important effects of the microstructure anisotropy, and porous structures with the same fractal dimension but with different topology produce different release profiles. Moreover, the drug release kinetic from heteromorphic structures depends on the axis used to transport the material to the external medium. Finally, it was shown that the number of releasing sites on the matrix surface has a significant impact on drug release behavior and it can be described quantitatively by the Weibull function.

  13. One-dimensional drug release from finite Menger sponges: In silico simulation

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, Rafael [Division de Estudios de Posgrado (Tecnologia Farmaceutica), Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Av. Primero de Mayo S/N, Cuautitlan Izcalli 54740, Estado de Mexico (Mexico)], E-mail: yeccanv@yahoo.com; Dominguez, Armando [UAM-Iztapalapa, Depto. de Quimica, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico City (Mexico); Ganem, Adriana [Division de Estudios de Posgrado (Tecnologia Farmaceutica), Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Av. Primero de Mayo S/N, Cuautitlan Izcalli 54740, Estado de Mexico (Mexico); Vidales, Ana Maria [Laboratorio de Ciencia de Superficies y Medios Porosos, Departamento de Fisica, CONICET, Universidad Nacional de San Luis, 5700 San Luis (Argentina); Cordero, Salomon [UAM-Iztapalapa, Depto. de Quimica, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico City (Mexico)

    2009-12-15

    The purpose of this work was to evaluate the consequences of the spatial distribution of components in pharmaceutical matrices type Menger sponge on the drug release kinetic from this kind of platforms by means of Monte Carlo computer simulation. First, six kinds of Menger sponges (porous fractal structures) with the same fractal dimension, d{sub f}=2.727, but with different random walk dimension, d{sub w} element of [2.149,3.183], were constructed as models of drug release device. Later, Monte Carlo simulation was used to describe drug release from these structures as a diffusion-controlled process. The obtained results show that drug release from Menger sponges is characterized by an anomalous behavior: there are important effects of the microstructure anisotropy, and porous structures with the same fractal dimension but with different topology produce different release profiles. Moreover, the drug release kinetic from heteromorphic structures depends on the axis used to transport the material to the external medium. Finally, it was shown that the number of releasing sites on the matrix surface has a significant impact on drug release behavior and it can be described quantitatively by the Weibull function.

  14. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    Science.gov (United States)

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  16. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  17. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Zhang, Ying [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, PR China. (China); Zhao, Qinfu, E-mail: zqf021110505@163.com [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China)

    2016-10-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  18. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    International Nuclear Information System (INIS)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua; Zhang, Ying; Zhao, Qinfu; Wang, Siling

    2016-01-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  19. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  20. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  1. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.

    Science.gov (United States)

    Wu, Daocheng; Wan, Mingxi

    2008-01-01

    Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

  2. Effect of drug content and agglomerate size on tabletability and drug release characteristics of bromhexine hydrochloridetalc agglomerates prepared by crystallo-co-agglomeration.

    Science.gov (United States)

    Jadhav, Namdeo; Pawar, Atmaram; Paradkar, Anant

    2010-03-01

    The objective of the investigation was to study the effect of bromhexine hydrochloride (BXH) content and agglomerate size on mechanical, compressional and drug release properties of agglomerates prepared by crystallo-co-agglomeration (CCA). Studies on optimized batches of agglomerates (BXT1 and BXT2) prepared by CCA have showed adequate sphericity and strength required for efficient tabletting. Trend of strength reduction with a decrease in the size of agglomerates was noted for both batches, irrespective of drug loading. However, an increase in mean yield pressure (14.189 to 19.481) with an increase in size was observed for BXT2 having BXH-talc (1:15.7). Surprisingly, improvement in tensile strength was demonstrated by compacts prepared from BXT2, due to high BXH load, whereas BXT1, having a low amount of BXH (BXH-talc, 1:24), showed low tensile strength. Consequently, increased tensile strength was reflected in extended drug release from BXT2 compacts (Higuchi model, R(2) = 0.9506 to 0.9981). Thus, it can be concluded that interparticulate bridges formed by BXH and agglomerate size affect their mechanical, compressional and drug release properties.

  3. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device

    International Nuclear Information System (INIS)

    Song, Wei; Shi, Tong; Ren, Weiping; Yu, Xiaowei; Markel, David C

    2013-01-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL Col /PVA HA ). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL Col /PVA HA NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL Col /PVA HA NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL Col /PVA HA NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL Col /PVA HA NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL Col /PVA HA NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection. (paper)

  4. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device.

    Science.gov (United States)

    Song, Wei; Yu, Xiaowei; Markel, David C; Shi, Tong; Ren, Weiping

    2013-09-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL(Col)/PVA(HA)). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL(Col)/PVA(HA) NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL(Col)/PVA(HA) NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL(Col)/PVA(HA) NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL(Col)/PVA(HA) NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL(Col)/PVA(HA) NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection.

  5. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.

    Science.gov (United States)

    Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2013-09-01

    Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.

  6. Reliability of a Novel Model for Drug Release from 2D HPMC-Matrices

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2010-04-01

    Full Text Available A novel model of drug release from 2D-HPMC matrices is considered. Detailed mathematical description of matrix swelling and the effect of the initial drug loading are introduced. A numerical approach to solution of the posed nonlinear 2D problem is used on the basis of finite element domain approximation and time difference method. The reliability of the model is investigated in two steps: numerical evaluation of the water uptake parameters; evaluation of drug release parameters under available experimental data. The proposed numerical procedure for fitting the model is validated performing different numerical examples of drug release in two cases (with and without taking into account initial drug loading. The goodness of fit evaluated by the coefficient of determination is presented to be very good with few exceptions. The obtained results show better model fitting when accounting the effect of initial drug loading (especially for larger values.

  7. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.X.; Zheng, W.; Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: {yields} The average diameter increased with the increase of chitosan content and then decreased. {yields} The release rate of fenbufen increased with the increase of chitosan. {yields} The aligned nanofibrous scaffold exhibits lower drug release rate. {yields} The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which

  8. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    International Nuclear Information System (INIS)

    Meng, Z.X.; Zheng, W.; Li, L.; Zheng, Y.F.

    2011-01-01

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: → The average diameter increased with the increase of chitosan content and then decreased. → The release rate of fenbufen increased with the increase of chitosan. → The aligned nanofibrous scaffold exhibits lower drug release rate. → The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which would be beneficial

  9. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Light-Regulated Release of Entrapped Drugs from Photoresponsive Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaniknun Sreejivungsa

    2016-01-01

    Full Text Available Release of a payload in a spatiotemporal fashion has a substantial impact on increasing therapeutic efficacy. In this work, a novel monolayer of gold nanoparticles (AuNPs featuring light-responsive ligands was investigated as a potential drug carrier whose drug release can be triggered by UV light. Hydrophobic molecules were noncovalently entrapped in the compartments of its monolayers. Once irradiated with UV light, the dinitrobenzyl linker was cleaved, leading to release of the entrapped agent. AuNPs were characterized using UV spectrophotometry, TEM, and a zetasizer. A naturally occurring compound extracted from Goniothalamus elegans Ast was chosen as a hydrophobic model drug. Entrapment and release of dye were monitored using fluorimetry. The percent encapsulation of dye was of 13.53%. Entrapped dye can be released upon UV irradiation and can be regulated by changing irradiation time. Up to 83.95±2.2% entrapped dye can be released after irradiation for 20 minutes. In the absence of UV light, dye release was only 19.75%. For comparison purposes, AuNPs having no dinitrobenzyl groups showed a minimal release of 12.23% and 11.69% with and without UV light, respectively. This demonstrated an alternative strategy to encapsulate drugs using a noncovalent approach followed by their controlled release upon UV irradiation.

  11. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    Science.gov (United States)

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  12. Drug release from enzyme-mediated in situ-forming hydrogel based on gum tragacanth-tyramine conjugate.

    Science.gov (United States)

    Dehghan-Niri, Maryam; Tavakol, Moslem; Vasheghani-Farahani, Ebrahim; Ganji, Fariba

    2015-05-01

    In the present study, injectable hydrogels based on gum tragacanth-tyramine conjugate were prepared by enzymatic oxidation of tyramine radicals in the presence of hydrogen peroxide. Then, in vitro release of bovine serum albumin and insulin as model protein drugs from this polymeric network was investigated. Also, to improve the properties of this hydrogel, a blended hydrogel composed of tyramine-conjugated gelatin and tyramine-conjugated tragacanth was prepared. Experimental results showed that the gelation time ranged from 3 to 28 s depending on the polymer and enzyme concentrations. Results of morphological investigation of hydrogels indicated that the average pore size of hydrogels varied from 120 to 160 µm. Swelling degree of hydrogels and the rate of drug release decreased by increasing of hydrogen peroxide and polymer concentrations. The release profile of drug from hydrogels followed Higuchi and Fickian diffusion mechanism. Finally, it was shown that the swelling characteristics and drug release behavior of this polymeric network could be improved by blending it with tyramine-conjugated gelatin. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    .7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half......Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough...... to control the spatial and temporal on-demand degradation and drug release from the employed delivery system....

  14. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

    International Nuclear Information System (INIS)

    Tan Zhonghua

    2003-01-01

    Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

  15. Bilayer tablets of Paliperidone for Extended release osmotic drug delivery

    Science.gov (United States)

    Chowdary, K. Sunil; Napoleon, A. A.

    2017-11-01

    The purpose of this study is to develop and optimize the formulation of paliperidone bilayer tablet core and coating which should meet in vitro performance of trilayered Innovator sample Invega. Optimization of core formulations prepared by different ratio of polyox grades and optimization of coating of (i) sub-coating build-up with hydroxy ethyl cellulose (HEC) and (ii).enteric coating build-up with cellulose acetate (CA). Some important influence factors such as different core tablet compositions and different coating solution ingredients involved in the formulation procedure were investigated. The optimization of formulation and process was conducted by comparing different in vitro release behaviours of Paliperidone. In vitro dissolution studies of Innovator sample (Invega) with formulations of different release rate which ever close release pattern during the whole 24 h test is finalized.

  16. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics

    Directory of Open Access Journals (Sweden)

    David Vehlow

    2016-03-01

    Full Text Available An improved interfacial drug delivery system (DDS based on polyelectrolyte complex (PEC coatings with controlled drug loading and improved release performance was elaborated. The cationic homopolypeptide poly(l-lysine (PLL was complexed with a mixture of two cellulose sulfates (CS of low and high degree of substitution, so that the CS and PLL solution have around equal molar charged units. As drugs the antibiotic rifampicin (RIF and the bisphosphonate risedronate (RIS were integrated. As an important advantage over previous PEC systems this one can be centrifuged, the supernatant discarded, the dense pellet phase (coacervate separated, and again redispersed in fresh water phase. This behavior has three benefits: (i Access to the loading capacity of the drug, since the concentration of the free drug can be measured by spectroscopy; (ii lower initial burst and higher residual amount of drug due to removal of unbound drug and (iii complete adhesive stability due to the removal of polyelectrolytes (PEL excess component. It was found that the pH value and ionic strength strongly affected drug content and release of RIS and RIF. At the clinically relevant implant material (Ti40Nb similar PEC adhesive and drug release properties compared to the model substrate were found. Unloaded PEC coatings at Ti40Nb showed a similar number and morphology of above cultivated human mesenchymal stem cells (hMSC compared to uncoated Ti40Nb and resulted in considerable production of bone mineral. RIS loaded PEC coatings showed similar effects after 24 h but resulted in reduced number and unhealthy appearance of hMSC after 48 h due to cell toxicity of RIS.

  17. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  18. Modifying release characteristics from 3D printed drug-eluting products

    DEFF Research Database (Denmark)

    Boetker, Johan; Water, Jorrit; Aho, Johanna

    2016-01-01

    Abstract This work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing...... nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10 mm, h = 2 mm). Thermal analysis with differential scanning calorimetry and solid phase...... identification with Raman spectroscopy showed that nitrofurantoin remained in its original solid form during both hot-melt extrusion and subsequent 3D printing. Rheological measurements of the different compositions showed that the flow properties were sensitive to the amount of undissolved particles present...

  19. Drug release into hydrogel-based subcutaneous surrogates studied by UV imaging

    DEFF Research Database (Denmark)

    Ye, Fengbin; Larsen, Susan Weng; Yaghmur, Anan

    2012-01-01

    of the performance of drug delivery systems based on in vitro experiments. The objective of this study was to evaluate a UV imaging-based method for real-time characterization of the release and transport of piroxicam in hydrogel-based subcutaneous tissue mimics/surrogates. Piroxicam partitioning from medium chain...... upon the injection of aqueous or MCT solutions into an agarose-based hydrogel were investigated by UV imaging. The spatial distribution of piroxicam around the injection site in the gel matrix was monitored in real-time. The disappearance profiles of piroxicam from the injected aqueous solution were...... obtained. This study shows that the UV imaging methodology has considerable potential for characterizing transport properties in hydrogels, including monitoring the real-time spatial concentration distribution in vitro after administration by injection....

  20. Acoustically Triggered Disassembly of Multilayered Polyelectrolyte Thin Films through Gigahertz Resonators for Controlled Drug Release Applications

    Directory of Open Access Journals (Sweden)

    Zhixin Zhang

    2016-11-01

    Full Text Available Controlled drug release has a high priority for the development of modern medicine and biochemistry. To develop a versatile method for controlled release, a miniaturized acoustic gigahertz (GHz resonator is designed and fabricated which can transfer electric supply to mechanical vibrations. By contacting with liquid, the GHz resonator directly excites streaming flows and induces physical shear stress to tear the multilayered polyelectrolyte (PET thin films. Due to the ultra-high working frequency, the shear stress is greatly intensified, which results in a controlled disassembling of the PET thin films. This technique is demonstrated as an effective method to trigger and control the drug release. Both theory analysis and controlled release experiments prove the thin film destruction and the drug release.

  1. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug

  2. Effect of Coating Solvent Ratio on the Drug Release Lag Time of ...

    African Journals Online (AJOL)

    Erah

    Research Article ... Lag Time of Coated Theophylline Osmotic Tablets ... Key words: Coating solvent, Drug release, Lag time, Osmotic tablet, HPMC, .... following composition (w/w): theophylline ... tablets was measured by UV absorption.

  3. Chitosan/alginate based multilayers to control drug release fromophthalmic lens

    OpenAIRE

    Silva, Diana; Pinto, Luís F. V.; Bozukova, Dimitriya; Santos, Luís F.; Serro, Ana Paula; Saramago, Benilde

    2016-01-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (algin...

  4. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  5. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Faruq, E-mail: fmohammad@ksu.edu.sa [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Arfin, Tanvir, E-mail: t_arfin@neeri.res.in [Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020 (India); Al-Lohedan, Hamad A. [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2017-02-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO{sub 4}) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV–Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52 nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl > NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO{sub 4} material also observed to be decreased in the order K{sup +} > Na{sup +} and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO{sub 4} matrix, as the material can release up to 87% of its total loaded drug over a 90 min period. Finally, the

  6. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    International Nuclear Information System (INIS)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2017-01-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO 4 ) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV–Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52 nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl > NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO 4 material also observed to be decreased in the order K + > Na + and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO 4 matrix, as the material can release up to 87% of its total loaded drug over a 90 min period. Finally, the cell viability and

  7. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  8. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  9. 3D printing of tablets containing multiple drugs with defined release profiles.

    Science.gov (United States)

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J

    2015-10-30

    We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.

  10. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release

    DEFF Research Database (Denmark)

    Arouri, Ahmad; Trojnar, Jakub; Schmidt, Steffen

    2015-01-01

    models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we...

  11. Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization

    NARCIS (Netherlands)

    Van Elk, Merel; Lorenzato, Cyril; Ozbakir, Burcin; Oerlemans, Chris; Storm, Gert; Nijsen, Frank; Deckers, Roel; Vermonden, Tina; Hennink, Wim E.

    2015-01-01

    The objective of this study was to prepare and characterize alginate microgels loaded with temperature sensitive liposomes, which release their payload after mild hyperthermia. It is further aimed that by using these microgels both the drug release and the microgel deposition can be visualized by

  12. 77 FR 4227 - Implantation or Injectable Dosage Form New Animal Drugs; Gonadotropin Releasing Factor Analog...

    Science.gov (United States)

    2012-01-27

    ... Factor Analog-Diphtheria Toxoid Conjugate AGENCY: Food and Drug Administration, HHS. ACTION: Final rule... extends the slaughter interval for intact male swine injected with gonadotropin releasing factor analog...-322 for IMPROVEST (gonadotropin releasing factor analog-diphtheria toxoid conjugate) Sterile Solution...

  13. 76 FR 27888 - Implantation or Injectable Dosage Form New Animal Drugs; Gonadotropin Releasing Factor-Diphtheria...

    Science.gov (United States)

    2011-05-13

    ... Factor-Diphtheria Toxoid Conjugate AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. [[Page... veterinary prescription use of gonadotropin releasing factor-diphtheria toxoid conjugate by subcutaneous... provides for the veterinary prescription use of IMPROVEST (gonadotropin releasing factor-diphtheria toxoid...

  14. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  15. Near-infrared remotely triggered drug-release strategies for cancer treatment

    Science.gov (United States)

    Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.

    2017-11-01

    Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

  16. Inorganically modified diatomite as a potential prolonged-release drug carrier.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Calija, Bojan; Dobričić, Vladimir; Daković, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milić, Jela

    2014-09-01

    Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (~250mg/g in 2h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8h from both DAMD comprimates (18% after 8h) and PMDMD comprimates (45% after 8h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  18. Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug.

    Science.gov (United States)

    Zhai, Qing-Zhou

    2013-01-01

    This article used MCM-41 as a carrier for the assembly of propranolol hydrochloride by the impregnation method. By means of chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and low-temperature N(2) adsorption-desorption at 77 K, the characterization was made for the prepared materials. The propranolol hydrochloride guest assembly capacity was 316.20 ± 0.31 mg/g (drug/MCM-41). Powder XRD test results indicated that during the process of incorporation, the frameworks of the MCM-41 were not destroyed and the crystalline degrees of the host-guest nanocomposite materials prepared still remained highly ordered. Characterization by SEM and TEM showed that the composite material presented spherical particle and the average particle size of composite material was 186 nm. FT-IR spectra showed that the MCM-41 framework existed well in the (MCM-41)-propranolol hydrochloride composite. Low-temperature nitrogen adsorption-desorption results at 77 K showed that the guest partially occupied the channels of the molecular sieves. Results of the release of the prepared composite drug in simulated body fluid indicated that the drug can release up to 32 h and its maximum released amount was 99.20 ± 0.11%. In the simulated gastric juice release pattern of drug, the maximum time for the drug release was discovered to be 6 h and the maximum cumulative released amount of propranolol hydrochloride was 45.13 ± 0.23%. The drug sustained-release time was 10 h in simulated intestinal fluid and the maximum cumulative released amount was 62.05 ± 0.13%. The prepared MCM-41 is a well-controlled drug delivery carrier.

  19. Drug release, preclinical and clinical pharmacokinetics relationships of alginate pellets prepared by melt technology.

    Science.gov (United States)

    Bose, Anirbandeep; Harjoh, Nurulaini; Pal, Tapan Kumar; Dan, Shubhasis; Wong, Tin Wui

    2016-01-01

    Alginate pellets prepared by the aqueous agglomeration technique experience fast drug dissolution due to the porous pre-formed calcium alginate microstructure. This study investigated in vitro drug release, preclinical and clinical pharmacokinetics relationships of intestinal-specific calcium acetate-alginate pellets against calcium-free and calcium carbonate-alginate pellets. Alginate pellets were prepared by solvent-free melt pelletization instead of aqueous agglomeration technique using chlorpheniramine maleate as model drug. A fast in situ calcium acetate dissolution in pellets resulted in rapid pellet breakup, soluble Ca(2+) crosslinking of alginate fragments and drug dissolution retardation at pH 1.2, which were not found in other pellet types. The preclinical drug absorption rate was lower with calcium acetate loaded than calcium-free alginate pellets. In human subjects, however, the extent and the rate of drug absorption were higher from calcium acetate-loaded pellets than calcium-free alginate pellets. The fine, dispersible and weakly gastric mucoadhesive calcium alginate pellets underwent fast human gastrointestinal transit. They released the drug at a greater rate than calcium-free pellets in the intestine, thereby promoting drug bioavailability. Calcium acetate was required as a disintegrant more than as a crosslinking agent clinically to promote pellet fragmentation, fast gastrointestinal transit and drug release in intestinal medium, and intestinal-specific drug bioavailability.

  20. The effects of cyclodextrins on drug release from fatty suppository bases : I. In vitro observations

    NARCIS (Netherlands)

    Frijlink, H.W.; Eissens, Anko; Schoonen, Adelbert; Lerk, C.F.

    The effect of cyclodextrins on suppository drug release was investigated. Complexes of several lipophilic drugs with β- and/or γ-cyclodextrin were prepared using the coprecipitation method. The formation of true complexes was confirmed by DSC and an 'ether-wash' method. Witepsol H15 suppositories

  1. Controlled Release from Zein Matrices : Interplay of Drug Hydrophobicity and pH

    NARCIS (Netherlands)

    Bouman, Jacob; Belton, Peter; Venema, Paul; van der Linden, Erik; de Vries, Renko; Qi, Sheng

    In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and

  2. Design Project on Controlled-Release Drug Delivery Devices: Implementation, Management, and Learning Experiences

    Science.gov (United States)

    Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa

    2010-01-01

    A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…

  3. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy (Invited Review)

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Thompson, David H.; Kaasgaard, Thomas

    2010-01-01

    -based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome...

  4. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    Science.gov (United States)

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of

  5. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

    Directory of Open Access Journals (Sweden)

    Aw MS

    2012-09-01

    Full Text Available Moom Sinn Aw,1 Kamarul A Khalid,2,3 Karan Gulati,1 Gerald J Atkins,2 Peter Pivonka,4 David M Findlay,2 Dusan Losic11School of Chemical Engineering, 2Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, SA, Australia; 3Department of Orthopaedics, Traumatology and Rehabilitation, Faculty of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia; 4Engineering Computational Biology Group, School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, AustraliaPurpose: The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti wires generated with titania nanotube (TNT arrays as drug-releasing implants for local drug deliveryMethods: Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm and horizontal (0–10 mm distances from the implant surface were obtained at a range of release times from 1 hour to 5 days.Results: Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex

  6. Fluxgate magnetorelaxometry: a new approach to study the release properties of hydrogel cylinders and microspheres.

    Science.gov (United States)

    Wöhl-Bruhn, S; Heim, E; Schwoerer, A; Bertz, A; Harling, S; Menzel, H; Schilling, M; Ludwig, F; Bunjes, H

    2012-10-15

    Hydrogels are under investigation as long term delivery systems for biomacromolecules as active pharmaceutical ingredients. The release behavior of hydrogels can be tailored during the fabrication process. This study investigates the applicability of fluxgate magnetorelaxometry (MRX) as a tool to characterize the release properties of such long term drug delivery depots. MRX is based on the use of superparamagnetic core-shell nanoparticles as model substances. The feasibility of using superparamagnetic nanoparticles to study the degradation of and the associated release from hydrogel cylinders and hydrogel microspheres was a major point of interest. Gels prepared from two types of photo crosslinkable polymers based on modified hydroxyethylstarch, specifically hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA) and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA), were analyzed. MRX analysis of the incorporated nanoparticles allowed to evaluate the influence of different crosslinking conditions during hydrogel production as well as to follow the increase in nanoparticle mobility as a result of hydrogel degradation during release studies. Conventional release studies with fluorescent markers (half-change method) were performed for comparison. MRX with superparamagnetic nanoparticles as model substances is a promising method to analyze pharmaceutically relevant processes such as the degradation of hydrogel drug carrier systems. In contrast to conventional release experiments MRX allows measurements in closed vials (reducing loss of sample and sampling errors), in opaque media and at low magnetic nanoparticle concentrations. Magnetic markers possess a better long-term stability than fluorescent ones and are thus also promising for the use in in vivo studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qin Guoting; Li Zheng; Xia Rongmin; Li Feng; O' Neill, Brian E; Li, King C [Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Goodwin, Jessica T; Khant, Htet A; Chiu, Wah, E-mail: zli@tmhs.org, E-mail: kli@tmhs.org [National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030 (United States)

    2011-04-15

    A critical issue for current liposomal carriers in clinical applications is their leakage of the encapsulated drugs that are cytotoxic to non-target tissues. We have developed partially polymerized liposomes composed of polydiacetylene lipids and saturated lipids. Cross-linking of the diacetylene lipids prevents the drug leakage even at 40 deg. C for days. These inactivated drug carriers are non-cytotoxic. Significantly, more than 70% of the encapsulated drug can be instantaneously released by a laser that matches the plasmon resonance of the tethered gold nanoparticles on the liposomes, and the therapeutic effect was observed in cancer cells. The remote activation feature of this novel drug delivery system allows for precise temporal and spatial control of drug release.

  8. Relationship between diffusivity of water molecules inside hydrating tablets and their drug release behavior elucidated by magnetic resonance imaging.

    Science.gov (United States)

    Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo

    2012-01-01

    We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.

  9. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs).

    Science.gov (United States)

    Tran, Vy Anh; Lee, Sang-Wha

    2018-01-15

    This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modulation of drug release from nanocarriers loaded with a poorly water soluble drug (flurbiprofen) comprising natural waxes.

    Science.gov (United States)

    Baviskar, D T; Amritkar, A S; Chaudhari, H S; Jain, D K

    2012-08-01

    In this study, flurbiprofen (FLB) Solid Lipid Nanoparticles (SLN) composed from a mixture of beeswax and carnauba wax, Tween 80 and egg lecithin as emulsifiers have been prepared. FLB was incorporated as model lipophilic drug to assess the influence of matrix composition in the drug release profile. SLN were produced by microemulsion technique. In vitro studies were performed in Phosphate Buffered Saline (PBS). The FLB loaded SLN showed a mean particle size of 75 +/- 4 nm, a polydispersity index approximately 0.2 +/- 0.02 and an entrapment efficiency (EE) of more than 95%. Suspensions were stable, with zeta potential values in the range of -15 to -17 mV. DSC thermograms and UV analysis indicated the stability of nanoparticles with negligible drug leakage. Nanoparticles with higher beeswax content in their core exhibited faster drug release than those containing more carnauba wax.

  11. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Karan [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia); Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M. [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Atkins, Gerald J., E-mail: gerald.atkins@adelaide.edu.au [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Losic, Dusan, E-mail: dusan.losic@adelaide.edu.au [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. - Highlights: • Ti wire with titania nanotubes (TNTs) are proposed as ‘in-bone’ therapeutic implants. • 3D cell culture model is used to confirm therapeutic efficacy of drug releasing implants. Osteoblasts migrated and firmly attached to the TNTs and the micro-scale cracks. • Tailorable drug loading from few nanograms to several hundred

  12. Controlled release of simvastatin from biomimetic β-TCP drug delivery system.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.

  13. [In vitro drug release behavior of carrier made of porous glass ceramics].

    Science.gov (United States)

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  14. Layer-by-layer assembled magnetic prednisolone microcapsules (MPC) for controlled and targeted drug release at rheumatoid arthritic joints

    Energy Technology Data Exchange (ETDEWEB)

    Prabu, Chakkarapani [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli, Tamil Nadu (India); Latha, Subbiah, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli, Tamil Nadu (India); Selvamani, Palanisamy [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli, Tamil Nadu (India); Ahrentorp, Fredrik; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls Backe 4, Göteborg (Sweden); Takeda, Ryoji; Takemura, Yasushi [Electrical & Computer Engineering & Faculty of Engineering Division of Intelligent Systems Engineering, Yokohama National University (Japan); Ota, Satoshi [Department of Electrical and Electronic Engineering, Shizuoka University (Japan)

    2017-04-01

    We report here in about the formulation and evaluation of Magnetic Prednisolone Microcapsules (MPC) developed in order to improve the therapeutic efficacy relatively at a low dose than the conventional dosage formulations by means of magnetic drug targeting and thus enhancing bioavailability at the arthritic joints. Prednisolone was loaded to poly (sodium 4-styrenesulfonate) (PSS) doped calcium carbonate microspheres confirmed by the decrease in surface area from 97.48 m{sup 2}/g to 12.05 of m{sup 2}/g by BET analysis. Adsorption with oppositely charged polyelectrolytes incorporated with iron oxide nanoparticles was confirmed through zeta analysis. Removal of calcium carbonate core yielded MPC with particle size of ~3.48 µm, zeta potential of +29.7 mV was evaluated for its magnetic properties. Functional integrity of MPC was confirmed through FT-IR spectrum. Stability studies were performed at 25 °C±65% relative humidity for 60 days showed no considerable changes. Further the encapsulation efficiency of 63%, loading capacity of 18.2% and drug release of 88.3% for 36 h and its kinetics were also reported. The observed results justify the suitability of MPC for possible applications in the magnetic drug targeting for efficient therapy of rheumatoid arthritis. - Highlights: • Development of magnetic prednisolone microcapsules (MPC). • Physicochemical, pharmaceutical and magnetic properties of MPC were characterized. • Multiple layers of alternative polyelectrolytes prolonged prednisolone release time. • MPC is capable for targeted and sustained release rheumatoid arthritis therapy.

  15. Using ion-selective electrodes to study the drug release from porous cellulose matrices

    DEFF Research Database (Denmark)

    Vakili, Hossein; Genina, Natalja; Ehlers, Henrik

    2012-01-01

    -polymer solutions were prepared with the model drugs, using different blend ratios of ethylcellulose (EC) and hydroxypropyl cellulose (HPC). Two different solid dosage forms were used. Polymer films were produced by solvent casting method and drug containing porous cellulose samples were prepared by depositing...... the drug-polymer solutions onto filter paper substrates. The quality of the electrodes and the release profile of Pr+ and Ld+ were investigated with \\r\

  16. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid in Simulated Intestinal Fluids.

    Directory of Open Access Journals (Sweden)

    Patrik Knöös

    Full Text Available A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium or fed state (FeSSIF. The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.

  17. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    Science.gov (United States)

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of a new drug releasing system on microencapsulated islet transplantation

    Science.gov (United States)

    Lu, Binjie; Gao, Qingkun; Liu, Rui; Ren, Ming; Wu, Yan; Jiang, Zaixing; Zhou, Yi

    2015-01-01

    Objective: This study aimed to develop a novel release system for grafted islets. Materials and methods: A graphene oxide-FTY720 release system was constructed to test the drug loading and releasing capacity. The recipient rats were divided into four groups as following: Experiment group A (EG A) and B (EG B); Control group A (CG A) and B (CG B). In each group, (2000±100) IEQ microencapsulated islets were implanted into the abdominal cavity of the recipients with oral FTY720, local graphene oxide-FTY720 injection, without immunosuppressants, and with graphene oxide-saturated solution respectively. We detected the immunological data, the blood glucose level, and pericapsular overgrowth to show the transplantation effect. Results: 31% of adsorptive FTY720 was released within 6 h, and 82% of FTY720 was released within 48 h. From day 5 to 8, the amount of PBL in EG B was significantly less than those in EG A (PGraphene oxide-FTY720 complex showed a drug releasing effect. Local application of graphene-FTY720 releasing system could decrease the amount of peripheral blood lymphocytes (PBL) and the percentage of CD3 and CD8 T lymphocytes in blood for longer time than oral drug application. This releasing system could achieve a better blood glucose control. PMID:26722425

  19. Pore geometry of ceramic device: The key factor of drug release kinetics

    Directory of Open Access Journals (Sweden)

    Čolović B.

    2013-01-01

    Full Text Available Release kinetics of tigecycline, a potential antibiotic in treatment of osteomyelitis, from calcium hydroxyapatite (CHA, as one of the most important ceramic materials in bone tissue engineering, was investigated in this study. Tigecycline, in solid state, was mixed with CHA powder and the obtained mixture was compressed into tablets using two different pressures. These tablets were immersed in a phosphate-buffered saline solution and tigecycline release was measured by a UV-VIS spectrophotometer. The total release time was 5 or 28 days, depending on the pressure applied during compression. It was shown that there is a close relationship between pore sizes and drug release rate. The drug release kinetics was interpreted on the base of pore sizes and pore size distribution. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  20. Pectin/anhydrous dibasic calcium phosphate matrix tablets for in vitro controlled release of water-soluble drug.

    Science.gov (United States)

    Mamani, Pseidy Luz; Ruiz-Caro, Roberto; Veiga, María Dolores

    2015-10-15

    Different pectin/anhydrous dibasic calcium phosphate (ADCP) matrix tablets have been developed in order to obtain controlled release of a water-soluble drug (theophylline). Swelling, buoyancy and dissolution studies have been carried out in different aqueous media (demineralized water, progressive pH medium, simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid), to characterize the matrix tablets. When the pectin/ADCP ratio was ≥0.26 (P1, P2, P3 and P4 tablets) a continuous swelling and low theophylline dissolution rate from the matrices were observed. So, pectin gel forming feature predominated over the ADCP properties, yielding pH-independent drug release behavior from these matrices. On the contrary, pectin/ADCP ratios ≤0.11 (P5 and P6 tablets) allowed to achieve drug dissolution pH dependent. Consequently, the suitable selection of the pectin/ADCP ratio will allow to tailor matrix tablets for controlled release of water-soluble drugs in a specific manner in the gastrointestinal tract. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Phototoxicity free quantum dot-based niosome formulation for controlled drug release and its monitoring

    Science.gov (United States)

    Kumar, Sunil; Kang, T. W.; Bala, Suman; Kamboj, Sunil; Jeon, H. C.

    2018-04-01

    A novel niosomes-based system composed of Hypromellose (HPMC) functionalized fluorescent, biocompatible ZnS:Mn quantum dots (QDs), and anti-HIV drug Tenofovir disoproxil fumarate (TDF) was designed. An appropriate ratio of surfactant Sorbitan Monostearate (SPAN-60) and cholesterol was used to obtain an optimal entrapment efficiency. Initially, after observing the successful interaction of HPMC with SPAN-60, the noisome formulation including (QDs + drug) and HPMC-coated QDs was synthesized by a wet chemical route and characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Selected Electron Diffraction (SAED). Secondly, (QDs + drug) loaded niosome formulations were studied by varying the ratio of SPAN-60 and cholesterol. Multiple studies were done to characterize the shape, size, viscosity, colloidal stability, and entrapment efficiency of (QDs + drug) loaded niosomes. Lastly, pH-dependent (QDs + drug) release profiles were studied by a spectroscopic technique considering the pH of the human gastrointestinal region to obtain the formulation stability of (QDs + drug) release from the niosome vesicles. These studies also include pH-dependent photo-stability measurements based on laser-induced multiphoton excitation technique in the Infrared region. The multiphoton time-resolved studies were completed to avoid the UV induced phototoxicity in the drug delivery modules. Current studies on the formulation of niosomes-based (QDs + drug) system laid a foundation to make a complete phototoxicity free system for tracking controlled drug release and its imaging.

  2. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    The zeta potential (ZP) of colloidal systems and nano-medicines, as well as their particle size exert a major effect on the various properties of nano-drug delivery systems. Not only the stability of dosage forms and their release rate are affected but also their circulation in the blood stream and absorption into body membranes ...

  3. pH- and thermo-responsive microcontainers as potential drug delivery systems: Morphological characteristic, release and cytotoxicity studies.

    Science.gov (United States)

    Efthimiadou, Eleni K; Tapeinos, Christos; Tziveleka, Leto-Aikaterini; Boukos, Nikos; Kordas, George

    2014-04-01

    Polymeric pH- and thermo-sensitive microcontainers (MCs) were developed as a potential drug delivery system for cancer therapy. It is well known that cancer cells exhibit notable characteristics such as acidic pH due to glycolytic cycle and higher temperature due to their higher proliferation rate. Based on these characteristics, we constructed a dual pH- and thermo-sensitive material for specific drug release on the pathological tissue. The MC's fabrication is based on a two-step procedure, in which, the first step involves the core synthesis and the second one is related to the shell formation. The core consists of poly(methyl methacrylate (PMMA), while the shell consists of PMMA, poly(isopropylacrylamide), poly(acrylic acid) and poly(divinylbenzene). Three different types of MCs were synthesized based on the seed polymerization method. The synthesized MCs were characterized structurally by Fourier transform infrared and morphologically by scanning electron microscopy. Dynamic light scattering was also used to study their behavior in aqueous solution under different pH and temperature conditions. For the loading and release study, the anthracycline drug daunorubicin (DNR) was used as a model drug, and its release properties were evaluated under different pH and thermo-conditions. Cytotoxicity studies were also carried out against MCF-7 breast cancer and 3T3 mouse embryonic fibroblast cells. According to our results, the synthesized microcontainers present desired pH and thermo behavior and can be applied in drug delivery systems. It is worth mentioning that the synthesized microcontainers which incorporated the drug DNR exhibit higher toxicity than the free drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  5. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    Science.gov (United States)

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE.

    Science.gov (United States)

    Wang, Xuelin; Li, Juanjuan; Yan, Qi; Chen, Yanrui; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-03-01

    Redox-responsive micelles are versatile nanoplatforms for on-demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation-caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation-induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self-assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2-carboxyethyl)phosphine) trigger (10 × 10 -3 m), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF-7 cells. The FRET-AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli-responsive nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  8. The synthesis and application involving regulation of the insoluble drug release from mesoporous silica nanotubes

    International Nuclear Information System (INIS)

    Li, Jia; Wang, Yan; Zheng, Xin; Zhang, Ying; Sun, Changshan; Gao, Yikun; Jiang, Tongying; Wang, Siling

    2015-01-01

    Highlights: • Mesoporous silica nanotubes (SNT) were synthesized by using CNT as hard template, and the formation of the SNT shows that CTAB played a significant effect on the coating process. • The tube mesoporous silica materials which were seldom reported were applied in the drug delivery system to improve the loading amount and the drug dissolution. • The release rate could be controlled by the gelatin layer on the silica surface and the mechanism was illustrated. - Abstract: Mesoporous silica nanotubes (SNT) were synthesized using hard template carbon nanotubes (CNT) with the aid of cetyltrimethyl ammonium bromide (CTAB) in a method, which was simple and inexpensive. Scanning electron microscopy, transmission electron microscopy and specific surface area analysis were employed to characterize the morphology and structure of SNT, and the formation mechanism of SNT was also examined by Fourier transform infrared spectroscopy. There are few published reports of the mesoporous SNT with large specific surface area applied in the drug delivery systems to improve the amount of drug loading. In addition, the structure of SNT allows investigators to control the drug particle size in the pore channels and significantly increase the drug dissolution rate. The insoluble drug, cilostazol, was chosen as a model drug to be loaded into SNT and we developed a simple and efficient method for regulating the drug release by using a gelatin coating with different thicknesses around the SNT. The release rate was adjusted by the amount of gelatin surrounding the SNT, with an increased barrier leading to a reduction in the release rate. A model developed on the basis of the Weibull modulus was established to fit the release results

  9. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  10. Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: morphology and drug release.

    Science.gov (United States)

    Aquino, Rita P; Auriemma, Giulia; d'Amore, Matteo; D'Ursi, Anna Maria; Mencherini, Teresa; Del Gaudio, Pasquale

    2012-07-01

    This paper presents a tandem technique, based on the combination of prilling and microwave (MW) assisted treatments, to produce biodegradable alginate carriers of piroxicam with different drug controlled release behaviours. Results showed that alginate/piroxicam beads demonstrated high encapsulation efficiency and very narrow dimensional distribution. Beads dried by MW retained shape and size distribution of the hydrated particles while drying rate was strongly increased compared to convective drying processes. Moreover, different MW irradiation regimes promoted interactions between the drug and alginate matrix, affected drug polymorphism as well as inner and surface matrix structure leading to different piroxicam release profiles. High level MW irradiation led to beads with highly porous and swellable matrix able to release piroxicam in few minutes in the intestine while convective drying produced gastro-resistant beads that exhibit sustained piroxicam release (total release in 5.5h) in intestinal environment. On these results the tandem technique prilling/MW irradiation appears to be promising to obtain alginate carrier with tailored NSAIDs release depending on drug characteristics and MW irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  12. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    Science.gov (United States)

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. TiO2 nanocomposite for the controlled release of drugs against pathogens causing wound infections

    Science.gov (United States)

    Devanand Venkatasubbu, G.; Nagamuthu, S.; Anusuya, T.; Kumar, J.; Chelliah, Ramachandran; Rani Ramakrishnan, Sudha; Antony, Usha; Khan, Imran; Oh, Deog-Hwan

    2018-02-01

    Chitosan titanium dioxide nanocomposite has been used for wound healing. Titanium dioxide (TiO2) nanoparticles are synthesised and made in to nanocomposite along with chitosan. Curcumin nanoparticles are synthesised. Three different drugs with antimicrobial activity are incorporated into the chitosan/TiO2nanocomposite. Ciprofloxacin, amoxicillin and curcumin nanoparticles are incorporated within the chitosan/TiO2 nanoparticles. The nanoparticles and nanocomposite are characterized with XRD, FTIR, TEM and SEM. Drug loading was found to be around 45% for all the three drug molecules. The drug release profile shows a controlled release of drug molecules from the nanocomposite. Antibacterial studies shows a good inhibition of bacterial species by the nanocomposites.

  14. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    International Nuclear Information System (INIS)

    Eswaramma, S.; Reddy, N. Sivagangi; Rao, K.S.V. Krishna

    2017-01-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  15. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Eswaramma, S. [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India); Reddy, N. Sivagangi [Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241 (Korea, Republic of); Rao, K.S.V. Krishna, E-mail: ksvkr@yogivemanauniversity.ac.in [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India)

    2017-07-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  16. Regenerated cellulose micro-nano fiber matrices for transdermal drug release

    International Nuclear Information System (INIS)

    Liu, Yue; Nguyen, Andrew; Allen, Alicia; Zoldan, Janet; Huang, Yuxiang; Chen, Jonathan Y.

    2017-01-01

    In this work, biobased fibrous membranes with micro- and nano-fibers are fabricated for use as drug delivery carries because of their biocompatibility, eco-friendly approach, and potential for scale-up. The cellulose micro-/nano-fiber (CMF) matrices were prepared by electrospinning of pulp in an ionic liquid, 1-butyl-3-methylimidazolium chloride. A model drug, ibuprofen (IBU), was loaded on the CMF matrices by a simple immersing method. The amount of IBU loading was about 6% based on the weight of cellulose membrane. The IBU-loaded CMF matrices were characterized by Fourier-transform infrared spectroscopy, thermal gravimetric analysis, and scanning electron microscopy. The test of ibuprofen release was carried out in an acetate buffer solution of pH 5.5 and examined by UV–Vis spectroscopy. Release profiles from the CMF matrices indicated that the drug release rate could be determined by a Fickian diffusion mechanism. - Highlights: • Cellulose micro-nano fiber matrix was prepared by dry-wet electrospinning. • Ibuprofen was loaded on the matrix by a simple immersing method. • The drug loaded matrix showed a biphasic release profile. • The drug release was determined by a Fickian diffusion mechanism.

  17. Regenerated cellulose micro-nano fiber matrices for transdermal drug release

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yue [School of Human Ecology, The University of Texas at Austin, Austin, TX (United States); Department of Chemistry, School of Science, Tianjin University, Tianjin (China); Nguyen, Andrew; Allen, Alicia; Zoldan, Janet [Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX (United States); Huang, Yuxiang [School of Human Ecology, The University of Texas at Austin, Austin, TX (United States); Chen, Jonathan Y., E-mail: jychen2@austin.utexas.edu [School of Human Ecology, The University of Texas at Austin, Austin, TX (United States)

    2017-05-01

    In this work, biobased fibrous membranes with micro- and nano-fibers are fabricated for use as drug delivery carries because of their biocompatibility, eco-friendly approach, and potential for scale-up. The cellulose micro-/nano-fiber (CMF) matrices were prepared by electrospinning of pulp in an ionic liquid, 1-butyl-3-methylimidazolium chloride. A model drug, ibuprofen (IBU), was loaded on the CMF matrices by a simple immersing method. The amount of IBU loading was about 6% based on the weight of cellulose membrane. The IBU-loaded CMF matrices were characterized by Fourier-transform infrared spectroscopy, thermal gravimetric analysis, and scanning electron microscopy. The test of ibuprofen release was carried out in an acetate buffer solution of pH 5.5 and examined by UV–Vis spectroscopy. Release profiles from the CMF matrices indicated that the drug release rate could be determined by a Fickian diffusion mechanism. - Highlights: • Cellulose micro-nano fiber matrix was prepared by dry-wet electrospinning. • Ibuprofen was loaded on the matrix by a simple immersing method. • The drug loaded matrix showed a biphasic release profile. • The drug release was determined by a Fickian diffusion mechanism.

  18. Community reentry challenges after release from prison among people who inject drugs in St. Petersburg, Russia.

    Science.gov (United States)

    Cepeda, Javier A; Vetrova, Marina V; Lyubimova, Alexandra I; Levina, Olga S; Heimer, Robert; Niccolai, Linda M

    2015-01-01

    Little is known about the context of the post-release risk environment among formerly incarcerated people who inject drugs (PWID) in Russia. The purpose of this paper is to explore these challenges as they relate to reentry, relapse to injection opioid use, and overdose. The authors conducted 25 in-depth semi-structured interviews among PWID living in St Petersburg, Russia who had been incarcerated within the past two years. Participants were recruited from street outreach (n=20) and a drug treatment center (n=5). Emergent themes related to the post-release environment included financial instability, negative interactions with police, return to a drug using community, and reuniting with drug using peers. Many respondents relapsed to opioid use immediately after release. Those whose relapse occurred weeks or months after their release expressed more motivation to resist. Alcohol or stimulant use often preceded the opioid relapse episode. Among those who overdosed, alcohol use was often reported prior to overdosing on opioids. Future post-release interventions in Russia should effectively link PWID to social, medical, and harm reduction services. Particular attention should be focussed on helping former inmates find employment and overdose prevention training prior to leaving prison that should also cover the heightened risk of concomitant alcohol use. In addition to describing a syndemic involving the intersection of incarceration, injection drug use, poverty, and alcohol abuse, the findings can inform future interventions to address these interrelated public health challenges within the Russian setting.

  19. Effect of temperature and ph on the drug release rate from a polymer conjugate system

    International Nuclear Information System (INIS)

    Kenawy, E.; Abdel-Hay, F.I.; El-Newehy, M.H.; Ottenbrite, R.M.

    2005-01-01

    Hydroximide and A-methylhydroxamic acid of poly(ethylene-altmaleic anhydride) (average MW 100-500 k) were used as a carrier for a new drug delivery system. The synthesis of the hydroximide and N methylhydroxamic acid of poly(ethylene-alt-maleic anhydride) were carried out by chemical modification of poly(ethylene-alt-maleic anhydride) with hydroxylamine and N-methyl hydroxylamine, respectively, in N,N- dimethylformamide at room temperature to yield water soluble copolymer. Ketoprofen was reacted with hydroximide and N-methylhydroxamic acid derivatives of poly(ethylene-alt-maleic anhydride) using dicyclohexylcarbodiimide as condensation agent at -5 degree C to yield water insoluble ketoprofen conjugates. All products were characterized by elemental analysis, FTIR and 1HNMR spectra. The in-vitro ketoprofen release was carried out by UV spectrophotometer at max =260 nm. The results demonstrated the effectiveness of hydroximide and N-methylhydroxamic acid of polyethylene-alt-maleic anhydride) as a drug delivery system. The release rates were studied at various ph and temperatures. The copolymer-drug adducts released the drug very slowly at the low ph found in the stomach thus protecting the drug from the action of high concentrations of digestive acids. These results showed the usefulness of hydroxamic acid polymer-drug conjugates as a new drug delivery system for drugs to be targeted to sites in the GI system

  20. Immobilization and controlled release of drug using plasma polymerized thin film

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung-Woon [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Sunchon 540-742 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of)

    2015-06-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release.

  1. Immobilization and controlled release of drug using plasma polymerized thin film

    International Nuclear Information System (INIS)

    Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release

  2. Modulation of the formation and release of bovine SRS-A in vitro by several anti-anaphylactic drugs.

    Science.gov (United States)

    Burka, J F; Eyre, P

    1975-01-01

    Slow-reacting substance of anaphylaxis (SRS-A) is released immunologically from bovine lung in vitro. Various drugs known to protect calves and other animals during anaphylaxis were tested to investigate their modulation of the formation and release of SRS-A. The anti-inflammatory drugs, meclofenamate and aspirin, potentiated SRS-A release. Chlorphenesin and diethylcarbamazine citrate at high concentrations both inhibited SRS-A release. Two new anti-anaphylactic drugs, PR-D-92-EA and M&B 22,948, were particularly effective in inhibiting SRS-A release at low concentrations. The possible modes of actions of these drugs are discussed.

  3. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    International Nuclear Information System (INIS)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-01-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications

  4. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    Science.gov (United States)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-02-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications.

  5. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing...

  6. A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing.

    Science.gov (United States)

    Li, Mi; Li, Haichang; Li, Xiangguang; Zhu, Hua; Xu, Zihui; Liu, Lianqing; Ma, Jianjie; Zhang, Mingjun

    2017-07-12

    Biopolymeric hydrogels have drawn increasing research interest in biomaterials due to their tunable physical and chemical properties for both creating bioactive cellular microenvironment and serving as sustainable therapeutic reagents. Inspired by a naturally occurring hydrogel secreted from the carnivorous Sundew plant for trapping insects, here we have developed a bioinspired hydrogel to deliver mitsugumin 53 (MG53), an important protein in cell membrane repair, for chronic wound healing. Both chemical compositions and micro-/nanomorphological properties inherent from the natural Sundew hydrogel were mimicked using sodium alginate and gum arabic with calcium ion-mediated cross-linking. On the basis of atomic force microscopy (AFM) force measurements, an optimal sticky hydrogel scaffold was obtained through orthogonal experimental design. Imaging and mechanical analysis showed the distinct correlation between structural morphology, adhesion characteristics, and mechanical properties of the Sundew-inspired hydrogel. Combined characterization and biochemistry techniques were utilized to uncover the underlying molecular composition involved in the interactions between hydrogel and protein. In vitro drug release experiments confirmed that the Sundew-inspired hydrogel had a biphasic-kinetics release, which can facilitate both fast delivery of MG53 for improving the reepithelization process of the wounds and sustained release of the protein for treating chronic wounds. In vivo experiments showed that the Sundew-inspired hydrogel encapsulating with rhMG53 could facilitate dermal wound healing in mouse model. Together, these studies confirmed that the Sundew-inspired hydrogel has both tunable micro-/nanostructures and physicochemical properties, which enable it as a delivery vehicle for chronic wounding healing. The research may provide a new way to develop biocompatible and tunable biomaterials for sustainable drug release to meet the needs of biological activities.

  7. Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

    Science.gov (United States)

    Karkossa, Frank; Klein, Sandra

    2017-10-01

    The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.

  8. 26 CFR 301.6325-1 - Release of lien or discharge of property.

    Science.gov (United States)

    2010-04-01

    ... sale before satisfaction of any Federal tax liens or claims of the United States. (4) Right of... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Release of lien or discharge of property. 301....6325-1 Release of lien or discharge of property. (a) Release of lien—(1) Liability satisfied or...

  9. Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide/metal oxide-based hybrids

    CSIR Research Space (South Africa)

    Mhlanga, N

    2015-01-01

    Full Text Available For decades, studies on drug-release kinetics have been an important topic in the field of drug delivery because they provide important insights into the mechanism of drug release from carriers. In this work, polylactide (PLA), doxorubicin (DOX...

  10. Effect of bioceramic functional groups on drug binding and release kinetics

    Science.gov (United States)

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in

  11. Drug kinetics release from Eudragit – Tenofovir@SiOC tablets

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A., E-mail: aitanath@icv.csic.es [Ceramics and Glass Institute, CSIC, Madrid (Spain); Mazo, M.A. [Ceramics and Glass Institute, CSIC, Madrid (Spain); Veiga, M.D.; Ruiz-Caro, R.; Notario-Pérez, F. [Dpt. Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid (Spain); Rubio, J. [Ceramics and Glass Institute, CSIC, Madrid (Spain)

    2017-06-01

    A novel drug release system has been obtained in form of tablets from Eudragit® RS and tenofovir loaded on porous silicon oxycarbide glasses (SiOC). Active carbon (AC) and mesoporous silica (MCM-41) have also been used for comparative purposes. The porous silicon oxycarbide presents a bimodal mesopore size distribution that is maintained after functionalization with amino groups. We have studied the adsorption kinetics and adsorption equilibrium when the materials are loaded with tenofovir and, in all cases, pseudo-second order kinetics and Langmuir isotherm have been revealed as the most representative models describing the kinetic and thermodynamic parameters. Besides, the tenofovir adsorption on these materials turns out to be a favorable process. In vitro release of tenofovir has been studied in simulated vaginal medium by applying different release models. Continuous tenofovir release for > 20 days has been obtained for the SiOC material functionalized with amine groups. We concluded that the drug release occurs in two steps that involve a drug diffusion step through the material pores and diffusion through the swollen polymer. The interactions between the tenofovir drug and de amine groups of the functionalized silicon oxycarbide also play an important role in the release process. - Highlights: • Kinetic and thermodinamic parameters of the adsorption of tenofovir on porous substrates have been obtained. • Sustained release of TFV for > 20 days in SVF when it is supported on SiOC and manufactured as Eudragit®RS-containing tablets. • Release described by a two-step process involving diffusion through SiOC matrix and subsequent diffusion through the polymer.

  12. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Y., E-mail: nano@tsutmb.ru [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation); Golovin, D. [G.R. Derzhavin Tambov State University (Russian Federation); Klyachko, N.; Majouga, A.; Kabanov, A. [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation)

    2017-02-15

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  13. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    International Nuclear Information System (INIS)

    Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.

    2017-01-01

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  14. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    Science.gov (United States)

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  15. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  16. Improvement of Tenofovir vaginal release from hydrophilic matrices through drug granulation with hydrophobic polymers.

    Science.gov (United States)

    Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores

    2018-05-30

    Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of amphiphilic chitosan-g-poly(ε-caprolactone) polymer additives on paclitaxel release from drug eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Weibin [Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092 (China); Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Han [Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092 (China); Zhang, Mengru [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-12-01

    Bioresorbable polymer stents have been proposed as promising medical implants to avoid long-term safety concerns and other potential issues caused by traditional materials. As an important member, poly(ε-caprolactone) (PCL) was used as the implant matrix with different drug loadings. To better regulate drug release rate, the hydrophilicity of PCL was adjusted by addition of amphiphilic graft copolymers, chitosan-g-poly(ε-caprolactone) (CP). The in vitro release results indicated that the improvement of bulk hydrophilicity could accelerate drug release better than that of surface coating. The optimum additive amount was 25% with CP9. Further study showed that the effect of aspirin molecules displayed no obvious difference to that of CP macromolecules on drug release rate. Moreover, these release profiles were fitted with mathematical models. The similarities were evaluated with similarity factors. Scanning electron microscopy (SEM) images displayed surface/cross-section morphologies of pure PCL and modified implants before and after release. - Highlights: • The improvement of bulk hydrophilicity better accelerated drug release. • The higher weight ratio of CP implants had, the faster the drug released. • The shorter PCL chain in CP graft coploymers, the faster the drug released. • The optimum additive amount was 25% with CP9. • Drug release profile conformed to controllable Fick diffusional release mechanism.

  18. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A new scleroglucan/borax hydrogel: swelling and drug release studies.

    Science.gov (United States)

    Coviello, Tommasina; Grassi, Mario; Palleschi, Antonio; Bocchinfuso, Gianfranco; Coluzzi, Gina; Banishoeib, Fateme; Alhaique, Franco

    2005-01-31

    The aim of the work was the characterization of a new polysaccharidic physical hydrogel, obtained from Scleroglucan (Sclg) and borax, following water uptake and dimension variations during the swelling process. Furthermore, the release of molecules of different size (Theophylline (TPH), Vitamin B12 (Vit. B12) and Myoglobin (MGB)) from the gel and from the dried system used as a matrix for tablets was studied. The increase of weight of the tablets with and without the loaded drugs was followed together with the relative variation of the dimensions. The dry matrix, in the form of tablets was capable, during the swelling process, to incorporate a relevant amount of solvent (ca. 20 g water/g dried matrix), without dissolving in the medium, leading to a surprisingly noticeable anisotropic swelling that can be correlated with a peculiar supramolecular structure of the system induced by compression. Obtained results indicate that the new hydrogel can be suitable for sustained drug release formulations. The delivery from the matrix is deeply dependent on the size of the tested model drugs. The experimental release data obtained from the gel were satisfactorily fitted by an appropriate theoretical approach and the relative drug diffusion coefficients in the hydrogel were estimated. The release profiles of TPH, Vit. B12 and MGB from the tablets have been analyzed in terms of a new mathematical approach that allows calculating of permeability values of the loaded drugs.

  20. The Drug Release Profile from Calcium-induced Alginate Gel Beads Coated with an Alginate Hydrolysate

    Directory of Open Access Journals (Sweden)

    Susumu Kawashima

    2007-11-01

    Full Text Available Calcium-induced alginate gel bead (Alg-Ca coated with an alginate hydrolysate(Alg, e.g. the guluronic acid block (GB was prepared and the model drug, hydrocortisonerelease profiles were investigated under simulated gastrointestinal conditions. Theirmolecular weights were one sixth or one tenth that of Alg and the diffraction patterns of thehydrolysates resembled that of Alg. The drug release rate from Alg-Ca coated with GBapparently lowered than that of Alg-Ca (coating-free in the gastric juice (pH1.2. And thecoating did not resist the disintegration of Alg-Ca in the intestinal juice (pH 6.8 and thegel erosion accelerated the drug release. On the other hand, for the coated Alg-Cacontaining chitosan, the drug release showed zero-order kinetics without rapid erosion ofAlg-Ca. The drug release rate from Alg-Ca was able to be controlled by the coating andmodifying the composition of the gel matrix.

  1. Obtaining of Sol-Gel Ketorolac-Silica Nanoparticles: Characterization and Drug Release Kinetics

    International Nuclear Information System (INIS)

    Goerne, T.M.L.; Garcia, M.G.L.; Grada, G.R.; Perez, I.O.; Goerne, T.M.L.; Garcia, M.G.L.; Grada, G.R.; Perez, I.O.; Lemus, M.A.A.; Goerne, T.M.L.; Loez, E.G.

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are among most commonly prescribed medications worldwide. NSAIDs play an important role due to their pronounced analgesic potency, anti-inflammatory effects, and lesser side effects compared to opioids. However, adverse effects including gastrointestinal and cardiovascular effects seriously complicate their prolonged use. In the present work we prepare SiO 2 -based nanoparticles with ketorolac, for controlled release proposes. The nano materials were prepared by the sol-gel technology at acidic conditions and two different water/alcoxide ratios were used. FTIR spectroscopy was performed in order to characterize the solids and drug-SiO 2 interactions. Thermal analysis and nitrogen adsorption isotherms showed thermal stability of the drug and confirmed the presence of particles with high surface area. Transmission electron micrographs of the samples showed the nano size particles (20 nm) forming aggregates. Drug release profiles were collected by means of UV-Vis spectroscopy and kinetic analysis was developed. Release data were fitted and 1:8 sample showed a sustained release over ten hours; 90% of the drug was delivered at the end of the time.

  2. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release

    International Nuclear Information System (INIS)

    Neri, F.; Scala, A.; Grimato, S.; Santoro, M.; Spadaro, S.; Barreca, F.; Cimino, F.; Speciale, A.; Saija, A.; Grassi, G.; Fazio, E.

    2016-01-01

    The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of specific stimuli-responsive systems, able to control drug release in response to external stimuli. The release profiles of SLB from the newly synthesized PEG–PLA@Ag composite show strong dependences on laser wavelength and Ag NPs’ Surface Plasmon Resonance (SPR). The resonant laser light excites the SPR of the NPs and the absorbed energy is converted into heat due to electron–photon collisions. The heat generated from the nanometer-sized metal particles embedded within the polymer is efficient and strongly localized. The nanovector, irradiated by a relatively low-intensity laser but tuned specifically to the metal NPs’ SPR, releases the encapsulated drug with a higher efficiency than that not irradiated or irradiated with a laser wavelength far from the metal SPR. A combination of analytical techniques including UV–Vis, NMR, and FT-IR spectroscopy and scanning/transmission electron microscopy has been used to study the structural and morphological properties of the composite. The controllable specificity of this approach and the possibility of the SPR-mediated localized photothermal effect to be usefully applied in aqueous environments are the relevant advances of the proposed system for photothermal therapies that make use of visible optical radiation or for the drug delivery in proximity of the tumor cells.

  4. Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release

    Energy Technology Data Exchange (ETDEWEB)

    Neri, F. [Università di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (Italy); Scala, A., E-mail: ascala@unime.it; Grimato, S. [Università di Messina, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Italy); Santoro, M.; Spadaro, S.; Barreca, F. [Università di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (Italy); Cimino, F.; Speciale, A.; Saija, A.; Grassi, G. [Università di Messina, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Italy); Fazio, E., E-mail: enfazio@unime.it [Università di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (Italy)

    2016-06-15

    The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of specific stimuli-responsive systems, able to control drug release in response to external stimuli. The release profiles of SLB from the newly synthesized PEG–PLA@Ag composite show strong dependences on laser wavelength and Ag NPs’ Surface Plasmon Resonance (SPR). The resonant laser light excites the SPR of the NPs and the absorbed energy is converted into heat due to electron–photon collisions. The heat generated from the nanometer-sized metal particles embedded within the polymer is efficient and strongly localized. The nanovector, irradiated by a relatively low-intensity laser but tuned specifically to the metal NPs’ SPR, releases the encapsulated drug with a higher efficiency than that not irradiated or irradiated with a laser wavelength far from the metal SPR. A combination of analytical techniques including UV–Vis, NMR, and FT-IR spectroscopy and scanning/transmission electron microscopy has been used to study the structural and morphological properties of the composite. The controllable specificity of this approach and the possibility of the SPR-mediated localized photothermal effect to be usefully applied in aqueous environments are the relevant advances of the proposed system for photothermal therapies that make use of visible optical radiation or for the drug delivery in proximity of the tumor cells.

  5. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit

    Science.gov (United States)

    Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue

    2011-03-01

    A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  6. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler.

    Science.gov (United States)

    Tagami, Tatsuaki; Nagata, Noriko; Hayashi, Naomi; Ogawa, Emi; Fukushige, Kaori; Sakai, Norihito; Ozeki, Tetsuya

    2018-05-30

    3D-printed tablets are a promising new approach for personalized medicine. In this study, we fabricated composite tablets consisting of two components, a drug and a filler, by using a fused deposition modeling-type 3D printer. Polyvinylalcohol (PVA) polymer containing calcein (a model drug) was used as the drug component and PVA or polylactic acid (PLA) polymer without drug was used as the water-soluble or water-insoluble filler, respectively. Various kinds of drug-PVA/PVA and drug-PVA/PLA composite tablets were designed, and the 3D-printed tablets exhibited good formability. The surface area of the exposed drug component is highly correlated with the initial drug release rate. Composite tablets with an exposed top and a bottom covered with a PLA layer were fabricated. These tablets showed zero-order drug release by maintaining the surface area of the exposed drug component during drug dissolution. In contrast, the drug release profile varied for tablets whose exposed surface area changed. Composite tablets with different drug release lag times were prepared by changing the thickness of the PVA filler coating the drug component. These results which used PVA and PLA filler will provide useful information for preparing the tablets with multi-components and tailor-made tablets with defined drug release profiles using 3D printers. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 77 FR 4394 - Release of Airport Property: Orlando Executive Airport, Orlando, FL

    Science.gov (United States)

    2012-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Release of Airport Property: Orlando Executive Airport, Orlando, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Request for... 12.4 acres at the Orlando Executive Airport, Orlando, FL from the conditions, release certain...

  8. A poly({epsilon}-caprolactone) device for sustained release of an anti-glaucoma drug

    Energy Technology Data Exchange (ETDEWEB)

    Natu, Madalina V; De Sousa, HermInio C; Gil, M H [Department of Chemical Engineering, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290, Coimbra (Portugal); Gaspar, Manuel N; Fontes Ribeiro, Carlos A [Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra (Portugal); Correia, IlIdio J; Silva, Daniela, E-mail: hgil@eq.uc.pt [Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2011-04-15

    Implantable dorzolamide-loaded discs were prepared by blending poly({epsilon}-caprolactone), PCL, with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), Lu. By blending, crystallinity, water uptake and mass loss were modified relative to the pure polymers. Burst was diminished by coating the discs with a PCL shell. All samples presented burst release except PCL-coated samples that showed controlled release during 18 days. For PCL-coated samples, barrier control of diffusion coupled with partition control from the core slowed down the release, while for 50/50 Lu/PCL-coated samples, the enhancement in the porosity of the core diminished partition control of drug release. Nonlinear regression analysis suggested that a degradation model fully describes the release curve considering a triphasic release mechanism: the instantaneous diffusion (burst), diffusion and polymer degradation stages. The MTT test indicated that the materials are not cytotoxic for corneal endothelial cells. A good in vitro-in vivo correlation was obtained, with similar amounts of drug released in vitro and in vivo. The discs decreased intraocular pressure (IOP) in normotensive rabbit eyes by 13.0% during 10 days for PCL-coated and by 13.0% during 4 days for 50/50 Lu/PCL-coated samples. The percentages of IOP decrease are similar to those obtained by dorzolamide eyedrop instillation (11.0%).

  9. Development of novel diclofenac potassium controlled release tablets by wet granulation technique and the effect of co-excipients on in vitro drug release rates.

    Science.gov (United States)

    Shah, Shefaatullah; Khan, Gul Majid; Jan, Syed Umer; Shah, Kifayatullah; Hussain, Abid; Khan, Haroon; Khan, Haroon; Khan, Haroon; Khan, Kamran Ahmad

    2012-01-01

    The aim of the present study was the formulation and evaluation of controlled release polymeric tablets of Diclofenac Potassium by wet granulation method for the release rate, release pattern and the mechanism involved in drug release. Formulations having three grades of polymer Ethocel (7P; 7FP, 10P, 10FP, 100P, 100FP) in several drugs to polymer ratios (10:3 and 10:1) were compressed into tablets using wet granulation method. Co-excipients were added to some selected formulations to investigate their enhancement effect on in vitro drug release patterns. In vitro drug release studies were performed using USP Method-1 (Rotating Basket method) and Phosphate buffer (pH 7.4) was used as a dissolution medium. The similarities and dissimilarities of release profiles of test formulations with reference standard were checked using f2 similarity factor and f1 dissimilarity factor. Mathematical/Kinetic models were employed to determine the release mechanism and drug release kinetics.

  10. Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections.

    Science.gov (United States)

    de Roode, Jacobus C; Culleton, Richard; Bell, Andrew S; Read, Andrew F

    2004-09-14

    Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by feeding mice to Anopheles stephensi mosquitoes. In the absence of drugs, the sensitive clone competitively suppressed the resistant clone; this resulted in lower asexual parasite densities and also reduced transmission to the mosquito vector. Drug treatment, however, allowed the resistant clone to fill the ecological space emptied by the removal of the sensitive clone, allowing it to transmit as well as it would have done in the absence of competition. These results show that under drug pressure, resistant strains can have two advantages: (1) they survive better than sensitive strains and (2) they can exploit the opportunities presented by the removal of their competitors. When mixed infections are common, such effects could increase the spread of drug resistance.

  11. Assessment of Aprotinin Loaded Microemulsion Formulations for Parenteral Drug Delivery: Preparation, Characterization, in vitro Release and Cytotoxicity Studies.

    Science.gov (United States)

    Okur, Neslihan Üstündağ; Özdemir, Derya İlem; Kahyaoğlu, Şennur Görgülü; Şenyiğit, Zeynep Ay; Aşıkoğlu, Makbule; Genç, Lütfi; Karasulu, H Yeşim

    2015-01-01

    The object of the current study was to prepare novel microemulsion formulations of aprotinin for parenteral delivery and to compare in vitro characteristics and release behaviour of different Technetium-99m ((99m)Tc)-Aprotinin loaded microemulsion formulations. In addition, cytotoxicity of microemulsion formulation was evaluated with cell culture studies on human immortalized pancreatic duct epithelial-like cells. For this aim, firstly, pseudo-ternary phase diagrams were plotted to detect the formulation region and optimal microemulsions were characterized for their thermodynamic stability, conductivity, particle size, zeta potential, viscosity, pH and in vitro release properties. For in vitro release studies aprotinin was labelled with (99m)Tc and labelling efficiency, radiochemical purity and stability of the radiolabeled complex were determined by several chromatography techniques. Radiolabeling efficiency of (99m)Tc-Aprotinin was found over than 90% without any significant changes up to 6 hours after labelling at room temperature. After that, in vitro release studies of (99m)Tc-Aprotinin loaded microemulsions were performed with two different methods; dissolution from diffusion cells and dialysis bags. Both methods showed that release rate of (99m)Tc- Aprotinin from microemulsion could be controlled by microemulsion formulations. Drug release from the optimized microemulsion formulations was found lower compared to drug solution at the end of six hours. According to stability studies, the optimized formulation was found to be stable over a period of 12 months. Also, human immortalized pancreatic duct epithelial-like cells were used to evaluate the cytotoxicity of optimum formulation. Developed microemulsion did not reveal cytotoxicity. In conclusion the present study indicated that the M1-APT microemulsion is appropriate for intravenous application of aprotinin.

  12. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    Science.gov (United States)

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  13. pH-controlled drug loading and release from biodegradable microcapsules.

    Science.gov (United States)

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  14. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  15. Effect of non-cross-linked calcium on characteristics, swelling behaviour, drug release and mucoadhesiveness of calcium alginate beads.

    Science.gov (United States)

    Dalaty, Adnan Al; Karam, Ayman; Najlah, Mohammad; Alany, Raid G; Khoder, Mouhamad

    2016-04-20

    In this study, ibuprofen-loaded calcium alginate beads (CABs) with varying amounts of non-cross-linked calcium (NCL-Ca) were prepared using different washing methods. The influence of NCL-Ca on beads properties was investigated. Increasing the number or duration of washes led to significant decreases in the amount of NCL-Ca whereas the impact of the volume of washes was not significant. Approximately 70% of the initial amount of Ca(2+) was NCL-Ca which was removable by washing while only 30% was cross-linked (CL-Ca). Ca(2+) release from the CABs was bimodal; NCL-Ca was burst-released followed by a slower release of CL-Ca. Washing methods and the amount of NCL-Ca had significant influences on the encapsulation efficiency, beads weight, beads swelling, drug release profile and the mucoadhesiveness of CABs. This study highlighted the importance of washing methods and the amount of NCL-Ca to establish CABs properties and understand their behaviour in the simulated intestinal fluids (SIFs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Symbiosis of zeolite-like metal-organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release

    KAUST Repository

    Ananthoji, Ramakanth

    2011-01-01

    The design and synthesis of new finely tunable porous materials has spurred interest in developing novel uses in a variety of systems. Zeolites, inorganic materials with high thermal and mechanical stability, in particular, have been widely examined for use in applications such as catalysis, ion exchange and separation. A relatively new class of inorganic-organic hybrid materials known as metal-organic frameworks (MOFs) have recently surfaced, and many have exhibited their efficiency in potential applications such as ion exchange and drug delivery. A more recent development is the design and synthesis of a subclass of MOFs based on zeolite topologies (i.e. ZMOFs), which often exhibit traits of both zeolites and MOFs. Bio-compatible hydrogels already play an important role in drug delivery systems, but are often limited by stability issues. Thus, the addition of ZMOFs to hydrogel formulations is expected to enhance the hydrogel mechanical properties, and the ZMOF-hydrogel composites should present improved, symbiotic drug storage and release for delivery applications. Herein we present the novel composites of a hydrogel with a zeolite-like metal-organic framework, rho-ZMOF, using 2-hydroxyethyl methacrylate (HEMA), 2,3-dihydroxypropyl methacrylate (DHPMA), N-vinyl-2-pyrolidinone (VP) and ethylene glycol dimethacrylate (EGDMA), and the corresponding drug release. An ultraviolet (UV) polymerization method is employed to synthesize the hydrogels, VP 0, VP 15, VP 30, VP 45 and the ZMOF-VP 30 composite, by varying the VP content (mol%). The rho-ZMOF, VP 30, and ZMOF-VP 30 composite are all tested for the controlled release of procainamide (protonated, PH), an anti-arrhythmic drug, in phosphate buffer solution (PBS) using UV spectroscopy. © 2011 The Royal Society of Chemistry.

  17. PLA/CS/Nifedipine Nanocomposite Films: Properties and the In Vitro Release of Nifedipine

    Science.gov (United States)

    Trang, Nguyen Thi Thu; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Thanh, Dinh Thi Mai; Lam, Tran Dai; Hoang, Thai

    2016-07-01

    The polylactic acid (PLA)/chitosan (CS) films containing a drug, nifedipine (NIF), in the presence of polyethylene oxide (PEO) as a compatibilizer were prepared by the solution method. This method has not been used to form films containing four components (PLA, CS, NIF, PEO) up to now. The CS, PEO, and NIF contents are 25 wt.%, 6-8 wt.%, and 10-50 wt.% in comparison with PLA weight, respectively. Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM) were used to characterize the interactions, properties, and morphology of the PLA/CS/PEO/NIF films. The FTIR, TGA, and DSC results show that NIF carried by PLA/CS/PEO films and PLA, CS, NIF had better interaction and were more compatible when using PEO. The surface morphology of PLA/CS/PEO/NIF films was similar to that of PLA/CS/PEO films. Moreover, this was the first time drug loading and NIF release content from PLA/CS/PEO films were determined by the ultraviolet-visible (UV-Vis) spectroscopy method. The drug loading of PLA/CS/PEO/NIF films was from 80.99% to 93.61%. The in vitro NIF release studies were carried out in pH 2, 6.8, and 7.4 solutions corresponding to the pH of stomach, colon, and duodenum regions in the human body, respectively. The NIF release content in different pH solutions is in the order: pH 2 > pH 6.8 > pH 7.4 and increases when there is increasing NIF loading. The PLA/CS/PEO films are potential materials to apply for long-circulating systems for NIF delivery.

  18. On the exfoliating polymeric cellular dosage forms for immediate drug release.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2016-06-01

    The most prevalent pharmaceutical dosage forms at present-the oral immediate-release tablets and capsules-are granular solids. Though effective in releasing drug rapidly, development and manufacture of such dosage forms are fraught with difficulties inherent to particulate processing. Predictable dosage form manufacture could be achieved by liquid-based processing, but cast solid dosage forms are not suitable for immediate drug release due to their resistance to fluid percolation. To overcome this limitation, we have recently introduced cellular dosage forms that can be readily prepared from polymeric melts. It has been shown that open-cell structures comprising polyethylene glycol 8000 (PEG 8k) excipient and a drug exfoliate upon immersion in a dissolution medium. The drug is then released rapidly due to the large specific surface area of the exfoliations. In this work, we vary the molecular weight of the PEG excipient and investigate its effect on the drug release kinetics of structures with predominantly open-cell topology. We demonstrate that the exfoliation rate decreases substantially if the excipient molecular weight is increased from 12 to 100kg/mol, which causes the drug dissolution time to increase by more than a factor of ten. A model is then developed to elucidate the exfoliation behavior of cellular structures. Diverse transport processes are considered: percolation due to capillarity, diffusion of dissolution medium through the cell walls, and viscous flow of the saturated excipient. It is found that the lower exfoliation rate and the longer dissolution time of the dosage forms with higher excipient molecular weight are primarily due to the greater viscosity of the cell walls after fluid penetration. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    Science.gov (United States)

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  20. 14 CFR 155.5 - Property and releases covered by this part.

    Science.gov (United States)

    2010-01-01

    ... national emergency, to facilitate financing the operation and maintenance or further development of a... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Property and releases covered by this part... TRANSPORTATION (CONTINUED) AIRPORTS RELEASE OF AIRPORT PROPERTY FROM SURPLUS PROPERTY DISPOSAL RESTRICTIONS § 155...

  1. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  2. Effect of Na2SO3 concentration to drug loading and drug release of ascorbic acid in chitosan edible film as drug delivery system membrane

    Directory of Open Access Journals (Sweden)

    Kistriyani Lilis

    2018-01-01

    Full Text Available Chitosan is a type of carbohydrate compounds produced from waste marine products, in particular the class of shrimp, crabs and clams. Chitosan is often process into edible films and utilized for food packaging also has potential as a membrane for drug delivery system. Drug loading and drug release can be controlled by improve the characteristics of the membrane by adding crosslinker. The purpose of this research is to study the effect of addition of crosslinker to the rate of loading and release of ascorbic acid in the chitosan edible film. Na2SO3 was used as crosslinker. Two grams of chitosan was dissolved into 100 ml of distilled water. Acetic acid and plasticizer were added in the solution then heated at 50°C. Na2SO3 solution with mass various of Na2SO3 dissolved, 01026 0.3; and 0.5 grams were added about 30 mL to make edible film. The analysis include of drug loading, drug release and tensile strength. The result showed that the loading of edible film with crosslinker 0.15 g; 0.3 g; and 0.5 g respectively were 60.98 ppm; 52.53 ppm; and 40.88 ppm, meanwhile for the release with crosslinker 0.15 g; 0.3 g; and 0.5 g respectively were 3.78 ppm; 5.72 ppm; and 5.97 ppm.

  3. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).

    Science.gov (United States)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati; Water, Jorrit J; Baldursdottír, Stefania; Almdal, Kristoffer; Beck-Broichsitter, Moritz

    2017-06-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives correlated well with the observed in vitro half-times of drug delivery (R 2 =0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro incubations with cholesterol esterase. Interestingly, SEM analysis indicated a distinct surface erosion process for enzyme-, macrophage- and in vivo-treated polymer films in a molecular weight-dependent manner. Overall, the molecular weight of surface-eroding PEC was identified as an essential parameter to control the spatial and temporal on-demand degradation and drug release from the employed delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Controlled release of non-steroidal antiinflammatory and anticancer drugs from hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravieri, Beatriz Bernardes; Molina, Eduardo Ferreira, E-mail: bia_ms_@hotmail.com [Universidade de Franca, SP (Brazil)

    2016-07-01

    Full text: Chronic inflammation is a well known risk factor for the development of human cancer, and at least one third of all human cancers have been associated with inflammation. This can lead to cellular proliferation, a process which per se increases the risk of abnormal cell formation and ultimately the development of cancer. For treating clinical conditions such as inflammation and cancer, the most common methods (e.g., oral administration, injection) can cause unwanted side effects due to drug delivery to non-target sites and the introduction of high doses of the drug to reach the desired location. An alternative to these problems is the preparation of materials that can release drugs with different activities. Thinking about it, the aim of this study was to use a class of hybrid materials based on siloxane-polyether known as ureasil for controlled release of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP), and anticancer, such as 5-fluorouracil (5- FU). These drugs have been incorporated in the matrix in different proportions and thereafter, were characterized by different techniques such as XRD, FTIR, DSC and SAXS. In addition, it has been evaluated the release kinetics of these species with different chemical structures. The results have shown that the drug molecules were homogeneously distributed in the xerogel hybrids, which contributed to the drug’s release profile fine-tuning. The chemical environment of the polyether chains was amended by incorporating the drugs. The analysis from XRD, FTIR, SAXS and DSC confirm the good solubility of the substances within hybrid matrix. This hybrid material based on polymers and inorganic compounds may have potential applications in human health. (author)

  5. Controlled release of non-steroidal antiinflammatory and anticancer drugs from hybrid materials

    International Nuclear Information System (INIS)

    Caravieri, Beatriz Bernardes; Molina, Eduardo Ferreira

    2016-01-01

    Full text: Chronic inflammation is a well known risk factor for the development of human cancer, and at least one third of all human cancers have been associated with inflammation. This can lead to cellular proliferation, a process which per se increases the risk of abnormal cell formation and ultimately the development of cancer. For treating clinical conditions such as inflammation and cancer, the most common methods (e.g., oral administration, injection) can cause unwanted side effects due to drug delivery to non-target sites and the introduction of high doses of the drug to reach the desired location. An alternative to these problems is the preparation of materials that can release drugs with different activities. Thinking about it, the aim of this study was to use a class of hybrid materials based on siloxane-polyether known as ureasil for controlled release of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP), and anticancer, such as 5-fluorouracil (5- FU). These drugs have been incorporated in the matrix in different proportions and thereafter, were characterized by different techniques such as XRD, FTIR, DSC and SAXS. In addition, it has been evaluated the release kinetics of these species with different chemical structures. The results have shown that the drug molecules were homogeneously distributed in the xerogel hybrids, which contributed to the drug’s release profile fine-tuning. The chemical environment of the polyether chains was amended by incorporating the drugs. The analysis from XRD, FTIR, SAXS and DSC confirm the good solubility of the substances within hybrid matrix. This hybrid material based on polymers and inorganic compounds may have potential applications in human health. (author)

  6. Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?

    Directory of Open Access Journals (Sweden)

    Martina Nardoni

    2018-03-01

    Full Text Available Recently, magnetic nanoparticles (MNPs have been used to trigger drug release from magnetoliposomes through a magneto-nanomechanical approach, where the mechanical actuation of the MNPs is used to enhance the membrane permeability. This result can be effectively achieved with low intensity non-thermal alternating magnetic field (AMF, which, however, found rare clinic application. Therefore, a different modality of generating non-thermal magnetic fields has now been investigated. Specifically, the ability of the intermittent signals generated by non-thermal pulsed electromagnetic fields (PEMFS were used to verify if, once applied to high-transition temperature magnetoliposomes (high-Tm MLs, they could be able to efficiently trigger the release of a hydrophilic model drug. To this end, hydrophilic MNPs were combined with hydrogenated soybean phosphatidylcholine and cholesterol to design high-Tm MLs. The release of a dye was evaluated under the effect of PEMFs for different times. The MNPs motions produced by PEMF could effectively increase the bilayer permeability, without affecting the liposomes integrity and resulted in nearly 20% of release after 3 h exposure. Therefore, the current contribution provides an exciting proof-of-concept for the ability of PEMFS to trigger drug release, considering that PEMFS find already application in therapy due to their anti-inflammatory effects.

  7. Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?

    Science.gov (United States)

    Nardoni, Martina; Della Valle, Elena; Liberti, Micaela; Relucenti, Michela; Casadei, Maria Antonietta; Paolicelli, Patrizia; Apollonio, Francesca; Petralito, Stefania

    2018-03-27

    Recently, magnetic nanoparticles (MNPs) have been used to trigger drug release from magnetoliposomes through a magneto-nanomechanical approach, where the mechanical actuation of the MNPs is used to enhance the membrane permeability. This result can be effectively achieved with low intensity non-thermal alternating magnetic field (AMF), which, however, found rare clinic application. Therefore, a different modality of generating non-thermal magnetic fields has now been investigated. Specifically, the ability of the intermittent signals generated by non-thermal pulsed electromagnetic fields (PEMFS) were used to verify if, once applied to high-transition temperature magnetoliposomes (high-Tm MLs), they could be able to efficiently trigger the release of a hydrophilic model drug. To this end, hydrophilic MNPs were combined with hydrogenated soybean phosphatidylcholine and cholesterol to design high-Tm MLs. The release of a dye was evaluated under the effect of PEMFs for different times. The MNPs motions produced by PEMF could effectively increase the bilayer permeability, without affecting the liposomes integrity and resulted in nearly 20% of release after 3 h exposure. Therefore, the current contribution provides an exciting proof-of-concept for the ability of PEMFS to trigger drug release, considering that PEMFS find already application in therapy due to their anti-inflammatory effects.

  8. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release

    International Nuclear Information System (INIS)

    Szegedi, A.; Popova, M.; Goshev, I.; Mihaly, J.

    2011-01-01

    MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N 2 physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choice of mesoporous material with the appropriate structural characteristics and surface functionality. -- Graphical Abstract: Ibuprofen delivery from the parent and amino-modified spherical MCM-41 materials with 100 nm (small) and 500 nm (large) particle sizes. Display Omitted Highlights: → Spherical type MCM-41 and SBA-15 with different particle sizes were modified by APTES. → Adsorption and release rate of ibuprofen were compared. → High degree of ibuprofen loading, slow release rate for MCM-41, the opposite for SBA-15. → MCM-41 with 100 nm particles was more stable and showed slower release rate

  9. Hypersonic Poration of Membranes : From Triggered Release and Encapsulation to Drug Delivery

    NARCIS (Netherlands)

    Lu, Yao

    2018-01-01

    In this thesis, hypersonic poration is introduced as a new physical method to precisely control membrane permeability for the applications of controlled release and encapsulation, and enhanced drug delivery. Bulk acoustic wave (BAW) resonators of gigahertz (GHz) frequency have been fabricated using

  10. The effects of cyclodextrins on drug release from fatty suppository bases : III. Application of cyclodextrin derivatives

    NARCIS (Netherlands)

    Frijlink, H.W.; Paiotti, S.; Eissens, Anko; Lerk, C.F.

    1992-01-01

    The complexation of both n-butyl-4-aminobenzoate and diazepam with dimethyl-beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin, respectively, was studied. Solid complexes were prepared by freeze-drying. The complexes were incorporated in fatty suppositories and drug release was studied, both in

  11. In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold

    DEFF Research Database (Denmark)

    Sun, Ming; Chen, Muwan; Wang, Miao

    2016-01-01

    Bone tissue-engineered scaffolds with therapeutic effects must meet the basic requirements as to support bone healing at the defect side and to release an effect drug within the therapeutic window. Here, a rapid prototyped PCL scaffold embedded with chitosan/nanoclay/β-tricalcium phosphate...

  12. Medicinal chemistry and anti-inflammatory activity of nitric oxide-releasing NSAI drugs.

    Science.gov (United States)

    Koç And, Esra; Küçükgüzel, S Güniz

    2009-05-01

    Nitric Oxide, which acts as a non-specific cytotoxic mediator and a biological messenger on immunological competence, has been gaining significantly increasing importance. As an alternative to conventional NSAIDs having significant side effects, pharmacologically improved and therapeutically enhanced NO releasing non-steroidal anti-inflammatory drugs with less side effects are being planned to produce.

  13. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  14. Understanding drug-related mortality in released prisoners: a review of national coronial records

    Directory of Open Access Journals (Sweden)

    Andrews Jessica Y

    2012-04-01

    Full Text Available Abstract Background The prisoner population is characterised by a high burden of disease and social disadvantage, and ex-prisoners are at increased risk of death following release. Much of the excess mortality can be attributed to an increased risk of unnatural death, particularly from drug overdose; however, relatively few studies have investigated the circumstances surrounding drug-related deaths among released prisoners. This study aimed to explore and compare the circumstances of death for those who died from accidental drug-related causes to those who died from all other reportable causes. Methods A nationwide search of the Australian National Coroners Information System (NCIS was conducted to identify reportable deaths among ex-prisoners from 2000 to 2007. Using a structured coding form, NCIS records for these cases were interrogated to explore causes and circumstances of death. Results Coronial records for 388 deceased ex-prisoners were identified. Almost half of these deaths were a result of accidental drug-related causes (45%. The majority of accidental drug-related deaths occurred in a home environment, and poly-substance use at or around the time of death was common, recorded in 72% of drug-related deaths. Ex-prisoners who died of accidental drug-related causes were on average younger and less likely to be Indigenous, born in Australia, married, or living alone at or around the time of death, compared with those who died from all other reportable causes. Evidence of mental illness or self-harm was less common among accidental drug-related deaths, whereas evidence of previous drug overdose, injecting drug use, history of heroin use and history of drug withdrawal in the previous six months were more common. Conclusions Drug-related deaths are common among ex-prisoners and often occur in a home (vs. public setting. They are often associated with use of multiple substances at or around the time of death, risky drug-use patterns, and even

  15. An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing

    Energy Technology Data Exchange (ETDEWEB)

    Bruvera, I.J. [Aragon Institute of Nanoscience (INA), University of Zaragoza, 50018 (Spain); Hernández, R.; Mijangos, C. [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid (Spain); Goya, G.F., E-mail: goya@unizar.es [Aragon Institute of Nanoscience (INA), University of Zaragoza, 50018 (Spain); Condensed Matter Physics Department, Science Faculty, University of Zaragoza, 50009 (Spain)

    2015-03-01

    We have developed a device capable of remote triggering and in situ quantification of therapeutic drugs, based on magnetically-responsive hydrogels of poly (N-isopropylacrylamide) and alginate (PNiPAAm). The heating efficiency of these hydrogels measured by their specific power absorption (SPA) values showed that the values between 100 and 300 W/g of the material were high enough to reach the lower critical solution temperature (LCST) of the polymeric matrix within few minutes. The drug release through application of AC magnetic fields could be controlled by time-modulated field pulses in order to deliver the desired amount of drug. Using B12 vitamin as a concept drug, the device was calibrated to measure amounts of drug released as small as 25(2)×10{sup −9} g, demonstrating the potential of this device for very precise quantitative control of drug release. - Highlights: • A device for magnetically driven drug release was developed and constructed. • Thermally responsive PNiPAAm and Fe3O4 nanoparticles were usedas drug reservoir. • The device allowed repetitive, remote and precisely controlled drug release. • By in situ spectrometry we could detect released drug quantities as small as 25 ng. • Released drug was controlled through magnetic ac field parameters H, f and time.

  16. An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing

    International Nuclear Information System (INIS)

    Bruvera, I.J.; Hernández, R.; Mijangos, C.; Goya, G.F.

    2015-01-01

    We have developed a device capable of remote triggering and in situ quantification of therapeutic drugs, based on magnetically-responsive hydrogels of poly (N-isopropylacrylamide) and alginate (PNiPAAm). The heating efficiency of these hydrogels measured by their specific power absorption (SPA) values showed that the values between 100 and 300 W/g of the material were high enough to reach the lower critical solution temperature (LCST) of the polymeric matrix within few minutes. The drug release through application of AC magnetic fields could be controlled by time-modulated field pulses in order to deliver the desired amount of drug. Using B12 vitamin as a concept drug, the device was calibrated to measure amounts of drug released as small as 25(2)×10 −9 g, demonstrating the potential of this device for very precise quantitative control of drug release. - Highlights: • A device for magnetically driven drug release was developed and constructed. • Thermally responsive PNiPAAm and Fe3O4 nanoparticles were usedas drug reservoir. • The device allowed repetitive, remote and precisely controlled drug release. • By in situ spectrometry we could detect released drug quantities as small as 25 ng. • Released drug was controlled through magnetic ac field parameters H, f and time

  17. Peptide Drug Release Behavior from Biodegradable Temperature-Responsive Injectable Hydrogels Exhibiting Irreversible Gelation

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2017-10-01

    Full Text Available We investigated the release behavior of glucagon-like peptide-1 (GLP-1 from a biodegradable injectable polymer (IP hydrogel. This hydrogel shows temperature-responsive irreversible gelation due to the covalent bond formation through a thiol-ene reaction. In vitro sustained release of GLP-1 from an irreversible IP formulation (F(P1/D+PA40 was observed compared with a reversible (physical gelation IP formulation (F(P1. Moreover, pharmaceutically active levels of GLP-1 were maintained in blood after subcutaneous injection of the irreversible IP formulation into rats. This system should be useful for the minimally invasive sustained drug release of peptide drugs and other water-soluble bioactive reagents.

  18. Preparation and characterization of smart magnetic hydrogels and its use for drug release

    International Nuclear Information System (INIS)

    Liu, T.-Y.; Hu, S.-H.; Liu, K.-H.; Liu, D.-M.; Chen, S.-Y.

    2006-01-01

    The magnetic hydrogels were successfully fabricated by chemically cross-linking of gelatin hydrogels and Fe 3 O 4 nanoparticles (ca. 40-60 nm) through genipin (GP) as cross-linking agent. The cross-sectional SEM observation demonstrates that the Fe 3 O 4 nanoparticles were fairly uniformly distributed in the gelatin matrix. Moreover, in vitro release data reveal that drug release profile of the resulting hydrogels is controllable by switching on or off mode of a given magnetic field. While applying magnetic fields to the magnetic hydrogels, the release rate of vitamin B 12 of the hydrogels was considerably decreased as compared with those when the field was turned off, suggesting a close configuration of the hydrogels as a result of the aggregation of Fe 3 O 4 nanoparticles. Based on this on- and -off mechanism, the smart magnetic hydrogels based on the gelatin-ferrite hybrid composites can be potentially developed for application in novel drug delivery systems

  19. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Ramasamy, S; Ramakrishnan, V; Kumar, J

    2011-12-01

    Hydroxyapatite is a bioceramic which has a wide range of medical application for bone diseases. To enhance its usage, we have prepared ciprofloxacin loaded nano hydroxyapatite (HA) composite with a natural polymer, alginate, using wet chemical method at low temperature. The prepared composites were analyzed by various physicochemical methods. The results show that the nano HA crystallites are well intact with the alginate macromolecules. For the composite system FT-IR and micro Raman results are reported in this paper. Studies on the drug loading and drug release have been done. The drug is pre-adsorbed onto the ceramic particle before the formation of composite. The thermal behavior of composite has been studied using thermo gravimetric analysis (TGA). This work, reports that the nanocomposite prepared under optimum condition could prolong the release of ciprofloxacin compared with the ciprofloxacin loaded hydroxyapatite.

  20. Modelling irradiation by EM waves of multifunctionalized iron oxide nanoparticles and subsequent drug release

    International Nuclear Information System (INIS)

    Wang, Feng; Calvayrac, Florent; Montembault, Véronique; Fontaine, Laurent

    2015-01-01

    Thermal transport in the environment close to the periphery of the nanoparticle, from a few angstroms to less than a nanometer scale, is becoming increasingly important with the advent of several biomedical applications of multifunctional magnetic nanoparticles, including drug delivery, magnetic resonance imaging, and hyperthermia therapy. We present a multiscale and multiphysics model of the irradiation by electromagnetic waves of radiofrequency of iron oxide nanoparticles functionalized by drug-releasing polymers used as new multifunctional therapeutic compounds against tumors. We compute ab initio the thermal conductivity of the polymer chains as a function of the length, model the unfolding of the polymer after heat transfer from the nanoparticle by molecular mechanics, and develop a multiscale thermodynamic and heat transfer model including the surrounding medium (water) in order to model the drug release. (paper)

  1. Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting

    Directory of Open Access Journals (Sweden)

    Yu-Han Wen

    2017-06-01

    Full Text Available Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin (HBD in which doxorubicin (DOX was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ, to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine.

  2. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Influence of Postprandial Intragastric Pressures on Drug Release from Gastroretentive Dosage Forms.

    Science.gov (United States)

    Schneider, Felix; Hoppe, Melanie; Koziolek, Mirko; Weitschies, Werner

    2018-05-29

    Despite extensive research in the field of gastroretentive dosage forms, this "holy grail" of oral drug delivery yet remained an unmet goal. Especially under fasting conditions, the reproducible retention of dosage forms in the stomach seems to be an impossible task. This is why such systems are often advised to be taken together with food. But also the postprandial motility can contribute significantly to the failure of gastroretentive dosage forms. To investigate the influence of postprandial pressure conditions on drug release from such systems, we used a novel in vitro dissolution tool, the dissolution stress test device. With the aid of this device, we simulated three different intragastric pressure profiles that may occur after postprandial intake. These transit scenarios were based on recently obtained, postprandial SmartPill® data. The tested systems, Glumetza® 1000 and Madopar® HBS 125, are marketed dosage forms that are based on different approaches to achieve proper gastric retention. All three transit scenarios revealed a highly pressure-sensitive drug release behavior, for both drugs. For Madopar® HBS 125, nearly complete drug release was observed even after early occurring pressures. Glumetza® 1000 seemed to be more resistant to these, most likely due to incomplete wetting of the system. On the contrary to these findings, data from standard dissolution tests using the paddle apparatus displayed controlled drug release for both systems for about 6 h. Based on these results, it can be doubted that established gastroretentive systems stay intact over a longer period of time, even under postprandial conditions.

  4. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.

    Science.gov (United States)

    Siyawamwaya, Margaret; du Toit, Lisa C; Kumar, Pradeep; Choonara, Yahya E; Kondiah, Pierre P P D; Pillay, Viness

    2018-04-12

    A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a loading of ∼12.5 mg/6.3 mg/4 mg of EFV/TDF/FTC respectively per printed layer. Hydrogen bonding between the EFV/TDF/FTC and HA-PQ10 was detected which was indicative of possible drug solubility enhancement. The overall surface of the tablet exhibited a fibrilla structure and the 90° inner pattern was determined to be optimal for 3DP of the FDC. In vitro and in vivo drug release profiles from the 3DP FDC demonstrated that intestinal-targeted and controlled drug release was achieved. A 3DP FDC was successfully manufactured with the aid of a 3D-Bioplotter in a single step process. The versatile HA-PQ10 entrapped all drugs and achieved an enhanced relative bioavailability of EFV, TDF, and FTC compared to the market formulation for potentially enhanced HIV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. pH-triggered drug release from biodegradable microwells for oral drug delivery

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Gordon, Sarah

    2015-01-01

    of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastroresistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system...

  6. Preparation and Characterization of Novel Gellan Gum Hydrogels Suitable for Modified Drug Release

    Directory of Open Access Journals (Sweden)

    Pietro Matricardi

    2009-09-01

    Full Text Available Innovative hydrogels obtained by physical and chemical crosslinking of deacylated Gellan gum have been characterized in terms of water uptake, rheological properties and compressibility, and the behaviour of the tested materials, according to the type of the obtained network, is thoroughly discussed. The release from the various gels of loaded model molecules of different steric hindrance was also investigated and the trend of the release profiles has been related to the structures proposed for the physical and the chemical hydrogel.

  7. [Influence of polymer type on the physical properties and the release study of papaverine hydrochloride from tablets].

    Science.gov (United States)

    Kasperek, Regina; Polski, Andrzej; Sobótka-Polska, Karolina; Poleszak, Ewa

    2014-01-01

    Polymers are widely used in drug manufacturing. Researchers studied their impact on the bioavailability of active substances or on physical properties of tablets for many years. To study the influence of polymer excipients, such as microcrystalline cellulose (Avicel PH 101, Avicel PH 102), croscarmellose sodium, crospovidone or polyvinylpyrrolidone, on the release profile of papaverine hydrochloride from tablets and on the physical properties of tablets. Six series of uncoated tablets were prepared by indirect method, with previous wet granulation. Tablets contained papaverine hydrochloride and various excipients. The physical properties of the prepared granules, tablets and the release profile of papaverine hydrochloride from tablets were examined. The content of papaverine hydrochloride from the release study were determined spectrophotometrically. All tablets met the pharmacopoeia requirements during following tests: the disintegration time of tablets, uncoated tablets resistance to abrasion, the weight uniformity and dose formulations, their dimensions, the resistance to crushing of tablets and the drug substance content in the tablet. In four cases more than 80% of papaverine was released up to 2 min, in one formula it was up to 5 min, and in last one up to 10 min. Tablets containing crospovidone disintegrated faster than tablets with croscarmellose sodium. Adding gelatinized starch to the tablet composition increased the disintegration time, hardness and delayed the release of papaverine. During the wet granulation process, granules containing polyvinylpyrrolidone were characterized by a suitable flow properties and slightly prolonged disintegration time. Tablets containing Avicel PH 102 compared to tablets with Avicel PH 101 had less weight loss during the test of mechanical resistance, improved hardness and faster release profile of papaverine from tablets.

  8. Modification of concomitant drug release from oil vehicles using drug-prodrug combinations to achieve sustained balanced analgesia after joint installation

    DEFF Research Database (Denmark)

    Thing, Mette; Jensen, Sabrine Smedegaard; Larsen, Claus Selch

    2012-01-01

    Intra-articular injection of two drugs in a sustained drug delivery system combining the use of lipophilic solution with the prodrug approach may provide efficient and prolonged postoperative pain treatment after arthroscopic procedures. In the present study, the concomitant release of N...... using buffer. In both release models, the use of ropivacaine-prodrug combination provided concomitant release from the oil into synovial fluid with ropivacaine being released faster than naproxen. The use of lipophilic prodrugs that are converted fast to the parent drug in synovial fluid seems...

  9. Modeling the Release Kinetics of Poorly Water-Soluble Drug Molecules from Liposomal Nanocarriers

    Directory of Open Access Journals (Sweden)

    Stephan Loew

    2011-01-01

    Full Text Available Liposomes are frequently used as pharmaceutical nanocarriers to deliver poorly water-soluble drugs such as temoporfin, cyclosporine A, amphotericin B, and paclitaxel to their target site. Optimal drug delivery depends on understanding the release kinetics of the drug molecules from the host liposomes during the journey to the target site and at the target site. Transfer of drugs in model systems consisting of donor liposomes and acceptor liposomes is known from experimental work to typically exhibit a first-order kinetics with a simple exponential behavior. In some cases, a fast component in the initial transfer is present, in other cases the transfer is sigmoidal. We present and analyze a theoretical model for the transfer that accounts for two physical mechanisms, collisions between liposomes and diffusion of the drug molecules through the aqueous phase. Starting with the detailed distribution of drug molecules among the individual liposomes, we specify the conditions that lead to an apparent first-order kinetic behavior. We also discuss possible implications on the transfer kinetics of (1 high drug loading of donor liposomes, (2 attractive interactions between drug molecules within the liposomes, and (3 slow transfer of drugs between the inner and outer leaflets of the liposomes.

  10. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies.

    Science.gov (United States)

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-11-01

    This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    Science.gov (United States)

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Vinícius Müller

    2011-01-01

    Full Text Available Biomaterials applied as carriers for controlled drug delivery offer many advantages over the conventional systems. Among them, the increase of treatment effectiveness and also a significant reduction of toxicity, due to their biodegradability property, are some special features. In this work, microspheres based on the protein Zein (ZN and ZN associated to the natural polymer Chitosan (CHI were prepared and characterized. The microspheres of ZN and ZN/CHI were characterized by FT-IR spectroscopy and thermal analysis, and the morphology was analyzed by SEM images. The results confirmed the incorporation of CHI within the ZN-based microspheres. The morphological analysis showed that the CHI added increased the microspheres porosity when compared to the ZN microspheres. The chemical and physical characterization and the morphological analysis allow inferring that ZN/CHI microspheres are good candidates to act as a carrier for controlled drug release.

  13. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    Science.gov (United States)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  14. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Lee SJ

    2015-08-01

    Full Text Available Sang Joon Lee,1,* Young-Il Jeong,2,* Hyung-Kyu Park,3 Dae Hwan Kang,2,4 Jong-Suk Oh,3 Sam-Gyu Lee,5 Hyun Chul Lee31Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 2Biomedical Research Institute, Pusan National University Hospital, Busan, 3Department of Microbiology, Chonnam National University Medical School, Gwangju, 4Research Institute for Convergence of Biome