WorldWideScience

Sample records for drug delivery devices

  1. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.; Buttner, Ulrich; Yi, Ying

    2016-01-01

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  2. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  3. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  4. A pulsed mode electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-09-14

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device\\'s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg ± 0.3 μg per actuation pulse was achieved using 4 mW of power.

  5. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  6. A pulsed mode electrolytic drug delivery device

    International Nuclear Information System (INIS)

    Yi, Ying; Foulds, Ian G; Buttner, Ulrich; Carreno, Armando A A; Conchouso, David

    2015-01-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power. (paper)

  7. Inhalation drug delivery devices: technology update

    Directory of Open Access Journals (Sweden)

    Ibrahim M

    2015-02-01

    Full Text Available Mariam Ibrahim, Rahul Verma, Lucila Garcia-ContrerasDepartment of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USAAbstract: The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided.Keywords: pulmonary delivery, asthma, nebulizers, metered dose inhaler, dry powder inhaler

  8. Design of an Implantable Device for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2012-01-01

    Full Text Available Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD, diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  9. A pulsed mode electrolytic drug delivery device

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Foulds, Ian G.

    2015-01-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach

  10. Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery

    Science.gov (United States)

    Fox, Cade Brylee

    While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion

  11. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly; Ou, Kevin; Jackson, John K.; Letchford, Kevin; Cui, Jing; Wolf, Ki Tae; Graber, Florian; Zhao, Tom; Matsubara, Joanne A.; Burt, Helen; Chiao, Mu; Lin, Liwei

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved

  13. Multi-pulse drug delivery from a resorbable polymeric microchip device

    Science.gov (United States)

    Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert

    2003-11-01

    Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.

  14. Engineering and evaluating drug delivery particles in microfluidic devices.

    Science.gov (United States)

    Björnmalm, Mattias; Yan, Yan; Caruso, Frank

    2014-09-28

    The development of new and improved particle-based drug delivery is underpinned by an enhanced ability to engineer particles with high fidelity and integrity, as well as increased knowledge of their biological performance. Microfluidics can facilitate these processes through the engineering of spatiotemporally highly controlled environments using designed microstructures in combination with physical phenomena present at the microscale. In this review, we discuss microfluidics in the context of addressing key challenges in particle-based drug delivery. We provide an overview of how microfluidic devices can: (i) be employed to engineer particles, by providing highly controlled interfaces, and (ii) be used to establish dynamic in vitro models that mimic in vivo environments for studying the biological behavior of engineered particles. Finally, we discuss how the flexible and modular nature of microfluidic devices provides opportunities to create increasingly realistic models of the in vivo milieu (including multi-cell, multi-tissue and even multi-organ devices), and how ongoing developments toward commercialization of microfluidic tools are opening up new opportunities for the engineering and evaluation of drug delivery particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Inhaled Drug Delivery: A Practical Guide to Prescribing Inhaler Devices

    Directory of Open Access Journals (Sweden)

    Pierre Ernst

    1998-01-01

    Full Text Available Direct delivery of medication to the target organ results in a high ratio of local to systemic bioavailability and has made aerosol delivery of respiratory medication the route of choice for the treatment of obstructive lung diseases. The most commonly prescribed device is the pressurized metered dose inhaler (pMDI; its major drawback is the requirement that inspiration and actuation of the device be well coordinated. Other requirements for effective drug delivery include an optimal inspiratory flow, a full inspiration from functional residual capacity and a breath hold of at least 6 s. Available pMDIs are to be gradually phased out due to their use of atmospheric ozone-depleting chlorofluorocarbons (CFCs as propellants. Newer pMDI devices using non-CFC propellants are available; preliminary experience suggests these devices greatly increase systemic bioavailability of inhaled corticosteroids. The newer multidose dry powder inhalation devices (DPIs are breath actuated, thus facilitating coordination with inspiration, and contain fewer ingredients. Furthermore, drug delivery is adequate even at low inspired flows, making their use appropriate in almost all situations. Equivalence of dosing among different devices for inhaled corticosteroids will remain imprecise, requiring the physician to adjust the dose of medication to the lowest dose that provides adequate control of asthma. Asthma education will be needed to instruct patients on the effective use of the numerous inhalation devices available.

  16. An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care

    Science.gov (United States)

    2009-06-01

    controlled devices provide advantages over passive release devices, as the drug delivery process can be controlled actively after implantation and...mm, 5 μm, 100 Å, Alltech Associates, USA), with methanol and 0.1% trifluoroacetic acid (TFA) in water. The gradient used was 2 % TFA/min, starting

  17. Towards soft robotic devices for site-specific drug delivery.

    Science.gov (United States)

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  18. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    Directory of Open Access Journals (Sweden)

    Dharani Manickavasagam

    2013-01-01

    Full Text Available Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure. However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a patient tolerability and acceptance, (b drug stability and drug release profiles, (c therapeutic efficacy, and (d toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.

  19. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.

  20. Development of a three-microneedle device for hypodermic drug delivery and clinical application.

    Science.gov (United States)

    Fukamizu, Hidekazu; Fujiwara, Masao; Kim, Taishi; Matsushita, Yuki; Tokura, Yoshiki

    2012-08-01

    There is a potential use for intradermic or hypodermic drug delivery in skin surgery or aesthetic surgery. Hypodermic delivery with the use of a noninvasive device can be a more useful, reliable, and effective administration route to obtain higher compliance. The authors developed a microneedle device composed of three fine needles (three-microneedle device). The tip of each needle was fabricated with a bevel angle to release a drug broadly into the tissue in a horizontal fashion. In this study, the authors investigated the usefulness of this newly developed three-microneedle device for hypodermic liquid injection, focusing on the optimum insertion depth and the diffusion of injected materials to the tissue. The authors also assessed the efficacy of and patient satisfaction with three-microneedle device injections of botulinum toxin type A for wrinkle reduction in patients with glabellar rhytides. The three-microneedle device yielded consistent results in hypodermal diffusion. On India ink diffusion test and ultrasonographic imaging, three-microneedle device injection showed a broad diffusion in horizontal extension, as compared with usual 31-gauge needle injection. The efficiency and satisfaction of the patients receiving botulinum toxin type A with the three-microneedle device were highly rated. Three-microneedle device delivery enables accurate and broad diffusion of injected substances, thus reducing the total dose and/or injection number of drugs. Therapeutic, IV.

  1. Disease-responsive drug delivery: the next generation of smart delivery devices.

    Science.gov (United States)

    Wanakule, Prinda; Roy, Krishnendu

    2012-01-01

    With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.

  2. Design Project on Controlled-Release Drug Delivery Devices: Implementation, Management, and Learning Experiences

    Science.gov (United States)

    Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa

    2010-01-01

    A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…

  3. Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Borenstein

    2012-03-01

    Full Text Available The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene (PTFE membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.

  4. Transdermal power transfer for recharging implanted drug delivery devices via the refill port.

    Science.gov (United States)

    Evans, Allan T; Chiravuri, Srinivas; Gianchandani, Yogesh B

    2010-04-01

    This paper describes a system for transferring power across a transdermal needle into a smart refill port for recharging implantable drug delivery systems. The device uses a modified 26 gauge (0.46 mm outer diameter) Huber needle with multiple conductive elements designed to couple with mechanical springs in the septum of the refill port of a drug delivery device to form an electrical connection that can sustain the current required to recharge a battery during a reservoir refill session. The needle is fabricated from stainless steel coated with Parylene, and the refill port septum is made from micromachined stainless steel contact springs and polydimethylsiloxane. The device properties were characterized with dry and wet ambient conditions. The needle and port pair had an average contact resistance of less than 2 Omega when mated in either environment. Electrical isolation between the system, the liquid in the needle lumen, and surrounding material has been demonstrated. The device was used to recharge a NiMH battery with currents up to 500 mA with less than 15 degrees C of resistive heating. The system was punctured 100 times to provide preliminary information with regard to device longevity, and exhibited about 1 Omega variation in contact resistance. The results suggest that this needle and refill port system can be used in an implant to enable battery recharging. This allows for smaller batteries to be used and ultimately increases the volume efficiency of an implantable drug delivery device.

  5. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  6. Microfluidic device for drug delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  7. Drug delivery across length scales.

    Science.gov (United States)

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  8. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers....... In order to successfully do this, methods for fabricating micro structures in biodegradable polymers need to be developed. The goal of this project has been to develop methods for micro fabrication in biodegradable polymers and to use these methods to produce micro systems for oral drug delivery. This has...

  9. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device.

    Science.gov (United States)

    Dixon, Adam J; Dhanaliwala, Ali H; Chen, Johnny L; Hossack, John A

    2013-07-01

    Focal drug delivery to a vessel wall facilitated by intravascular ultrasound and microbubbles holds promise as a potential therapy for atherosclerosis. Conventional methods of microbubble administration result in rapid clearance from the bloodstream and significant drug loss. To address these limitations, we evaluated whether drug delivery could be achieved with transiently stable microbubbles produced in real time and in close proximity to the therapeutic site. Rat aortic smooth muscle cells were placed in a flow chamber designed to simulate physiological flow conditions. A flow-focusing microfluidic device produced 8 μm diameter monodisperse microbubbles within the flow chamber, and ultrasound was applied to enhance uptake of a surrogate drug (calcein). Acoustic pressures up to 300 kPa and flow rates up to 18 mL/s were investigated. Microbubbles generated by the flow-focusing microfluidic device were stabilized with a polyethylene glycol-40 stearate shell and had either a perfluorobutane (PFB) or nitrogen gas core. The gas core composition affected stability, with PFB and nitrogen microbubbles exhibiting half-lives of 40.7 and 18.2 s, respectively. Calcein uptake was observed at lower acoustic pressures with nitrogen microbubbles (100 kPa) than with PFB microbubbles (200 kPa) (p 3). In addition, delivery was observed at all flow rates, with maximal delivery (>70% of cells) occurring at a flow rate of 9 mL/s. These results demonstrate the potential of transiently stable microbubbles produced in real time and in close proximity to the intended therapeutic site for enhancing localized drug delivery. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Micro-Fluidic Device for Drug Delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  11. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  12. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    Science.gov (United States)

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  13. Drug delivery and formulations.

    Science.gov (United States)

    Breitkreutz, Jörg; Boos, Joachim

    2011-01-01

    Paediatric drug delivery is a major challenge in drug development. Because of the heterogeneous nature of the patient group, ranging from newborns to adolescents, there is a need to use appropriate excipients, drug dosage forms and delivery devices for different age groups. So far, there is a lack of suitable and safe drug formulations for children, especially for the very young and seriously ill patients. The new EU legislation will enforce paediatric clinical trials and drug development. Current advances in paediatric drug delivery include interesting new concepts such as fast-dissolving drug formulations, including orodispersible tablets and oral thin strips (buccal wafers), and multiparticulate dosage forms based on mini-tabletting or pelletization technologies. Parenteral administration is likely to remain the first choice for children in the neonatal period and for emergency cases. Alternative routes of administration include transdermal, pulmonary and nasal drug delivery systems. A few products are already available on the market, but others still need further investigations and clinical proof of concept.

  14. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  15. A Microfluidic Ion Pump for In Vivo Drug Delivery

    KAUST Repository

    Uguz, Ilke

    2017-05-15

    Implantable devices offer an alternative to systemic delivery of drugs for the treatment of neurological disorders. A microfluidic ion pump (µFIP), capable of delivering a drug without the solvent through electrophoresis, is developed. The device is characterized in vitro by delivering γ-amino butyric acid to a target solution, and demonstrates low-voltage operation, high drug-delivery capacity, and high ON/OFF ratio. It is also demonstrated that the device is suitable for cortical delivery in vivo by manipulating the local ion concentration in an animal model and altering neural behavior. These results show that µFIPs represent a significant step forward toward the development of implantable drug-delivery systems.

  16. Biomaterials for drug delivery patches.

    Science.gov (United States)

    Santos, Lúcia F; Correia, Ilídio J; Silva, A Sofia; Mano, João F

    2018-06-15

    The limited efficiency of conventional drugs has been instigated the development of new and more effective drug delivery systems (DDS). Transdermal DDS, are associated with numerous advantages such its painless application and less frequent replacement and greater flexibility of dosing, features that triggered the research and development of such devices. Such systems have been produced using either biopolymer; or synthetic polymers. Although the first ones are safer, biocompatible and present a controlled degradation by human enzymes or water, the second ones are the most currently available in the market due to their greater mechanical resistance and flexibility, and non-degradation over time. This review highlights the most recent advances (mainly in the last five years) of patches aimed for transdermal drug delivery, focusing on the different materials (natural, synthetic and blends) and latest designs for the development of such devices, emphasizing also their combination with drug carriers that enable enhanced drug solubility and a more controlled release of the drug over the time. The benefits and limitations of different patches formulations are considered with reference to their appliance to transdermal drug delivery. Furthermore, a record of the currently available patches on the market is given, featuring their most relevant characteristics. Finally, a list of most recent/ongoing clinical trials regarding the use of patches for skin disorders is detailed and critical insights on the current state of patches for transdermal drug delivery are also provided. Copyright © 2018. Published by Elsevier B.V.

  17. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  18. 76 FR 25696 - Guidance for Industry on Dosage Delivery Devices for Orally Ingested OTC Liquid Drug Products...

    Science.gov (United States)

    2011-05-05

    ... are manufacturing, marketing, or distributing orally ingested over-the-counter (OTC) liquid drug... overdoses that can result from the use of dosage delivery devices with markings that are inconsistent or... because of ongoing concerns about potentially serious accidental drug overdoses that can result from the...

  19. Isotope-labelled urea to test colon drug delivery devices in vivo : principles, calculations and interpretations

    NARCIS (Netherlands)

    Maurer, Marina; Schellekens, Reinout C. A.; Wutzke, Klaus D.; Stellaard, Frans

    2013-01-01

    This paper describes various methodological aspects that were encountered during the development of a system to monitor the in vivo behaviour of a newly developed colon delivery device that enables oral drug treatment of inflammatory bowel diseases. [C-13]urea was chosen as the marker substance.

  20. Advances in buccal drug delivery.

    Science.gov (United States)

    Birudaraj, Raj; Mahalingam, Ravichandran; Li, Xiaoling; Jasti, Bhaskara R

    2005-01-01

    The buccal route offers an attractive alternative for systemic drug delivery of drugs because of better patient compliance, ease of dosage form removal in emergencies, robustness, and good accessibility. Use of buccal mucosa for drug absorption was first attempted by Sobrero in 1847, and since then much research was done to deliver drugs through this route. Today, research is more focused on the development of suitable delivery devices, permeation enhancement, and buccal delivery of drugs that undergo a first-pass effect, such as cardiovascular drugs, analgesics, and peptides. In addition, studies have been conducted on the development of controlled or slow release delivery systems for systemic and local therapy of diseases in the oral cavity. In this review, the anatomy and physiology of buccal mucosa, followed by discussion of recent literature on the buccal permeation enhancement, and pathways of enhancement for various molecules are detailed. In addition, bioadhesion theories from historic perspective and current status are discussed. The various dosage forms on the market and in different stages of development are also reviewed.

  1. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, A.

    2015-09-29

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices\\' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  2. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, Amir; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, Omar; Lin, L.; Khashab, Niveen M.; Kosel, Jü rgen

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  3. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  4. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  5. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Foulds, Ian G.

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime

  6. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    Science.gov (United States)

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  7. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  8. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  9. Porous silicon in drug delivery devices and materials☆

    Science.gov (United States)

    Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.

    2009-01-01

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154

  10. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Microfluidic Ion Pump for In Vivo Drug Delivery

    KAUST Repository

    Uguz, Ilke; Proctor, Christopher M.; Curto, Vincenzo F.; Pappa, Anna-Maria; Donahue, Mary J.; Ferro, Magali; Owens, Ró isí n M.; Khodagholy, Dion; Inal, Sahika; Malliaras, George G.

    2017-01-01

    Implantable devices offer an alternative to systemic delivery of drugs for the treatment of neurological disorders. A microfluidic ion pump (µFIP), capable of delivering a drug without the solvent through electrophoresis, is developed. The device

  12. Microneedle-based drug delivery systems for transdermal route.

    Science.gov (United States)

    Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina

    2014-03-01

    Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.

  13. Advances in drug delivery to the posterior segment.

    Science.gov (United States)

    Pearce, William; Hsu, Jason; Yeh, Steven

    2015-05-01

    Emerging developments and research for drug delivery to the posterior segment offer a promising future for the treatment of vitreoretinal disease. As new technologies enter the market, clinicians should be aware of new indications and ongoing clinical trials. This review summarizes the advantages and shortcomings of the most commonly used drug delivery methods, including vitreous dynamics, physician sustainability and patient preferences. Currently available, intravitreal, corticosteroid-release devices offer surgical and in-office management of retinal vascular disease and posterior uveitis. The suprachoroidal space offers a new anatomic location for the delivery of lower dose medications directly to the target tissue. Implantable drug reservoirs would potentially allow for less frequent intravitreal injections reducing treatment burdens and associated risks. Newer innovations in encapsulated cell technology offer promising results in early clinical trials. Although pars plana intravitreal injection remains the mainstay of therapy for many vitreoretinal diseases, targeted delivery and implantable eluting devices are rapidly demonstrating safety and efficacy. These therapeutic modalities offer promising options for the vitreoretinal therapeutic landscape.

  14. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery.

    Science.gov (United States)

    Maroni, A; Melocchi, A; Parietti, F; Foppoli, A; Zema, L; Gazzaniga, A

    2017-12-28

    In the drug delivery area, versatile therapeutic systems intended to yield customized combinations of drugs, drug doses and release kinetics have drawn increasing attention, especially because of the advantages that personalized pharmaceutical treatments would offer. In this respect, a previously proposed capsular device able to control the release performance based on its design and composition, which could extemporaneously be filled, was improved to include multiple separate compartments so that differing active ingredients or formulations may be conveyed. The compartments, which may differ in thickness and composition, resulted from assembly of two hollow halves through a joint also acting as a partition. The systems were manufactured by fused deposition modeling (FDM) 3D printing, which holds special potential for product personalization, and injection molding (IM) that would enable production on a larger scale. Through combination of compartments having wall thickness of 600 or 1200μm, composed of promptly soluble, swellable/erodible or enteric soluble polymers, devices showing two-pulse release patterns, consistent with the nature of the starting materials, were obtained. Systems fabricated using the two techniques exhibited comparable performance, thus proving the prototyping ability of FDM versus IM. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Swallowable smart pills for local drug delivery: present status and future perspectives.

    Science.gov (United States)

    Goffredo, Rosa; Accoto, Dino; Guglielmelli, Eugenio

    2015-01-01

    Smart pills were originally developed for diagnosis; however, they are increasingly being applied to therapy - more specifically drug delivery. In addition to smart drug delivery systems, current research is also looking into localization systems for reaching the target areas, novel locomotion mechanisms and positioning systems. Focusing on the major application fields of such devices, this article reviews smart pills developed for local drug delivery. The review begins with the analysis of the medical needs and socio-economic benefits associated with the use of such devices and moves onto the discussion of the main implemented technological solutions with special attention given to locomotion systems, drug delivery systems and power supply. Finally, desired technical features of a fully autonomous robotic capsule for local drug delivery are defined and future research trends are highlighted.

  16. PAIN RELIEF MEDIATED BY IMPLANTABLE DRUG-DELIVERY DEVICES

    NARCIS (Netherlands)

    HOEKSTRA, A

    Various totally implantable drug delivery systems from single access ports to micropumps are now available for administration of repeated boluses, and continuous or programmable infusions. In this respect, emphasis is given to a relatively cheap, totally implantable system for self-administering

  17. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microencapsulation: A promising technique for controlled drug delivery.

    Science.gov (United States)

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  19. Use of radiopharmaceuticals in the development of drug delivery systems

    International Nuclear Information System (INIS)

    Frier, M.

    1997-01-01

    Full text. Nuclear medicine imaging techniques have great potential in the study of the behaviour of drug formulations and drug delivery systems in human subjects. No other technique can locate so precisely the site of disintegration of a tablet in the Gl tract, the depth of penetration of a nebulized solution into the lung, or the residence time of a drug on the cornea. By using the gamma camera to image the in vivo distribution of pharmaceutical formulations radio labelled with a suitable gamma emitting radionuclide, images may be used to quantify the biodistribution, release and kinetics of drug formulations and delivery from novel carrier systems and devices. Radionuclide tracer techniques allow correlation between the observed pharmacological effects and the precise site of delivery. The strength of the technique lies in the quantitative nature of radionuclide images. Example will be shown of studies which examine the rate of transit of orally-administered formulations through the GI tract, as well as describing the development of devices for specific targeting of drugs to the colon. Data will also demonstrate the effectiveness of devices such as spacers in pulmonary drug delivery, in both normal volunteers, and in asthmatic subjects. Such studies not only provide data on the nature and characteristics of a product, such as reliability and reproducibility but, may also be used in submission to Regulatory Authorities in product registration dossiers

  20. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Cantwell, Cara T; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P

    2014-01-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  1. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    Science.gov (United States)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  2. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  3. Wet microcontact printing (µCP) for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Ryu, WonHyoung

    2013-01-01

    When micro-reservoir-type drug delivery systems are fabricated, loading solid drugs in drug reservoirs at microscale is often a non-trivial task. This paper presents a simple and effective solution to load a small amount of drug solution at microscale using ‘wet’ microcontact printing (µCP). In this wet µCP, a liquid solution containing drug molecules (methylene blue and tetracycline HCl) dissolved in a carrier solvent was transferred to a target surface (drug reservoir) by contact printing process. In particular, we have investigated the dependence of the quantity and morphology of transferred drug molecules on the stamp size, concentration, printing times, solvent types and surfactant concentration. It was also found that the repetition of printing using a non-volatile solvent such as polyethylene glycol (PEG) as a drug carrier material actually increased the transferred amount of drug molecules in proportion to the printing times based on asymmetric liquid bridge formation. Utilizing this wet µCP, drug delivery devices containing different quantity of drugs in micro-reservoirs were fabricated and their performance as controlled drug delivery devices was demonstrated. (paper)

  4. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    International Nuclear Information System (INIS)

    Brewer, E.; Coleman, J.; Lowman, A.

    2011-01-01

    Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few smart technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  5. Microneedles for drug and vaccine delivery

    Science.gov (United States)

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  6. Spatiotemporal Quantification of Local Drug Delivery Using MRI

    Directory of Open Access Journals (Sweden)

    Morgan B. Giers

    2013-01-01

    Full Text Available Controlled release formulations for local, in vivo drug delivery are of growing interest to device manufacturers, research scientists, and clinicians; however, most research characterizing controlled release formulations occurs in vitro because the spatial and temporal distribution of drug delivery is difficult to measure in vivo. In this work, in vivo magnetic resonance imaging (MRI of local drug delivery was performed to visualize and quantify the time resolved distribution of MRI contrast agents. Three-dimensional maps (generated from -weighted images with varied were processed using noise-reducing filtering. A segmented region of contrast, from a thresholded image, was converted to concentration maps using the equation , where and are the precontrast and postcontrast map values, respectively. In this technique, a uniform estimated value for was used. Error estimations were performed for each step. The practical usefulness of this method was assessed using comparisons between devices located in different locations both with and without contrast. The method using a uniform , requiring no registration of pre- and postcontrast image volumes, was compared to a method using either affine or deformation registrations.

  7. Loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Marizza, Paolo

    The pharmaceutical research is facing several obstacles in the development of drug products for the oral delivery. The main problem deals with the intrinsic chemical nature of the new drug candidates, which are often poorly soluble and barely absorbed in the gastro-intestinal tract. Furthermore......, they are usually degraded before they are absorbed. These combined factors considerably reduce the bioavailability of many active ingredients. Several strategies have been developed to overcome these challenges. One of them are microfabricated drug delivery devices. Microreservoir based-systems are characterized...... of UV photolithography was developed. The fabrication of polymer patterns was optimized and loading with both small hydrophobic drugs and proteins was demonstrated. Finally, structural properties of hydrogels were elucidated by rheology and NMR with the perspective of controlling the drug release...

  8. Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane

    KAUST Repository

    So, Hongyun; Seo, Young Ho; Pisano, Albert P.

    2014-01-01

    We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical

  9. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  10. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Erik Brewer

    2011-01-01

    Full Text Available Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few “smart” technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  11. Low energy nanoemulsification to design veterinary controlled drug delivery devices

    Directory of Open Access Journals (Sweden)

    Thierry F Vandamme

    2010-10-01

    Full Text Available Thierry F Vandamme, Nicolas Anton, University of Strasbourg, Faculty of Pharmacy, Illkirch Cedex, France; UMR CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, Illkirch Cedex, France,  This work is selected as Controlled Release Society Outstanding Veterinary Paper Award 2010Abstract: The unique properties of nanomaterials related to structural stability and quantum-scale reactive properties open up a world of possibilities that could be exploited to design and to target drug delivery or create truly microscale biological sensors for veterinary applications. We developed cost-saving and solvent-free nanoemulsions. Formulated with a low-energy method, these nanoemulsions can find application in the delivery of controlled amounts of drugs into the beverage of breeding animals (such as poultry, cattle, pigs or be used for the controlled release of injectable poorly water-soluble drugs.Keywords: nanoemulsion, nanomedicine, low-energy emulsification, veterinary, ketoprofen, sulfamethazine

  12. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Patient-controlled analgesia: therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery.

    Science.gov (United States)

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; Du Toit, Lisa C; Modi, Girish; Luttge, Regina; Pillay, Viness

    2014-02-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially with the confines of needle phobias and associated pain related to traditional injections, and the existing limitations associated with oral drug delivery. Highlighted within is the possibility of further developing transdermal drug delivery for chronic pain treatment using iontophoresis-based microneedle array patches. A concerted effort was made to review critically all available therapies designed for the treatment of chronic pain. The drug delivery systems developed for this purpose and nondrug routes are elaborated on, in a systematic manner. Recent developments and future goals in transdermal delivery as a means to overcome the individual limitations of the aforementioned delivery routes are represented as well. The approval of patch-like devices that contain both the microelectronic-processing mechanism and the active medicament in a small portable device is still awaited by the pharmaceutical industry. This anticipated platform may provide transdermal electro-activated and electro-modulated drug delivery systems a feasible attempt in chronic pain treatment. Iontophoresis has been proven an effective mode used to administer ionized drugs in physiotherapeutic, diagnostic, and dermatological applications and may be an encouraging probability for the development of devices and aids in the treatment of chronic pain. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  15. Comparison of drug delivery with autoinjector versus manual prefilled syringe and between three different autoinjector devices administered in pig thigh

    Directory of Open Access Journals (Sweden)

    Hill RL

    2016-08-01

    Full Text Available Robert L Hill,1,* John G Wilmot,1,* Beth A Belluscio,1 Kevin Cleary,2 David Lindisch,3 Robin Tucker,4 Emmanuel Wilson,2 Rajesh B Shukla11Meridian Medical Technologies Inc., Columbia, MD, 2Children’s National Medical Center, 3Washington DC VA Medical Center, 4Georgetown University Medical Center, Washington, DC, USA *These authors have contributed equally to this work Abstract: Parenteral routes of drug administration are often selected to optimize actual dose of drug delivered, assure high bioavailability, bypass first-pass metabolism or harsh gastrointestinal environments, as well as maximize the speed of onset. Intramuscular (IM delivery can be preferred to intravenous delivery when initiating intravenous access is difficult or impossible. Drugs can be injected intramuscularly using a syringe or an automated delivery device (autoinjector. Investigation into the IM delivery dynamics of these methods may guide further improvements in the performance of injection technologies. Two porcine model studies were conducted to compare differences in dispersion of injectate volume for different methods of IM drug administration. The first study compared the differences in the degree of dispersion and uptake of injectate following the use of a manual syringe and an autoinjector. The second study compared the spatial spread of the injected formulation, or dispersion volume, and uptake of injectate following the use of five different autoinjectors (EpiPen® [0.3 mL], EpiPen® Jr [0.3 mL], Twinject® [0.15 mL, 0.3 mL], and Anapen® 300 [0.3 mL] with varying needle length, needle gauge, and force applied to the plunger. In the first study, the autoinjector provided higher peak volumes of injectate, indicating a greater degree of dispersion, compared with manual syringe delivery. In the second study, EpiPen autoinjectors resulted in larger dispersion volumes and higher initial dispersion ratios, which decreased rapidly over time, suggesting a greater

  16. Buccoadhesive drug delivery systems--extensive review on recent patents.

    Science.gov (United States)

    Pathan, Shadab A; Iqbal, Zeenat; Sahani, Jasjeet K; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    Peroral administration of drugs, although most preferred by both clinicians and patients has several disadvantages such as hepatic first pass metabolism and enzymatic degradation within the GI tract, that prohibit oral administration of certain classes of drugs especially peptides and proteins. Consequently, other absorptive mucosae are considered as potential sites for administration of these drugs. Among the various transmucosal routes studied the buccal mucosa offers several advantages for controlled drug delivery for extended period of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract is avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form, design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is thus a promising area for continued research with the aim of systemic and local delivery of orally inefficient drugs as well as feasible and attractive alternative for non-invasive delivery of potent protein and peptide drug molecules. Extensive review pertaining specifically to the patents relating to buccal drug delivery is currently available. However, many patents e.g. US patents 6, 585,997; US20030059376A1 etc. have been mentioned in few articles. It is the objective of this article to extensively review buccal drug delivery by discussing the recent patents available. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems.

  17. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  18. Deformable microparticles with multiple functions for drug delivery and device testing

    Science.gov (United States)

    Thula, Taili T.

    Since the HIV epidemic of the 1990s, researchers have attempted to develop a red blood cell analog. Even though some of these substitutes are now in Phase III of clinical trials, their use is limited by side effects and short half-life in the human body. As a result, there is still a need for an effective erythrocyte analog with minimum immunogenic and side effects, so that it can be used for multiple applications. Finding new approaches to develop more efficient blood substitutes will not only bring valuable advances in the clinical approach, but also in the area of in vitro testing of medical devices. We examined the feasibility of creating a deformable multi-functional, biodegradable, biocompatible particle for applications in drug delivery and device testing. As a preliminary evaluation, we synthesized different types of microcapsules using natural and synthetic polymers, various cross-linking agents, and diverse manufacturing techniques. After fully characterizing of each system, we determined the most promising red blood cell analog in terms of deformability, stability and toxicity. We also examined the encapsulation and release of bovine serum albumin (BSA) within these deformable particles. After removal of cross-linkers, zinc- and copper-alginate microparticles surrounded by multiple polyelectrolyte layers of chitosan oligosaccharide and alginate were deformable and remained stable under physiological pressures applied by the micropipette technique. In addition, multiple coatings decreased toxicity of heavy-metal crosslinked particles. BSA encapsulation and release from chitosan-alginate microspheres were contingent on the crosslinker and number of polyelectrolyte coatings, respectively. Further rheological studies are needed to determine how closely these particles simulate the behavior of erythrocytes. Also, studies on the encapsulation and release of different proteins, including hemoglobin, are needed to establish the desired controlled release of

  19. Nanostructures for protein drug delivery.

    Science.gov (United States)

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  20. Drug Delivery for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-11-01

    enhancement in dorsal root ganglion ( DRG ) cells with the released drug. In the first year of this 18 month project we have completed device fabrication of...the nerve guide conduit and drug delivery reservoir. We were able to release NGF at a concentration that enhancing DRG nerve growth in vitro. We next...KrF excimer laser system (Optec) and with diameters larger than 100μm using the VLS3.60 CO2 system (Universal Laser Systems )) (Figure 3). The laser

  1. Characterizing Thermal Augmentation of Convection-Enhanced Drug Delivery with the Fiberoptic Microneedle Device

    Directory of Open Access Journals (Sweden)

    R. Lyle Hood

    2015-09-01

    Full Text Available Convection-enhanced delivery (CED is a promising technique leveraging pressure-driven flow to increase penetration of infused drugs into interstitial spaces. We have developed a fiberoptic microneedle device for inducing local sub-lethal hyperthermia to further improve CED drug distribution volumes, and this study seeks to quantitatively characterize this approach in agarose tissue phantoms. Infusions of dye were conducted in 0.6% (w/w agarose tissue phantoms with isothermal conditions at 15 °C, 20 °C, 25 °C, and 30 °C. Infusion metrics were quantified using a custom shadowgraphy setup and image-processing algorithm. These data were used to build an empirical predictive temporal model of distribution volume as a function of phantom temperature. A second set of proof-of-concept experiments was conducted to evaluate a novel fiberoptic device capable of generating local photothermal heating during fluid infusion. The isothermal infusions showed a positive correlation between temperature and distribution volume, with the volume at 30 °C showing a 7-fold increase at 100 min over the 15 °C isothermal case. Infusions during photothermal heating (1064 nm at 500 mW showed a similar effect with a 3.5-fold increase at 4 h over the control (0 mW. These results and analyses serve to provide insight into and characterization of heat-mediated enhancement of volumetric dispersal.

  2. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    Science.gov (United States)

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  3. The cigar as a drug delivery device: youth use of blunts.

    Science.gov (United States)

    Soldz, Stephen; Huyser, Dana Joy; Dorsey, Elizabeth

    2003-10-01

    Blunts are hollowed-out cigars used to smoke marijuana (and perhaps other substances) in the United States. We investigated rates of blunt use; whether cigar use reported in surveys may actually be blunt use; the relationship of blunt to cigar use; characteristics of blunt users; brands of cigars used to make blunts; and drugs added to blunts. A school-based survey of youth, the Cigar Use Reasons Evaluation (CURE). Eleven schools across Massachusetts. A total of 5016 students in grades 7-12. CURE items assessing blunt, cigar and cigarette use, brands used to make blunts, drugs added to blunts and demographics were used. Life-time blunt use was reported by 20.0% of the sample, with use greater among high school (25.6%) than middle school (11.4%) students, and among males (23.7%) than females (16.6%). Self-reported cigar use rates were not influenced strongly by blunt use being misreported as cigar use. In a multivariate model, blunt use was associated with male gender, higher grade in school, lower GPA, truancy, lower school attachment, not living in a two-parent family, being of 'other' race/ethnicity and current use of both cigarettes and cigars. 'Phillies' was the most popular brand of cigar for making blunts, used by 59% of users. 'Garcia y Vega' (18.0%) was the second most popular. Twenty-eight per cent of blunt users had added drugs other than marijuana to blunts. The use of blunts as a drug delivery device is a serious problem. Efforts to address it will require the cooperation of the tobacco control and substance abuse prevention systems.

  4. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Emerging Frontiers in Drug Delivery.

    Science.gov (United States)

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact.

  6. Spatiotemporal Quantification of Local Drug Delivery Using MRI

    Science.gov (United States)

    Giers, Morgan B.; McLaren, Alex C.; Plasencia, Jonathan D.; McLemore, Ryan; Caplan, Michael R.

    2013-01-01

    Controlled release formulations for local, in vivo drug delivery are of growing interest to device manufacturers, research scientists, and clinicians; however, most research characterizing controlled release formulations occurs in vitro because the spatial and temporal distribution of drug delivery is difficult to measure in vivo. In this work, in vivo magnetic resonance imaging (MRI) of local drug delivery was performed to visualize and quantify the time resolved distribution of MRI contrast agents. Three-dimensional T 1 maps (generated from T 1-weighted images with varied T R) were processed using noise-reducing filtering. A segmented region of contrast, from a thresholded image, was converted to concentration maps using the equation 1/T 1 = 1/T 1,0 + R 1 C, where T 1,0 and T 1 are the precontrast and postcontrast T 1 map values, respectively. In this technique, a uniform estimated value for T 1,0 was used. Error estimations were performed for each step. The practical usefulness of this method was assessed using comparisons between devices located in different locations both with and without contrast. The method using a uniform T 1,0, requiring no registration of pre- and postcontrast image volumes, was compared to a method using either affine or deformation registrations. PMID:23710248

  7. MRI in ocular drug delivery

    OpenAIRE

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery de...

  8. A Hydrogel/Carbon-Nanotube Needle-Free Device for Electrostimulated Skin Drug Delivery.

    Science.gov (United States)

    Guillet, Jean-François; Flahaut, Emmanuel; Golzio, Muriel

    2017-10-06

    The permeability of skin allows passive diffusion across the epidermis to reach blood vessels but this is possible only for small molecules such as nicotine. In order to achieve transdermal delivery of large molecules such as insulin or plasmid DNA, permeability of the skin and mainly the permeability of the stratum corneum skin layer has to be increased. Moreover, alternative routes that avoid the use of needles will improve the quality of life of patients. A method known as electropermeabilisation has been shown to increase skin permeability. Herein, we report the fabrication of an innovative hydrogel made of a nanocomposite material. This nanocomposite device aims to permeabilise the skin and deliver drug molecules at the same time. It includes a biocompatible polymer matrix (hydrogel) and double-walled carbon nanotubes (DWCNTs) in order to bring electrical conductivity and improve mechanical properties. Carbon nanotubes and especially DWCNTs are ideal candidates, combining high electrical conductivity with a very high specific surface area together with a good biocompatibility when included into a material. The preparation and characterization of the nanocomposite hydrogel as well as first results of electrostimulated transdermal delivery using an ex vivo mouse skin model are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying

    2017-05-08

    “On demand” implantable drug delivery systems can provide optimized treatments, due to their ability to provide targeted, flexible and precise dose release. However, two important issues that need to be carefully considered in a mature device include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration of a resonance-based wireless power transfer system, a constant voltage control circuit and an electrolytic pump. Upon the activation of the wireless power transfer system, the electrolytic actuator is remotely powered by a constant voltage regardless of movements of the device within an effective range of translation and rotation. This in turn contributes to a predictable dose release rate and greater flexibility in the positioning of external powering source. We have conducted proof-of-concept drug delivery studies using the liquid drug in reservoir approach and the solid drug in reservoir approach, respectively. Our experimental results demonstrate that the range of flow rate is mainly determined by the voltage controlled with a Zener diode and the resistance of the implantable device. The latter can be adjusted by connecting different resistors, providing control over the flow rate to meet different clinical needs. The flow rate can be maintained at a constant level within the effective movement range. When using a solid drug substitute with a low solubility, solvent blue 38, the dose release can be kept at 2.36μg/cycle within the effective movement range by using an input voltage of 10Vpp and a load of 1.5 kΩ, which indicates the feasibility and controllability of our system without any complicated closed-loop sensor.

  10. High resolution visualization and analysis of nasal spray drug delivery.

    Science.gov (United States)

    Inthavong, Kiao; Fung, Man Chiu; Tong, Xuwen; Yang, William; Tu, Jiyuan

    2014-08-01

    Effective nasal drug delivery of new-generation systemic drugs requires efficient devices that can achieve targeted drug delivery. It has been established that droplet size, spray plume, and droplet velocity are major contributors to drug deposition. Continual effort is needed to better understand and characterise the physical mechanisms underpinning droplet formation from nasal spray devices. High speed laser photography combined with an in-house designed automated actuation system, and a highly precise traversing unit, measurements and images magnified in small field-of-view regions within the spray was performed. The qualitative results showed a swirling liquid sheet at the near-nozzle region as the liquid is discharged before ligaments of fluid are separated off the liquid sheet. Droplets are formed and continue to deform as they travel downstream at velocities of up to 20 m/s. Increase in actuation pressure produces more rapid atomization and discharge time where finer droplets are produced. The results suggest that device designs should consider reducing droplet inertia to penetrate the nasal valve region, but find a way to deposit in the main nasal passage and not escape through to the lungs.

  11. A laser based reusable microjet injector for transdermal drug delivery

    Science.gov (United States)

    Han, Tae-hee; Yoh, Jack J.

    2010-05-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of microscale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 μm and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  12. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.

    Science.gov (United States)

    Long, Jingjunjiao; Gholizadeh, Hamideh; Lu, Jun; Bunt, Craig; Seyfoddin, Ali

    2017-01-01

    Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  14. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery

    Directory of Open Access Journals (Sweden)

    Sreeja C Nair

    2012-01-01

    Full Text Available Periodontal pockets act as a natural reservoir filled with gingival crevicular fluid for the controlled release delivery of antimicrobials directly. This article reflects the present status of nonsurgical controlled local intrapocket delivery of antimicrobials in the treatment of periodontitis. These sites have specialty in terms of anatomy, permeability, and their ability to retain a delivery system for a desired length of time. A number of antimicrobial products and the composition of the delivery systems, its use, clinical results, and their release are summarized. The goal in using an intrapocket device for the delivery of an antimicrobial agent is the achievement and maintenance of therapeutic drug concentration for the desired period of time. Novel controlled drug delivery system are capable of improving patient compliance as well as therapeutic efficacy with precise control of the rate by which a particular drug dosage is released from a delivery system without the need for frequent administration. These are considered superior drug delivery system because of low cost, greater stability, non-toxicity, biocompatibility, non-immunogenicity, and are biodegradable in nature. This review also focus on the importance and ideal features of periodontal pockets as a drug delivery platform for designing a suitable dosage form along with its potential advantage and limitations. The microbes in the periodontal pocket could destroy periodontal tissues, and a complete knowledge of these as well as an ideal treatment strategy could be helpful in treating this disease.

  15. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  16. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents.

    Science.gov (United States)

    Serra, Laura; Doménech, Josep; Peppas, Nicholas A

    2009-03-01

    The goal of this critical review is to provide a critical analysis of the chain dynamics responsible for the action of micro- and nanoparticles of mucoadhesive biomaterials. The objective of using bioadhesive controlled drug delivery devices is to prolong their residence at a specific site of delivery, thus enhancing the drug absorption process. These mucoadhesive devices can protect the drug during the absorption process in addition to protecting it on its route to the delivery site. The major emphasis of recent research on mucoadhesive biomaterials has been on the use of adhesion promoters, which would enhance the adhesion between synthetic polymers and mucus. The use of adhesion promoters such as linear or tethered polymer chains is a natural result of the diffusional characteristics of adhesion. Mucoadhesion depends largely on the structure of the synthetic polymer gels used in controlled release applications.

  17. Medical Devices; Obstetrical and Gynecological Devices; Classification of the Pressure Wedge for the Reduction of Cesarean Delivery. Final order.

    Science.gov (United States)

    2017-12-28

    The Food and Drug Administration (FDA or we) is classifying the pressure wedge for the reduction of cesarean delivery into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the pressure wedge for the reduction of cesarean delivery's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  18. Control, communication and monitoring of intravaginal drug delivery in dairy cows.

    Science.gov (United States)

    Cross, Peter S; Künnemeyer, Rainer; Bunt, Craig R; Carnegie, Dale A; Rathbone, Michael J

    2004-09-10

    We present the design of an electronically controlled drug delivery system. The intravaginally located device is a low-invasive platform that can measure and react inside the cow vagina while providing external control and monitoring ability. The electronics manufactured from off the shelf components occupies 16 mL of a Theratron syringe. A microcontroller reads and logs sensor data and controls a gascell. The generated gas pressure propels the syringe piston and releases the formulation. A two way radio link allows communication between other devices or a base station. Proof of principle experiments confirm variable-rate, arbitrary profile drug delivery qualified by internal sensors. A total volume of 30 mL was dispensed over a 7-day-period with a volume error of +/- 1 mL or +/- 7% for larger volumes. Delivery was controlled or overridden via the wireless link, and proximity to other devices was detected and recorded. The results suggest that temperature and activity sensing or social grouping determined via proximity can be used to detect oestrus and trigger appropriate responses.

  19. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  20. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Science.gov (United States)

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  1. The impact of nanobiotechnology on the development of new drug delivery systems

    NARCIS (Netherlands)

    Kayser, Oliver; Lemke, A.; Hernandez-Trejo, N.

    2005-01-01

    Nanotechnology, or systems/devices manufactured at the molecular level, is a multidisciplinary scientific field undergoing explosive development. A part of this field is the development of nanoscaled drug delivery devices. Nanoparticles have been developed as an important strategy to deliver

  2. 3D printing of a wearable personalized oral delivery device: A first-in-human study

    Science.gov (United States)

    Brambilla, Davide

    2018-01-01

    Despite the burgeoning interest in three-dimensional (3D) printing for the manufacture of customizable oral dosage formulations, a U.S. Food and Drug Administration–approved tablet notwithstanding, the full potential of 3D printing in pharmaceutical sciences has not been realized. In particular, 3D-printed drug-eluting devices offer the possibility for personalization in terms of shape, size, and architecture, but their clinical applications have remained relatively unexplored. We used 3D printing to manufacture a tailored oral drug delivery device with customizable design and tunable release rates in the form of a mouthguard and, subsequently, evaluated the performance of this system in the native setting in a first-in-human study. Our proof-of-concept work demonstrates the immense potential of 3D printing as a platform for the development and translation of next-generation drug delivery devices for personalized therapy. PMID:29750201

  3. Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective.

    Science.gov (United States)

    Landis, Margaret S; Boyden, Tracey; Pegg, Simon

    2012-02-01

    Delivery of drug therapeutics across the blood-brain barrier is a challenging task for pharmaceutical scientists. Nasal-to-CNS drug delivery has shown promising results in preclinical efficacy models and investigatory human clinical trials. The further development of this technology with respect to the establishment of valid, predictable preclinical species models, translatable pharmacokinetic-pharmacodynamic relationships and definition of toxicology impact will help attract additional pharmaceutical investment in this drug-delivery approach. Further discoveries in nasal nanotechnology, targeted delivery devices and diagnostic olfactory imaging will serve to fuel the advancements in this area of drug delivery.

  4. A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan–alginate microgels

    Directory of Open Access Journals (Sweden)

    Zhou GC

    2013-02-01

    Full Text Available Guichen Zhou,1,2,* Ying Lu,1,* He Zhang,1,* Yan Chen,1 Yuan Yu,1 Jing Gao,1 Duxin Sun,3 Guoqing Zhang,2 Hao Zou,1 Yanqiang Zhong1 1Department of Pharmaceutical Science, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Pharmacy, East Hospital of Hepatobiliary Surgery, Shanghai, People's Republic of China; 3Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA*These authors contributed equally to this workPurpose: The aim of this report was to introduce a novel “core-membrane” microgel drug-delivery device for spontaneously pulsed release without any external trigger.Methods: The microgel core was prepared with alginate and chitosan. The semipermeable membrane outside the microgel was made of polyelectrolytes including polycation poly(allylamine hydrochloride and sodium polystyrene sulfonate. The drug release of this novel system was governed by the swelling pressure of the core and the rupture of the outer membrane.Results: The size of the core-membrane microgel drug-delivery device was 452.90 ± 2.71 µm. The surface charge depended on the layer-by-layer coating of polyelectrolytes, with zeta potential of 38.6 ± 1.4 mV. The confocal microscope exhibited the layer-by-layer outer membrane and inner core. The in vitro release profile showed that the content release remained low during the first 2.67 hours. After this lag time, the cumulative release increased to 80% in the next 0.95 hours, which suggested a pulsed drug release. The in vivo drug release in mice showed that the outer membrane was ruptured at approximately 3 to 4 hours, as drug was explosively released.Conclusion: These data suggest that the encapsulated substance in the core-membrane microgel delivery device can achieve a massive drug release after outer membrane rupture. This device was an effective system for pulsed drug delivery.Keywords: polyelectrolyte, chitosan–alginate, microgels, layer-by-layer, pulsed

  5. Microfabrication for Drug Delivery

    Science.gov (United States)

    Koch, Brendan; Rubino, Ilaria; Quan, Fu-Shi; Yoo, Bongyoung; Choi, Hyo-Jick

    2016-01-01

    This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems. PMID:28773770

  6. Nanotopographical Cues for Modulating Fibrosis and Drug Delivery

    Science.gov (United States)

    Walsh, Laura Aiko Michelle

    Nanotopography in the cellular microenvironment provides biological cues and therefore has potential to be a useful tool for directing cellular behavior. Fibrotic encapsulation of implanted devices and materials can wall off and eventually cause functional failure of the implant. Drug delivery requires penetrating the epithelium, which encapsulates the body and provides a barrier to separate the body from its external environment. Both of these challenges could be elegantly surmounted using nanotopography, which would harness innate cellular responses to topographic cues to elicit desired cellular behavior. To this end, we fabricated high and low aspect ratio nanotopographically patterned thin films. Using scanning electron microscopy, real time polymerase chain reaction, immunofluorescence microscopy, in vitro drug delivery assays, transmission electron microscopy, inhibitor studies, and rabbit and rat in vivo drug delivery studies, we investigated cellular response to our nanotopographic thin films. We determined that high aspect ratio topography altered fibroblast morphology and decreased proliferation, possibly due to decreased protein adsorption. The fibroblasts also down regulated expression of mRNA of key factors associated with fibrosis, such as collagens 1 and 3. Low aspect ratio nanotopography increased drug delivery in vitro across an intestinal epithelial model monolayer by increasing paracellular permeability and remodeling the tight junction. This increase in drug delivery required integrin engagement and MLCK activity, and is consistent with the increased focal adhesion formation. Tight junction remodeling was also observed in a multilayered keratinocyte model, showing this mechanism can be generalized to multiple epithelium types. By facilitating direct contact of nanotopography with the viable epidermis using microneedles to pierce the stratum corneum, we are able to transdermally deliver a 150 kiloDalton, IgG-based therapeutic in vivo..

  7. Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane

    KAUST Repository

    So, Hongyun

    2014-07-01

    We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical deflection and consecutive touchdown motion to the bottom of the dome-shaped drug reservoir in response to a magnetic field, thus achieving controlled discharge of the drug. Maximum drug release with 18 ± 1.5 μg per actuation was achieved under a 500 mT magnetic flux density, and various controlled drug doses were investigated with the combination of the number of accumulated actuations and the strength of the magnetic field.

  8. Electrospun materials for affinity-based engineering and drug delivery

    International Nuclear Information System (INIS)

    Sill, T J; Von Recum, H A

    2015-01-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can 'hold' therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface. (paper)

  9. A study on the gas-solid particle flows in a needle-free drug delivery device

    Science.gov (United States)

    Rasel, Md. Alim Iftekhar; Taher, Md. Abu; Kim, H. D.

    2013-08-01

    Different systems have been used over the years to deliver drug particles to the human skin for pharmaceutical effect. Research has been done to improve the performance and flexibility of these systems. In recent years a unique system called the transdermal drug delivery has been developed. Transdermal drug delivery opened a new door in the field of drug delivery as it is more flexible and offers better performance than the conventional systems. The principle of this system is to accelerate drug particles with a high speed gas flow. Among different transdermal drug delivery systems we will concentrate on the contour shock tube system in this paper. A contoured shock tube is consists of a rupture chamber, a shock tube and a supersonic nozzle section. The drug particles are retained between a set of bursting diaphragm. When the diaphragm is ruptured at a certain pressure, a high speed unsteady flow is initiated through the shock tube which accelerates the particles. Computational fluid dynamics is used to simulate and analyze the flow field. The DPM (discrete phase method) is used to model the particle flow. As an unsteady flow is initiated though the shock tube the drag correlation proposed by Igra et al is used other than the standard drag correlation. The particle velocities at different sections including the nozzle exit are investigated under different operating conditions. Static pressure histories in different sections in the shock tube are investigated to analyze the flow field. The important aspects of the gas and particle dynamics in the shock tube are discussed and analyzed in details.

  10. Microspheres and Nanotechnology for Drug Delivery.

    Science.gov (United States)

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  11. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  12. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  13. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  14. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Mauri, Emanuele; Chincarini, Giulia M.F.; Rigamonti, Riccardo; Magagnin, Luca; Sacchetti, Alessandro, E-mail: alessandro.sacchetti@polimi.it; Rossi, Filippo, E-mail: filippo.rossi@polimi.it

    2017-03-01

    The synthesis of nanogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy in controlled drug delivery. However, with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small hydrophilic molecules through polymeric network pores. For these reasons research community is pointing toward the use of click strategies to reduce release rates of the linked drugs to the polymer chains. Here we propose an alternative method that considers the electrostatic interactions between polymeric chains and drugs to tune the release kinetics from nanogel network. The main advantage of these systems lies in the fact that the carried drugs are not modified and no chemical reactions take place during their loading and release. In this work we synthesized PEG-PEI based nanogels with different protonation degrees and the release kinetics with charged and uncharged drug mimetics (sodium fluorescein, SF, and rhodamine B, RhB) were studied. Moreover, also the effect of counterion used to induce protonation was taken into account in order to build a tunable drug delivery system able to provide multiple release rates with the same device. - Highlights: • The design of nanogels as drug delivery systems based on electrostatic interaction among drug and polymers is proposed. • Nanogels can be synthetized tuning their positive charge density, according to the protonation of PEI at different pH. • No biorthogonal chemistry strategies are applied to the polymers or drugs. • Drug release is efficiently modulated by charge density of PEI chains. • The effect of counterion on nanogel synthesis is investigated and allows controlling the drug release.

  15. New screening methodology for selection of polymeric materials for transdermal drug delivery devices

    Science.gov (United States)

    Falcone, Roberto P.

    As medical advances extend the human lifespan, the level of chronic illnesses will increase and thus straining the needs of the health care system that, as a result, governments will need to balance expenses without upsetting national budgets. Therefore, the selection of a precise and affordable drug delivery technology is seen as the most practical solution for governments, health care professionals, and consumers. Transdermal drug delivery patches (TDDP) are one of the best economical technologies that are favored by pharmaceutical companies and physicians alike because it offers fewer complications when compared to other delivery technologies. TDDP provides increased efficiency, safety and convenience for the patient. The TDDP segment within the US and Global drug delivery markets were valued at 5.6 and 12.7 billion respectively in 2009. TDDP is forecasted to reach $31.5 billion in 2015. The present TDDP technology involves the fabrication of a patch that consists of a drug embedded in a polymeric matrix. The diffusion coefficient is determined from the slope of the cumulative drug release versus time. It is a trial and error method that is time and labor consuming. With all the advantages that TDDPs can offer, the methodology used to achieve the so-called optimum design has resulted in several incidents where the safety and design have been put to question in recent times (e.g. Fentanyl). A more logical screening methodology is needed. This work shows the use of a modified Duda Zielinsky equation (DZE). Experimental release curves from commercial are evaluated. The experimental and theoretical Diffusion Coefficient values are found to be within the limits specified in the patent literature. One interesting finding is that the accuracy of the DZE is closer to experimental values when the type of Molecular Shape and Radius are used. This work shows that the modified DZE could be used as an excellent screening tool to determine the optimal polymeric matrices that

  16. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Science.gov (United States)

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  17. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery

    DEFF Research Database (Denmark)

    Hollander, Jenny; Genina, Natalja; Jukarainen, Harri

    2016-01-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used...... prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between...

  18. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying

    2015-07-22

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve\\'s closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  19. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying; Zaher, Amir; Yassine, Omar; Kosel, Jü rgen; Foulds, Ian G.

    2015-01-01

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  20. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  1. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  2. Advanced drug delivery approaches against periodontitis.

    Science.gov (United States)

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.

  3. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  4. Polycaprolactone thin films for retinal tissue engineering and drug delivery

    Science.gov (United States)

    Steedman, Mark Rory

    This dissertation focuses on the development of polycaprolactone thin films for retinal tissue engineering and drug delivery. We combined these thin films with techniques such as micro and nanofabrication to develop treatments for age-related macular degeneration (AMD), a disease that leads to the death of rod and cone photoreceptors. Current treatments are only able to slow or limit the progression of the disease, and photoreceptors cannot be regenerated or replaced by the body once lost. The first experiments presented focus on a potential treatment for AMD after photoreceptor death has occurred. We developed a polymer thin film scaffold technology to deliver retinal progenitor cells (RPCs) to the affected area of the eye. Earlier research showed that RPCs destined to become photoreceptors are capable of incorporating into a degenerated retina. In our experiments, we showed that RPC attachment to a micro-welled polycaprolactone (PCL) thin film surface enhanced the differentiation of these cells toward a photoreceptor fate. We then used our PCL thin films to develop a drug delivery device capable of sustained therapeutic release over a multi-month period that would maintain an effective concentration of the drug in the eye and eliminate the need for repeated intraocular injections. We first investigated the biocompatibility of PCL in the rabbit eye. We injected PCL thin films into the anterior chamber or vitreous cavity of rabbit eyes and monitored the animals for up to 6 months. We found that PCL thin films were well tolerated in the rabbit eye, showing no signs of chronic inflammation due to the implant. We then developed a multilayered thin film device containing a microporous membrane. We loaded these devices with lyophilized proteins and quantified drug elution for 10 weeks, finding that both bovine serum albumin and immunoglobulin G elute from these devices with zero order release kinetics. These experiments demonstrate that PCL is an extremely useful

  5. Nuclear track microfilters in controlled drug delivery against chronic skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Gopalani, D. E-mail: deflab@sancharnet.in; Jodha, A.S.; Saravanan, S.; Kumar, S

    2003-06-01

    Nuclear track microfilters have been developed for transdermal therapeutic system. The transdermal therapeutic method reduces the toxicity of the drug as compared to other conventional methods. For this purpose a slow drug release system containing the nuclear track microfilter was developed. This device was applied to the patients suffering from psoriasis and cellulites diseases. The delivery of the drug to the patient was confirmed through high performance liquid chromatography. The preliminary results have shown that patients are responding to drugs with minimum toxicity.

  6. Nuclear track microfilters in controlled drug delivery against chronic skin disease

    International Nuclear Information System (INIS)

    Gopalani, D.; Jodha, A.S.; Saravanan, S.; Kumar, S.

    2003-01-01

    Nuclear track microfilters have been developed for transdermal therapeutic system. The transdermal therapeutic method reduces the toxicity of the drug as compared to other conventional methods. For this purpose a slow drug release system containing the nuclear track microfilter was developed. This device was applied to the patients suffering from psoriasis and cellulites diseases. The delivery of the drug to the patient was confirmed through high performance liquid chromatography. The preliminary results have shown that patients are responding to drugs with minimum toxicity

  7. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  8. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    Science.gov (United States)

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  10. Pectin-based colon-specific drug delivery

    OpenAIRE

    Shailendra Shukla; Deepak Jain; Kavita Verma; Shiddarth Verma

    2011-01-01

    Colon-specific drug delivery have a great importance in the delivery of drugs for the treatment of local colonic, as well as systemic diseases like Crohn′s disease, ulcerative colitis, colorectal cancer, amoebiasis, asthma, arthritis and inflammation which can be achieved by targeted delivery of drug to colon. Specific systemic absorption in the colon gave interesting possibilities for the delivery of protein and peptides. It contains relatively less proteolytic enzyme activities in the colon...

  11. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels.

    Science.gov (United States)

    Mauri, Emanuele; Chincarini, Giulia M F; Rigamonti, Riccardo; Magagnin, Luca; Sacchetti, Alessandro; Rossi, Filippo

    2017-03-01

    The synthesis of nanogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy in controlled drug delivery. However, with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small hydrophilic molecules through polymeric network pores. For these reasons research community is pointing toward the use of click strategies to reduce release rates of the linked drugs to the polymer chains. Here we propose an alternative method that considers the electrostatic interactions between polymeric chains and drugs to tune the release kinetics from nanogel network. The main advantage of these systems lies in the fact that the carried drugs are not modified and no chemical reactions take place during their loading and release. In this work we synthesized PEG-PEI based nanogels with different protonation degrees and the release kinetics with charged and uncharged drug mimetics (sodium fluorescein, SF, and rhodamine B, RhB) were studied. Moreover, also the effect of counterion used to induce protonation was taken into account in order to build a tunable drug delivery system able to provide multiple release rates with the same device. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies.

    Science.gov (United States)

    Chertok, Beata; Webber, Matthew J; Succi, Marc D; Langer, Robert

    2013-10-07

    Early science fiction envisioned the future of drug delivery as targeted micrometer-scale submarines and "cyborg" body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery: the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the predefined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics.

  13. Bioresponsive matrices in drug delivery

    Directory of Open Access Journals (Sweden)

    Ye George JC

    2010-11-01

    Full Text Available Abstract For years, the field of drug delivery has focused on (1 controlling the release of a therapeutic and (2 targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.

  14. Smart Polymers in Nasal Drug Delivery.

    Science.gov (United States)

    Chonkar, Ankita; Nayak, Usha; Udupa, N

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones.

  15. Ultrasound-guided drug delivery in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K. [Dept. of Radiology, Stanford University School of Medicine, Stanford (United States)

    2017-07-15

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  16. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  18. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  19. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  20. Ultrasound-guided drug delivery in cancer

    Directory of Open Access Journals (Sweden)

    Sayan Mullick Chowdhury

    2017-07-01

    Full Text Available Recent advancements in ultrasound and microbubble (USMB mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  1. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  2. Transdermal drug delivery: approaches and significance

    OpenAIRE

    Murthy, SATHYANARAYANA

    2012-01-01

    S Narasimha MurthyDepartment of Pharmaceutics, The University of Mississippi, USATransdermal drug delivery systems deliver drugs through the skin as an alternative to oral, intravascular, subcutaneous, and transmucosal routes. Potential advantages of transdermal delivery include, but are not limited to, elimination of first-pass metabolism, steady delivery/blood levels, better patient compliance, reduced systemic drug interactions, possible dose intervention, avoidance of medically assisted d...

  3. Nanoscale drug delivery for targeted chemotherapy.

    Science.gov (United States)

    Xin, Yong; Huang, Qian; Tang, Jian-Qin; Hou, Xiao-Yang; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2016-08-28

    Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    Science.gov (United States)

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  5. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review.

    Science.gov (United States)

    Pandit, Vinay; Kumar, Ajay; Ashawat, Mahendra S; Verma, Chander P; Kumar, Pravin

    2017-01-01

    Pulsatile drug delivery system (PDDS) shows potential significance in the field of drug delivery to release the maximum amount of drug at a definite site and at specific time. PDDS are mainly time controlled delivery devices having a definite pause period for drug release, which is not affected by acidity, alkalinity, motility and enzymes present in the gastrointestinal tract. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. The review article, discuss the general concepts, marketed formulations and patents or any other recent advancement in pulsatile release technology. It also highlights on diseases requiring therapy by pulsatile release, various researches on herbal pulsatile formulations and quality control aspects of PDDS. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Application of a three-microneedle device for the delivery of local anesthetics

    Directory of Open Access Journals (Sweden)

    Ishikawa K

    2015-04-01

    Full Text Available Kayoko Ishikawa,1 Hidekazu Fukamizu,1 Tetsuya Takiguchi,1 Yusuke Ohta,1 Yoshiki Tokura2 1Department of Plastic and Reconstructive Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan; 2Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan Purpose: We investigated the effectiveness of a newly developed device for the delivery of local anesthetics in the treatment of axillary osmidrosis and hyperhidrosis. We developed a device with three fine, stainless steel needles fabricated with a bevel angle facing outside (“three-microneedle device” [TMD] to release a drug broadly and homogeneously into tissue in the horizontal plane. Use of this device could reduce the risk of complications when transcutaneous injections are undertaken.Patients and methods: Sixteen Japanese patients were enrolled. The mean volume of lidocaine hydrochloride per unit area needed to elicit anesthesia when using a TMD was compared with that the volume required when using a conventional 27-gauge needle. The visual analog scale (VAS score of needlestick pain and injection-associated pain was also compared.Results: The mean volume of lidocaine hydrochloride per unit area to elicit anesthesia using the TMD was significantly lower than that the volume required when using the conventional 27-gauge needle. The VAS score of needlestick pain for the TMD was significantly lower than that the VAS score for the 27-gauge needle.Conclusion: These data suggest that the TMD could be useful for the delivery of local anesthetics in terms of clinical efficacy and avoidance of adverse effects. Keywords: three-microneedle device, transcutaneous drug delivery, local anesthesia, lidocaine, pain

  8. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  9. Nanomedicine Drug Delivery across Mucous Membranes

    Science.gov (United States)

    Lancina, Michael George, III

    Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In truth, drug biodistribuition is highly non-uniform and dependent on a large number of factors. The development of advanced drug delivery systems to control biodistribution can produce significant advances in clinical treatments without the need to discover new therapeutic compounds. This work focuses on a number of nanostructured materials designed to improve drug delivery by direct and efficient transfer of drugs across one of the body's external mucous membranes. Chapter 1 outlines the central concept that unites these studies: nanomaterials and cationic particles can be used to delivery therapeutic compounds across mucous membranes. Special attention is given to dendritic nanoparticles. In chapter 2, uses for dendrimers in ocular drug delivery are presented. The studies are divided into two main groups: topical and injectable formulations. Chapter 3 does not involve dendrimers but instead another cationic particle used in transmembrane drug delivery, chitosan. Next, a dendrimer based nanofiber mat was used to deliver anti-glaucoma drugs in chapter 4. A three week in vivo efficacy trial showed dendrimer nanofiber mats outperformed traditional eye drops in terms of intra-ocular pressure decrease in a normotensive rat model. Finally, we have developed a new dendrimer based anti-glaucoma drug in chapter 5. Collectively, these studies demonstrate some of the potential applications for nanotechnology to improve transmembrane drug delivery. These particles and fibers are able to readily adhere and penetrate across epithelial cell lays. Utilizing these materials to improve drug absorption through these portals has the potential to improve the

  10. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  11. Faraday instability-based micro droplet ejection for inhalation drug delivery

    Science.gov (United States)

    Tsai, C.S.; Mao, R.W.; Lin, S.K.; Zhu, Y.; Tsai, S.C.

    2014-01-01

    We report here the technology and the underlying science of a new device for inhalation (pulmonary) drug delivery which is capable of fulfilling needs unmet by current commercial devices. The core of the new device is a centimeter-size clog-free silicon-based ultrasonic nozzle with multiple Fourier horns in resonance at megahertz (MHz) frequency. The dramatic resonance effect among the multiple horns and high growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range (2–5 µm) at low electrical drive power (<1.0 W). The small nozzle requiring low drive power has enabled realization of a pocket-size (8.6 × 5.6 × 1.5 cm3) ultrasonic nebulizer. A variety of common pulmonary drugs have been nebulized using the pocket-size unit with desirable aerosol sizes and output rate. These results clearly provide proof-of-principle for the new device and confirm its potential for commercialization. PMID:25045720

  12. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Organoclays for drug delivery Systems

    OpenAIRE

    Canovas Creus, Alba

    2008-01-01

    Modified clays can be used as carriers of drugs due to their suitable properties and structure in order to achieve improvements in drug delivery. The study of this thesis starts with an introduction to mineral clays and its classification, properties and characterization, then deepens into modified clays (properties, comparison with mineral clays, applications and procedure of modification). Another chapter is focused in drug delivery: definition, its difficulties nowadays and the different w...

  14. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  15. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    Science.gov (United States)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  16. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  17. Dendrimers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Abhay Singh Chauhan

    2018-04-01

    Full Text Available Dendrimers have come a long way in the last 25 years since their inception. Originally created as a wonder molecule of chemistry, dendrimer is now in the fourth class of polymers. Dr. Donald Tomalia first published his seminal work on Poly(amidoamine (PAMAM dendrimers in 1985. Application of dendrimers as a drug delivery system started in late 1990s. Dendrimers for drug delivery are employed using two approaches: (i formulation and (ii nanoconstruct. In the formulation approach, drugs are physically entrapped in a dendrimer using non-covalent interactions, whereas drugs are covalently coupled on dendrimers in the nanoconstruct approach. We have demonstrated the utility of PAMAM dendrimers for enhancing solubility, stability and oral bioavailability of various drugs. Drug entrapment and drug release from dendrimers can be controlled by modifying dendrimer surfaces and generations. PAMAM dendrimers are also shown to increase transdermal permeation and specific drug targeting. Dendrimer platforms can be engineered to attach targeting ligands and imaging molecules to create a nanodevice. Dendrimer nanotechnology, due to its multifunctional ability, has the potential to create next generation nanodevices.

  18. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  19. Transscleral sustained vasohibin-1 delivery by a novel device suppressed experimentally-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Hideyuki Onami

    Full Text Available We established a sustained vasohibin-1 (a 42-kDa protein, delivery device by a novel method using photopolymerization of a mixture of polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and collagen microparticles. We evaluated its effects in a model of rat laser-induced choroidal neovascularization (CNV using a transscleral approach. We used variable concentrations of vasohibin-1 in the devices, and used an enzyme-linked immunosorbent assay and Western blotting to measure the released vasohibin-1 (0.31 nM/day when using the 10 μM vasohibin-1 delivery device [10VDD]. The released vasohibin-1 showed suppression activity comparable to native effects when evaluated using endothelial tube formation. We also used pelletized vasohibin-1 and fluorescein isothiocyanate-labeled 40 kDa dextran as controls. Strong fluorescein staining was observed on the sclera when the device was used for drug delivery, whereas pellet use produced strong staining in the conjunctiva and surrounding tissue, but not on the sclera. Vasohibin-1 was found in the sclera, choroid, retinal pigment epithelium (RPE, and neural retina after device implantation. Stronger immunoreactivity at the RPE and ganglion cell layers was observed than in other retinal regions. Significantly lower fluorescein angiography (FA scores and smaller CNV areas in the flat mounts of RPE-choroid-sclera were observed for the 10VDD, VDD (1 μM vasohibin-1 delivery device, and vasohibin-1 intravitreal direct injection (0.24 μM groups when compared to the pellet, non-vasohibin-1 delivery device, and intravitreal vehicle injection groups. Choroidal neovascularization can be treated with transscleral sustained protein delivery using our novel device. We offer a safer sustained protein release for treatment of retinal disease using the transscleral approach.

  20. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  1. A Computational Procedure for Assessing the Dynamic Performance of Diffusion-Controlled Transdermal Delivery Devices

    Directory of Open Access Journals (Sweden)

    Laurent Simon

    2011-08-01

    Full Text Available Abstract: The dynamic performances of two different controlled-release systems were analyzed. In a reservoir-type drug-delivery patch, the transdermal flux is influenced by the properties of the membrane. A constant thermodynamic drug activity is preserved in the donor compartment. Monolithic matrices are among the most inexpensive systems used to direct drug delivery. In these structures, the active pharmaceutical ingredients are encapsulated within a polymeric material. Despite the popularity of these two devices, to tailor the properties of the polymer and additives to specific transient behaviors can be challenging and time-consuming. The heuristic approaches often considered to select the vehicle formulation provide limited insight into key permeation mechanisms making it difficult to predict the device performance. In this contribution, a method to calculate the flux response time in a system consisting of a reservoir and a polymeric membrane was proposed and confirmed. Nearly 8.60 h passed before the metoprolol delivery rate reached ninety-eight percent of its final value. An expression was derived for the time it took to transport the active pharmaceutical ingredient out of the polymer. Ninety-eight percent of alpha-tocopherol acetate was released in 461.4 h following application to the skin. The effective time constant can be computed to help develop optimum design strategies.

  2. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  3. STRATEGIES AND PROSPECTS OF NASAL DRUG DELIVERY SYSTEMS

    OpenAIRE

    Gannu Praveen Kumar

    2012-01-01

    The recent advancement of nasal drug delivery systems has increased enormously and is gaining significant importance. Intranasal therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. The non-invasive delivery of nasal drug delivery systems made to exploit for the development of successful treatment. The advantages, disadvantages, mechanism of action and application of nasal drug delivery system in local delivery, systematic delivery, nasal vaccines and CNS...

  4. Design optimization of a novel pMDI actuator for systemic drug delivery.

    Science.gov (United States)

    Kakade, Prashant P; Versteeg, Henk K; Hargrave, Graham K; Genova, Perry; Williams Iii, Robert C; Deaton, Daniel

    2007-01-01

    Pressurized metered dose inhalers (pMDIs) are the most widely prescribed and economical respiratory drug delivery systems. Conventional pMDI actuators-those based on "two-orifice-and-sump" designs-produce an aerosol with a reasonable respirable fraction, but with high aerosol velocity. The latter is responsible for high oropharyngeal deposition, and consequently low drug delivery efficiency. Kos' pMDI technology is based on a proprietary vortex nozzle actuator (VNA), an innovative actuator configuration that seeks to reduce aerosol plume velocity, thereby promoting deep lung deposition. Using VNA development as a case study, this paper presents a systematic design optimization process to improve the actuator performance through use of advanced optical characterization tools. The optimization effort mainly relied on laser-based optical diagnostics to provide an improved understanding of the fundamentals of aerosol formation and interplay of various geometrical factors. The performance of the optimized VNA design thus evolved was characterized using phase Doppler anemometry and cascade impaction. The aerosol velocities for both standard and optimized VNA designs were found to be comparable, with both notably less than conventional actuators. The optimized VNA design also significantly reduces drug deposition in the actuator as well as USP throat adapter, which in turn, leads to a significantly higher fine particle fraction than the standard design (78 +/- 3% vs. 63 +/- 2% on an ex valve basis). This improved drug delivery efficiency makes VNA technology a practical proposition as a systemic drug delivery platform. Thus, this paper demonstrates how advanced optical diagnostic and characterization tools can be used in the development of high efficiency aerosol drug delivery devices.

  5. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.

    Science.gov (United States)

    Agrawal, Mukta; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Chougule, Mahavir Bhupal; Shoyele, Sunday A; Alexander, Amit

    2018-05-23

    According to the Alzheimer Association Report (2017), Alzheimer's disease (AD) is the 6th primary cause of death in the USA, which affects nearly 5.5 million people. In the year 2017 itself, the cost of AD treatment in the USA has been reported to rise to $259 billion. This statistic shows the severity of the disease in the USA which is very much similar across the globe. On the other hand, the treatment remains limited to a few conventional oral medications (approved by FDA). These are mainly acting superficially from mild to the moderate AD. The therapeutic efficacy of the drug is not only affected by its reduced concentration in the brain owing to the existence of blood-brain-barrier (BBB) but also due to its low brain permeability. In this context, the intranasal (IN) route of drug administration has emerged as an alternative route over the systemic (oral and parenteral) drug delivery to the brain. The delivery of the drug via an IN route offers various advantages over systemic drug delivery system, as it directly delivers the drug into the brain via olfactory route. Presence of drug in the olfactory bulb, in turn, increases the drug bioavailability in the brain and reduces the drug degradation as well as wastage of the drug through` systemic clearance. However, there is also some limitation associated with IN like poor drug permeation through the nasal mucosa and mucociliary clearance. The delivery system various through novel strategies (nano drug carrier system, colloidal carriers, mucoadhesive devices, controlled delivery system, pro-drug, etc.) are adapted to overcome the above-stated limitations. Although, after all, such successful research claims, very few of the nose-to-brain drug delivery of anti-AD drugs have gained market approval due to lack of sufficient clinical evidence. Onzetra Xsail® is one such marketed preparations approved for IN delivery used for the treatment of a brain disorder; migraine. In the field of patents also, no work is found

  6. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  7. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  8. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  9. The challenges and future of oral drug delivery: An interview with David Brayden.

    Science.gov (United States)

    Brayden, David J

    2016-12-01

    David Brayden speaks to Hannah Makin, Commissioning Editor: David Brayden is a Full Professor (Advanced Drug Delivery) at the School of Veterinary Medicine, University College Dublin (UCD) and also a Fellow of the UCD Conway Institute. Following a PhD in Pharmacology at the University of Cambridge, UK (1989), and a postdoctoral research fellowship at Stanford University, CA, USA, he set up Elan Biotechnology Research's in vitro pharmacology laboratory in Dublin (1991). At Elan, he became a senior scientist and project manager of several of Elan's joint-venture drug delivery research collaborations with US biotech companies. In 2001, he joined UCD as a lecturer in veterinary pharmacology and was appointed Associate Professor in 2006 and Full Professor in 2014. He was a Director of the Science Foundation Ireland Research Cluster (The Irish Drug Delivery Research Network) from 2007 to 2013, is a Deputy Coordinator of an FP7 Consortium on oral peptides in nanoparticles ('TRANS-INT', 2012-2017), and is a Co-Principal Investigator in 'CURAM', Science Foundation Ireland's new Centre for Medical Devices (2014-2020 [ 1 ]). He was made a Fellow of the Controlled Release Society in 2012. He is the author or co-author of >200 research publications and patents. D Brayden serves on the Editorial Advisory Boards of Drug Discovery Today, European Journal of Pharmaceutical Sciences, Advanced Drug Delivery Reviews and the Journal of Veterinary Pharmacology and Therapeutics, and is an Associate Editor of Therapeutic Delivery. D Brayden works as an independent consultant for drug delivery companies.

  10. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  11. Microchips and controlled-release drug reservoirs.

    Science.gov (United States)

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  12. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  13. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  14. Applicator for in-vitro ultrasound-activated targeted drug delivery

    Science.gov (United States)

    Gerold, B.; Gourevich, D.; Volovick, A.; Xu, D.; Arditti, F.; Prentice, P.; Cochran, S.; Gnaim, J.; Medan, Y.; Wang, L.; Melzer, A.

    2012-10-01

    Reducing toxicity and improving uptake of cancer drugs in tumors are important goals of targeted drug delivery (TDD). Ultrasonic drug release from various encapsulants has been a focus of many research groups. However, a single standard ultrasonic device, viable for use by biologists, is not currently present in the market. The device reported here is designed to allow investigation of the impact of ultrasound on cellular uptake and cell viability in-vitro. In it, single-element transducers with different operating frequencies are mounted below a standard 96-well plate. The plate is moved above the transducers, such that each line of wells can be sonicated at a different frequency. To assess the device, 96-well plates were seeded with cells and sonicated using different ultrasonic parameters, with and without doxorubicin. Cell viability was measured by colorimetric MTT assay and the uptake of doxorubicin by cells was also determined. The device proved to be highly viable in preliminary tests; it demonstrated that change in ultrasonic parameters produces different effect on cells. For example, increase in uptake of doxorubicin was demonstrated following ultrasound application. The growing interest in ultrasound-activated TDD emphasizes the need for standardization of the ultrasound device and the one reported here may offer some indications of how that may be achieved. It is planned to further improve the prototype by increasing the number of ultrasonic frequencies and degrees of freedom for each transducer.

  15. Computational Amphiphilic Materials for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naresh eThota

    2015-10-01

    Full Text Available Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.

  16. Drug delivery with microsecond laser pulses into gelatin

    Science.gov (United States)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  17. From micro- to nanostructured implantable device for local anesthetic delivery

    Science.gov (United States)

    Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola

    2016-01-01

    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies

  18. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  19. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  20. Multiplexed and Switchable Release of Distinct Fluids from Microneedle Platforms via Conducting Polymer Nanoactuators for Potential Drug Delivery

    Science.gov (United States)

    Valdés-Ramírez, Gabriela; Windmiller, Joshua R.; Claussen, Jonathan C.; Martinez, Alexandra G.; Kuralay, Filiz; Zhou, Ming; Zhou, Nandi; Polsky, Ronen; Miller, Philip R.; Narayan, Roger; Wang, Joseph

    2013-01-01

    We report on the development of a microneedle-based multiplexed drug delivery actuator that enables the controlled delivery of multiple therapeutic agents. Two individually-addressable channels on a single microneedle array, each paired with its own reservoir and conducting polymer nanoactuator, are used to deliver various permutations of two unique chemical species. Upon application of suitable redox potentials to the selected actuator, the conducting polymer is able to undergo reversible volume changes, thereby serving to release a model chemical agent in a controlled fashion through the corresponding microneedle channels. Time-lapse videos offer direct visualization and characterization of the membrane switching capability and, along with calibration investigations, confirm the ability of the device to alternate the delivery of multiple reagents from individual microneedles of the array with higher precision and temporal resolution than conventional drug delivery actuators. Analytical modeling offers prediction of the volumetric flow rate through a single microneedle and accordingly can be used to assist in the design of subsequent microneedle arrays. The robust solid-state design and lack of mechanical components circumvent reliability issues that challenge fragile conventional microelectromechanical drug delivery devices. This proof-of-concept study demonstrates the potential of the drug delivery actuator system to aid in the rapid administration of multiple therapeutic agents and indicates the potential to counteract diverse biomedical conditions. PMID:24174709

  1. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  2. Laser plasma jet driven microparticles for DNA/drug delivery.

    Directory of Open Access Journals (Sweden)

    Viren Menezes

    Full Text Available This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications.

  3. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  4. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems.

    Science.gov (United States)

    Ueda, H; Hacker, M C; Haesslein, A; Jo, S; Ammon, D M; Borazjani, R N; Kunzler, J F; Salamone, J C; Mikos, A G

    2007-12-01

    This study sought to develop an injectable formulation for long-term ocular delivery of fluocinolone acetonide (FA) by dissolving the anti-inflammatory drug and the biodegradable polymer poly(propylene fumarate) (PPF) in the biocompatible, water-miscible, organic solvent N-methyl-2-pyrrolidone (NMP). Upon injection of the solution into an aqueous environment, a FA-loaded PPF matrix is precipitated in situ through the diffusion/extraction of NMP into surrounding aqueous fluids. Fabrication of the matrices and in vitro release studies were performed in phosphate buffered saline at 37 degrees C. Drug loadings up to 5% were achieved. High performance liquid chromatography was employed to determine the released amount of FA. The effects of drug loading, PPF content of the injectable formulation, and additional photo-crosslinking of the matrix surface were investigated. Overall, FA release was sustained in vitro over up to 400 days. After an initial burst release of 22 to 68% of initial FA loading, controlled drug release driven by diffusion and bulk erosion was observed. Drug release rates in a therapeutic range were demonstrated. Release kinetics were found to be dependent on drug loading, formulation PPF content, and extent of surface crosslinking. The results suggest that injectable, in situ formed PPF matrices are promising candidates for the formulation of long-term, controlled delivery devices for intraocular drug delivery. Copyright 2007 Wiley Periodicals, Inc.

  5. Fractional CO(2) laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Sakamoto, Fernanda H; Farinelli, William A

    2010-01-01

    Ablative fractional resurfacing (AFR) creates vertical channels that might assist the delivery of topically applied drugs into skin. The purpose of this study was to evaluate drug delivery by CO(2) laser AFR using methyl 5-aminolevulinate (MAL), a porphyrin precursor, as a test drug....

  6. SMART POLYMERS: INNOVATIONS IN NOVEL DRUG DELIVERY

    OpenAIRE

    Apoorva Mahajan; Geeta Aggarwal

    2011-01-01

    Smart polymers are attracting the researchers for development of novel drug delivery systems. Importance of smart polymers is rising day by day as these polymers undergo large reversible, physical or chemical changes in response to small changes in the environmental conditions such as pH, temperature, dual- stimuli, light and phase transition. Smart polymers are representing promising means for targeted drug delivery, enhanced drug delivery, gene therapy, actuator stimuli and protein folders....

  7. Design of dendrimer-based drug delivery nanodevices with enhanced therapeutic efficacies

    Science.gov (United States)

    Kannan, Rangaramanujam

    2007-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, `peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. They have significant potential compared to liposomes and nanoparticles, because of the reduced macrophage update, increased cellular transport, and the ability to modulate the local environment through functional groups. We are developing nanodevices based on dendritic systems for drug delivery, that contain a high drug payload, ligands, and imaging agents, resulting in `smart' drug delivery devices that can target, deliver, and signal. In collaboration with the Children's Hospital of Michigan, Karmanos Cancer Institute, and College of Pharmacy, we are testing the in vitro and in vivo response of these nanodevices, by adapting the chemistry for specific clinical applications such as asthma and cancer. These materials are characterized by UV/Vis spectroscopy, flow cytometry, fluorescence/confocal microscopy, and appropriate animal models. Our results suggest that: (1) We can prepare drug-dendrimer conjugates with drug payloads of greater than 50%, for a variety of drugs; (2) The dendritic polymers are capable of transporting and delivering drugs into cells faster than free drugs, with superior therapeutic efficiency. This can be modulated by the surface functionality of the dendrimer; (3) For chemotherapy drugs, the conjugates are a factor of 6-20 times more effective even in drug-resistant cell lines; (4) For corticosteroidal drugs, the dendritic polymers provide higher drug residence times in the lung, allowing for passive targeting. The ability of the drug-dendrimer-ligand conjugates to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  8. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  9. Nanocarriers in ocular drug delivery: an update review.

    Science.gov (United States)

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani Rai; Vyas, S P

    2009-01-01

    Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.

  10. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    Science.gov (United States)

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  12. Drug delivery approaches for breast cancer

    Directory of Open Access Journals (Sweden)

    Singh SK

    2017-08-01

    Full Text Available Santosh Kumar Singh,1 Shriti Singh,2 James W Lillard Jr,1 Rajesh Singh1 1Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA; 2Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India Abstract: Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach. Keywords: breast cancer, nanoparticles, drug delivery systems

  13. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    International Nuclear Information System (INIS)

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Ani, C.J.; Odusanya, O.S.; Oni, Y.; Anuku, N.; Malatesta, K.; Soboyejo, W.O.

    2014-01-01

    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10 −12 m 2 /s and 4.8 × 10 −6 m 2 /s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug

  15. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    Energy Technology Data Exchange (ETDEWEB)

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Ani, C.J. [Department of Theoretical Physics, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Odusanya, O.S. [Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Federal Capital Territory (Nigeria); Oni, Y. [Department of Chemistry, Bronx Community College, New York, NY (United States); Anuku, N. [Department of Chemistry, Bronx Community College, New York, NY (United States); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Malatesta, K. [Department of Chemistry, Bronx Community College, New York, NY (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering 1 Olden Street, Princeton, NJ 08544 (United States)

    2014-09-01

    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10{sup −12} m{sup 2}/s and 4.8 × 10{sup −6} m{sup 2}/s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug.

  16. Photoacoustic microscopy imaging for microneedle drug delivery

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  17. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  18. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-01-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery

  19. 75 FR 18219 - Drug and Medical Device Forum on Food and Drug Administration Drug and Device Requirements and...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0142] Drug and Medical Device Forum on Food and Drug Administration Drug and Device Requirements and Supplier Controls; Public Educational Forum AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public...

  20. Polymer nanogels: a versatile nanoscopic drug delivery platform

    Science.gov (United States)

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  1. A Bone Graft Substitutes Hydroxyapatite Coated Gentamycin (Bonigent) As Drug Delivery System

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Fauziah Othman; Asmah Rahmat; Mohd Reusmaazran Yusof; Shaaban Kasim; Narimah Abu Baka; Nasani Nasrul

    2014-01-01

    Porous hydroxyapatite coated with antibiotic gentamycin for drug delivery system is namely Bonigent. In this product, antibiotic (gentamycin) is coated into the scaffolds HA porous and Would then be released slowly into the bone tissue upon implantation, this way would increase drug penetration, thus avoiding systemic infection, preventing the formation of biofilm and improved healing. When a foreign material (implants or scaffolds of bone graft substitutes) is introduced into the body, there would be normally formation of biofilm that can lead to systemic infection and cause device failure. Surgeon will use antibiotic such as gentamycin to avoid these effects. The purpose of this project is to investigate the feasibility of fabricating a drug delivery system (DDS) that serves dual functions, to combating biofilms and to enhance bone in growths. We also successfully producing a scaffold HA bone graft substitutes incorporated with antibiotic gentamycin to combating bio-film and prevent the failure medical device implant for healthy and human nation. Bone graft substitutes into porous scaffolds suitable for drug delivery; loading the scaffolds with gentamycin; and study release rate in vivo were studied. Porous bone grafts substitutes are coated with antibiotic gentamycin by immerse technique. In order to limit biofilm formation, biomaterials loaded with suitable antibiotics can be used as a preventative measure. The biomaterials hydroxyapatite (HA) is an osteoconductive space filler and is produced locally by Malaysian Nuclear Agency. Porous HA and HA/ TCP has the potential to be used as synthetic bone graft materials because it is bioactive and biocompatible with bone tissues. Development of a product as bone graft substitute (BGS) with special ability of delivering drug (gentamycin) to bone tissue for better and more effective healing process. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy Analysis (SEM) and

  2. Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle

    Science.gov (United States)

    Karimi, Mahdi; Solati, Navid; Amiri, Mohammad; Mirshekari, Hamed; Mohamed, Elmira; Taheri, Mahdiar; Hashemkhani, Mahshid; Saeidi, Ahad; Estiar, Mehrdad Asghari; Kiani, Parnian; Ghasemi, Amir; Basri, Seyed Masoud Moosavi; Aref, Amir R

    2015-01-01

    Introduction It is 23 years since carbon allotrope known as carbon nanotubes (CNT) was discovered by Iijima, who described them as “rolled graphite sheets inserted into each other”. Since then, CNTs have been studied in nanoelectronic devices. However, CNTs also possess the versatility to act as drug- and gene-delivery vehicles. Areas covered This review covers the synthesis, purification and functionalization of CNTs. Arc discharge, laser ablation and chemical vapor deposition are the principle synthesis methods. Non-covalent functionalization relies on attachment of biomolecules by coating the CNT with surfactants, synthetic polymers and biopolymers. Covalent functionalization often involves the initial introduction of carboxylic acids or amine groups, diazonium addition, 1,3-dipolar cycloaddition or reductive alkylation. The aim is to produce functional groups to attach the active cargo. Expert opinion In this review, the feasibility of CNT being used as a drug-delivery vehicle is explored. The molecular composition of CNT is extremely hydrophobic and highly aggregation-prone. Therefore, most of the efforts towards drug delivery has centered on chemical functionalization, which is usually divided in two categories; non-covalent and covalent. The biomedical applications of CNT are growing apace, and new drug-delivery technologies play a major role in these efforts. PMID:25601356

  3. Nanotechnology and Drug Delivery Part 2: Nanostructures for Drug ...

    African Journals Online (AJOL)

    Some challenges associated with the technology as it relates to drug effectiveness, toxicity, stability, pharmacokinetics and drug regulatory control are discussed in this review. Clearly, nanotechnology is a welcome development that is set to transform drug delivery and drug supply chain management, if optimally developed ...

  4. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

    Science.gov (United States)

    Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  5. A review on target drug delivery: magnetic microspheres

    OpenAIRE

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action. A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional ra...

  6. A novel drug delivery of 5-fluorouracil device based on TiO{sub 2}/ZnS nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça Faria, Henrique Antonio, E-mail: henrique.fisica@ifsc.usp.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil); Nanomedicine and Nanotoxicology Laboratory, São Carlos Institute of Physics, University of São Paulo. Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos, SP CEP: 13566-590 (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil)

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO{sub 2}) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO{sub 2} has typically been within ultraviolet spectrum. In this study, the surface modification of TiO{sub 2} nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO{sub 2} nanotubes used in this work were obtained by sol–gel template synthesis. The ZnS quantum dots were deposited onto TiO{sub 2} nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO{sub 2}/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO{sub 2} nanotubes exhibited a high emission at 380 nm (3.26 eV), whereas TiO{sub 2}/ZnS exhibited an emission at 410 nm (3.02 eV). The TiO{sub 2}/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells—CHO) suggesting that TiO{sub 2}/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO{sub 2}/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO{sub 2}/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. - Highlights: • TiO{sub 2}/ZnS nanotubes showed a redshift in fluorescence spectrum. • Cytotoxicity against mammalian cells revealed biocompatibility of the nanotubes. • TiO{sub 2}/ZnS proved an efficient delivery system for anti-tumor 5-fluorouracil.

  7. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  8. Development of a gastroretentive pulsatile drug delivery platform.

    Science.gov (United States)

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  9. In Vitro Evaluation of a Device for Intra-Pulmonary Aerosol Generation and Delivery

    Science.gov (United States)

    Syedain, Zeeshan H.; Naqwi, Amir A.; Dolovich, Myrna; Somani, Arif

    2015-01-01

    For infants born with respiratory distress syndrome (RDS), liquid bolus delivery of surfactant administered through an endotracheal tube is common practice. While this method is generally effective, complications such as transient hypoxia, hypercapnia, and altered cerebral blood flow may occur. Aerosolized surfactant therapy has been explored as an alternative. Unfortunately, past efforts have led to disappointing results as aerosols were generated outside the lungs with significant pharyngeal deposition and minimal intrapulmonary instillation. A novel aerosol generator (Microjet™) is evaluated herein for intrapulmonary aerosol generation within an endotracheal tube and tested with Curosurf and Infasurf surfactants. Compared with other aerosol delivery devices, this process utilizes low air flow (range 0.01-0.2 L/min) that is ideal for limiting potential barotrauma to the premature newborn lung. The mass mean diameter (MMD) of the particles for both tested surfactants was less than 4 μm, which is ideal for both uniform and distal lung delivery. As an indicator of phospholipid function, surfactant surface tension was measured before and after aerosol formation; with no significant difference. Moreover, this device has an outside diameter of <1mm, which permits insertion into an endotracheal tube (of even 2.0 mm). In the premature infant where intravenous access is either technically challenging or difficult, aerosol drug delivery may provide an alternative route in patient resuscitation, stabilization and care. Other potential applications of this type of device include the delivery of nutrients, antibiotics, and analgesics via the pulmonary route. PMID:26884641

  10. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  11. A Medical Delivery Device

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a medical delivery device comprising at least two membrane electrode assembly units each of which comprises three layers: an upper and a lower electrode and a selective ionic conductive membrane provided there-between. At least one of the three layers are shared...

  12. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Role of Nanodiamonds in Drug Delivery and Stem Cell Therapy.

    Science.gov (United States)

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Jafri, Mohammad Alam; Rasool, Mahmood; Ahmad, Waseem; Kashif Zaidi, Syed

    2016-09-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

  14. Challenges to Value-Enhancing Innovation in Health Care Delivery: Commonalities and Contrasts with Innovation in Drugs and Devices.

    Science.gov (United States)

    Garber, Steven; Gates, Susan M; Blume-Kohout, Margaret E; Burgdorf, James R; Wu, Helen

    2012-01-01

    Limiting the growth of health care costs while improving population health is perhaps the most important and difficult challenge facing U.S. health policymakers. The role of innovation in advancing these social goals is controversial, with many seeing innovation as a major cause of cost growth and many others viewing innovation as crucial for improving the quality of care and health outcomes. The authors argue that mitigating the tension between improving health and controlling costs requires more-nuanced perspectives on innovation. More specifically, they argue that policymakers should carefully distinguish between innovative activities that are worth their social costs and activities that are not worth their social costs and try to encourage the former and discourage the latter. The article considers innovation in drugs, devices, and methods of delivering health care, with particular attention to delivery.

  15. Lessons from innovation in drug-device combination products.

    Science.gov (United States)

    Couto, Daniela S; Perez-Breva, Luis; Saraiva, Pedro; Cooney, Charles L

    2012-01-01

    Drug-device combination products introduced a new dynamic on medical product development, regulatory approval, and corporate interaction that provide valuable lessons for the development of new generations of combination products. This paper examines the case studies of drug-eluting stents and transdermal patches to facilitate a detailed understanding of the challenges and opportunities introduced by combination products when compared to previous generations of traditional medical or drug delivery devices. Our analysis indicates that the largest barrier to introduce a new kind of combination products is the determination of the regulatory center that is to oversee its approval. The first product of a new class of combination products offers a learning opportunity for the regulator and the sponsor. Once that first product is approved, the leading regulatory center is determined, and the uncertainty about the entire class of combination products is drastically reduced. The sponsor pioneering a new class of combination products assumes a central role in reducing this uncertainty by advising the decision on the primary function of the combination product. Our analysis also suggests that this decision influences the nature (pharmaceutical, biotechnology, or medical devices) of the companies that will lead the introduction of these products into the market, and guide the structure of corporate interaction thereon. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Influence of microemulsions on cutaneous drug delivery

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2002-01-01

    In attempt to increase cutaneous drug delivery, microemulsion vehicles have been more and more frequently employed over recent years. Microemulsion formulations have been shown to be superior for both transdermal and dermal delivery of particularly lipophilic compounds, but also hydrophilic...... compounds appear to benefit from application in microemulsions compared to conventional vehicles, like hydrogels, emulsions and liposomes. The favourable drug delivery properties of microemulsions appear to mainly be attributed to the excellent solubility properties. However, the vehicles may also act...... as penetration enhancers depending on the oil/surfactant constituents, which involves a risk of inducing local irritancy. The correlation between microemulsion structure/composition and drug delivery potential is not yet fully elucidated. However, a few studies have indicated that the internal structure...

  17. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles.

    Science.gov (United States)

    Mousavikhamene, Zeynab; Abdekhodaie, Mohammad J; Ahmadieh, Hamid

    2017-10-01

    A unique method was used to facilitate ocular drug delivery from periocular route by drug loaded magnetic sensitive particles. Injection of particles in periocular space along the eye axis followed by application of magnetic field in front of the eye would trigger the magnetic polymeric particles to move along the direction of magnetic force and reside against the outer surface of the sclera. This technique prevents removal of drug in the periocular space, observed in conventional transscleral drug delivery systems and hence higher amount of drug can enter the eye in a longer period of time. The experiments were performed by fresh human sclera and an experimental setup. Experimental setup was designed by side by side diffusion cell and hydrodynamic and thermal simulation of the posterior segment of the eye were applied. Magnetic polymeric particles were synthesized by alginate as a model polymer, iron oxide nanoparticles as a magnetic agent and diclofenac sodium as a model drug and characterized by SEM, TEM, DLS and FT-IR techniques. According to the SEM images, the size range of particles is around 60 to 800nm. The results revealed that the cumulative drug transfer from magnetic sensitive particles across the sclera improves by 70% in the presence of magnetic field. The results of this research show promising method of drug delivery to use magnetic properties to facilitate drug delivery to the back of the eye. Copyright © 2017. Published by Elsevier B.V.

  18. Image-guided drug delivery: preclinical applications and clinical translation

    NARCIS (Netherlands)

    Ojha, Tarun; Rizzo, Larissa; Storm, Gerrit; Kiessling, Fabian; Lammers, Twan Gerardus Gertudis Maria

    2015-01-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy.

  19. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  20. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Science.gov (United States)

    Dubald, Marion; Bourgeois, Sandrine; Andrieu, Véronique; Fessi, Hatem

    2018-01-01

    The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. PMID:29342879

  1. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  2. Drug Delivery Research: The Invention Cycle.

    Science.gov (United States)

    Park, Kinam

    2016-07-05

    Controlled drug delivery systems have been successful in introducing improved formulations for better use of existing drugs and novel delivery of biologicals. The initial success of producing many oral products and some injectable depot formulations, however, reached a plateau, and the progress over the past three decades has been slow. This is likely due to the difficulties of formulating hydrophilic, high molecular weight drugs, such as proteins and nucleic acids, for targeting specific cells, month-long sustained delivery, and pulsatile release. Since the approaches that have served well for delivery of small molecules are not applicable to large molecules, it is time to develop new methods for biologicals. The process of developing future drug delivery systems, termed as the invention cycle, is proposed, and it starts with clearly defining the problems for developing certain formulations. Once the problems are well-defined, creative imagination examines all potential options and selects the best answer and alternatives. Then, innovation takes over to generate unique solutions for developing new formulations that resolve the previously identified problems. Ultimately, the new delivery systems will have to go through a translational process to produce the final formulations for clinical use. The invention cycle also emphasizes examining the reasons for success of certain formulations, not just the reasons for failure of many systems. Implementation of the new invention cycle requires new mechanisms of funding the younger generation of scientists and a new way of identifying their achievements, thereby releasing them from the burden of short-termism.

  3. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    Directory of Open Access Journals (Sweden)

    Apurv Patel

    2016-01-01

    Full Text Available The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients.

  4. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying; Zaher, Amir; Yassine, Omar; Buttner, Ulrich; Kosel, Jü rgen; Foulds, Ian G.

    2015-01-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  5. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying

    2015-04-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  6. Mucus as a Barrier to Drug Delivery

    DEFF Research Database (Denmark)

    Bøgh, Marie; Nielsen, Hanne Mørck

    2015-01-01

    Viscoelastic mucus lines all mucosal surfaces of the body and forms a potential barrier to mucosal drug delivery. Mucus is mainly composed of water and mucins; high-molecular weight glycoproteins forming an entangled network. Consequently, mucus forms a steric barrier and due to its negative charge...... barrier to drug delivery. Current knowledge of mucus characteristics and barrier properties, as achieved by state-of-the-art methodologies, is the topic of this MiniReview emphasizing the gastrointestinal mucus and an overall focus on oral drug delivery. Cell culture-based in vitro models are well......, studies of peptide and protein drug diffusion in and through mucus and studies of mucus-penetrating nanoparticles are included to illustrate the mucus as a potentially important barrier to obtain sufficient bioavailability of orally administered drugs, and thus an important parameter to address...

  7. Design and Development of Mixed Film of Pectin: Ethyl Cellulose for Colon Specific Drug Delivery of Sennosides and Triphala

    Science.gov (United States)

    Momin, Munira; Pundarikakshudu, K.; Nagori, S. A.

    2008-01-01

    The present study was aimed at developing colon specific drug delivery system for sennosides and Triphala. These drugs are reputed Ayurvedic medicines for constipation in India. The proposed device explored the application of pectin and ethyl cellulose as a mixed film for colon specific delivery. This mixed film was prepared using non-aqueous solvents like acetone and isopropyl alcohol. A 32 factorial design was adopted to optimize the formulation variables like, ratio of ethyl cellulose to pectin (X1) and coat weight (X2). The rate and extent of drug release were found to be related to the thickness and the ratio of pectin to ethyl cellulose within the film. Statistical treatments to the drug release data revealed that the X1 variable was more important than X2. Under simulated colonic conditions, drug release was more pronounced from coating formulations containing higher proportions of pectin. The surface of the device was coated with Eudragit S100 to ensure that the device was more pH dependent and trigger the drug release only at higher pH. The final product is expected to have the advantage of being biodegradable and pH dependant. This type of a film effectively releases the drug while maintaining its integrity. PMID:20046742

  8. Recent developments in oral lipid-based drug delivery

    DEFF Research Database (Denmark)

    Thomas, N.; Rades, T.; Müllertz, A.

    2013-01-01

    The increasing number of poorly water-soluble drugs in development in the pharmaceutical industry has sparked interest in novel drug delivery options such as lipid-based drug delivery systems (LbDDS). Several LbDDS have been marketed successfully and have shown superior and more reliable...... bioavailability compared to conventional formulations. However, some reluctance in the broader application of LbDDS still appears, despite the growing commercial interest in lipids as a drug delivery platform. This reluctance might at least in part be related to the complexity associated with the development...... and characterization of LbDDS. In particular, the lack of standardized test protocols can be identified as the major obstacles for the broader application of LbDDS. This review seeks to summarize recent approaches in the field of lipid-based drug delivery that try to elucidate some critical steps in their development...

  9. Nanocapsules: The Weapons for Novel Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Radhika Parasuramrajam

    2012-04-01

    Full Text Available Introduction: Nanocapsules, existing in miniscule size, range from 10 nm to 1000 nm. They consist of a liquid/solid core in which the drug is placed into a cavity, which is surrounded by a distinctive polymer membrane made up of natural or synthetic polymers. They have attracted great interest, because of the protective coating, which are usually pyrophoric and easily oxidized and delay the release of active ingredients. Methods: Various technical approaches are utilized for obtaining the nanocapsules; however, the methods of interfacial polymerization for monomer and the nano-deposition for preformed polymer are chiefly preferred. Most important characteristics in their preparation is particle size and size distribution which can be evaluated by using various techniques like X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, superconducting quantum interference device, multi angle laser light scattering and other spectroscopic techniques. Results: Nanocapsules possessing extremely high reproducibility have a broad range of life science applications. They may be applied in agrochemicals, genetic engineering, cosmetics, cleansing products, wastewater treatments, adhesive component applications, strategic delivery of the drug in tumors, nanocapsule bandages to fight infection, in radiotherapy and as liposomal nanocapsules in food science and agriculture. In addition, they can act as self-healing materials. Conclusion: The enhanced delivery of bioactive molecules through the targeted delivery by means of a nanocapsule opens numerous challenges and opportunities for the research and future development of novel improved therapies.

  10. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  11. Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic mesalamine forms for colon delivery.

    Science.gov (United States)

    Mihaela Friciu, Maria; Canh Le, Tien; Ispas-Szabo, Pompilia; Mateescu, Mircea Alexandru

    2013-11-01

    For drugs expected to act locally in the colon, and for successful treatment, a delivery device is necessary, in order to limit the systemic absorption which decreases effectiveness and causes important side effects. Various delayed release systems are currently commercialized; most of them based on pH-dependent release which is sensitive to gastrointestinal pH variation. This study proposes a novel excipient for colon delivery. This new preparation consists in the complexation between carboxymethyl starch (CMS) and Lecithin (L). As opposed to existing excipients, the new complex is pH-independent, inexpensive, and easy to manufacture and allows a high drug loading. FTIR, X-ray, and SEM structural analysis all support the hypothesis of the formation of a complex. By minor variation of the excipient content within the tablet, it is possible to modulate the release time and delivery at specific sites of the gastrointestinal tract. This study opens the door to a new pH-independent delivery system for mesalamine targeted administration. Our novel formulation fits well with the posology of mesalamine, used in the treatment of Inflammatory Bowel Disease (IBD), which requires repeated administrations (1g orally four times a day) to maintain a good quality of life. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  13. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  14. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  15. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  16. BUCCAL DRUG DELIVERY USING ADHESIVE POLYMERIC PATCHES

    OpenAIRE

    R. Venkatalakshmi

    2012-01-01

    The buccal mucosa has been investigated for local drug therapy and the systemic delivery of therapeutic peptides and other drugs that are subjected to first-pass metabolism or are unstable within the rest of the gastrointestinal tract. The mucosa of the oral cavity presents a formidable barrier to drug penetration, and one method of optimizing drug delivery is by the use of adhesive dosage forms and the mucosa has a rich blood supply and it is relatively permeable. The buccal mucosa is very s...

  17. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    DEFF Research Database (Denmark)

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri

    2016-01-01

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  18. Intracranial drug delivery for subarachnoid hemorrhage.

    Science.gov (United States)

    Macdonald, Robert Loch; Leung, Ming; Tice, Tom

    2012-01-01

    Tice and colleagues pioneered site-specific, sustained-release drug delivery to the brain almost 30 years ago. Currently there is one drug approved for use in this manner. Clinical trials in subarachnoid hemorrhage have led to approval of nimodipine for oral and intravenous use, but other drugs, such as clazosentan, hydroxymethylglutaryl CoA reductase inhibitors (statins) and magnesium, have not shown consistent clinical efficacy. We propose that intracranial delivery of drugs such as nimodipine, formulated in sustained-release preparations, are good candidates for improving outcome after subarachnoid hemorrhage because they can be administered to patients that are already undergoing surgery and who have a self-limited condition from which full recovery is possible.

  19. Bioengineered microparticles for controlled drug delivery to the lungs

    OpenAIRE

    Sivadas, Neeraj

    2010-01-01

    Traditional formulations for pulmonary drug delivery mainly focused on two approaches: (i) Dissolving or suspending the drug in a solvent or propellant to produce liquid aerosols or (ii) Blending drug particulates with dry carrier particles typically composed of sugars. Although effective for localised delivery of small drug molecules, these methods did not meet the complex formulation and delivery challenges posed by the newer biotechnology-derived medicines. One of the many avenues being ex...

  20. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    Directory of Open Access Journals (Sweden)

    M. Thanou

    2013-01-01

    Full Text Available Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS- mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery.

  1. Microcontainers for Intestinal Drug Delivery

    DEFF Research Database (Denmark)

    Tentor, Fabio; Mazzoni, Chiara; Keller, Stephan Sylvest

    Among all the drug administration routes, the oral one is the most preferred by the patients being less invasive, faster and easier. Oral drug delivery systems designed to target the intestine are produced by powder technology and capsule formulations. Those systems including micro- and nano...

  2. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    Science.gov (United States)

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  3. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  4. A Mobile Device App to Reduce Time to Drug Delivery and Medication Errors During Simulated Pediatric Cardiopulmonary Resuscitation: A Randomized Controlled Trial.

    Science.gov (United States)

    Siebert, Johan N; Ehrler, Frederic; Combescure, Christophe; Lacroix, Laurence; Haddad, Kevin; Sanchez, Oliver; Gervaix, Alain; Lovis, Christian; Manzano, Sergio

    2017-02-01

    During pediatric cardiopulmonary resuscitation (CPR), vasoactive drug preparation for continuous infusion is both complex and time-consuming, placing children at higher risk than adults for medication errors. Following an evidence-based ergonomic-driven approach, we developed a mobile device app called Pediatric Accurate Medication in Emergency Situations (PedAMINES), intended to guide caregivers step-by-step from preparation to delivery of drugs requiring continuous infusion. The aim of our study was to determine whether the use of PedAMINES reduces drug preparation time (TDP) and time to delivery (TDD; primary outcome), as well as medication errors (secondary outcomes) when compared with conventional preparation methods. The study was a randomized controlled crossover trial with 2 parallel groups comparing PedAMINES with a conventional and internationally used drugs infusion rate table in the preparation of continuous drug infusion. We used a simulation-based pediatric CPR cardiac arrest scenario with a high-fidelity manikin in the shock room of a tertiary care pediatric emergency department. After epinephrine-induced return of spontaneous circulation, pediatric emergency nurses were first asked to prepare a continuous infusion of dopamine, using either PedAMINES (intervention group) or the infusion table (control group), and second, a continuous infusion of norepinephrine by crossing the procedure. The primary outcome was the elapsed time in seconds, in each allocation group, from the oral prescription by the physician to TDD by the nurse. TDD included TDP. The secondary outcome was the medication dosage error rate during the sequence from drug preparation to drug injection. A total of 20 nurses were randomized into 2 groups. During the first study period, mean TDP while using PedAMINES and conventional preparation methods was 128.1 s (95% CI 102-154) and 308.1 s (95% CI 216-400), respectively (180 s reduction, P=.002). Mean TDD was 214 s (95% CI 171-256) and

  5. Albumin and its application in drug delivery.

    Science.gov (United States)

    Sleep, Darrell

    2015-05-01

    Rapid clearance of drugs from the body results in short therapeutic half-life and is an integral property of many protein and peptide-based drugs. To maintain the desired therapeutic effect patients are required to administer higher doses more frequently, which is inconvenient and risks undesirable side effects. Drug delivery technologies aim to minimise the number of administrations and dose-related toxicity while maximising therapeutic efficacy. This review describes albumin's inherent biochemical and biophysical properties, which make it an attractive drug delivery platform and the developmental status of drugs that are associated, conjugated or genetically fused with albumin. Albumin interacts with a number of cell surface receptors including gp18, gp30, gp60, FcRn, cubilin and megalin. The importance of albumin's interaction with the FcRn receptor, the basis for albumin's long circulatory half-life, is described, as are engineered albumins with improved pharmacokinetics. Albumin naturally accumulates at tumours and sites of inflammation, a characteristic which can be augmented by the addition of targeting ligands. The development of albumin drug conjugates which reply upon this property is described. Albumin's inherent biochemical and biophysical properties make it an ideal drug delivery platform. Recent advances in our understanding of albumin physiology and the improvement in albumin-based therapies strongly suggest that albumin-based therapies have a significant advantage over alternative technologies in terms of half-life, stability, versatility, safety and ease of manufacture. Given the importance of the albumin:FcRn interaction, the interpretation of the pharmacokinetic and pharmacodynamic profiles of albumin-based therapeutics with disturbed albumin:FcRn interaction may have to be reassessed. The FcRn receptor has additional functionality, especially in relation to immunology, antigen presentation and delivery of proteins across mucosal membranes

  6. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  7. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  8. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  9. A study on nanodiamond-based drug delivery system

    International Nuclear Information System (INIS)

    Li Jing; Zhang Xiaoyong; Zhu Ying; Li Wenxin; Huang Qing

    2010-01-01

    A multifunctional drug delivery system based on nanodiamonds (NDs) has been developed. FITC, HCPT and TF were absorbed on NDs successively to form the multifunctional complex. The NDs and ND complex samples were characterized by TEM, FR-IR and UV-V. The results indicated that this drug delivery system is a high loading system. Efficacy of the drug delivery system on Hela cell was evaluated with MTT assays and fluorescence microscopy. The results show that multifunction of the NDs complex include fluorescence, targeting and high efficacy. (authors)

  10. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2013-01-01

    Full Text Available Electrospinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nanotechnology that sparked worldwide research interest in nanomaterials for their preparation and application in biomedicine and drug delivery. Electrospinning is a simple, adaptable, cost-effective, and versatile technique for producing nanofibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nanofibers. The nanofiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nanofiber fabrication by electrospinning has broadened the horizons for widespread application of nanofibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electrospun nanofibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of postsurgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electrospun nanofibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nanofibers when applied to drug delivery.

  12. Drug Delivery Systems: A New Frontier in Nano-technology

    Directory of Open Access Journals (Sweden)

    Chamindri Witharana

    2017-09-01

    Full Text Available Nano-technology is a recent advancement in science, defined as “Science, engineering, and technology conducted at the Nano scale” (National nanotechnology initiatives in USA. Applications of Nano-technology cover a vast range from basic material science, personal care applications, agriculture, and medicine. Nano-technology is used in field of medicine for treatment, diagnostic, monitoring, genetic engineering, and drug delivery. There are two main types of Nano Particles (NPs used in drug delivery; organic NPs and inorganic NPs. In drug delivery, the drug-Nano- Particle (NP conjugate should be able to deliver drugs to the target site without degradation in gastrointestinal track and without reducing drug activity. Further, it should attack to target cells without causing any adverse effects. The ultimate goal of NP drug delivery is to improve proper treatment, effectiveness, less side effects with safety and patient adherence as well as reduction in the cost.

  13. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  14. A portable pulmonary delivery system for nano engineered DNA vaccines driven by surface acoustic wave devices

    International Nuclear Information System (INIS)

    Rajapaksa, A.E.; Qi, Aisha; Yeo, L.; Friend, J.

    2010-01-01

    Full text: The increase in the need for effective delivery of potelll vaccines against infectious diseases, require robust yet straightforward pro duction of encapsulated DNA-laden aerosols. Aerosol delivery of drugs represents the next generation of vaccine delivery where the drug is deposited into the lung, which provides an ideal, non-invasive route. Moreover, several features of D A vaccines make them more attractive than conventional vaccines; thus, DNA vaccines have gained global interest for a variety of applications. However, several limitations such as ineffective cellular uptake and intracellular delivery, and degradation of DNA need to be overcome before clin ical applications. In this study, a novel and scalable engineered technique has been developed to create a biodegradable polymer system, which enables controlled delivery of a well designed DNA vaccine for immuno-therapeutics. Surface Acoustic Wave (SAW) atomisation has been found as useful mechanism for atomising fluid samples for medical and industrial devices. It is a straightforward method for synthesising un-agglomerated biodegradable nanoparti cles (<250 nm) in the absence of organic solvents which would represent a major breakthrough for biopharmaceutical encapsulation and delivery. Nano-scale polymer particles for DNA vaccines deliv ery were obtained through an evaporative process of the initial aerosol created by surface acoustic waves at 8-150 MHz, the final size of which could be controlled by modifying the initial polymer concen tration and solid contents. Thus, SAW atomiser represents a promising alternative for the development of a low power device for producing nano-engineered vaccines with a controlled and narrow size distribution as delivery system for genetic immuno-therapeutics.

  15. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  16. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  18. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  19. Chronotherapeutic drug delivery systems: an approach to circadian rhythms diseases.

    Science.gov (United States)

    Sunil, S A; Srikanth, M V; Rao, N Sreenivasa; Uhumwangho, M U; Latha, K; Murthy, K V Ramana

    2011-11-01

    The purpose of writing this review on chronotherapeutic drug delivery systems (ChrDDs) is to review the literatures with special focus on ChrDDs and the various dosage forms, techniques that are used to target the circadian rhythms (CR) of various diseases. Many functions of the human body vary considerably in a day. ChrDDs refers to a treatment method in which in vivo drug availability is timed to match circadian rhythms of disease in order to optimize therapeutic outcomes and minimize side effects. Several techniques have been developed but not many dosage forms for all the diseases are available in the market. ChrDDs are gaining importance in the field of pharmaceutical technology as these systems reduce dosing frequency, toxicity and deliver the drug that matches the CR of that particular disease when the symptoms are maximum to worse. Finally, the ultimate benefit goes to the patient due the compliance and convenience of the dosage form. Some diseases that follow circadian rhythms include cardiovascular diseases, asthma, arthritis, ulcers, diabetes etc. ChrDDs in the market were also discussed and the current technologies used to formulate were also stated. These technologies include Contin® , Chronotopic®, Pulsincaps®, Ceform®, Timerx®, Oros®, Codas®, Diffucaps®, Egalet®, Tablet in capsule device, Core-in-cup tablet technology. A coated drug-core tablet matrix, A bi-layered tablet, Multiparticulate-based chronotherapeutic drug delivery systems, Chronoset and Controlled release microchips.

  20. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of

  1. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe

    2015-12-01

    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  2. Drug delivery and nanoparticles: Applications and hazards

    Directory of Open Access Journals (Sweden)

    Wim H De Jong

    2008-06-01

    Full Text Available Wim H De Jong1, Paul JA Borm2,31Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM, Bilthoven, The Netherlands; 2Zuyd University, Centre of Expertise in Life Sciences, Heerlen, The Netherlands; 3Magnamedics GmbH, Aachen, GermanyAbstract: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation

  3. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  4. Multiscale modeling of transdermal drug delivery

    Science.gov (United States)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a

  5. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  6. Nanoparticles and nanofibers for topical drug delivery

    Science.gov (United States)

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  7. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  8. Atopic Dermatitis: Drug Delivery Approaches in Disease Management.

    Science.gov (United States)

    Lalan, Manisha; Baweja, Jitendra; Misra, Ambikanandan

    2015-01-01

    In this review, we describe the very basic of atopic dermatitis (AD), the established management strategies, and the advances in drug delivery approaches for successful therapeutic outcomes. The multifactorial pathophysiology of AD has given rise to the clinician's paradigm of topical and systemic therapy and potential combinations. However, incomplete remission of skin disorders like AD is a major challenge to be overcome. Recurrence is thought to be due to genetic and immunological etiologies and shortcomings in drug delivery. This difficulty has sparked research in nanocarrier-based delivery approaches as well as molecular biology-inspired stratagems to deal with the immunological imbalance and to address insufficiencies of delivery propositions. In this review, we assess various novel drug delivery strategies in terms of their success and utility. We present a brief compilation and assessment of management modalities to sensitize the readers to therapeutic scenario in AD.

  9. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    Science.gov (United States)

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  12. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Science.gov (United States)

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  13. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  14. Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    R. Asmatulu

    2009-01-01

    nanoparticles and poly (D,L-lactide-co-glycolide (PLGA for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (∼13 nm on average of magnetite were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide. An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5–2 hours agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I and combined with magnetic nanoparticles, then added dropwise into viscous paraffin oil combined with Span 80 (oily phase II. With different contents (0%, 10%, 20%, and 25% of magnetite, the nanocomposite spheres were evaluated in terms of particle size, morphology, and magnetic properties by using dynamic laser light scattering (DLLS, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and a superconducting quantum interference device (SQUID. The results indicate that nanocomposite spheres (200 nm to 1.1 μm in diameter are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5 000 Oe at room temperature.

  15. Naturapolyceutics: The Science of Utilizing Natural Polymers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ndidi C. Ngwuluka

    2014-05-01

    Full Text Available Naturapolyceutics defines the emerging science and technology platform that blends natural polymers and pharmaceutics for the design and development of drug delivery systems. Natural polymers due to their biological properties, sustainability, chemical flexibility, human and eco-friendliness are promising in this field. As drug delivery advances, there will be need for more polymers. Given that polymers utilized in pharmaceuticals require regulatory approval, robust processes are undertaken to facilitate the production of pharmaceutical grade natural polymers. This review provides insight into the processes—extraction, purification, modifications and characterizations—involved in the eventual utilization of natural polymers for drug delivery. The versatility of natural polymers and particularly modified natural polymers in targeted drug delivery, micro-/nano-drug delivery, theranostics, BioMEMs and generally in research and development of highly efficient, safe and quality products is demonstrated. Natural polymers are polymers of today and tomorrow. Therefore, the shift to undertake training, extensive research and subsequent commercialization of more natural polymers—novel and underutilized—for drug delivery is now!

  16. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-06-01

    Full Text Available Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

  17. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  18. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  19. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    Science.gov (United States)

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  20. Effect of administration method, animal weight and age on the intranasal delivery of drugs to the brain.

    Science.gov (United States)

    Krishnan, Jishnu K S; Arun, Peethambaran; Chembukave, Bhadra; Appu, Abhilash P; Vijayakumar, Nivetha; Moffett, John R; Puthillathu, Narayanan; Namboodiri, Aryan M A

    2017-07-15

    The intranasal route of administration has proven to be an effective method for bypassing the blood brain barrier and avoiding first pass hepatic metabolism when targeting drugs to the brain. Most small molecules gain rapid access to CNS parenchyma when administered intranasally. However, bioavailability is affected by various factors ranging from the molecular weight of the drug to the mode of intranasal delivery. We examined the effects of animal posture, intranasal application method and animal weight and age on the delivery of radiolabeled pralidoxime ( 3 H-2-PAM) to the brain of rats. We found that using upright vs. supine posture did not significantly affect 3 H-2-PAM concentrations in different brain regions. Older animals with higher weights required increased doses to achieve the same drug concentration throughout the brain when compared to young animals with lower body weights. The use of an intranasal aerosol propelled delivery device mainly increased bioavailability in the olfactory bulbs, but did not reliably increase delivery of the drug to various other brain regions, and in some regions of the brain delivered less of the drug than simple pipette administration. In view of the emerging interest in the use of intranasal delivery of drugs to combat cognitive decline in old age, we tested effectiveness in very old rats and found the method to be as effective in the older rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  2. 21 CFR 201.2 - Drugs and devices; National Drug Code numbers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs and devices; National Drug Code numbers. 201.2 Section 201.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.2 Drugs and devices; National Drug Code...

  3. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  4. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan Robinson

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no cure and limited treatment solutions that are unable to target any of the suspected causes. Increasing evidence suggests that one of the causes of neurodegeneration is the overproduction of amyloid beta (Aβ and the inability of Aβ peptides to be cleared from the brain, resulting in self-aggregation to form toxic oligomers, fibrils and plaques. One of the potential treatment options is to target Aβ and prevent self-aggregation to allow for a natural clearing of the brain. In this paper, we review the drugs and drug delivery systems that target Aβ in relation to Alzheimer's disease. Many attempts have been made to use anti-Aβ targeting molecules capable of targeting Aβ (with much success in vitro and in vivo animal models, but the major obstacle to this technique is the challenge posed by the blood brain barrier (BBB. This highly selective barrier protects the brain from toxic molecules and pathogens and prevents the delivery of most drugs. Therefore novel Aβ aggregation inhibitor drugs will require well thought-out drug delivery systems to deliver sufficient concentrations to the brain.

  5. Electromechanically Actuated Multifunctional Wireless Auxetic Device for Wound Management.

    Science.gov (United States)

    Mir, Mariam; Ansari, Umar; Ali, Murtaza Najabat; Iftikhar, Muhammad Hassan Ul; Qayyum, Faisal

    2017-01-01

    The design and fabrication of a wound healing device for chronic wounds, with multiple functions for controlled drug delivery and exudate removal, has been described in this paper. The structural features have been machined and modified through laser cutting in a biocompatible polymer cast. Miniaturized versions of electronically actuated (lead-screw and pulley) mechanisms are used for the specific purpose of controlled drug delivery. These mechanisms have been studied and tested, being controlled through a microcontroller setup. An auxetic polymeric barrier membrane has been used for restricting the drug quantities administered. Drug delivery mechanisms are powered wirelessly, through an external, active RF component; this communicates with a passive component that is buried inside the wound healing device. The exudate removal efficiency of the device has been assessed through several simple tests using simulated wound exudate. It has been found that reasonably precise quantities of drug dosages to be administered to the wound site can be controlled through both drug delivery mechanisms; however, the lead-screw mechanism provides a better control of auxetic barrier membrane actuation and hence controlled drug delivery. We propose that this device can have potential clinical significance in controlled drug delivery and exudate removal in the management of chronic wounds.

  6. Application of three-dimensional printing for colon targeted drug delivery systems.

    Science.gov (United States)

    Charbe, Nitin B; McCarron, Paul A; Lane, Majella E; Tambuwala, Murtaza M

    2017-01-01

    Orally administered solid dosage forms currently dominate over all other dosage forms and routes of administrations. However, human gastrointestinal tract (GIT) poses a number of obstacles to delivery of the drugs to the site of interest and absorption in the GIT. Pharmaceutical scientists worldwide have been interested in colon drug delivery for several decades, not only for the delivery of the drugs for the treatment of colonic diseases such as ulcerative colitis and colon cancer but also for delivery of therapeutic proteins and peptides for systemic absorption. Despite extensive research in the area of colon targeted drug delivery, we have not been able to come up with an effective way of delivering drugs to the colon. The current tablets designed for colon drug release depend on either pH-dependent or time-delayed release formulations. During ulcerative colitis the gastric transit time and colon pH-levels is constantly changing depending on whether the patient is having a relapse or under remission. Hence, the current drug delivery system to the colon is based on one-size-fits-all. Fails to effectively deliver the drugs locally to the colon for colonic diseases and delivery of therapeutic proteins and peptides for systemic absorption from the colon. Hence, to overcome the current issues associated with colon drug delivery, we need to provide the patients with personalized tablets which are specifically designed to match the individual's gastric transit time depending on the disease state. Three-dimensional (3D) printing (3DP) technology is getting cheaper by the day and bespoke manufacturing of 3D-printed tablets could provide the solutions in the form of personalized colon drug delivery system. This review provides a bird's eye view of applications and current advances in pharmaceutical 3DP with emphasis on the development of colon targeted drug delivery systems.

  7. Porous silicon advances in drug delivery and immunotherapy.

    Science.gov (United States)

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Drug delivery through microneedles

    NARCIS (Netherlands)

    Luttge, R.; Dietzel, A.

    2016-01-01

    Drug delivery through microneedles is a new form of a pharmaceutical dosage system. While single microneedles have been clinically applied already, the out-of-plane integration of a multitude of microneedles in a pharmaceutical patch is a disruptive technology. To take advantage of micro- and

  9. MODELING OF TARGETED DRUG DELIVERY PART II. MULTIPLE DRUG ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    A. V. Zaborovskiy

    2017-01-01

    Full Text Available In oncology practice, despite significant advances in early cancer detection, surgery, radiotherapy, laser therapy, targeted therapy, etc., chemotherapy is unlikely to lose its relevance in the near future. In this context, the development of new antitumor agents is one of the most important problems of cancer research. In spite of the importance of searching for new compounds with antitumor activity, the possibilities of the “old” agents have not been fully exhausted. Targeted delivery of antitumor agents can give them a “second life”. When developing new targeted drugs and their further introduction into clinical practice, the change in their pharmacodynamics and pharmacokinetics plays a special role. The paper describes a pharmacokinetic model of the targeted drug delivery. The conditions under which it is meaningful to search for a delivery vehicle for the active substance were described. Primary screening of antitumor agents was undertaken to modify them for the targeted delivery based on underlying assumptions of the model.

  10. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    Science.gov (United States)

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations. Published by Elsevier B.V.

  11. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  12. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  13. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug.

    Science.gov (United States)

    Carlyle, Wenda C; McClain, James B; Tzafriri, Abraham R; Bailey, Lynn; Zani, Brett G; Markham, Peter M; Stanley, James R L; Edelman, Elazer R

    2012-09-28

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (pstent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A Mobile Device App to Reduce Medication Errors and Time to Drug Delivery During Pediatric Cardiopulmonary Resuscitation: Study Protocol of a Multicenter Randomized Controlled Crossover Trial.

    Science.gov (United States)

    Siebert, Johan N; Ehrler, Frederic; Lovis, Christian; Combescure, Christophe; Haddad, Kevin; Gervaix, Alain; Manzano, Sergio

    2017-08-22

    During pediatric cardiopulmonary resuscitation (CPR), vasoactive drug preparation for continuous infusions is complex and time-consuming. The need for individual specific weight-based drug dose calculation and preparation places children at higher risk than adults for medication errors. Following an evidence-based and ergonomic driven approach, we developed a mobile device app called Pediatric Accurate Medication in Emergency Situations (PedAMINES), intended to guide caregivers step-by-step from preparation to delivery of drugs requiring continuous infusion. In a prior single center randomized controlled trial, medication errors were reduced from 70% to 0% by using PedAMINES when compared with conventional preparation methods. The purpose of this study is to determine whether the use of PedAMINES in both university and smaller hospitals reduces medication dosage errors (primary outcome), time to drug preparation (TDP), and time to drug delivery (TDD) (secondary outcomes) during pediatric CPR when compared with conventional preparation methods. This is a multicenter, prospective, randomized controlled crossover trial with 2 parallel groups comparing PedAMINES with a conventional and internationally used drug infusion rate table in the preparation of continuous drug infusion. The evaluation setting uses a simulation-based pediatric CPR cardiac arrest scenario with a high-fidelity manikin. The study involving 120 certified nurses (sample size) will take place in the resuscitation rooms of 3 tertiary pediatric emergency departments and 3 smaller hospitals. After epinephrine-induced return of spontaneous circulation, nurses will be asked to prepare a continuous infusion of dopamine using either PedAMINES (intervention group) or the infusion table (control group) and then prepare a continuous infusion of norepinephrine by crossing the procedure. The primary outcome is the medication dosage error rate. The secondary outcome is the time in seconds elapsed since the oral

  15. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  16. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2015-09-01

    Systems in Systemic , Dermal, Transdermal , and Ocular Drug Delivery . Crit. Rev. Ther. Drug 2008, 25, 545–584. 14. Choy, Y. B.; Park, J.-H.; McCarey, B...AWARD NUMBER: W81XWH-13-1-0146 TITLE: Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries PRINCIPAL INVESTIGATOR: Dr...Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries” 5b. GRANT NUMBER W81XWH-13-1-0146 5c. PROGRAM ELEMENT NUMBER 6

  17. Noninvasive ocular drug delivery: potential transcorneal and other alternative delivery routes for therapeutic molecules in glaucoma.

    Science.gov (United States)

    Foldvari, Marianna

    2014-01-01

    Drug delivery to the eye is made difficult by multiple barriers (such as the tear film, cornea, and vitreous) between the surface of the eye and the treatment site. These barriers are difficult to surmount for the purposes of drug delivery without causing toxicity. Using nanotechnology tools to control, manipulate, and study delivery systems, new approaches to delivering drugs, genes, and antigens that are effective and safe can be developed. Topical administration to the ocular surface would be the safest method for delivery, as it is noninvasive and painless compared with other delivery methods. However, there is only limited success using topical delivery methods, especially for gene therapy. Current thinking on treatments of the future enabled by nanodelivery systems and the identification of target specificity parameters that require deeper understanding to develop successful topical delivery systems for glaucoma is highlighted.

  18. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.

    Science.gov (United States)

    Zainal, M A; Ahmad, A; Mohamed Ali, M S

    2017-03-01

    This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.

  19. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  20. Advanced materials and processing for drug delivery: the past and the future.

    Science.gov (United States)

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W

    2013-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Controlling fungal biofilms with functional drug delivery denture biomaterials.

    Science.gov (United States)

    Wen, Jianchuan; Jiang, Fuguang; Yeh, Chih-Ko; Sun, Yuyu

    2016-04-01

    Candida-associated denture stomatitis (CADS), caused by colonization and biofilm-formation of Candida species on denture surfaces, is a significant clinical concern. We show here that modification of conventional denture materials with functional groups can significantly increase drug binding capacity and control drug release rate of the resulting denture materials for potentially managing CADS. In our approach, poly(methyl methacrylate) (PMMA)-based denture resins were surface grafted with three kinds of polymers, poly(1-vinyl-2-pyrrolidinone) (PNVP), poly(methacrylic acid) (PMAA), and poly(2-hydroxyethyl methacrylate) (PHEMA), through plasma-initiated grafting polymerization. With a grafting yield as low as 2 wt%, the three classes of new functionalized denture materials showed significantly higher drug binding capacities toward miconazole, a widely used antifungal drug, than the original PMMA denture resin control, leading to sustained drug release and potent biofilm-controlling effects against Candida. Among the three classes of functionalized denture materials, PNVP-grafted resin provided the highest miconazole binding capability and the most powerful antifungal and biofilm-controlling activities. Drug binding mechanisms were studied. These results demonstrated the importance of specific interactions between drug molecules and functional groups on biomaterials, shedding lights on future design of CADS-managing denture materials and other related devices for controlled drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  3. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  4. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  5. Medicine Delivery Device with Integrated Sterilization and Detection

    Science.gov (United States)

    Shearn, Michael J.; Greer, Harold F.; Manohara, Harish

    2013-01-01

    Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface-area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPL-developed silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers. The application of semiconductor processing techniques and technologies to the problems of fluid manipulation and delivery has enabled the integration of chemical, electrical, and mechanical manipulation of samples all within a single microfluidic device. This approach has been successfully applied at JPL to the automated processing, detection, and analysis of minute quantities (parts per trillion level) of biomaterials to develop instruments for in situ exploration or extraterrestrial bodies. The same nanofabrication techniques that are used to produce a microfluidics device are also capable of synthesizing extremely high-surface-area templates in precise locations, and coating those surfaces with conformal films to manipulate their surface properties. This methodology has been successfully applied at JPL to produce patterned and coated silicon nanotips (also known as black silicon) to manipulate the hydrophilicity of surfaces to direct the spreading of fluids in microdevices. JPL's ALD technique is an ideal method to produce the highly conformal coatings required for this type of application. Certain materials, such as TiO2, have germicidal and anti-fouling properties when they are illuminated with UV light. The proposed delivery device contacts medicine with this high-surface-area black silicon surface coated with a thin-film germicidal deposited conformally with ALD. The coating can also be illuminated with ultraviolet light for the purpose of sterilization

  6. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huu Ngoc Nguyen

    2017-01-01

    Full Text Available Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

  7. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  8. A review on electrospun nanofibers for oral drug delivery

    Directory of Open Access Journals (Sweden)

    Abbas Akhgari

    2017-10-01

    Full Text Available Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics such as high porosity, high surface area to volume ratio, high loading capacity and encapsulation efficiency, delivery of multiple drugs, and enhancement of drug solubility. Due to these properties electrospun nanofibers have been extensively used for different biomedical applications including wound dressing, tissue engineering, enzyme immobilization, artificial organs, and drug delivery. Different synthetic and natural polymers have been successfully electrospun into ultrafine fibers. Using electrospun nanofibers as vehicles for oral drug delivery has been investigated in different release manners- fast, biphasic or sustained release. This article presents a review on application of electrospinning technique in oral drug delivery.

  9. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  10. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  11. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays.

    Science.gov (United States)

    van der Maaden, Koen; Luttge, Regina; Vos, Pieter Jan; Bouwstra, Joke; Kersten, Gideon; Ploemen, Ivo

    2015-08-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific and patent literature is reviewed, and we focus on the possibilities and constraints of porous microneedle technologies for dermal drug delivery. Furthermore, we show preliminary data with commercially available porous microneedles and describe future directions in this field of research.

  12. Using DNA nanotechnology to produce a drug delivery system

    International Nuclear Information System (INIS)

    La, Thi Huyen; Nguyen, Thi Thu Thuy; Pham, Van Phuc; Nguyen, Thi Minh Huyen; Le, Quang Huan

    2013-01-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. (paper)

  13. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  14. PRELIMINARILY DEVELOPMENT OF A MOISTURE-ACTIVATED BIORESORBABLE POLYMERIC PLATFORM FOR DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Renê O. do Couto

    2015-08-01

    Full Text Available Bioresorbable polymeric films were prepared by solvent casting using a tyrosine-derived polycarbonate and metronidazole (MDZ as the model drug at 2.5%, 5% and 10% (w/w. Drug loading did not affect the water uptake, drug release, polymer degradation or erosion profiles. All devices released approximately 85% (w/w of the drug within a 1.5 h period. This may be attributed to the rapid water uptake of the polymer. An increase in the water uptake correlated with a linear rate increase of the polymer degradation (0.968 ≤ R2 ≤ 0.999. Moreover, MDZ presented a remarkable plasticizing effect for the polymer and drug loading exerted a significant impact on the mechanical properties of the obtained films. The results obtained can be used to further the development of novel biocompatible and biodegradable polymeric platforms for the delivery of metronidazole and other drugs in a broad range of pharmaceutical applications.

  15. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    Science.gov (United States)

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  16. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    Directory of Open Access Journals (Sweden)

    Tapas R. Nayak

    2017-06-01

    Full Text Available Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  17. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  18. Laser assisted drug delivery: a review of an evolving technology.

    Science.gov (United States)

    Sklar, Lindsay R; Burnett, Christopher T; Waibel, Jill S; Moy, Ronald L; Ozog, David M

    2014-04-01

    Topically applied drugs have a relatively low cutaneous bioavailability. This article reviews the existing applications of laser assisted drug delivery, a means by which the permeation of topically applied agents can be enhanced into the skin. The existing literature suggests that lasers are a safe and effective means of enhancing the delivery of topically applied agents through the skin. The types of lasers most commonly studied in regards to drug delivery are the carbon dioxide (CO2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) lasers. Both conventional ablative and fractional ablative modalities have been utilized and are summarized herein. The majority of the existing studies on laser assisted drug delivery have been performed on animal models and additional human studies are needed. Laser assisted drug delivery is an evolving technology with potentially broad clinical applications. Multiple studies demonstrate that laser pretreatment of the skin can increase the permeability and depth of penetration of topically applied drug molecules for both local cutaneous and systemic applications. © 2014 Wiley Periodicals, Inc.

  19. Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2013-01-01

    Full Text Available Ultrasound is an emerging modality for drug delivery in chemotherapy. This paper reviews this novel technology by first introducing the designs and characteristics of three classes of drug/gene vehicles, microbubble (including nanoemulsion, liposomes, and micelles. In comparison to conventional free drug, the targeted drug-release and delivery through vessel wall and interstitial space to cancerous cells can be activated and enhanced under certain sonication conditions. In the acoustic field, there are several reactions of these drug vehicles, including hyperthermia, bubble cavitation, sonoporation, and sonodynamics, whose physical properties are illustrated for better understanding of this approach. In vitro and in vivo results are summarized, and future directions are discussed. Altogether, ultrasound-mediated drug/gene delivery under imaging guidance provides a promising option in cancer treatment with enhanced agent release and site specificity and reduced toxicity.

  20. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    Science.gov (United States)

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules. © 2017 Wiley Periodicals, Inc.

  1. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays

    OpenAIRE

    Maaden, van der, Koen; Lüttge, R Regina; Vos, PJW; Bouwstra, Joke A; Kersten, Gideon FA; Ploemen, IHJ Ingmar

    2015-01-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific an...

  2. Fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Erlendsson, Andrés M; Doukas, Apostolos G; Farinelli, William A

    2016-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is rapidly evolving as one of the foremost techniques for cutaneous drug delivery. While AFXL has effectively improved topical drug-induced clearance rates of actinic keratosis, treatment of basal cell carcinomas (BCCs) has been challenging......, potentially due to insufficient drug uptake in deeper skin layers. This study sought to investigate a standardized method to actively fill laser-generated channels by altering pressure, vacuum, and pressure (PVP), enquiring its effect on (i) relative filling of individual laser channels; (ii) cutaneous...

  3. Drug Delivery Nanoparticles in Skin Cancers

    Science.gov (United States)

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298

  4. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system

    International Nuclear Information System (INIS)

    Gao Lei; Zhang Dianrui; Chen Minghui

    2008-01-01

    Formulation of poorly soluble drugs is a general intractable problem in pharmaceutical field, especially those compounds poorly soluble in both aqueous and organic media. It is difficult to resolve this problem using conventional formulation approaches, so many drugs are abandoned early in discovery. Nanocrystals, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop the poorly soluble drugs, because of their simplicity in preparation and general applicability. In this article, the product techniques of the nanocrystals were reviewed and compared, the special features of drug nanocrystals were discussed. The researches on the application of the drug nanocrystals to various administration routes were described in detail. In addition, as introduced later, the nanocrystals could be easily scaled up, which was the prerequisite to the development of a delivery system as a market product

  5. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  6. Bioadhesive polymeric platforms for transmucosal drug delivery ...

    African Journals Online (AJOL)

    Bioadhesive polymeric platforms for transmucosal drug delivery systems – a review. ... administration of certain classes of drugs, especially peptides and proteins. ... characteristics of desired bioadhesive polymers, this article then proceeds to ...

  7. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  8. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery.

    Science.gov (United States)

    Salatin, Sara; Barar, Jaleh; Barzegar-Jalali, Mohammad; Adibkia, Khosro; Milani, Mitra Alami; Jelvehgari, Mitra

    2016-09-01

    Over the past few years, nasal drug delivery has attracted more and more attentions, and been recognized as the most promising alternative route for the systemic medication of drugs limited to intravenous administration. Many experiments in animal models have shown that nanoscale carriers have the ability to enhance the nasal delivery of peptide/protein drugs and vaccines compared to the conventional drug solution formulations. However, the rapid mucociliary clearance of the drug-loaded nanoparticles can cause a reduction in bioavailability percentage after intranasal administration. Thus, research efforts have considerably been directed towards the development of hydrogel nanosystems which have mucoadhesive properties in order to maximize the residence time, and hence increase the period of contact with the nasal mucosa and enhance the drug absorption. It is most certain that the high viscosity of hydrogel-based nanosystems can efficiently offer this mucoadhesive property. This update review discusses the possible benefits of using hydrogel polymer-based nanoparticles and hydrogel nanocomposites for drug/vaccine delivery through the intranasal administration.

  9. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.

    Science.gov (United States)

    Callender, Shannon P; Mathews, Jessica A; Kobernyk, Katherine; Wettig, Shawn D

    2017-06-30

    Emulsion technology has been utilized extensively in the pharmaceutical industry. This article presents a comprehensive review of the literature on an important subcategory of emulsions, microemulsions. Microemulsions are optically transparent, thermodynamically stable colloidal systems, 10-100nm diameter, that form spontaneously upon mixing of oil, water and emulsifier. This review is the first to address advantages and disadvantages, as well as considerations and challenges in multi-drug delivery. For the period 1 January 2011-30 April 2016, 431 publications related to microemulsion drug delivery were identified and screened according to microemulsion, drug classification, and surfactant types. Results indicate the use of microemulsions predominantly in lipophilic drug delivery (79.4%) via oil-in-water microemulsions and non-ionic surfactants (90%) for oral or topical administration. Cancer is the disease state most targeted followed by inflammatory diseases, microbial infections and cardiovascular disease. Key generalizations from this analysis include: 1) microemulsion formulation is largely based on trial-and-error despite over 1200 publications related to microemulsion drug delivery since their discovery in 1943; 2) characterization using methods including interfacial tension, droplet size, electrical conductivity, turbidity and viscosity may provide additional information for greater predictability; 3) microemulsion drug delivery publications arise primarily from China (27%) and India (21%) suggesting additional research opportunities elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Insoluble drug delivery strategies: review of recent advances and business prospects

    Science.gov (United States)

    Kalepu, Sandeep; Nekkanti, Vijaykumar

    2015-01-01

    The emerging trends in the combinatorial chemistry and drug design have led to the development of drug candidates with greater lipophilicity, high molecular weight and poor water solubility. Majority of the failures in new drug development have been attributed to poor water solubility of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with poor solubility and low bioavailabilities have been formulated into successful drug products. Several marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies. This review covers the recent advances in the field of insoluble drug delivery and business prospects. PMID:26579474

  11. Insoluble drug delivery strategies: review of recent advances and business prospects

    Directory of Open Access Journals (Sweden)

    Sandeep Kalepu

    2015-09-01

    Full Text Available The emerging trends in the combinatorial chemistry and drug design have led to the development of drug candidates with greater lipophilicity, high molecular weight and poor water solubility. Majority of the failures in new drug development have been attributed to poor water solubility of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with poor solubility and low bioavailabilities have been formulated into successful drug products. Several marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies. This review covers the recent advances in the field of insoluble drug delivery and business prospects.

  12. Plasmon resonant liposomes for controlled drug delivery

    Science.gov (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  13. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  14. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  15. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  16. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2012-09-01

    Full Text Available Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures.

  18. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 10 (2017), s. 2097-2108 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : galactoside * penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  19. Using DNA nanotechnology to produce a drug delivery system

    Science.gov (United States)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  20. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  2. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  3. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  4. Oromucosal multilayer films for tailor-made, controlled drug delivery.

    Science.gov (United States)

    Lindert, Sandra; Breitkreutz, Jörg

    2017-11-01

    The oral mucosa has recently become increasingly important as an alternative administration route for tailor-made, controlled drug delivery. Oromucosal multilayer films, assigned to the monograph oromucosal preparations in the Ph.Eur. may be a promising dosage form to overcome the requirements related to this drug delivery site. Areas covered: We provide an overview of multilayer films as drug delivery tools, and discuss manufacturing processes and characterization methods. We focus on the suitability of characterization methods for particular requirements of multilayer films. A classification was performed covering indication areas and APIs incorporated in multilayer film systems for oromucosal use in order to provide a summary of data published in this field. Expert opinion: The shift in drug development to high molecular weight drugs will influence the field of pharmaceutical development and delivery technologies. For a high number of indication areas, such as hormonal disorders, cardiovascular diseases or local treatment of infections, the flexible layer design of oromucosal multilayer films provides a promising option for tailor-made, controlled delivery of APIs to or through defined surfaces in the oral cavity. However, there is a lack of discriminating or standardized testing methods to assess the quality of multilayer films in a reliable way.

  5. Microneedle arrays for biosensing and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip

    2017-08-29

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  6. Microneedle arrays for biosensing and drug delivery

    Science.gov (United States)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip; Polsky, Ronen; Edwards, Thayne L.

    2017-08-22

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  7. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  8. Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components.

    Science.gov (United States)

    Longest, P Worth; Azimi, Mandana; Golshahi, Laleh; Hindle, Michael

    2014-05-01

    Patients receiving invasive mechanical ventilation with an endotracheal tube (ETT) can often benefit from pharmaceutical aerosols; however, drug delivery through the ventilator circuit is known to be very inefficient. The objective of this study was to improve the delivery of aerosol through an invasive mechanical ventilation system by redesigning circuit components using a streamlining approach. Redesigned components were the T-connector interface between the nebulizer and ventilator line and the Y-connector leading to the ETT. The streamlining approach seeks to minimize aerosol deposition and loss by eliminating sharp changes in flow direction and tubing diameter that lead to flow disruption. Both in vitro experiments and computational fluid dynamic (CFD) simulations were applied to analyze deposition and emitted dose of drug for multiple droplet size distributions, flows, and ETT sizes used in adults. The experimental results demonstrated that the streamlined components improved delivery through the circuit by factors ranging from 1.3 to 1.5 compared with a commercial system for adult ETT sizes of 8 and 9 mm. The overall delivery efficiency was based on the bimodal aspect of the aerosol distributions and could not be predicted by median diameter alone. CFD results indicated a 20-fold decrease in turbulence in the junction region for the streamlined Y resulting in a maximum 9-fold decrease in droplet deposition. The relative effectiveness of the streamlined designs was found to increase with increasing particle size and increasing flow, with a maximum improvement in emitted dose of 1.9-fold. Streamlined components can significantly improve the delivery of pharmaceutical aerosols during mechanical ventilation based on an analysis of multiple aerosol generation devices, ETT sizes, and flows.

  9. Marine Origin Polysaccharides in Drug Delivery Systems.

    Science.gov (United States)

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  10. Marine Origin Polysaccharides in Drug Delivery Systems

    Science.gov (United States)

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  11. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  12. Implants as drug delivery devices for the treatment of eye diseases

    Directory of Open Access Journals (Sweden)

    Gisele Rodrigues da Silva

    2010-09-01

    Full Text Available The treatment of diseases affecting the posterior segment of the eye is limited by the difficulty in transporting effective doses of drugs to the vitreous, retina, and choroid. Topically applied drugs are poorly absorbed due to the low permeability of the external ocular tissues and tearing. The blood-retina barrier limits drug diffusion from the systemic blood to the posterior segment, thus high doses of drug are needed to maintain therapeutic levels. In addition, systemic side effects are common. Intraocular injections could be an alternative, but the fast flowing blood supply in this region, associated with rapid clearance rates, causes drug concentration to quickly fall below therapeutic levels. To obtain therapeutic levels over longer time periods, polymeric sustained-drug release systems implanted within the vitreous are being studied for the treatment of vitreoretinal disorders. These systems are prepared using different kinds of biodegradable or non-biodegradable polymers. This review aims to demonstrate the main characteristics of these drug delivery implants and their potential for clinical application.O tratamento de doenças do segmento posterior do olho é limitado pela dificuldade no transporte de doses efetivas de fármacos para o vítreo, retina e coróide. Os fármacos aplicados topicamente são pouco absorvidos por causa da baixa permeabilidade dos tecidos oculares externos e ao lacrimejamento. Embora a administração sistêmica seja capaz de transportar fármacos para o segmento posterior do olho, as barreiras hemato-aquosa e hematorretiniana dificultam a absorção e, normalmente, são necessárias doses elevadas, as quais estão geralmente associadas a potenciais efeitos adversos. Injeções intravitreais são capazes de transportar fármacos para o segmento posterior do olho, mas é uma técnica invasiva, pouco tolerada pelos pacientes e apresenta riscos de infecções oculares e danos aos tecidos. Visando a obtenção de

  13. Mucoadhesive microspheres: a promising tool in drug delivery.

    Science.gov (United States)

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described.

  14. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  15. Thiomers for oral delivery of hydrophilic macromolecular drugs.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Hoffer, Martin H; Kafedjiiski, Krum

    2004-11-01

    In recent years thiolated polymers (thiomers) have appeared as a promising new tool in oral drug delivery. Thiomers are obtained by the immobilisation of thio-bearing ligands to mucoadhesive polymeric excipients. By the formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of thiomers are up to 130-fold improved compared with the corresponding unmodified polymers. Owing to the formation of inter- and intramolecular disulfide bonds within the thiomer itself, matrix tablets and particulate delivery systems show strong cohesive properties, resulting in comparatively higher stability, prolonged disintegration times and a more controlled drug release. The permeation of hydrophilic macromolecular drugs through the gastrointestinal (GI) mucosa can be improved by the use of thiomers. Furthermore, some thiomers exhibit improved inhibitory properties towards GI peptidases. The efficacy of thiomers in oral drug delivery has been demonstrated by various in vivo studies. A pharmacological efficacy of 1%, for example, was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Furthermore, tablets comprising a thiomer and pegylated insulin resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Low-molecular-weight heparin embedded in thiolated polycarbophil led to an absolute bioavailability of > or = 20% after oral administration to rats. In these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. These results indicate drug carrier systems based on thiomers appear to be a promising tool for oral delivery of hydrophilic macromolecular drugs.

  16. An Overview of Clinical and Commercial Impact of Drug Delivery Systems

    Science.gov (United States)

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160

  17. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Hetal Thakkar

    2011-01-01

    Full Text Available Background : Raloxifene, a second-generation selective estrogen receptor modulator (SERM used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods : In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM and in vitro intestinal permeability. Results : The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion : Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation.

  18. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Science.gov (United States)

    Thakkar, Hetal; Nangesh, Jitesh; Parmar, Mayur; Patel, Divyakant

    2011-01-01

    Background: Raloxifene, a second-generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods: In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS) formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM) and in vitro intestinal permeability. Results: The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion: Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation. PMID:21966167

  19. Microneedle Patches as Drug and Vaccine Delivery Platform.

    Science.gov (United States)

    Li, Junwei; Zeng, Mingtao; Shan, Hu; Tong, Chunyi

    2017-01-01

    Transcutaneous delivery is the ideal method for delivering therapeutic reagents or vaccines into skin. With their promise of self-administration, cost-effective and high efficiency, microneedle patches have been studied intensively as therapeutic and vaccination delivery platform that replaces injection by syringe. This review aims to summarize the recent advancements of microneedle patches in application for drugs and vaccine delivery. We reviewed the most of recently published papers on microneedle patches, summarized their evolution, classification, state-of the-art capabilities and discussed promising application in drugs and vaccine delivery. With the rapid development of nanotechnology, microneedle patches have been improved by switching from undissolving to dissolving microneedles, and their safety has also improved dramatically. As a drug delivery tool, microneedle patches can deliver bioactive molecular of different physical size. Additionally, microneedle patches can be coated or encapsulate with DNA vaccine, subunit antigen, inactivated or live virus vaccine. Combining clinical results with the results of patient interview, microneedle patches are found to be feasible and are predicated to soon be acceptable for the medical service. In this review, we summarized the evolution, current and future application of microneedle patches as delivery vehicle for drugs and vaccines. Compared with traditional delivery tools, microneedle patches have many advantages, such as providing pain-free, non-invasive, convenient route for reagent administration and delivery, with no cold chain required for storage and transportation as well as decreasing sharp medical waste, needle-caused injury and transmission of blood-borne infectious disease in rural area. However, even though there are dramatic progress in preclinical investigation of microneedle patches, further testing will be required for clinical application. Further research should be implemented in multiple fields

  20. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  1. A high-density lipoprotein-mediated drug delivery system.

    Science.gov (United States)

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Elastic liposomes as novel carriers: recent advances in drug delivery

    Directory of Open Access Journals (Sweden)

    Hussain A

    2017-07-01

    Full Text Available Afzal Hussain,1,2 Sima Singh,1 Dinesh Sharma,3 Thomas J Webster,4 Kausar Shafaat,2 Abdul Faruk5 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; 2Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India; 3Zifam Pyrex Myanmar Co. Ltd., Yangon, Myanmar; 4Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 5Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India Abstract: Elastic liposomes (EL are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. Keywords: elastic liposomes, drug delivery, topical, transdermal, enhanced delivery 

  3. Connecting drug delivery reality to smart materials design.

    Science.gov (United States)

    Grainger, David W

    2013-09-15

    Inflated claims to both design and mechanistic novelty in drug delivery and imaging systems, including most nanotechnologies, are not supported by the generally poor translation of these systems to clinical efficacy. The "form begets function" design paradigm is seductive but perhaps over-simplistic in translation to pharmaceutical efficacy. Most innovations show few clinically important distinctions in their therapeutic benefits in relevant preclinical disease and delivery models, despite frequent claims to the contrary. Long-standing challenges in drug delivery issues must enlist more realistic, back-to-basics approaches to address fundamental materials properties in complex biological systems, preclinical test beds, and analytical methods to more reliably determine fundamental pharmaceutical figures of merit, including drug carrier purity and batch-batch variability, agent biodistribution, therapeutic index (safety), and efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs

    Directory of Open Access Journals (Sweden)

    Jafar Ezzati Nazhad Dolatabadi

    2015-06-01

    Full Text Available In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed.

  5. A Review of the Effect of Processing Variables on the Fabrication of Electro spun Nano fibers for Drug Delivery Applications

    International Nuclear Information System (INIS)

    Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, Ch.; Tomar, L.; Kumar, P.; Toit, L.C.D.; Ndesendo, V.M.K.

    2013-01-01

    Electro spinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nano technology that sparked worldwide research interest in nano materials for their preparation and application in biomedicine and drug delivery. Electro spinning is a simple, adaptable, cost-effective, and versatile technique for producing nano fibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nano fibers. The nano fiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nano fiber fabrication by electro spinning has broadened the horizons for widespread application of nano fibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electro spun nano fibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of post surgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electro spun nano fibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nano fibers when applied to drug delivery.

  6. Sperm-Hybrid Micromotor for Targeted Drug Delivery.

    Science.gov (United States)

    Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G

    2018-01-23

    A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing  toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.

  7. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhaoxing; Yu, Xiaobo; Hong, Jiaxu; Liu, Xi [Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031 (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031 (China); Sun, Jianguo, E-mail: sjgsun@126.com [Research Center, Eye & ENT Hospital, Fudan University, Shanghai 200031 (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031 (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200031 (China); Sun, Xinghuai, E-mail: xhsun@shmu.edu.cn [Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031 (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031 (China)

    2016-09-01

    The formation of a scar after glaucoma surgery often leads to unsuccessful control of intraocular pressure, and should be prevented by using a variety of methods. We designed and developed a novel drug delivery system (DDS) comprising cyclosporine A (CsA) and poly(lactic-co-glycolic acid) (PLGA) based on a glaucoma drainage device (GDD) that can continuously release CsA to prevent postoperative fibrosis following glaucoma surgery. The CsA@PLGA@GDD DDS was observed by field emission scanning electron microscopy and revealed an asymmetric pore structure. Thermogravimetric analysis was performed to measure the weight loss and evaluate the thermal stability of the CsA@PLGA@GDD DDS. The in vitro drug release profile of the DDS was studied using high performance liquid chromatography, which confirmed that the DDS released CsA at a stable rate and maintained adequate CsA concentrations for a relatively long time. The biocompatibility of the DDS and the inhibitory effects on the postoperative fibrosis were investigated in vitro using rabbit Tenon's fibroblasts. The in vivo safety and efficacy of the DDS were examined by implanting the DDS into Tenon's capsules in New Zealand rabbits. Bleb morphology, intraocular pressure, anterior chamber reactions, and anterior chamber angiography were studied at a series of set times. The DDS kept the filtration pathway unblocked for a longer time compared with the control GDD. The results indicate that the CsA@PLGA@GDD DDS represents a safe and effective strategy for preventing scar formation after glaucoma surgery. - Highlights: • CsA@PLGA@GDD drug delivery system (DDS) was designed and prepared successfully. • The DDS released CsA at a stable rate for > 3 months. • The DDS kept filtration pathway unblocked for a longer time than control. • CsA@PLGA@GDD DDS prevented glaucoma scar formation as a safe and effective strategy.

  8. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis

    International Nuclear Information System (INIS)

    Dai, Zhaoxing; Yu, Xiaobo; Hong, Jiaxu; Liu, Xi; Sun, Jianguo; Sun, Xinghuai

    2016-01-01

    The formation of a scar after glaucoma surgery often leads to unsuccessful control of intraocular pressure, and should be prevented by using a variety of methods. We designed and developed a novel drug delivery system (DDS) comprising cyclosporine A (CsA) and poly(lactic-co-glycolic acid) (PLGA) based on a glaucoma drainage device (GDD) that can continuously release CsA to prevent postoperative fibrosis following glaucoma surgery. The CsA@PLGA@GDD DDS was observed by field emission scanning electron microscopy and revealed an asymmetric pore structure. Thermogravimetric analysis was performed to measure the weight loss and evaluate the thermal stability of the CsA@PLGA@GDD DDS. The in vitro drug release profile of the DDS was studied using high performance liquid chromatography, which confirmed that the DDS released CsA at a stable rate and maintained adequate CsA concentrations for a relatively long time. The biocompatibility of the DDS and the inhibitory effects on the postoperative fibrosis were investigated in vitro using rabbit Tenon's fibroblasts. The in vivo safety and efficacy of the DDS were examined by implanting the DDS into Tenon's capsules in New Zealand rabbits. Bleb morphology, intraocular pressure, anterior chamber reactions, and anterior chamber angiography were studied at a series of set times. The DDS kept the filtration pathway unblocked for a longer time compared with the control GDD. The results indicate that the CsA@PLGA@GDD DDS represents a safe and effective strategy for preventing scar formation after glaucoma surgery. - Highlights: • CsA@PLGA@GDD drug delivery system (DDS) was designed and prepared successfully. • The DDS released CsA at a stable rate for > 3 months. • The DDS kept filtration pathway unblocked for a longer time than control. • CsA@PLGA@GDD DDS prevented glaucoma scar formation as a safe and effective strategy.

  9. Elastic liposomes as novel carriers: recent advances in drug delivery

    Science.gov (United States)

    Hussain, Afzal; Singh, Sima; Sharma, Dinesh; Webster, Thomas J; Shafaat, Kausar; Faruk, Abdul

    2017-01-01

    Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. PMID:28761343

  10. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  11. Application of nanohydrogels in drug delivery systems: recent patents review.

    Science.gov (United States)

    Dalwadi, Chintan; Patel, Gayatri

    2015-01-01

    Nanohydrogel combines the advantages of hydrogel and nano particulate systems. Similar to the hydrogel and macrogel, nanohydrogel can protect the drug and control drug release by stimuli responsive conformation or biodegradable bond into the polymer networks. Nanohydrogel has drawn huge interest due to their potential applications, such as carrier in target-specific controlled drug delivery, absorbents, chemical/biological sensors, and bio-mimetic materials. Similar to the nanoparticles, stimuli responsive nanohydrogel can easily be delivered in the liquid form for parenteral drug delivery application. This review highlights the methods to prepare nanohydrogel based on natural and synthetic polymers for diverse applications in drug delivery. It also encompasses the drug loading and drug release mechanism of the nanohydrogel formulation and patents related to the composition and chemical methods for preparation of nanohydrogel formulation with current status in clinical trials.

  12. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  13. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  14. The application of nanomaterials in controlled drug delivery for bone regeneration.

    Science.gov (United States)

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  15. Albumin-based drug delivery: harnessing nature to cure disease.

    Science.gov (United States)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke; Howard, Kenneth A

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

  16. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Science.gov (United States)

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  17. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Directory of Open Access Journals (Sweden)

    Qiu-Lan Zhou

    2014-01-01

    Full Text Available With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo, including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

  18. Food, physiology and drug delivery.

    Science.gov (United States)

    Varum, F J O; Hatton, G B; Basit, A W

    2013-12-05

    Gastrointestinal physiology is dynamic and complex at the best of times, and a multitude of known variables can affect the overall bioavailability of drugs delivered via the oral route. Yet while the influences of food and beverage intake as just two of these variables on oral drug delivery have been extensively documented in the wider literature, specific information on their effects remains sporadic, and is not so much contextually reviewed. Food co-ingestion with oral dosage forms can mediate several changes to drug bioavailability, yet the precise mechanisms underlying this have yet to be fully elucidated. Likewise, the often detrimental effects of alcohol (ethanol) on dosage form performance have been widely observed experimentally, but knowledge of which has only moderately impacted on clinical practice. Here, we attempt to piece together the available subject matter relating to the influences of both solid and liquid foodstuffs on the gastrointestinal milieu and the implications for oral drug delivery, with particular emphasis on the behaviour of modified-release dosage forms, formulation robustness and drug absorption. Providing better insight into these influences, and exemplifying cases where formulations have been developed or modified to circumvent their associated problems, can help to appropriately direct the design of future in vitro digestive modelling systems as well as oral dosage forms resilient to these effects. Moreover, this will help to better our understanding of the impact of food and alcohol intake on normal gut behaviour and function. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    Science.gov (United States)

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite.

    Science.gov (United States)

    Mondal, Sudip; Dorozhkin, Sergy V; Pal, Umapada

    2018-07-01

    Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale. © 2017 Wiley Periodicals, Inc.

  1. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  2. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  3. New Drugs and Devices from 2011 – 2012 That Might Change Your Practice

    Directory of Open Access Journals (Sweden)

    Lex, Joe

    2013-11-01

    Full Text Available To be honest, I thought this would be a lost cause. Even after skipping a New Drugs and Devices essay in 2012, I figured that I would have to search long and hard to find ten new things that emergency practitioners needed to know about. Although there were no true blockbuster medications for emergency physicians, I nonetheless found ten medicines that we probably should know, along with a new device that may change the way we work up patients with palpitations, and a clever new delivery system for subcutaneous epinephrine. [West J Emerg Med. 2013;14(6:619–628.

  4. Novel delivery systems with nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Cvijić Sandra

    2016-01-01

    Full Text Available Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs is associated with increased risk of serious gastrointestinal side effects. Therefore, recent trends in the development of NSAIDs aim to reduce the incidence of side effects, and improve patient compliance. One of the strategies to improve efficacy and safety of oral NSAIDs is the development of combination products that contain gastroprotective agents. Several products containing NSAID in combination with proton pump inhibitors (ketoprofen/omeprazole, naproxen/esomeprazole, H2-receptor antagonists (ibuprofen/famotidine, and prostaglandin analogues (diclofenac/misoprostol are currently available on the market. Another approach refer to the special formulation design to allow dose reduction while preserving drug therapeutic efficacy. An example is SoluMatrix® technology, a manufacturing process that produce submicron-sized drug particles with enhanced dissolution and absorption properties. Patented SoluMatrix® technology has been successfully employed to develop low-dose diclofenac, meloxicam, indomethacin and naproxen products. Topical NSAID formulations enable drug delivery to target tissues, while reducing systemic exposure and concomitant side effects associated with oral NSAIDs. Dermal/transdermal NSAID delivery systems are subject of intensive investigation. So far, several 'advanced' drug delivery systems with diclofenac, ibuprofen and ketoprofen have been designed.

  5. Adamantane in Drug Delivery Systems and Surface Recognition

    OpenAIRE

    Adela Štimac; Marina Šekutor; Kata Mlinarić-Majerski; Leo Frkanec; Ruža Frkanec

    2017-01-01

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based struc...

  6. A Biodegradable Microneedle Cuff for Comparison of Drug Effects through Perivascular Delivery to Balloon-Injured Arteries

    Directory of Open Access Journals (Sweden)

    Dae-Hyun Kim

    2017-02-01

    Full Text Available Restenosis at a vascular anastomosis site is a major cause of graft failure and is difficult to prevent by conventional treatment. Perivascular drug delivery has advantages as drugs can be diffused to tunica media and subintima while minimizing the direct effect on endothelium. This in vivo study investigated the comparative effectiveness of paclitaxel, sirolimus, and sunitinib using a perivascular biodegradable microneedle cuff. A total of 31 New Zealand white rabbits were used. Rhodamine was used to visualize drug distribution (n = 3. Sirolimus- (n = 7, sunitinib- (n = 7, and paclitaxel-loaded (n = 7 microneedle cuffs were placed at balloon-injured abdominal aortae and compared to drug-free cuffs (n = 7. Basic histological structures were not affected by microneedle devices, and vascular wall thickness of the device-only group was similar to that of normal artery. Quantitative analysis revealed significantly decreased neointima formation in all drug-treated groups (p < 0.001. However, the tunica media layer of the paclitaxel-treated group was significantly thinner than that of other groups and also showed the highest apoptotic ratio (p < 0.001. Proliferating cell nuclear antigen (PCNA-positive cells were significantly reduced in all drug-treated groups. Sirolimus or sunitinib appeared to be more appropriate for microneedle devices capable of slow drug release because vascular wall thickness was minimally affected.

  7. Drug-targeting methodologies with applications: A review

    Science.gov (United States)

    Kleinstreuer, Clement; Feng, Yu; Childress, Emily

    2014-01-01

    Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850

  8. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  9. Peptide-based soft materials as potential drug delivery vehicles.

    Science.gov (United States)

    Verma, Sandeep; Joshi, K B; Ghosh, Surajit

    2007-11-01

    Emerging concepts in the construction of nanostructures hold immense potential in the areas of drug delivery and targeting. Such nanoscopic assemblies/structures, similar to natural proteins and self-associating systems, may lead to the formation of programmable soft structures with expanded drug delivery options and the capability to circumvent first-pass metabolism. This article aims to illustrate key recent developments and innovative bioinspired design paradigms pertaining to peptide-containing self-assembled tubular and vesicular soft structures. Soft structures are composed of components that self-assemble to reveal diverse morphologies stabilized by weak, noncovalent interactions. Morphological properties of such structures and their ability to encapsulate drugs, biologicals and bioactive small molecules, with the promise of targeted delivery, are discussed.

  10. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery.

    Science.gov (United States)

    Liu, Yuxiao; Shao, Changmin; Bian, Feika; Yu, Yunru; Wang, Huan; Zhao, Yuanjin

    2018-05-23

    Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.

  11. Recent Advances in Ocular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shinobu Fujii

    2011-01-01

    Full Text Available Transport of drugs applied by traditional dosage forms is restricted to the eye, and therapeutic drug concentrations in the target tissues are not maintained for a long duration since the eyes are protected by a unique anatomy and physiology. For the treatment of the anterior segment of the eye, various droppable products to prolong the retention time on the ocular surface have been introduced in the market. On the other hand, direct intravitreal implants, using biodegradable or non-biodegradable polymer technology, have been widely investigated for the treatment of chronic vitreoretinal diseases. There is urgent need to develop ocular drug delivery systems which provide controlled release for the treatment of chronic diseases, and increase patient’s and doctor’s convenience to reduce the dosing frequency and invasive treatment. In this article, progress of ocular drug delivery systems under clinical trials and in late experimental stage is reviewed.

  12. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  13. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    Yellen, Benjamin B.; Forbes, Zachary G.; Halverson, Derek S.; Fridman, Gregory; Barbee, Kenneth A.; Chorny, Michael; Levy, Robert; Friedman, Gary

    2005-01-01

    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  14. Topical and transdermal drug delivery: principles and practice

    National Research Council Canada - National Science Library

    Benson, Heather A. E; Watkinson, Adam C

    2012-01-01

    .... Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation...

  15. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F

    2012-04-10

    It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly

  17. Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Keller, Stephan Sylvest

    2013-01-01

    PURPOSE: To fabricate microcontainers in biodegradable polylactic acid (PLLA) polymer films using hot embossing, and investigate the application of fabricated microcontainers as an oral drug delivery system for a poorly soluble drug. METHODS: For fabrication of the PLLA microcontainers, a film...... (produced by spray drying) using a simplified version of a screen printing technique. An enteric-resistant lid of Eudragit L-100 was subsequently spray coated onto the cavity of the microcontainers. Release of amorphous furosemide salt from the coated microcontainers was investigated using a μ-Diss profiler...... release from microcontainers in gastric medium, and facilitated an immediate release in the intestinal medium. The fabricated microcontainers therefore show considerable future potential as oral drug delivery systems....

  18. Thiolated chitosans: useful excipients for oral drug delivery.

    Science.gov (United States)

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  19. Crucial factors and emerging concepts in ultrasound-triggered drug delivery.

    Science.gov (United States)

    Geers, Bart; Dewitte, Heleen; De Smedt, Stefaan C; Lentacker, Ine

    2012-12-28

    Time and space controlled drug delivery still remains a huge challenge in medicine. A novel approach that could offer a solution is ultrasound guided drug delivery. “Ultrasonic drug delivery” is often based on the use of small gas bubbles (so-called microbubbles) that oscillate and cavitate upon exposure to ultrasound waves. Some microbubbles are FDA approved contrast agents for ultrasound imaging and are nowadays widely investigated as promising drug carriers. Indeed, it has been observed that upon exposure to ultrasound waves, microbubbles may (a) release the encapsulated drugs and (b) simultaneously change the structure of the cell membranes in contact with the microbubbles which may facilitate drug entrance into cells. This review aims to highlight (a) major factors known so far which affect ultrasonic drug delivery (like the structure of the microbubbles, acoustic settings, etc.) and (b) summarizes the recent preclinical progress in this field together with a number of promising new concepts and applications.

  20. A commentary on transdermal drug delivery systems in clinical trials.

    Science.gov (United States)

    Watkinson, Adam C

    2013-09-01

    The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.

  1. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery.

    Science.gov (United States)

    Kassem, Ahmed Alaa

    2018-02-06

    Drug toxicity and inefficacy are commonly experienced problems with drug therapy failure. To face these problems, extensive research work took place aiming to design new dosage forms for drug delivery especially nanoparticulate systems. These systems are designed to increase the quantity of the therapeutic molecule delivered to the desired site concurrently with reduced side effects. In order to achieve this objective, nanocarriers must principally display suitable drug vehiculization abilities and a controlled biological destiny of drug molecules. Only the intelligent design of the nanomedicine will accomplish these fundamentals. The present review article is dedicated to the discussion of the important fundamentals to be considered in the fabrication of nanomedicines. These include the therapeutic agent, the nanocarrier and the functionalization moieties. Special consideration is devoted to the explanation and compilation of highly potential fabrication approaches assisting how to control the in vivo destiny of the nanomedicine. Finally, some nanotechnology-based drug delivery systems, for the development of nanomedicine, are also discussed. The nanotechnology-based drug delivery systems showed remarkable outcomes based on passive and active targeting as well as improvement of the drug pharmacodynamic and pharmacokinetic profiles. Multifunctional nanocarrier concept affords a revolutionary drug delivery approach for maximizing the efficacy, safety and monitoring the biological fate of the therapeutic molecule. Nanomedicines may enhance the efficacy of therapeutic molecules and reduce their toxic effects. Meanwhile, further research works are required to rightly optimize (and define) the effectiveness, nanotoxicity, in vivo destiny and feasibility of these nanomedicines which, from a preclinical standpoint, are actually promising. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review

    Directory of Open Access Journals (Sweden)

    Mukta Paranjpe

    2014-04-01

    Full Text Available Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.

  3. Oral transmucosal drug delivery for pediatric use.

    Science.gov (United States)

    Lam, Jenny K W; Xu, Yingying; Worsley, Alan; Wong, Ian C K

    2014-06-01

    The formulation of medicines for children remains a challenge. An ideal pediatric formulation must allow accurate dose administration and be in a dosage form that can be handled by the target age group. It is also important to consider the choices and the amount of excipients used in the formulation for this vulnerable age group. Although oral formulations are generally acceptable to most pediatric patients, they are not suitable for drugs with poor oral bioavailability or when a rapid clinical effect is required. In recent years, oral transmucosal delivery has emerged as an attractive route of administration for pediatric patients. With this route of administration, a drug is absorbed through the oral mucosa, therefore bypassing hepatic first pass metabolism and thus avoiding drug degradation or metabolism in the gastrointestinal tract. The high blood flow and relatively high permeability of the oral mucosa allow a quick onset of action to be achieved. It is a simple and non-invasive route of drug administration. However, there are several barriers that need to be overcome in the development of oral transmucosal products. This article aims to provide a comprehensive review of the current development of oral transmucosal delivery specifically for the pediatric population in order to achieve systemic drug delivery. The anatomical and physiological properties of the oral mucosa of infants and young children are carefully examined. The different dosage forms and formulation strategies that are suitable for young patients are discussed. © 2013.

  4. Mononuclear phagocytes as a target, not a barrier, for drug delivery.

    Science.gov (United States)

    Yong, Seok-Beom; Song, Yoonsung; Kim, Hyung Jin; Ain, Qurrat Ul; Kim, Yong-Hee

    2017-08-10

    Mononuclear phagocytes have been generally recognized as a barrier to drug delivery. Recently, a new understanding of mononuclear phagocytes (MPS) ontogeny has surfaced and their functions in disease have been unveiled, demonstrating the need for re-evaluation of perspectives on mononuclear phagocytes in drug delivery. In this review, we described mononuclear phagocyte biology and focus on their accumulation mechanisms in disease sites with explanations of monocyte heterogeneity. In the 'MPS as a barrier' section, we summarized recent studies on mechanisms to avoid phagocytosis based on two different biological principles: protein adsorption and self-recognition. In the 'MPS as a target' section, more detailed descriptions were given on mononuclear phagocyte-targeted drug delivery systems and their applications to various diseases. Collectively, we emphasize in this review that mononuclear phagocytes are potent targets for future drug delivery systems. Mononuclear phagocyte-targeted delivery systems should be created with an understanding of mononuclear phagocyte ontogeny and pathology. Each specific subset of phagocytes should be targeted differently by location and function for improved disease-drug delivery while avoiding RES clearance such as Kupffer cells and splenic macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  6. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2016-01-01

    Full Text Available In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics. Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.

  7. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    Science.gov (United States)

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    Science.gov (United States)

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Drug Delivery Approaches for the Treatment of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Farideh Ordikhani

    2016-07-01

    Full Text Available Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods.

  10. Oral transmucosal drug delivery--current status and future prospects.

    Science.gov (United States)

    Sattar, Mohammed; Sayed, Ossama M; Lane, Majella E

    2014-08-25

    Oral transmucosal drug delivery (OTDD) dosage forms have been available since the 1980s. In contrast to the number of actives currently delivered locally to the oral cavity, the number delivered as buccal or sublingual formulations remains relatively low. This is surprising in view of the advantages associated with OTDD, compared with conventional oral drug delivery. This review examines a number of aspects related to OTDD including the anatomy of the oral cavity, models currently used to study OTDD, as well as commercially available formulations and emerging technologies. The limitations of current methodologies to study OTDD are considered as well as recent publications and new approaches which have advanced our understanding of this route of drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.

    Science.gov (United States)

    Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi

    2016-02-01

    Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.

  12. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1 protection of the loaded drug from the harsh environment of the GI tract, (2 release of the drug in a controlled manner at target sites, (3 prolongation of the residence time in the gut by mucoadhesion, and (4 inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.

  13. Drug accumulation by means of noninvasive magnetic drug delivery system

    International Nuclear Information System (INIS)

    Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-01-01

    The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.

  14. Techniques in Vascular and Interventional Radiology Drug Delivery Technologies in the Superficial Femoral Artery

    Science.gov (United States)

    Brahmbhatt, Akshaar; Misra, Sanjay

    2016-01-01

    Peripheral Arterial Disease (PAD) affects over 8 million people in the United States alone. While great strides have been made in reducing the burden of cardiovascular disease the prevalence of PAD is expected to rise as the global population ages. PAD characterized by narrowing of arterial blood can be asymptomatic or cause acute limb threatening claudication. It has been classically treated with bypass, but these techniques have been supplanted by endovascular therapy. Plain old Balloon Angioplasty (POBA) has been successful in helping revascularize lesions, but its effect has not been durable due to restenosis. This prompted the creation of several technologies aimed at reducing restenosis. These advances slowly improved outcomes and the durability of endovascular management. Amongst the main tools used in current endovascular practice are drug delivery devices aimed at inhibiting the inflammatory and proliferative pathways that lead to restenosis. This review will examine the current drug delivery technologies used in the SFA. PMID:27423996

  15. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Directory of Open Access Journals (Sweden)

    Mareike Hütten

    Full Text Available Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX. To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  16. Intravitreal Devices for the Treatment of Vitreous Inflammation

    Directory of Open Access Journals (Sweden)

    John B. Christoforidis

    2012-01-01

    Full Text Available The eye is a well-suited organ for local delivery of therapeutics to treat vitreous inflammation as well as other pathologic conditions that induce visual loss. Several conditions are particularly challenging to treat and often require chronic courses of therapy. The use of implantable intravitreal devices for drug delivery is an emerging field in the treatment of vitreous inflammation as well as other ophthalmologic diseases. There are unique challenges in the design of these devices which include implants, polymers, and micro- and nanoparticles. This paper reviews current and investigational drug delivery systems for treating vitreous inflammation as well as other pathologic conditions that induce visual loss. The use of nonbiodegradable devices such as polyvinyl alcohol-ethylene vinyl acetate polymers and polysulfone capillary fibers, and biodegradable devices such as polylactic acid, polyglycolic acid, and polylactic-co-glycolic acid, polycaprolactones, and polyanhydrides are reviewed. Clinically used implantable devices for therapeutic agents including ganciclovir, fluocinolone acetonide, triamcinolone acetonide, and dexamethasone are described. Finally, recently developed investigational particulate drug delivery systems in the form of liposomes, microspheres, and nanoparticles are examined.

  17. Buccal mucosa as a route for systemic drug delivery: a review.

    Science.gov (United States)

    Shojaei, A H

    1998-01-01

    Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. The mucosa has a rich blood supply and it is relatively permeable. It is the objective of this article to review buccal drug delivery by discussing the structure and environment of the oral mucosa and the experimental methods used in assessing buccal drug permeation/absorption. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems

  18. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery

    Directory of Open Access Journals (Sweden)

    Diane Render

    2016-01-01

    Full Text Available Oral drug delivery systems provide the most convenient, noninvasive, readily acceptable alternatives to parenteral systems. In the current work, eggshell-derived calcium carbonate (CaCO3 nanoparticles were used to develop enteric drug delivery system in the form of tablets. CaCO3 nanoparticles were manufactured using top-down ball-milling method and characterized by X-ray diffractometry (XRD and transmission electron microscopy (TEM and loaded with 5-fluorouracil as a model drug. Tablets with varying CaCO3 core and binder compositions were fabricated and coated with Eudragit S100 or Eudragit L100. Suitability for enteric delivery of the tablets was tested by oral administration to rabbits and radiography. Radiograph images showed that the tablet remained in the stomach of the rabbit for up to 3 hours. Further modifications of these biomaterial-derived nanoparticles and the coatings will enable manufacturing of stable formulations for slow or controlled release of pharmaceuticals for enteric delivery.

  19. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

    Science.gov (United States)

    Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

    2016-10-01

    AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry.

  20. Vial usage, device dead space, vaccine wastage, and dose accuracy of intradermal delivery devices for inactivated poliovirus vaccine (IPV).

    Science.gov (United States)

    Jarrahian, Courtney; Rein-Weston, Annie; Saxon, Gene; Creelman, Ben; Kachmarik, Greg; Anand, Abhijeet; Zehrung, Darin

    2017-03-27

    Intradermal delivery of a fractional dose of inactivated poliovirus vaccine (IPV) offers potential benefits compared to intramuscular (IM) delivery, including possible cost reductions and easing of IPV supply shortages. Objectives of this study were to assess intradermal delivery devices for dead space, wastage generated by the filling process, dose accuracy, and total number of doses that can be delivered per vial. Devices tested included syringes with staked (fixed) needles (autodisable syringes and syringes used with intradermal adapters), a luer-slip needle and syringe, a mini-needle syringe, a hollow microneedle device, and disposable-syringe jet injectors with their associated filling adapters. Each device was used to withdraw 0.1-mL fractional doses from single-dose IM glass vials which were then ejected into a beaker. Both vial and device were weighed before and after filling and again after expulsion of liquid to record change in volume at each stage of the process. Data were used to calculate the number of doses that could potentially be obtained from multidose vials. Results show wide variability in dead space, dose accuracy, overall wastage, and total number of doses that can be obtained per vial among intradermal delivery devices. Syringes with staked needles had relatively low dead space and low overall wastage, and could achieve a greater number of doses per vial compared to syringes with a detachable luer-slip needle. Of the disposable-syringe jet injectors tested, one was comparable to syringes with staked needles. If intradermal delivery of IPV is introduced, selection of an intradermal delivery device can have a substantial impact on vaccine wasted during administration, and thus on the required quantity of vaccine that needs to be purchased. An ideal intradermal delivery device should be not only safe, reliable, accurate, and acceptable to users and vaccine recipients, but should also have low dead space, high dose accuracy, and low overall

  1. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types

    Directory of Open Access Journals (Sweden)

    Longfa Kou

    2018-01-01

    Full Text Available Targeted nano-drug delivery systems conjugated with specific ligands to target selective cell-surface receptors or transporters could enhance the efficacy of drug delivery and therapy. Transporters are expressed differentially on the cell-surface of different cell types, and also specific transporters are expressed at higher than normal levels in selective cell types under pathological conditions. They also play a key role in intestinal absorption, delivery via non-oral routes (e.g., pulmonary route and nasal route, and transfer across biological barriers (e.g., blood–brain barrier and blood–retinal barrier. As such, the cell-surface transporters represent ideal targets for nano-drug delivery systems to facilitate drug delivery to selective cell types under normal or pathological conditions and also to avoid off-target adverse side effects of the drugs. There is increasing evidence in recent years supporting the utility of cell-surface transporters in the field of nano-drug delivery to increase oral bioavailability, to improve transfer across the blood–brain barrier, and to enhance delivery of therapeutics in a cell-type selective manner in disease states. Here we provide a comprehensive review of recent advancements in this interesting and important area. We also highlight certain key aspects that need to be taken into account for optimal development of transporter-assisted nano-drug delivery systems.

  2. Patient's Guide to Aerosol Drug Delivery

    Science.gov (United States)

    ... these 3 different bad effects (or symptoms ) will bet- ter prepare you to understand the 5 categories ... in many ways that impact aerosol drug delivery. Thinking ability (under- standing how and when to use ...

  3. Evaluation of Laser-Assisted Trans-Nail Drug Delivery with Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Meng-Tsan Tsai

    2016-12-01

    Full Text Available The nail provides a functional protection to the fingertips and surrounding tissue from external injuries. The nail plate consists of three layers including dorsal, intermediate, and ventral layers. The dorsal layer consists of compact, hard keratins, limiting topical drug delivery through the nail. In this study, we investigate the application of fractional CO2 laser that produces arrays of microthermal ablation zones (MAZs to facilitate drug delivery in the nails. We utilized optical coherence tomography (OCT for real-time monitoring of the laser–skin tissue interaction, sparing the patient from an invasive surgical sampling procedure. The time-dependent OCT intensity variance was used to observe drug diffusion through an induced MAZ array. Subsequently, nails were treated with cream and liquid topical drugs to investigate the feasibility and diffusion efficacy of laser-assisted drug delivery. Our results show that fractional CO2 laser improves the effectiveness of topical drug delivery in the nail plate and that OCT could potentially be used for in vivo monitoring of the depth of laser penetration as well as real-time observations of drug delivery.

  4. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  5. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders.

    Science.gov (United States)

    Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2017-06-01

    The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.

  6. Combination Drug Delivery Approaches in Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jun H. Lee

    2012-01-01

    Full Text Available Disseminated metastatic breast cancer needs aggressive treatment due to its reduced response to anticancer treatment and hence low survival and quality of life. Although in theory a combination drug therapy has advantages over single-agent therapy, no appreciable survival enhancement is generally reported whereas increased toxicity is frequently seen in combination treatment especially in chemotherapy. Currently used combination treatments in metastatic breast cancer will be discussed with their challenges leading to the introduction of novel combination anticancer drug delivery systems that aim to overcome these challenges. Widely studied drug delivery systems such as liposomes, dendrimers, polymeric nanoparticles, and water-soluble polymers can concurrently carry multiple anticancer drugs in one platform. These carriers can provide improved target specificity achieved by passive and/or active targeting mechanisms.

  7. A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

    Science.gov (United States)

    Taub, Marc Barry

    Transdermal drug delivery is an alternative approach to the systemic delivery of pharmaceuticals where drugs are administered through the skin and absorbed percutaneously. This method of delivery offers several advantages over more traditional routes; most notably, the avoidance of the fast-pass metabolism of the liver and gut, the ability to offer controlled release rates, and the possibility for novel devices. Pressure sensitive adhesives (PSAs) are used to bond transdermal drug delivery devices to the skin because of their good initial and long-term adhesion, clean removability, and skin and drug compatibility. However, an understanding of the mechanics of adhesion to the dermal layer, together with quantitative and reproducible test methods for measuring adhesion, have been lacking. This study utilizes a mechanics-based approach to quantify the interfacial adhesion of PSAs bonded to selected substrates, including human dermal tissue. The delamination of PSA layers is associated with cavitation in the PSA followed by the formation of an extensive cohesive zone behind the debond tip. A quantitative metrology was developed to assess the adhesion and delamination of PSAs, such that it could be possible to easily distinguish between the adhesive characteristics of different PSA compositions and to provide a quantitative basis from which the reliability of adhesive layers bonded to substrates could be studied. A mechanics-based model was also developed to predict debonding in terms of the relevant energy dissipation mechanisms active during this process. As failure of transdermal devices may occur cohesively within the PSA layer, adhesively at the interface between the PSA and the skin, or cohesively between the corneocytes that comprise the outermost layer of the skin, it was also necessary to explore the mechanical and fracture properties of human skin. The out-of-plane delamination of corneocytes was studied by determining the strain energy release rate during

  8. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  9. A smart pill for drug delivery with sensing capabilities.

    Science.gov (United States)

    Goffredo, R; Accoto, D; Santonico, M; Pennazza, G; Guglielmelli, E

    2015-08-01

    In this paper a novel system for local drug delivery is described. The actuation principle of the micropump used for drug delivery relies on the electrolysis of a water-based solution, which is separated from a drug reservoir by an elastic membrane. The electrolytically produced gases pressurize the electrolytic solution reservoir, causing the deflection of the elastic membrane. Such deflection, in turn, forces the drug out of its reservoir through a nozzle. The proposed system is integrated in a swallowable capsule, equipped with an impedance sensor useful to acquire information on the physiological conditions of the tissue. Such information can be used to control pump activation.

  10. Influence of a Double-Lumen Extension Tube on Drug Delivery: Examples of Isosorbide Dinitrate and Diazepam.

    Directory of Open Access Journals (Sweden)

    Aurélie Maiguy-Foinard

    Full Text Available Plastic materials such as polyurethane (PUR, polyethylene (PE, polypropylene (PP and polyvinyl chloride (PVC are widely used in double-lumen extension tubing. The purposes of our study were to 1 compare in vitro drug delivery through the double extension tubes available on the market 2 assess the plastic properties of PUR in infusion devices and their impact on drug delivery.The study compared eight double-lumen extension tubes in PUR, co-extruded (PE/PVC plastic and plasticised PVC from different manufacturers. Isosorbide dinitrate and diazepam were used as model compounds to evaluate their sorption on the internal surface of the infusion device. Control experiments were performed using norepinephrine known not to absorb to plastics. Drug concentrations delivered at the egress of extension tubes were determined over time by an analytical spectrophotometric UV-Vis method. The main characteristics of plastics were also determined.Significant differences in the sorption phenomenon were observed among the eight double-lumen extension tubes and between pairs of extension tubes. Mean concentrations of isosorbide dinitrate delivered at the egress of double-lumen extension tubes after a 150-minute infusion (mean values ± standard deviation in percentage of the initial concentrations in the prepared syringes ranged between 80.53 ± 1.66 (one of the PUR tubes and 92.84 ± 2.73 (PE/PVC tube. The same parameters measured during diazepam infusion ranged between 48.58 ± 2.88 (one of the PUR tubes and 85.06 ± 3.94 (PE/PVC tube. The double-lumen extension tubes in PUR were either thermosetting (resin or thermoplastic according to reference.Clinicians must be aware of potential drug interactions with extension tube materials and so must consider their nature as well as the sterilisation method used before selecting an infusion device.

  11. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  12. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  13. Ex vivo investigation of magnetically targeted drug delivery system

    International Nuclear Information System (INIS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-01-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel

  14. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  15. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  16. pH- and ion-sensitive polymers for drug delivery

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  17. pH- and ion-sensitive polymers for drug delivery.

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-11-01

    Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.

  18. In vitro characterization of microcontainers as an oral drug delivery system

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Jacobsen, J.

    We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide.......We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide....

  19. Improving drug delivery technology for treating neurodegenerative diseases.

    Science.gov (United States)

    Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Pillay, Viness

    2016-07-01

    Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.

  20. Undefined role of mucus as a barrier in ocular drug delivery.

    Science.gov (United States)

    Ruponen, Marika; Urtti, Arto

    2015-10-01

    Mucus layer covers the ocular surface, and soluble mucins are also present in the tear fluid. After topical ocular drug administration, the drugs and formulations may interact with mucus layer that may act as a barrier in ocular drug delivery. In this mini-review, we illustrate the mucin composition of the ocular surface and discuss the influence of mucus layer on ocular drug absorption. Based on the current knowledge the role of mucus barrier in drug delivery is still undefined. Furthermore, interactions with mucus may prolong the retention of drug formulations on the ocular surface. Mucus may decrease or increase ocular bioavailability depending on the magnitude of its role as barrier or retention site, respectively. Mechanistic studies are needed to clarify the role of mucin in ocular drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  2. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices.

    Science.gov (United States)

    Gualeni, B; Coulman, S A; Shah, D; Eng, P F; Ashraf, H; Vescovo, P; Blayney, G J; Piveteau, L-D; Guy, O J; Birchall, J C

    2018-03-01

    Translation of cell therapies to the clinic is accompanied by numerous challenges, including controlled and targeted delivery of the cells to their site of action, without compromising cell viability and functionality. To explore the use of hollow microneedle devices (to date only used for the delivery of drugs and vaccines into the skin and for the extraction of biological fluids) to deliver cells into skin in a minimally invasive, user-friendly and targeted fashion. Melanocyte, keratinocyte and mixed epidermal cell suspensions were passed through various types of microneedles and subsequently delivered into the skin. Cell viability and functionality are maintained after injection through hollow microneedles with a bore size ≥ 75 μm. Healthy cells are delivered into the skin at clinically relevant depths. Hollow microneedles provide an innovative and minimally invasive method for delivering functional cells into the skin. Microneedle cell delivery represents a potential new treatment option for cell therapy approaches including skin repigmentation, wound repair, scar and burn remodelling, immune therapies and cancer vaccines. © 2017 British Association of Dermatologists.

  3. Magnetic drug delivery with FePd nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Pondman, Kirsten M.; Bunt, Nathan D. [Neuro Imaging, MIRA Institute, University of Twente, Enschede (Netherlands); Maijenburg, A. Wouter [Inorganic Material Science, MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Wezel, Richard J.A. van [Biomedical Signals and Systems, MIRA, Twente University, Enschede (Netherlands); Kishore, Uday [Centre for Infection, Immunity and Disease Mechanisms, Biosciences, Brunel University, London (United Kingdom); Abelmann, Leon [Transducer Science and Technology group, MESA+ Institute for nanotechnology, University of Twente, Enschede (Netherlands); Elshof, Johan E. ten [Inorganic Material Science, MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Haken, Bennie ten, E-mail: b.tenhaken@utwente.nl [Neuro Imaging, MIRA Institute, University of Twente, Enschede (Netherlands)

    2015-04-15

    Magnetic drug delivery is a promising method to target a drug to a diseased area while reducing negative side effects caused by systemic administration of drugs. In magnetic drug delivery a therapeutic agent is coupled to a magnetic nanoparticle. The particles are injected and at the target location withdrawn from blood flow by a magnetic field. In this study a FePd nanowire is developed with optimised properties for magnetic targeting. The nanowires have a high magnetic moment to reduce the field gradient needed to capture them with a magnet. The dimensions and the materials of the nanowire and coating are such that they are dispersable in aqueous media, non-cytotoxic, easily phagocytosed and not complement activating. This is established in several in-vitro tests with macrophage and endothelial cell lines. Along with the nanowires a magnet is designed, optimised for capture of the nanowires from the blood flow in the hind leg of a rat. The system is used in a pilot scale in-vivo experiment. No negative side effects from injection of the nanowires were found within the limited time span of the experiment. In this first pilot experiment no nanowires were found to be targeted by the magnet, or in the liver, kidneys or spleen, most likely the particles were removed during the fixation procedure. - Highlights: • Description of the magnetic properties of nanowires. • Design and characterisation of a biocompatible FePd nanowire. • In-vitro cytotoxicity analysis and immune system responses. • In-vivo magnetic drug delivery using the developed nanowires.

  4. From micro- to nanostructured implantable device for local anesthetic delivery

    Directory of Open Access Journals (Sweden)

    Zorzetto L

    2016-06-01

    Full Text Available Laura Zorzetto,1 Paola Brambilla,1 Elena Marcello,1 Nora Bloise,2 Manuela De Gregori,3 Lorenzo Cobianchi,4,5 Andrea Peloso,4,5 Massimo Allegri,6 Livia Visai,2,7 Paola Petrini1 1Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, Milan, 2Department of Molecular Medicine, Centre for Health Technologies (CHT, INSTM UdR of Pavia, University of Pavia, 3Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, 4General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, 5Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 6Department of Surgical Sciences, University of Parma, Parma, 7Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy Abstract: Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured

  5. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  6. Delivery Device and Method for Forming the Same

    Science.gov (United States)

    Ma, Peter X. (Inventor); Liu, Xiaohua (Inventor); McCauley, Laurie (Inventor)

    2014-01-01

    A delivery device includes a hollow container, and a plurality of biodegradable and/or erodible polymeric layers established in the container. A layer including a predetermined substance is established between each of the plurality of polymeric layers, whereby degradation of the polymeric layer and release of the predetermined substance occur intermittently. Methods for forming the device are also disclosed herein.

  7. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  8. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Directory of Open Access Journals (Sweden)

    Huile Gao

    2016-07-01

    Full Text Available Due to the ability of the blood–brain barrier (BBB to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier (BBTB, and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  9. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Institute of Scientific and Technical Information of China (English)

    Huile Gao

    2016-01-01

    Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier(BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  10. Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour

    International Nuclear Information System (INIS)

    Zhan, Wenbo; Xu, Xiao Yun; Gedroyc, Wladyslaw

    2014-01-01

    Most of the computational models of drug transport in vascular tumours assume a uniform distribution of blood vessels through which anti-cancer drugs are delivered. However, it is well known that solid tumours are characterized by dilated microvasculature with non-uniform diameters and irregular branching patterns. In this study, the effect of heterogeneous vasculature on drug transport and uptake is investigated by means of mathematical modelling of the key physical and biochemical processes in drug delivery. An anatomically realistic tumour model accounting for heterogeneous distribution of blood vessels is reconstructed based on magnetic resonance images of a liver tumour. Numerical simulations are performed for different drug delivery modes, including direct continuous infusion and thermosensitive liposome-mediated delivery, and the anti-cancer effectiveness is evaluated through changes in tumour cell density based on predicted intracellular concentrations. Comparisons are made between regions of different vascular density, and between the two drug delivery modes. Our numerical results show that both extra- and intra-cellular concentrations in the liver tumour are non-uniform owing to the heterogeneous distribution of tumour vasculature. Drugs accumulate faster in well-vascularized regions, where they are also cleared out more quickly, resulting in less effective tumour cell killing in these regions. Compared with direct continuous infusion, the influence of heterogeneous vasculature on anti-cancer effectiveness is more pronounced for thermosensitive liposome-mediated delivery. (paper)

  11. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    Science.gov (United States)

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721

  12. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    Science.gov (United States)

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  13. Advances in the synthesis and application of nanoparticles for drug delivery.

    Science.gov (United States)

    Park, Wooram; Na, Kun

    2015-01-01

    The continuous development of drug delivery systems (DDSs) has been extensively researched by the need to maximize therapeutic efficacy while minimizing undesirable side effects. Nanoparticle technology was recently shown to hold great promise for drug delivery applications in nanomedicine due to its beneficial properties, such as better encapsulation, bioavailability, control release, and lower toxic effect. Despite the great progress in nanomedicine, there remain many limitations for clinical application. To overcome these limitations, advanced nanoparticles for drug delivery have been developed to enable the spatially and temporally controlled release of drugs in response to specific stimuli at disease sites. Furthermore, the controlled self-assembly of organic and inorganic materials may enable their use in theranostic applications. This review presents an overview of a recent advanced nanoparticulate system that can be used as a potential drug delivery carrier and focuses on the potential applications of nanoparticles in various biomedical fields for human health care. © 2015 Wiley Periodicals, Inc.

  14. A Controlled Drug-Delivery Experiment Using Alginate Beads

    Science.gov (United States)

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  15. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  16. Recent Advances in the Application of Vitamin E TPGS for Drug Delivery

    Science.gov (United States)

    Yang, Conglian; Wu, Tingting; Qi, Yan; Zhang, Zhiping

    2018-01-01

    D-ɑ-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) has been approved by FDA as a safe adjuvant and widely used in drug delivery systems. The biological and physicochemical properties of TPGS provide multiple advantages for its applications in drug delivery like high biocompatibility, enhancement of drug solubility, improvement of drug permeation and selective antitumor activity. Notably, TPGS can inhibit the activity of ATP dependent P-glycoprotein and act as a potent excipient for overcoming multi-drug resistance (MDR) in tumor. In this review, we aim to discuss the recent advances of TPGS in drug delivery including TPGS based prodrugs, nitric oxide donor and polymers, and unmodified TPGS based formulations. These potential applications are focused on enhancing delivery efficiency as well as the therapeutic effect of agents, especially on overcoming MDR of tumors. It also demonstrates that the clinical translation of TPGS based nanomedicines is still faced with many challenges, which requires more detailed study on TPGS properties and based delivery system in the future. PMID:29290821

  17. Adamantane in Drug Delivery Systems and Surface Recognition.

    Science.gov (United States)

    Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža

    2017-02-16

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  18. Adamantane in Drug Delivery Systems and Surface Recognition

    Directory of Open Access Journals (Sweden)

    Adela Štimac

    2017-02-01

    Full Text Available The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  19. Modeling of transdermal drug delivery with a microneedle array

    Science.gov (United States)

    Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.

    2006-11-01

    Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.

  20. TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available The paper presents the common methods employed in recent years for enhancing transdermal delivery of drug substances when applying transdermal therapeutic delivery systems. The chemical, physical and mechanical methods to enhance the transport of macromolecular compounds through the skin are considered in details. 

  1. Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems.

    Science.gov (United States)

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2013-11-01

    Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  3. Needle-free and microneedle drug delivery in children: a case for disease-modifying antirheumatic drugs (DMARDs).

    Science.gov (United States)

    Shah, Utpal U; Roberts, Matthew; Orlu Gul, Mine; Tuleu, Catherine; Beresford, Michael W

    2011-09-15

    Parenteral routes of drug administration have poor acceptability and tolerability in children. Advances in transdermal drug delivery provide a potential alternative for improving drug administration in this patient group. Issues with parenteral delivery in children are highlighted and thus illustrate the scope for the application of needle-free and microneedle technologies. This mini-review discusses the opportunities and challenges for providing disease-modifying antirheumatic drugs (DMARDs) currently prescribed to paediatric rheumatology patients using such technologies. The aim is to raise further awareness of the need for age-appropriate formulations and drug delivery systems and stimulate exploration of these options for DMARDs, and in particular, rapidly emerging biologics on the market. The ability of needle-free and microneedle technologies to deliver monoclonal antibodies and fusion proteins still remains largely untested. Such an understanding is crucial for future drug design opportunities. The bioavailability, safety and tolerance of delivering biologics into the viable epidermis also need to be studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, K. [University of California - Davis (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  5. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    International Nuclear Information System (INIS)

    Ferrara, K.

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  6. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  7. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  8. The origins and evolution of "controlled" drug delivery systems.

    Science.gov (United States)

    Hoffman, Allan S

    2008-12-18

    This paper describes the earliest days when the "controlled drug delivery" (CDD) field began, the pioneers who launched this exciting and important field, and the key people who came after them. It traces the evolution of the field from its origins in the 1960s to (a) the 1970s and 1980s, when numerous macroscopic "controlled" drug delivery (DD) devices and implants were designed for delivery as mucosal inserts (e.g., in the eye or vagina), as implants (e.g., sub-cutaneous or intra-muscular), as ingestible capsules (e.g., in the G-I tract), as topical patches (e.g., on the skin), and were approved for clinical use, to (b) the 1980s and 1990s when microscopic degradable polymer depot DD systems (DDS) were commercialized, and to (c) the currently very active and exciting nanoscopic era of targeted nano-carriers, in a sense bringing to life Ehrlich's imagined concept of the "Magic Bullet". The nanoscopic era began with systems proposed in the 1970s, that were first used in the clinic in the 1980s, and which came of age in the 1990s, and which are presently evolving into many exciting and clinically successful products in the 2000s. Most of these have succeeded because of the emergence of three key technologies: (1) PEGylation, (2) active targeting to specific cells by ligands conjugated to the DDS, or passive targeting to solid tumors via the EPR effect. The author has been personally involved in the origins and evolution of this field for the past 38 years (see below), and this review includes information that was provided to him by many researchers in this field about the history of various developments. Thus, this paper is based on his own personal involvements in the CDD field, along with many historical anecdotes provided by the key pioneers and researchers in the field. Because of the huge literature of scientific papers on CDD systems, this article attempts to limit examples to those that have been approved for clinical use, or are currently in clinical trials

  9. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    Science.gov (United States)

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  10. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery.

    Science.gov (United States)

    Patel, Viral; Sharma, Om Prakash; Mehta, Tejal

    2018-04-01

    Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.

  11. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs.

    Science.gov (United States)

    Sudhakar, Yajaman; Kuotsu, Ketousetuo; Bandyopadhyay, A K

    2006-08-10

    Rapid developments in the field of molecular biology and gene technology resulted in generation of many macromolecular drugs including peptides, proteins, polysaccharides and nucleic acids in great number possessing superior pharmacological efficacy with site specificity and devoid of untoward and toxic effects. However, the main impediment for the oral delivery of these drugs as potential therapeutic agents is their extensive presystemic metabolism, instability in acidic environment resulting into inadequate and erratic oral absorption. Parenteral route of administration is the only established route that overcomes all these drawbacks associated with these orally less/inefficient drugs. But, these formulations are costly, have least patient compliance, require repeated administration, in addition to the other hazardous effects associated with this route. Over the last few decades' pharmaceutical scientists throughout the world are trying to explore transdermal and transmucosal routes as an alternative to injections. Among the various transmucosal sites available, mucosa of the buccal cavity was found to be the most convenient and easily accessible site for the delivery of therapeutic agents for both local and systemic delivery as retentive dosage forms, because it has expanse of smooth muscle which is relatively immobile, abundant vascularization, rapid recovery time after exposure to stress and the near absence of langerhans cells. Direct access to the systemic circulation through the internal jugular vein bypasses drugs from the hepatic first pass metabolism leading to high bioavailability. Further, these dosage forms are self-administrable, cheap and have superior patient compliance. Developing a dosage form with the optimum pharmacokinetics is a promising area for continued research as it is enormously important and intellectually challenging. With the right dosage form design, local environment of the mucosa can be controlled and manipulated in order to

  12. Drug Delivery to the Ischemic Brain

    Science.gov (United States)

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  13. Preparation of magnetic nanoparticles and their application to magnetic targeting drug delivery

    International Nuclear Information System (INIS)

    Li Guiping; Wang Yongxian

    2006-01-01

    Magnetic nanoparticles barrier is a novel kind of drug delivery system for magnetic targeting drugs, which can effectively deliver the drug to a tumor target site and increase therapeutic benefit, with the side effects minimized. This article summarizes the most outstanding papers on the of magnetic nanoparticles used as the targeting drug's delivery systems. (authors)

  14. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin.

    Science.gov (United States)

    Prausnitz, Mark R

    2017-06-07

    Microneedle patches (MNPs) contain arrays of solid needles measuring hundreds of microns in length that deliver drugs and vaccines into skin in a painless, easy-to-use manner. Optimal MNP design balances multiple interdependent parameters that determine mechanical strength, skin-insertion reliability, drug delivery efficiency, painlessness, manufacturability, and other features of MNPs that affect their performance. MNPs can be made by adapting various microfabrication technologies for delivery of small-molecule drugs, biologics, and vaccines targeted to the skin, which can have pharmacokinetic and immunologic advantages. A small number of human clinical trials, as well as a large and growing market for MNP products for cosmetics, indicate that MNPs can be used safely, efficaciously, and with strong patient acceptance. More advanced clinical trials and commercial-scale manufacturing will facilitate development of MNPs to realize their potential to dramatically increase patient access to otherwise-injectable drugs and to improve drug performance via skin delivery.

  15. [Formulation aspects and ex-vivo examination of buccal drug delivery systems].

    Science.gov (United States)

    Szabó, Barnabás; Hetényi, Gergely; Majoros, Klaudia; Miszori, Veronika; Kállai, Nikolett; Zelkó, Romána

    2011-01-01

    Application of buccal dosage forms has several advantages. Buccal route can be used for systemic delivery because the mucosa has a rich blood supply and it is relatively permeable. This route of drug delivery is of special advantages, including the bypass of first pass effect and the avoidance of presystemic elimination within the GIT. Buccal delivery systems enable the systemic delivery of peptides and proteins. In our previous study the physiological background of this application and the excipients of the possible formulations were reviewed. In the present work the formulation and ex vivo examination aspects of buccal drug delivery systems are summarized.

  16. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    Science.gov (United States)

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  17. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  18. Future options for aerosol delivery to children

    DEFF Research Database (Denmark)

    Bisgaard, H

    1999-01-01

    , allowing less compliant children enough time to obtain a full dose. Eliminating the electrostatic charge can change the lung dose by several times; hence, nonelectrostatic materials should be used in future spacer devices. Compliance is the biggest problem in drug delivery to children. The inhaler design......There is an increasing awareness of the importance of reliable aerosol delivery, with emphasis on the dose delivered to the lungs, optimal clinical control, cost-effectiveness, and safety in children. Dose prescription should relate to the expected lung dose rather than the factory-dispensed dose......, as at present. The device determines the lung dose. Clearly, therefore, the device should be considered an integral part of the prescription. Drug approval processes should clearly specify the device, and discourage the use of other devices. This would rationalize the choice of devices. Important new insights...

  19. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery

    Science.gov (United States)

    Sirsi, Shashank; Borden, Mark

    2014-01-01

    Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162

  20. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

    Science.gov (United States)

    Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

    2016-05-01

    The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

  2. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment

    Directory of Open Access Journals (Sweden)

    Jason A. Ellis

    2015-01-01

    Full Text Available Effective treatment for glioblastoma (GBM will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed.

  3. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  4. Fabrication and loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh

    is an important loop diuretic drug with low solubility and permeability is used as a model drug and embedded in a PCL matrix. The crystallinity of the drug is tailored by the process parameters of spin coating. Release profiles ranging from rapid burst release to sustained zero-order release are obtained......Oral drug delivery is considered as the most patient compliant delivery route. However, it faces many obstacles, especially due to the ever-increasing number of drugs that are poorly soluble and barely absorbed in the gastro-intestinal tract. Moreover, drugs can degrade in the harsh acidic...... in this project. This process utilizes a stamp in connection with the ability to apply heat and pressure to transfer the stamp pattern to a film. Processes have been optimized for fabrication of nickel stamps with two layered, high aspect ratio microstructures. Bosch deep reactive ion etching of Silicon producing...

  5. Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.

    Science.gov (United States)

    Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam

    2016-01-01

    Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.

  6. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  7. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases

    Science.gov (United States)

    Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H. F.; Karla, Pradeep K.; Boddu, Sai H. S.

    2018-01-01

    Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. PMID:29495528

  8. Drug delivery glucantime in PVP/chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: mariajhho@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Amato, Valdir S. [Universidade de Sao Paulo (DMIP/FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Molestias Infecciosas e Parasitarias

    2015-07-01

    The current study of polymer science considers the area of biomedical application very important to establish developments in new polymeric materials. Examples of that are hydrogels for controlled release of drugs. In this work, hydrogels of poly (N-2-vinil-pyrrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized to investigate chitosan influence on Glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by X Ray diffraction (DRX). Atomic Force Microscopy (AFM) and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed 'in vitro'. The system showed higher gel fraction for the matrix with 1.0% of clay and 0.5% of chitosan. In this case, besides the interactions of clay ions with PVP, there are interactions of chitosan amine group with PVP amide group. (author)

  9. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  11. Drug delivery glucantime in PVP/chitosan membranes

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Lugao, Ademar B.; Parra, Duclerc F.; Amato, Valdir S.

    2015-01-01

    The current study of polymer science considers the area of biomedical application very important to establish developments in new polymeric materials. Examples of that are hydrogels for controlled release of drugs. In this work, hydrogels of poly (N-2-vinil-pyrrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized to investigate chitosan influence on Glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by X Ray diffraction (DRX). Atomic Force Microscopy (AFM) and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed 'in vitro'. The system showed higher gel fraction for the matrix with 1.0% of clay and 0.5% of chitosan. In this case, besides the interactions of clay ions with PVP, there are interactions of chitosan amine group with PVP amide group. (author)

  12. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  13. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  14. DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy.

    Science.gov (United States)

    Angell, Chava; Xie, Sibai; Zhang, Liangfang; Chen, Yi

    2016-03-02

    Nanomedicine has been growing exponentially due to its enhanced drug targeting and reduced drug toxicity. It uses the interactions where nanotechnological components and biological systems communicate with each other to facilitate the delivery performance. At this scale, the physiochemical properties of delivery systems strongly affect their capacities. Among current delivery systems, DNA nanotechnology shows many advantages because of its unprecedented engineering abilities. Through molecular recognition, DNA nanotechnology can be used to construct a variety of nanostructures with precisely controllable size, shape, and surface chemistry, which can be appreciated in the delivery process. In this review, different approaches that are currently used for the construction of DNA nanostructures are reported. Further, the utilization of these DNA nanostructures with the well-defined parameters for the precise control in drug delivery and gene therapy is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Introduction for the special issue on recent advances in drug delivery across tissue barriers.

    Science.gov (United States)

    Mrsny, Randall J; Brayden, David J

    2016-01-01

    This special issue of Tissue Barriers contains a series of reviews with the common theme of how biological barriers established at epithelial tissues limit the uptake of macromolecular therapeutics. By improving our functional understanding of these barriers, the majority of the authors have highlighted potential strategies that might be applied to the non-invasive delivery of biopharmaceuticals that would otherwise require an injection format for administration. Half of the articles focus on the potential of particular technologies to assist oral delivery of peptides, proteins and other macromolecules. These include use of prodrug chemistry to improve molecule stability and permeability, and the related potential for oral delivery of poorly permeable agents by cell-penetrating peptides and dendrimers. Safety aspects of intestinal permeation enhancers are discussed, along with the more recent foray into drug-device combinations as represented by intestinal microneedles and externally-applied ultrasound. Other articles highlight the crossover between food research and oral delivery based on nanoparticle technology, while the final one provides a fascinating interpretation of the physiological problems associated with subcutaneous insulin delivery and how inefficient it is at targeting the liver.

  16. Silk Fibroin-Based Nanoparticles for Drug Delivery

    Science.gov (United States)

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  17. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  18. Functionalized mesoporous silicon for targeted-drug-delivery.

    Science.gov (United States)

    Tabasi, Ozra; Falamaki, Cavus; Khalaj, Zahra

    2012-10-01

    The present work concerns a preliminary step in the production of anticancer drug loaded porous silicon (PSi) for targeted-drug-delivery applications. A successful procedure for the covalent attachment of folic acid, polyethylene glycol (PEG) and doxorubicin to hydrophilic mesoporous silicon layers is presented. A systematic approach has been followed to obtain the optimal composition of the N,N'-dicyclohexylcarbodiimide (DCC)/N-hydroxysuccimide (NHS) in dimethylsulfoxide (DMSO) solution for the surface activation process of the undecylenic acid (UD) grafted molecules to take place with minimal undesired byproduct formation. The effect of reactant concentration and kind of solvent (aqueous or DMSO) on the attachment of folic acid to the activated PSi layer has been investigated. The covalent attachment of the doxorubicin molecules to the PSi layer functionalized with folic acid and PEG is discussed. The drug release kinetics as a function of pH has been studied. The functionalized PSi particles show a high cytotoxicity compared to the equivalent amount of free drug. Cell toxicity tests show clearly that the incorporation of folate molecules increases substantially the toxicity of the loaded PSi particles. Accordingly this new functionalized PSi may be considered a proper candidate for targeted drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery.

    Science.gov (United States)

    Gao, Ning; Bozeman, Erica N; Qian, Weiping; Wang, Liya; Chen, Hongyu; Lipowska, Malgorzata; Staley, Charles A; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2017-01-01

    The major obstacles in intraperitoneal (i.p.) chemotherapy of peritoneal tumors are fast absorption of drugs into the blood circulation, local and systemic toxicities, inadequate drug penetration into large tumors, and drug resistance. Targeted theranostic nanoparticles offer an opportunity to enhance the efficacy of i.p. therapy by increasing intratumoral drug delivery to overcome resistance, mediating image-guided drug delivery, and reducing systemic toxicity. Herein we report that i.p. delivery of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (IONPs) led to intratumoral accumulation of 17% of total injected nanoparticles in an orthotopic mouse pancreatic cancer model, which was three-fold higher compared with intravenous delivery. Targeted delivery of near infrared dye labeled IONPs into orthotopic tumors could be detected by non-invasive optical and magnetic resonance imaging. Histological analysis revealed that a high level of uPAR targeted, PEGylated IONPs efficiently penetrated into both the peripheral and central tumor areas in the primary tumor as well as peritoneal metastatic tumor. Improved theranostic IONP delivery into the tumor center was not mediated by nonspecific macrophage uptake and was independent from tumor blood vessel locations. Importantly, i.p. delivery of uPAR targeted theranostic IONPs carrying chemotherapeutics, cisplatin or doxorubicin, significantly inhibited the growth of pancreatic tumors without apparent systemic toxicity. The levels of proliferating tumor cells and tumor vessels in tumors treated with the above theranostic IONPs were also markedly decreased. The detection of strong optical signals in residual tumors following i.p. therapy suggested the feasibility of image-guided surgery to remove drug-resistant tumors. Therefore, our results support the translational development of i.p. delivery of uPAR-targeted theranostic IONPs for image-guided treatment of peritoneal tumors.

  20. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404