WorldWideScience

Sample records for drosophila yakuba homolog

  1. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade.

    Science.gov (United States)

    Turissini, David A; Matute, Daniel R

    2017-09-01

    The process of speciation involves populations diverging over time until they are genetically and reproductively isolated. Hybridization between nascent species was long thought to directly oppose speciation. However, the amount of interspecific genetic exchange (introgression) mediated by hybridization remains largely unknown, although recent progress in genome sequencing has made measuring introgression more tractable. A natural place to look for individuals with admixed ancestry (indicative of introgression) is in regions where species co-occur. In west Africa, D. santomea and D. yakuba hybridize on the island of São Tomé, while D. yakuba and D. teissieri hybridize on the nearby island of Bioko. In this report, we quantify the genomic extent of introgression between the three species of the Drosophila yakuba clade (D. yakuba, D. santomea), D. teissieri). We sequenced the genomes of 86 individuals from all three species. We also developed and applied a new statistical framework, using a hidden Markov approach, to identify introgression. We found that introgression has occurred between both species pairs but most introgressed segments are small (on the order of a few kilobases). After ruling out the retention of ancestral polymorphism as an explanation for these similar regions, we find that the sizes of introgressed haplotypes indicate that genetic exchange is not recent (>1,000 generations ago). We additionally show that in both cases, introgression was rarer on X chromosomes than on autosomes which is consistent with sex chromosomes playing a large role in reproductive isolation. Even though the two species pairs have stable contemporary hybrid zones, providing the opportunity for ongoing gene flow, our results indicate that genetic exchange between these species is currently rare.

  2. Correlated evolution of male and female reproductive traits drive a cascading effect of reinforcement in Drosophila yakuba

    Science.gov (United States)

    Comeault, Aaron A.; Venkat, Aarti; Matute, Daniel R.

    2016-01-01

    Selection against maladaptive hybridization can drive the evolution of reproductive isolation in a process called reinforcement. While the importance of reinforcement in evolution has been historically debated, many examples now exist. Despite these examples, we typically lack a detailed understanding of the mechanisms limiting the spread of reinforced phenotypes throughout a species' range. Here we address this issue in the fruit fly Drosophila yakuba, a species that hybridizes with its sister species D. santomea and is undergoing reinforcement in a well-defined hybrid zone on the island of São Tomé. Within this region, female D. yakuba show increased postmating-prezygotic (gametic) isolation towards D. santomea when compared with females from allopatric populations. We use a combination of natural collections, fertility assays, and experimental evolution to understand why reinforced gametic isolation in D. yakuba is confined to this hybrid zone. We show that, among other traits, D. yakuba males from sympatric populations sire fewer progeny than allopatric males when mated to allopatric D. yakuba females. Our results provide a novel example of reinforcement acting on a postmating-prezygotic trait in males, resulting in a cascade of reproductive isolation among conspecific populations. PMID:27440664

  3. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.

    Science.gov (United States)

    Llopart, Ana; Lachaise, Daniel; Coyne, Jerry A

    2005-09-01

    Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of São Tomé in the Atlantic Ocean, 280 km west of Gabon. On São Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia).

  4. Hydrocarbon Patterns and Mating Behaviour in Populations of Drosophila yakuba

    Directory of Open Access Journals (Sweden)

    Béatrice Denis

    2015-10-01

    Full Text Available Drosophila yakuba is widespread in Africa. Here we compare the cuticular hydrocarbon (CHC profiles and mating behavior of mainland (Kounden, Cameroon and island (Mayotte, Sao-Tome, Bioko populations. The strains each had different CHC profiles: Bioko and Kounden were the most similar, while Mayotte and Sao-Tome contained significant amounts of 7-heptacosene. The CHC profile of the Sao-Tome population differed the most, with half the 7-tricosene of the other populations and more 7-heptacosene and 7-nonacosene. We also studied the characteristics of the mating behavior of the four strains: copulation duration was similar but latency times were higher in Mayotte and Sao-Tome populations. We found partial reproductive isolation between populations, especially in male-choice experiments with Sao-Tome females.

  5. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship.

    Directory of Open Access Journals (Sweden)

    Jessica Cande

    Full Text Available In Drosophila, male flies perform innate, stereotyped courtship behavior. This innate behavior evolves rapidly between fly species, and is likely to have contributed to reproductive isolation and species divergence. We currently understand little about the neurobiological and genetic mechanisms that contributed to the evolution of courtship behavior. Here we describe a novel behavioral difference between the two closely related species D. yakuba and D. santomea: the frequency of wing rowing during courtship. During courtship, D. santomea males repeatedly rotate their wing blades to face forward and then back (rowing, while D. yakuba males rarely row their wings. We found little intraspecific variation in the frequency of wing rowing for both species. We exploited multiplexed shotgun genotyping (MSG to genotype two backcross populations with a single lane of Illumina sequencing. We performed quantitative trait locus (QTL mapping using the ancestry information estimated by MSG and found that the species difference in wing rowing mapped to four or five genetically separable regions. We found no evidence that these loci display epistasis. The identified loci all act in the same direction and can account for most of the species difference.

  6. The genetic basis of postzygotic reproductive isolation between Drosophila santomea and D. yakuba due to hybrid male sterility.

    Science.gov (United States)

    Moehring, Amanda J; Llopart, Ana; Elwyn, Susannah; Coyne, Jerry A; Mackay, Trudy F C

    2006-05-01

    A major unresolved challenge of evolutionary biology is to determine the nature of the allelic variants of "speciation genes": those alleles whose interaction produces inviable or infertile interspecific hybrids but does not reduce fitness in pure species. Here we map quantitative trait loci (QTL) affecting fertility of male hybrids between D. yakuba and its recently discovered sibling species, D. santomea. We mapped three to four X chromosome QTL and two autosomal QTL with large effects on the reduced fertility of D. yakuba and D. santomea backcross males. We observed epistasis between the X-linked QTL and also between the X and autosomal QTL. The X chromosome had a disproportionately large effect on hybrid sterility in both reciprocal backcross hybrids. However, the genetics of hybrid sterility differ between D. yakuba and D. santomea backcross males, both in terms of the magnitude of main effects and in the epistatic interactions. The QTL affecting hybrid fertility did not colocalize with QTL affecting sexual isolation in this species pair, but did colocalize with QTL affecting the marked difference in pigmentation between D. yakuba and D. santomea. These results provide the basis for future high-resolution mapping and ultimately, molecular cloning, of the interacting genes that contribute to hybrid sterility.

  7. Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    : the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D...

  8. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel P Kane

    Full Text Available In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.

  9. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis.

  10. Patterns of mutation and selection at synonymous sites in Drosophila

    DEFF Research Database (Denmark)

    Singh, Nadia D; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    , when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the Notch gene in Drosophila melanogaster was evolving under selection in favor of those codons defined as unpreferred in this species. This finding opened the possibility that synonymous sites may...... be subject to a variety of selective pressures beyond weak selection for increased frequencies of the codons currently defined as "preferred" in D. melanogaster. To further explore patterns of synonymous site evolution in Drosophila in a lineage-specific manner, we expanded the application of the maximum...... likelihood framework to 8,452 protein coding sequences with well-defined orthology in D. melanogaster, Drosophila sechellia, and Drosophila yakuba. Our analyses reveal intragenomic and interspecific variation in mutational patterns as well as in patterns and intensity of selection on synonymous sites. In D...

  11. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  12. EST Table: BP117517 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BP117517 ce--0464 10/09/28 63 %/173 aa ref|XP_002092422.1| GE14184 [Drosophila yakuba] gb|EDW92134.1| GE14...184 [Drosophila yakuba] 10/08/28 63 %/173 aa FBpp0259194|DyakGE14184-PA 10/08/28 35 %

  13. EST Table: FY019190 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY019190 rbmov24h07 11/11/04 53 %/262 aa ref|XP_002092422.1| GE14184 [Drosophila yakuba] gb|EDW92134.1| GE14...184 [Drosophila yakuba] 11/11/04 53 %/262 aa FBpp0259194|DyakGE14184-PA 11/11/04 32

  14. EST Table: FS827794 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS827794 E_FL_fmgV_27G02_R_0 10/09/28 42 %/239 aa ref|XP_002092266.1| GE14094 [Dros...ophila yakuba] gb|EDW91978.1| GE14094 [Drosophila yakuba] 10/09/10 42 %/239 aa FBpp0259104|DyakGE14094-PA 10

  15. EST Table: BB982318 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BB982318 ovS3005A12r 10/09/28 68 %/119 aa ref|XP_002092422.1| GE14184 [Drosophila yakuba] gb|EDW92134.1| GE1...4184 [Drosophila yakuba] 10/08/28 68 %/119 aa FBpp0259194|DyakGE14184-PA 10/08/27 3

  16. EST Table: BY921742 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY921742 E_EL_ovS0_07E06_F_0 10/09/28 67 %/124 aa ref|XP_002092422.1| GE14184 [Dros...ophila yakuba] gb|EDW92134.1| GE14184 [Drosophila yakuba] 10/08/29 67 %/124 aa FBpp0259194|DyakGE14184-PA 10

  17. EST Table: BY921292 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY921292 E_EL_ovS0_01D09_F_0 10/09/28 67 %/152 aa ref|XP_002092422.1| GE14184 [Dros...ophila yakuba] gb|EDW92134.1| GE14184 [Drosophila yakuba] 10/08/29 67 %/152 aa FBpp0259194|DyakGE14184-PA 10

  18. EST Table: DB673368 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available DB673368 E_FL_BmN-_27M22_F_0 10/09/28 86 %/190 aa ref|XP_002092788.1| GE14387 [Dros...ophila yakuba] gb|EDW92500.1| GE14387 [Drosophila yakuba] 10/09/01 86 %/190 aa FBpp0259397|DyakGE14387-PA 10

  19. EST Table: BJ982788 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BJ982788 E_FL_BmN-_10B19_F_0 10/09/28 89 %/130 aa ref|XP_002092788.1| GE14387 [Dros...ophila yakuba] gb|EDW92500.1| GE14387 [Drosophila yakuba] 10/08/28 89 %/130 aa FBpp0259397|DyakGE14387-PA 10

  20. EST Table: FS911308 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS911308 E_FL_fufe_22N11_F_0 11/12/09 n.h 10/09/28 53 %/286 aa ref|XP_002092266.1| GE14...094 [Drosophila yakuba] gb|EDW91978.1| GE14094 [Drosophila yakuba] 10/09/12 53 %/286 aa FBpp0259104|DyakGE14

  1. dyschronic, a Drosophila homolog of a deaf-blindness gene, regulates circadian output and Slowpoke channels.

    Directory of Open Access Journals (Sweden)

    James E C Jepson

    Full Text Available Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc. dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO, an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein-protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system.

  2. A comparison of Frost expression among species and life stages of Drosophila.

    Science.gov (United States)

    Bing, X; Zhang, J; Sinclair, Brent J

    2012-02-01

    Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  3. Widespread Discordance of Gene Trees with Species Tree inDrosophila: Evidence for Incomplete Lineage Sorting

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Daniel A.; Iyer, Venky N.; Moses, Alan M.; Eisen,Michael B.

    2006-08-28

    The phylogenetic relationship of the now fully sequencedspecies Drosophila erecta and D. yakuba with respect to the D.melanogaster species complex has been a subject of controversy. All threepossible groupings of the species have been reported in the past, thoughrecent multi-gene studies suggest that D. erecta and D. yakuba are sisterspecies. Using the whole genomes of each of these species as well as thefour other fully sequenced species in the subgenus Sophophora, we set outto investigate the placement of D. erecta and D. yakuba in the D.melanogaster species group and to understand the cause of the pastincongruence. Though we find that the phylogeny grouping D. erecta and D.yakuba together is the best supported, we also find widespreadincongruence in nucleotide and amino acid substitutions, insertions anddeletions, and gene trees. The time inferred to span the two keyspeciation events is short enough that under the coalescent model, theincongruence could be the result of incomplete lineage sorting.Consistent with the lineage-sorting hypothesis, substitutions supportingthe same tree were spatially clustered. Support for the different treeswas found to be linked to recombination such that adjacent genes supportthe same tree most often in regions of low recombination andsubstitutions supporting the same tree are most enriched roughly on thesame scale as linkage disequilibrium, also consistent with lineagesorting. The incongruence was found to be statistically significant androbust to model and species choice. No systematic biases were found. Weconclude that phylogenetic incongruence in the D. melanogaster speciescomplex is the result, at least in part, of incomplete lineage sorting.Incomplete lineage sorting will likely cause phylogenetic incongruence inmany comparative genomics datasets. Methods to infer the correct speciestree, the history of every base in the genome, and comparative methodsthat control for and/or utilize this information will be

  4. Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors.

    Science.gov (United States)

    Gotzes, F; Balfanz, S; Baumann, A

    1994-01-01

    Members of the superfamily of G-protein coupled receptors share significant similarities in sequence and transmembrane architecture. We have isolated a Drosophila homologue of the mammalian dopamine receptor family using a low stringency hybridization approach. The deduced amino acid sequence is approximately 70% homologous to the human D1/D5 receptors. When expressed in HEK 293 cells, the Drosophila receptor stimulates cAMP production in response to dopamine application. This effect was mimicked by SKF 38393, a specific D1 receptor agonist, but inhibited by dopaminergic antagonists such as butaclamol and flupentixol. In situ hybridization revealed that the Drosophila dopamine receptor is highly expressed in the somata of the optic lobes. This suggests that the receptor might be involved in the processing of visual information and/or visual learning in invertebrates.

  5. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    Science.gov (United States)

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  6. The Drosophila melanogaster homolog of UBE3A is not imprinted in neurons.

    Science.gov (United States)

    Hope, Kevin A; LeDoux, Mark S; Reiter, Lawrence T

    2016-09-01

    In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a 15b ) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a 15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.

  7. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids.

    Science.gov (United States)

    Llopart, Ana

    2012-12-01

    The X chromosome has a large effect on hybrid dysfunction, particularly on hybrid male sterility. Although the evidence for this so-called large-X effect is clear, its molecular causes are not yet fully understood. One possibility is that, under certain conditions, evolution proceeds faster in X-linked than in autosomal loci (i.e., faster-X effect) due to both natural selection and their hemizygosity in males, an effect that is expected to be greatest in genes with male-biased expression. Here, I study genome-wide variation in transcript abundance between Drosophila yakuba and D. santomea, within these species and in their hybrid males to evaluate both the faster-X and large-X effects at the level of expression. I find that in X-linked male-biased genes (MBGs) expression evolves faster than in their autosomal counterparts, an effect that is accompanied by a unique reduction in expression polymorphism. This suggests that Darwinian selection is driving expression differences between species, likely enhanced by the hemizygosity of the X chromosome in males. Despite the recent split of the two sister species under study, abundant changes in both cis- and trans-regulatory elements underlie expression divergence in the majority of the genes analyzed, with significant differences in allelic ratios of transcript abundance between the two reciprocal F(1) hybrid males. Cis-trans coevolution at molecular level, evolved shortly after populations become isolated, may therefore contribute to explain the breakdown of the regulation of gene expression in hybrid males. Additionally, the X chromosome plays a large role in this hybrid male misexpression, which affects not only MBG but also, to a lesser degree, nonsex-biased genes. Interestingly, hybrid male misexpression is concentrated mostly in autosomal genes, likely facilitated by the rapid evolution of sex-linked trans-acting factors. I suggest that the faster evolution of X-linked MBGs, at both protein and expression levels

  8. INHIBITION OF THE DNA-BINDING ACTIVITY OF DROSOPHILA SUPPRESSOR OF HAIRLESS AND OF ITS HUMAN HOMOLOG, KBF2/RBP-J-KAPPA, BY DIRECT PROTEIN-PROTEIN INTERACTION WITH DROSOPHILA HAIRLESS

    NARCIS (Netherlands)

    BROU, C; LOGEAT, F; LECOURTOIS, M; VANDEKERCKHOVE, Joël; KOURILSKY, P; SCHWEISGUTH, F; ISRAEL, A

    1994-01-01

    We have purified the sequence-specific DNA-binding protein KBF2 and cloned the corresponding cDNA, which is derived from the previously described RBP-J kappa gene, the human homolog of the Drosophila Suppressor of Hairless [Su(H)] gene. Deletion studies of the RBP-J kappa and Su(H) proteins allowed

  9. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    Science.gov (United States)

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  10. A homolog of Drosophila grainy head is essential for epidermal integrity in mice.

    Science.gov (United States)

    Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M

    2005-04-15

    The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.

  11. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis.

    Science.gov (United States)

    Yan, Rihui; McKee, Bruce D

    2013-01-01

    Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome

  12. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M. Tanaka; Gavis, Elizabeth R. (Princeton); (NIH)

    2017-04-01

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.

  13. Homologous recombination induced by doxazosin mesylate and saw palmetto in the Drosophila wing-spot test.

    Science.gov (United States)

    Gabriel, Katiane Cella; Dihl, Rafael Rodrigues; Lehmann, Mauricio; Reguly, Maria Luiza; Richter, Marc François; Andrade, Heloisa Helena Rodrigues de

    2013-03-01

    Benign prostatic hyperplasia (BPH) is the most common tumor in men over 40 years of age. Acute urinary retention (AUR) is regarded as the most serious hazard of untreated BPH. α-Blockers, such as doxazosin mesylate, and 5-α reductase inhibitors, such as finasteride, are frequently used because they decrease both AUR and the need for BPH-related surgery. An extract of the fruit from American saw palmetto plant has also been used as an alternative treatment for BPH. The paucity of information available concerning the genotoxic action of these compounds led us to assess their activity as inducers of different types of DNA lesions using the somatic mutation and recombination test in Drosophila melanogaster. Finasteride did not induce gene mutation, chromosomal mutation or mitotic recombination, which means it was nongenotoxic in our experimental conditions. On the other hand, doxazosin mesylate and saw palmetto induced significant increases in spot frequencies in trans-heterozygous flies. In order to establish the actual role played by mitotic recombination and by mutation in the genotoxicity observed, the balancer-heterozygous flies were also analyzed, showing no increment in the total spot frequencies in relation to the negative control, for both drugs. Doxazosin mesylate and saw palmetto were classified as specific inducers of homologous recombination in Drosophila proliferative cells, an event linked to the loss of heterozygosity. Copyright © 2011 John Wiley & Sons, Ltd.

  14. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling.

    Science.gov (United States)

    Williams, Michael J; Eriksson, Anders; Shaik, Muksheed; Voisin, Sarah; Yamskova, Olga; Paulsson, Johan; Thombare, Ketan; Fredriksson, Robert; Schiöth, Helgi B

    2015-09-01

    Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.

  15. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition.

    Science.gov (United States)

    Tamayo, Joel V; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M Tanaka; Gavis, Elizabeth R

    2017-04-04

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo's RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo's functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    Directory of Open Access Journals (Sweden)

    Joel V. Tamayo

    2017-04-01

    Full Text Available The Drosophila hnRNP F/H homolog, Glorund (Glo, regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3′ untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.

  17. Conservation patterns in different functional sequence categoriesof divergent Drosophila species

    Energy Technology Data Exchange (ETDEWEB)

    Papatsenko, Dmitri; Kislyuk, Andrey; Levine, Michael; Dubchak, Inna

    2005-10-01

    We have explored the distributions of fully conservedungapped blocks in genome-wide pairwise alignments of recently completedspecies of Drosophila: D.yakuba, D.ananassae, D.pseudoobscura, D.virilisand D.mojavensis. Based on these distributions we have found that nearlyevery functional sequence category possesses its own distinctiveconservation pattern, sometimes independent of the overall sequenceconservation level. In the coding and regulatory regions, the ungappedblocks were longer than in introns, UTRs and non-functional sequences. Atthe same time, the blocks in the coding regions carried 3N+2 signaturecharacteristic to synonymic substitutions in the 3rd codon positions.Larger block sizes in transcription regulatory regions can be explainedby the presence of conserved arrays of binding sites for transcriptionfactors. We also have shown that the longest ungapped blocks, or'ultraconserved' sequences, are associated with specific gene groups,including those encoding ion channels and components of the cytoskeleton.We discussed how restrained conservation patterns may help in mappingfunctional sequence categories and improving genomeannotation.

  18. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Science.gov (United States)

    Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F

    2016-04-01

    Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  19. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Science.gov (United States)

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  20. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2011-04-01

    Full Text Available Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta. Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  1. Light wavelength dependency of mating activity in the drosophila melanogaster species subgroup

    International Nuclear Information System (INIS)

    Sakai, Takaomi; Tomaru, Masatoshi; Oguma, Yuzuru; Isono, Kunio; Fukatami, Akishi

    2002-01-01

    The action spectra of mating activity among the six species of the Drosophila melanogaster species subgroup were compared to understand how light wavelength affects mating activity. The species fell into three groups with respect to the action spectrum of mating activity. We chose one representative species from each of the three types for detailed study: D. melanogaster, D. sechellia and D. yakuba. The mating activities were investigated under three different light intensities of three monochromatic lights stimulus. Each species showed a unique spectral and intensity response. To know the evolutionary meaning of the light wavelength dependency of mating activity, we superimposed the type of action spectrum of mating activity in these six species on a cladogram. Mating inhibition under UV was conserved in evolution among these species. Furthermore we clarified that D. melanogaster showed low mating activity under UV because males courted less under UV. (author)

  2. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline.

    Directory of Open Access Journals (Sweden)

    Nima Najand

    Full Text Available We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.

  3. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.

    Science.gov (United States)

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S; Liang, Kaiwei; Takahashi, Yoh-Hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C Peter; Shilatifard, Ali

    2012-12-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.

  4. The Drosophila KIF1A homolog unc-104 is important for site-specific active zone maturation

    Directory of Open Access Journals (Sweden)

    Yao V. Zhang

    2016-09-01

    Full Text Available Abstract Mutations in the kinesin-3 family member KIF1A have been associated with hereditary spastic paraplegia, hereditary sensory and autonomic neuropathy type 2 and intellectual disability. Both autosomal recessive and autosomal dominant forms of inheritance have been reported. Loss of KIF1A or its homolog unc-104 causes early postnatal or embryonic lethality in mice and Drosophila, respectively. In this study we use a previously described hypomorphic allele of unc-104, unc-104bris, to investigate the impact of partial loss-of-function of kinesin-3 function on active zone formation at the Drosophila neuromuscular junction. unc-104bris mutants exhibit synaptic defects where a subset of synapses at the neuromuscular junction lack the key active zone organizer protein Bruchpilot. Modulating synaptic Bruchpilot levels by ectopic overexpression or RNAi-mediated knockdown suggests that the loss of active zone components such as Ca2+ channel and Liprin-α from these synapses is caused by impaired kinesin-3 transport rather than due to the absence of Bruchpilot at these synapses. In addition to defects in active zone maturation, unc-104bris mutants display impaired transport of dense core vesicles and synaptic vesicle associated proteins, among which Rab3 has been shown to regulate the distribution of Bruchpilot to active zones. Overexpression of Rab3 partially ameliorates synaptic phenotypes of unc-104bris neuromuscular junction, suggesting that lack of presynaptic Rab3 may contribute to defects in synapse maturation.

  5. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning.

    Science.gov (United States)

    Dodson, Mark W; Zhang, Ting; Jiang, Changan; Chen, Shengdi; Guo, Ming

    2012-03-15

    LRRK2 (PARK8) is the most common genetic determinant of Parkinson's disease (PD), with dominant mutations in LRRK2 causing inherited PD and sequence variation at the LRRK2 locus associated with increased risk for sporadic PD. Although LRRK2 has been implicated in diverse cellular processes encompassing almost all cellular compartments, the precise functions of LRRK2 remain unclear. Here, we show that the Drosophila homolog of LRRK2 (Lrrk) localizes to the membranes of late endosomes and lysosomes, physically interacts with the crucial mediator of late endosomal transport Rab7 and negatively regulates rab7-dependent perinuclear localization of lysosomes. We also show that a mutant form of lrrk analogous to the pathogenic LRRK2(G2019S) allele behaves oppositely to wild-type lrrk in that it promotes rather than inhibits rab7-dependent perinuclear lysosome clustering, with these effects of mutant lrrk on lysosome position requiring both microtubules and dynein. These data suggest that LRRK2 normally functions in Rab7-dependent lysosomal positioning, and that this function is disrupted by the most common PD-causing LRRK2 mutation, linking endolysosomal dysfunction to the pathogenesis of LRRK2-mediated PD.

  6. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Rasheva Vanya

    2010-07-01

    Full Text Available Abstract Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;fLJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;fLJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104

  7. Homology of polytene elements between Drosophila and Zaprionus determined by in situ hybridization in Zaprionus indianus.

    Science.gov (United States)

    Campos, S R C; Rieger, T T; Santos, J F

    2007-05-09

    The drosophilid Zaprionus indianus due to its economical importance as an insect pest in Brazil deserves more investigation into its genetics. Its mitotic karyotype and a line-drawing map of its polytene chromosomes are already available. This paper presents a photomap of Z. indianus polytene chromosomes, which was used as the reference map for identification of sections marked by in situ hybridization with gene probes. Hybridization signals for Hsp70 and Hsr-omega were detected, respectively, in sections 34B and 32C of chromosome V of Z. indianus, which indicates its homology to the chromosomal arm 3R of Drosophila melanogaster and, therefore, to Muller's element E. The main signal for Hsp83 gene probe hybridization was in section 17C of Z. indianus chromosome III, suggesting its homology to arm 3L of D. melanogaster and to element D of Muller. The Ubi probe hybridized in sections 10C of chromosome II and 17A of chromosome III. Probably the 17A is the polyubiquitin locus, with homology to arm 3L of D. melanogaster and to the mullerian D element, as suggested also by Hsp83 gene location. The Br-C gene was mapped in section 1D, near the tip of the X chromosome, indicating its homology to the X chromosome of D. melanogaster and to mullerian element A. The Dpp gene probe hybridized mainly in the section 32A of chromosome V and, at lower frequencies to other sections, although no signal was observed as expected in the correspondent mullerian B element. This result led to the suggestion of a rearrangement including the Dpp locus in Z. indianus, the secondary signals possibly pointing to related genes of the TGF-beta family. In conclusion, the results indicate that chromosomes X, III, V of Z. indianus are respectively correspondents to elements A, D, and E of Muller. At least chromosome V of Z. indianus seems to share synteny with the 3R arm of D. melanogaster, as indicated by the relative positions of Hsp70 and Hsr-omega, although the Dpp gene indicates a disruption of

  8. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis.

    Science.gov (United States)

    Basu, J; Williams, B C; Li, Z; Williams, E V; Goldberg, M L

    1998-01-01

    In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.

  9. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species.

    Science.gov (United States)

    Santos, Josiane; Serra, Lluis; Solé, Elisabet; Pascual, Marta

    2010-02-01

    Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller's chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.

  10. Fife, a Drosophila Piccolo-RIM Homolog, Promotes Active Zone Organization and Neurotransmitter Release

    Science.gov (United States)

    Bruckner, Joseph J.; Gratz, Scott J.; Slind, Jessica K.; Geske, Richard R.; Cummings, Alexander M.; Galindo, Samantha E.; Donohue, Laura K.; O'Connor-Giles, Kate M.

    2012-01-01

    Neuronal communication depends on the precisely orchestrated release of neurotransmitter at specialized sites called active zones (AZs). A small number of scaffolding and cytoskeletal proteins comprising the cytomatrix of the active zone (CAZ) are thought to organize the architecture and functional properties of AZs. The majority of CAZ proteins are evolutionarily conserved, underscoring the fundamental similarities in neurotransmission at all synapses. However, core CAZ proteins Piccolo and Bassoon have long been believed exclusive to vertebrates, raising intriguing questions about the conservation of the molecular mechanisms that regulate presynaptic properties. Here, we present the identification of a piccolo-rim-related gene in invertebrates, together with molecular phylogenetic analyses that indicate the encoded proteins may represent Piccolo orthologs. In accordance, we find that the Drosophila homolog, Fife, is neuronal and localizes to presynaptic AZs. To investigate the in vivo function of Fife, we generated a deletion of the fife locus. We find that evoked neurotransmitter release is substantially decreased in fife mutants and loss of fife results in motor deficits. Through morphological analysis of fife synapses, we identify underlying AZ abnormalities including pervasive presynaptic membrane detachments and reduced synaptic vesicle clustering. Our data demonstrate the conservation of a Piccolo-related protein in invertebrates and identify critical roles for Fife in regulating AZ structure and function. These findings suggest the CAZ is more conserved than previously thought, and open the door to a more complete understanding of how CAZ proteins regulate presynaptic structure and function through genetic studies in simpler model systems. PMID:23197698

  11. Limitations of the RAPD technique in phylogeny reconstruction in Drosophila

    NARCIS (Netherlands)

    van de Zande, Louis; Bijlsma, R.

    In this study the limitations of the RAPD technique for phylogenetic analysis of very closely related and less related species of Drosophila are examined. In addition, assumptions of positional homology of amplified fragments in different species are examined by cross-hybridization of RAPD

  12. Drosophila homologues of adenomatous polyposis coli (APC) and the formin diaphanous collaborate by a conserved mechanism to stimulate actin filament assembly.

    Science.gov (United States)

    Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M

    2013-05-10

    Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad

  13. AcEST: DK946835 [AcEST

    Lifescience Database Archive (English)

    Full Text Available HPH 650 >tr|A5WW09|A5WW09_DANRE Novel protein similar to autism susceptibility candidate 2 (Auts2) (Fragment...024 tr|B3NTG0|B3NTG0_DROER GG18108 OS=Drosophila erecta GN=GG18108 P... 42 0.031 tr|A5WW09|A5WW09_DANRE Novel protein similar to auti...sm susceptib... 41 0.041 tr|B4P3G9|B4P3G9_DROYA GE17462 OS=Drosophila yakuba GN=GE1

  14. The genus Drosophila is characterized by a large number of sibling ...

    Indian Academy of Sciences (India)

    2016-12-07

    Dec 7, 2016 ... the laboratory and produce fully fertile hybrids. Thus, there ... (vii) D. yakuba, endemic to Africa. All the species .... to the production of hybrids. Males are ...... of male genitalia: environmental and genetic factors affect genital.

  15. Grasshopper Lazarillo, a GPI-anchored Lipocalin, increases Drosophila longevity and stress resistance, and functionally replaces its secreted homolog NLaz.

    Science.gov (United States)

    Ruiz, Mario; Wicker-Thomas, Claude; Sanchez, Diego; Ganfornina, Maria D

    2012-10-01

    Lazarillo (Laz) is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein first characterized in the developing nervous system of the grasshopper Schistocerca americana. It belongs to the Lipocalins, a functionally diverse family of mostly secreted proteins. In this work we test whether the protective capacity known for Laz homologs in flies and vertebrates (NLaz, GLaz and ApoD) is evolutionarily conserved in grasshopper Laz, and can be exerted from the plasma membrane in a cell-autonomous manner. First we demonstrate that extracellular forms of Laz have autocrine and paracrine protecting effects for oxidative stress-challenged Drosophila S2 cells. Then we assay the effects of overexpressing GPI-linked Laz in adult Drosophila and whether it rescues both known and novel phenotypes of NLaz null mutants. Local effects of GPI-linked Laz inside and outside the nervous system promote survival upon different stress forms, and extend lifespan and healthspan of the flies in a cell-type dependent manner. Outside the nervous system, expression in fat body cells but not in hemocytes results in protection. Within the nervous system, glial cell expression is more effective than neuronal expression. Laz actions are sexually dimorphic in some expression domains. Fat storage promotion and not modifications in hydrocarbon profiles or quantities explain the starvation-desiccation resistance caused by Laz overexpression. This effect is exerted when Laz is expressed ubiquitously or in dopaminergic cells, but not in hemocytes. Grasshopper Laz functionally restores the loss of NLaz, rescuing stress-sensitivity as well as premature accumulation of aging-related damage, monitored by advanced glycation end products (AGEs). However Laz does not rescue NLaz courtship behavioral defects. Finally, the presence of two new Lipocalins with predicted GPI-anchors in mosquitoes shows that the functional advantages of GPI-linkage have been commonly exploited by Lipocalins in the arthropodan lineage

  16. Drosophila's contribution to stem cell research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2016-08-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  17. A genetic screen in Drosophila implicates Sex comb on midleg (Scm) in tissue overgrowth and mechanisms of Scm degradation by Wds.

    Science.gov (United States)

    Guo, Jiwei; Jin, Dan

    2015-05-01

    The sex comb on midleg (scm) gene encodes a transcriptional repressor and belongs to the Polycomb group (PcG) of genes, which regulates growth in Drosophila. Scm interacts with Polyhomeotic (a PcG protein) in vitro by recognizing its SPM domain. The homologous human protein, Sex comb on midleg-like 2 (Scml2), has been implicated in malignant brain tumors. Will die slowly (Wds) is another factor that regulates Drosophila development, and its homologous human protein, WD repeat domain 5(Wdr5), is part of the mixed lineage leukemia 1(MLL1) complex that promotes histone H3Lys4 methylation. Like Scml2, Wdr5 has been implicated in certain cancers; this protein plays an important role in leukemogenesis. In this study, we find that loss-of-function mutations in Scm result in non-autonomous tissue overgrowth in Drosophila, and determine that Scm is essential for ommatidium development and important for cell survival in Drosophila. Furthermore, our research suggests a relationship between Wds and Scm; Wds promotes Scm degradation through ubiquitination in vitro in Drosophila. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Origin of meiotic nondisjunction in Drosophila females

    International Nuclear Information System (INIS)

    Grell, R.F.

    1978-01-01

    Meiotic nondisjunction can be induced by external agents, such as heat, radiation, and chemicals, and by internal genotypic alterations, namely, point mutations and chromosomal rearrangements. In many cases nondisjunction arises from a reduction or elimination of crossing-over, leading to the production of homologous univalents which fail to co-orient on the metaphase plate and to disjoin properly. In some organisms, e.g., Drosophila and perhaps man, distributive pairing [i.e., a post-exchange, size-dependent pairing] ensures the regular segregation of such homologous univalents. When a nonhomologous univalent is present, which falls within a size range permitting nonhomologous recognition and pairing, distributive nondisjunction of the homologues may follow. Examples of nondisjunction induced by inversion heterozygosity, translocation heterozygosity, chromosome fragments, radiation, heat, and recombination-defective mutants are presented

  19. Identification of a transformer homolog in the acorn worm, Saccoglossus kowalevskii, and analysis of its activity in insect cells.

    Science.gov (United States)

    Suzuki, Masataka G; Tochigi, Mayuko; Sakaguchi, Honami; Aoki, Fugaku; Miyamoto, Norio

    2015-06-01

    The transformer (tra) gene is an intermediate component of the sex determination hierarchy in many insect species. The homolog of tra is also found in two branchiopod crustacean species but is not known outside arthropods. We have isolated a tra homolog in the acorn worm, Saccoglossus kowalevskii, which is a hemichordate belonging to the deuterostome superphylum. The full-length complementary DNA (cDNA) of the S. kowalevskii tra homolog (Sktra) has a 3786-bp open reading frame that encodes a 1261-amino acid sequence including a TRA-CAM domain and an arginine/serine (RS)-rich domain, both of which are characteristic of TRA orthologs. Reverse transcription PCR (RT-PCR) analyses demonstrated that Sktra showed no differences in expression patterns between testes and ovaries, but its expression level was approximately 7.5-fold higher in the testes than in the ovaries. TRA, together with the protein product of the transformer-2 (tra-2) gene, assembles on doublesex (dsx) pre-messenger RNA (mRNA) via the cis-regulatory element, enhancing female-specific splicing of dsx in Drosophila. To understand functional conservation of the SkTRA protein as a dsx-splicing activator, we investigated whether SkTRA is capable of inducing female-specific splicing of the Drosophila dsx. Ectopic expression of Sktra cDNA in insect cultured cells did not induce the female-specific splicing of dsx. On the other hand, forced expression of Sktra-2 (a tra-2 homolog of S. kowalevskii) was able to induce the female-specific dsx splicing. These results demonstrate that the function as a dsx-splicing activator is not conserved in SkTRA even though SkTRA-2 is capable of functionally replacing the Drosophila TRA-2. We have also found a tra homolog in an echinoderm genome. This study provides the first evidence that that tra is conserved not only in arthropods but also in basal species of deuterostoms.

  20. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2016-02-01

    Full Text Available We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo, a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  1. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Science.gov (United States)

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  2. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    Science.gov (United States)

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  3. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    Science.gov (United States)

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  4. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Science.gov (United States)

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  5. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Vognsen, Tina Reinholdt; Kristensen, Ole

    2012-01-01

    The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7Å resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a ß-sheet and three a-helices forming...

  6. Drosophila acetylcholinesterase: demonstration of a glycoinositol phospholipid anchor and an endogenous proteolytic cleavage

    International Nuclear Information System (INIS)

    Haas, R.; Marshall, T.L.; Rosenberry, T.L.

    1988-01-01

    The presence of a glycoinositol phospholipid anchor Drosophila acetylcholinesterase (AChE) was shown by several criteria. Chemical analysis of highly purified Drosophila AChE demonstrated approximately one residue of inositol per enzyme subunit. Selective cleavage by Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) was tested with Drosophila AChE radiolabeled by the photoactivatable affinity probe 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine ([ 125 I]TID), a reagent that specifically labels the lipid moiety of glycoinositol phospholipid-anchored proteins. Digestion with PI-PLC released 75% of this radiolabel from the protein. Gel electrophoresis of Drosophila AChE in sodium dodecyl sulfate indicated prominent 55- and 16-kDa bands and a faint 70-kDa band. The [ 125 ]I]TID label was localized on the 55-kDa fragment, suggesting that this fragment is the C-terminal portion of the protein. In support of this conclusion, a sensitive microsequencing procedure that involved manual Edman degradation combined with radiomethylation was used to determine residues 2-5 of the 16-kDa fragment. Comparison with the Drosophila AChE cDNA sequence confirmed that the 16-kDa fragment includes the N-terminus of AChE. Furthermore, the position of the N-terminal amino acid of the mature Drosophila AChE is closely homologous to that of Torpedo AChE. The presence of radiomethylatable ethanolamine in both 16- and 55-kDa fragments was also confirmed. Thus, Drosophila AChE may include a second posttranslational modification involving ethanolamine

  7. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms.

    Science.gov (United States)

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L S

    2015-10-04

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, traditionally considered homologous to Muller elements C and B, respectively. In this paper we present the cytological mapping of 22 new gene markers to increase the number of markers mapped by in situ hybridization and to test the assignment of scaffolds to the polytene chromosome II arms. For this purpose, we generated, by polymerase chain reaction amplification, one or two gene probes from each scaffold assigned to the chromosome II arms and mapped these probes to the Gd-H4-1 strain's polytene chromosomes by nonfluorescent in situ hybridization. Our findings show that chromosome arms IIL and IIR correspond to Muller elements B and C, respectively, directly contrasting the current homology assignments in D. willistoni and constituting a major reassignment of the scaffolds to chromosome II arms. Copyright © 2015 Garcia et al.

  8. Cloning and identification of the gene coding for the 140-kd subunit of Drosophila RNA polymerase II

    OpenAIRE

    Faust, Daniela M.; Renkawitz-Pohl, Renate; Falkenburg, Dieter; Gasch, Alexander; Bialojan, Siegfried; Young, Richard A.; Bautz, Ekkehard K. F.

    1986-01-01

    Genomic clones of Drosophila melanogaster were isolated from a λ library by cross-hybridization with the yeast gene coding for the 150-kd subunit of RNA polymerase II. Clones containing a region of ∼2.0 kb with strong homology to the yeast gene were shown to code for a 3.9-kb poly(A)+-RNA. Part of the coding region was cloned into an expression vector. A fusion protein was obtained which reacted with an antibody directed against RNA polymerase II of Drosophila. Peptide mapping of the fusion p...

  9. Expression analysis of Drosophila doublesex, transformer-2, intersex, fruitless-like, and vitellogenin homologs in the parahaploid predator Metaseiulus occidentalis (Chelicerata: Acari: Phytoseiidae).

    Science.gov (United States)

    Pomerantz, Aaron F; Hoy, Marjorie A

    2015-01-01

    Characterization and expression analyses are essential to gain insight into sex-determination pathways in members of the Acari. Little is known about sex determination at the molecular level in the western orchard predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Arachnida: Acari: Phytoseiidae), a parahaploid species. In this study, eight genes previously identified as putative homologs to genes involved in the sex-determination pathway in Drosophila melanogaster were evaluated for sex-specific alternative splicing and sex-biased expression using reverse-transcriptase PCR and quantitative real-time PCR techniques, respectively. The homologs evaluated in M. occidentalis included two doublesex-like genes (Moccdsx1 and Moccdsx2), transformer-2 (Mocctra-2), intersex (Moccix), two fruitless-like genes (MoccBTB1 and MoccBTB2), as well as two vitellogenin-like genes (Moccvg1 and Moccvg2). Single transcripts of equal size were detected in males and females for Moccdsx1, Moccdsx2, Mocctra-2, Moccix, and MoccBTB2, suggesting that their pre-mRNAs do not undergo alternative splicing in a sex-specific manner. Three genes, Moccdsx1, Moccdsx2 and MoccBTB2, displayed male-biased expression relative to females. One gene, Moccix, displayed female-biased expression relative to males. Two genes, Mocctra-2 and MoccBTB1, did not display detectable differences in transcript abundance in males and females. Expression of Moccvg1 and Moccvg2 were detected in females only, and transcript levels were up-regulated in mated females relative to unmated females. To our knowledge, this represents the first attempt to elucidate expression patterns of putative sex-determination genes in an acarine. This study is an initial step towards understanding the sex-determination pathway in the parahaploid M. occidentalis.

  10. Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth.

    Science.gov (United States)

    Li, Hongde; Chawla, Geetanjali; Hurlburt, Alexander J; Sterrett, Maria C; Zaslaver, Olga; Cox, James; Karty, Jonathan A; Rosebrock, Adam P; Caudy, Amy A; Tennessen, Jason M

    2017-02-07

    L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.

  11. Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth

    Science.gov (United States)

    Li, Hongde; Chawla, Geetanjali; Hurlburt, Alexander J.; Sterrett, Maria C.; Zaslaver, Olga; Cox, James; Karty, Jonathan A.; Rosebrock, Adam P.; Caudy, Amy A.

    2017-01-01

    L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation. PMID:28115720

  12. A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila.

    Science.gov (United States)

    Boyan, George; Liu, Yu; Khalsa, Sat Kartar; Hartenstein, Volker

    2017-07-01

    The central complex comprises an elaborate system of modular neuropils which mediate spatial orientation and sensory-motor integration in insects such as the grasshopper and Drosophila. The neuroarchitecture of the largest of these modules, the fan-shaped body, is characterized by its stereotypic set of decussating fiber bundles. These are generated during development by axons from four homologous protocerebral lineages which enter the commissural system and subsequently decussate at stereotypic locations across the brain midline. Since the commissural organization prior to fan-shaped body formation has not been previously analyzed in either species, it was not clear how the decussating bundles relate to individual lineages, or if the projection pattern is conserved across species. In this study, we trace the axonal projections from the homologous central complex lineages into the commissural system of the embryonic and larval brains of both the grasshopper and Drosophila. Projections into the primordial commissures of both species are found to be lineage-specific and allow putatively equivalent fascicles to be identified. Comparison of the projection pattern before and after the commencement of axon decussation in both species reveals that equivalent commissural fascicles are involved in generating the columnar neuroarchitecture of the fan-shaped body. Further, the tract-specific columns in both the grasshopper and Drosophila can be shown to contain axons from identical combinations of central complex lineages, suggesting that this columnar neuroarchitecture is also conserved.

  13. Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts

    Science.gov (United States)

    Wang, Vincent Y.; Hassan, Bassem A.; Bellen, Hugo J.; Zoghbi, Huda Y.

    2002-01-01

    Many genes share sequence similarity between species, but their properties often change significantly during evolution. For example, the Drosophila genes engrailed and orthodenticle and the onychophoran gene Ultrabithorax only partially substitute for their mouse or Drosophila homologs. We have been analyzing the relationship between atonal (ato) in the fruit fly and its mouse homolog, Math1. In flies, ato acts as a proneural gene that governs the development of chordotonal organs (CHOs), which serve as stretch receptors in the body wall and joints and as auditory organs in the antennae. In the fly CNS, ato is important not for specification but for axonal arborization. Math1, in contrast, is required for the specification of cells in both the CNS and the PNS. Furthermore, Math1 serves a role in the development of secretory lineage cells in the gut, a function that does not parallel any known to be served by ato. We wondered whether ato and Math1 might be more functionally homologous than they appear, so we expressed Math1 in ato mutant flies and ato in Math1 null mice. To our surprise, the two proteins are functionally interchangeable.

  14. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    Science.gov (United States)

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor. Copyright © 2014 Xue et al.

  15. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes.

    Science.gov (United States)

    Fu, Yulong; Zhu, Jun-Yi; Zhang, Fujian; Richman, Adam; Zhao, Zhanzheng; Han, Zhe

    2017-06-01

    The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.

  16. Mutants dissecting development and behaviour in drosophila

    International Nuclear Information System (INIS)

    Joshi, Adita; Chandrashekaran, Shanti; Sharma, R.P.

    2005-01-01

    We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50

  17. SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster.

    Science.gov (United States)

    Yan, Rihui; Thomas, Sharon E; Tsai, Jui-He; Yamada, Yukihiro; McKee, Bruce D

    2010-02-08

    Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.

  18. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster

    Science.gov (United States)

    Lin, Chun-Chieh; Potter, Christopher J.

    2016-01-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster. The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the homology assisted CRISPR knock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272

  19. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Andrew D. Renault

    2012-08-01

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  20. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster.

    Science.gov (United States)

    Renault, Andrew D

    2012-10-15

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  1. Epigenetic telomere protection by Drosophila DNA damage response pathways.

    Science.gov (United States)

    Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H

    2006-05-01

    Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.

  2. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    Science.gov (United States)

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  3. Polytene chromosomes of monogenic and amphogenic Chrysomya species (Calliphoridae, Diptera): analysis of banding patterns and in situ hybridization with Drosophila sex determining gene sequences.

    Science.gov (United States)

    Puchalla, S

    1994-03-01

    Standard maps for the five banded polytene chromosomes found in trichogen cell nuclei of the monogenic blowfly Chrysomya rufifacies and the amphogenic Chrysomya pinguis are presented. The chromosomes are highly homologous in the two species; differences in banding patterns are predominantly caused by one pericentric and ten paracentric inversions. In chromosome 5 of the amphogenic Chrysomya phaonis, also analysed in this paper, an additional paracentric inversion was observed. The distribution of species specific inversions indicates that the monogenic C. rufifacies is phylogenetically older than the amphogenic species. The maternal sex realizer locus F'/f on polytene chromosome 5 of C. rufifacies is not associated with a structural heterozygosity. Chromosome pair 6 of C. rufifacies and the sex chromosome pair of C. pinguis are under-replicated in polytene nuclei; they consist of irregular chromatin granules, frequently associated with nucleolus material. Evolution of heteromorphic sex chromosomes in Chrysomya is probably correlated with heterochromatin accumulation. A search for sex determining genes in Chrysomya was initiated using sex determining sequences from Drosophila melanogaster for in situ hybridization. The polytene band 41A1 on chromosome 5 of monogenic and amphogenic Chrysomya species contains sequences homologous to the maternal sex determining gene daughterless (da). Homology to the zygotic gene Sex-lethal (Sxl) of Drosophila is detected in band 39A1 on chromosome 5 of C. rufifacies. The findings reported here are the first evidence for a possible homology between the da gene of Drosophila and the maternal sex realizer F' of C. rufifacies. An hypothesis for the evolution of the maternal effect sex determination of C. rufifacies is proposed.

  4. Neurl4 contributes to germ cell formation and integrity in Drosophila

    Directory of Open Access Journals (Sweden)

    Jennifer Jones

    2015-08-01

    Full Text Available Primordial germ cells (PGCs form at the posterior pole of the Drosophila embryo, and then migrate to their final destination in the gonad where they will produce eggs or sperm. Studies of the different stages in this process, including assembly of germ plasm in the oocyte during oogenesis, specification of a subset of syncytial embryonic nuclei as PGCs, and migration, have been informed by genetic analyses. Mutants have defined steps in the process, and the identities of the affected genes have suggested biochemical mechanisms. Here we describe a novel PGC phenotype. When Neurl4 activity is reduced, newly formed PGCs frequently adopt irregular shapes and appear to bud off vesicles. PGC number is also reduced, an effect exacerbated by a separate role for Neurl4 in germ plasm formation during oogenesis. Like its mammalian homolog, Drosophila Neurl4 protein is concentrated in centrosomes and downregulates centrosomal protein CP110. Reducing CP110 activity suppresses the abnormal PGC morphology of Neurl4 mutants. These results extend prior analyses of Neurl4 in cultured cells, revealing a heightened requirement for Neurl4 in germ-line cells in Drosophila.

  5. Drosophila's contribution to stem cell research [v1; ref status: indexed, http://f1000r.es/5h7

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2015-06-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. A recent development in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  6. Chromosomal localization of microsatellite loci in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Renato Cavasini

    2015-03-01

    Full Text Available Drosophila mediopunctata has been used as a model organism for genetics and evolutionary studies in the last three decades. A linkage map with 48 microsatellite loci recently published for this species showed five syntenic groups, which had their homology determined to Drosophila melanogaster chromosomes. Then, by inference, each of the groups was associated with one of the five major chromosomes of D. mediopunctata. Our objective was to carry out a genetic (chromosomal analysis to increase the number of available loci with known chromosomal location. We made a simultaneous analysis of visible mutant phenotypes and microsatellite genotypes in a backcross of a standard strain and a mutant strain, which had each major autosome marked. Hence, we could establish the chromosomal location of seventeen loci; including one from each of the five major linkage groups previously published, and twelve new loci. Our results were congruent with the previous location and they open new possibilities to future work integrating microsatellites, chromosomal inversions, and genetic determinants of physiological and morphological variation.

  7. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3.

    OpenAIRE

    Chen, H.; Rossier, C.; Lalioti, M. D.; Lynn, A.; Chakravarti, A.; Perrin, G.; Antonarakis, S. E.

    1996-01-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-b...

  8. Occurence of translocations between irradiated and intact chromosomes of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Myasnyankina, E.N.; Abeleva, Eh.A.; Generalova, M.V.

    1980-01-01

    Two translocations between irradiated father and intact mother autosomes are obtained in Drosophila melanogaster. Five out of 283 regular translocations (between the second and the third chromosomes of an irradiated male) are accompanied by a recombination over the second or the third chromosomes. Nine flies out of twenty considered to be recombinants, could originate due to mutations. The data obtained prove that intact female autosomes can take part in the exchange with homologic (recombinations) and heterologic (translocations) irradiated male autosomes

  9. Fast and efficient Drosophila melanogaster gene knock-ins using MiMIC transposons.

    Science.gov (United States)

    Vilain, Sven; Vanhauwaert, Roeland; Maes, Ine; Schoovaerts, Nils; Zhou, Lujia; Soukup, Sandra; da Cunha, Raquel; Lauwers, Elsa; Fiers, Mark; Verstreken, Patrik

    2014-10-08

    Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break-mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events. Copyright © 2014 Vilain et al.

  10. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Simon Ji Hau Wang

    2014-11-01

    Full Text Available Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS-homology domain by protein kinase C (PKC. We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts, plays a role in larval neuromuscular junction (NMJ growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg and phosphatidylinositol 4,5-bisphosphate (PIP2. Through the use of Proximity Ligation Assay (PLA, we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

  11. Research of the low dose gamma-irradiation influence on life span and aging speed of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Moskalev, A.

    2003-01-01

    Full text: Researches of radioinduced life span alteration of Drosophila which is carried out in our laboratory in 1996-2003 years, have revealed interrelation between mutations of several genes of DNA repair and apoptosis pathways with low doses ionizing irradiation and speed of aging. It was used Drosophila individuals, developing in conditions of a chronic low dose irradiation or on nutrition medium with apoptosis inducer etoposide addition. The exposition doze was 0.17 sGy/h. The absorbed doze for one generation (from an embryo stage up to an imago start, 10-12 days) corresponded 60 sGy. Etoposide treatment carried out on preimago stages (5 mkM in a nutrient medium n concentration). We investigated the life span after irradiation and etoposide treatment of Drosophila melanogaster laboratory populations with defects of some genes of DNA repair machinery and apoptosis pathways in homozygous and heterozygous state, such as mei-41 (ATM homolog), two alleles of Dcp-1 (Drosophila caspase), dArk (Apaf-1 homolog), rpr, grim, hid, three alleles of th (IAP homolog), wg (Wnt family member). It is shown, that the irradiation and etoposide treatment of these strains results in life span change depending on a genotype of the investigated line. The results will be considering in the report. As well, the analysis of age-dependent change of nervous system activity (as the test of aging speed) of Drosophila melanogaster imago was carried out. It was shown, that the irradiation of strains with the increased apoptosis sensitivity results in elevated nervous - muscular activity of imago during all experiment periods. At th1 strain increase of activity in comparison with the control in the first week has made 41 %, and in two subsequent - about 80 %. Last week authentic increase did not observe. At th4 strain statistically significant increase of activity in comparison with the control observed in the first week of experiment (18 %), in the second (67 %) and the fourth (88 %). The

  12. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  13. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Jeong, Kwang Won

    2014-01-01

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators

  14. echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases

    Directory of Open Access Journals (Sweden)

    Gorski Sharon M

    2007-07-01

    Full Text Available Abstract Background Programmed cell death is used to remove excess cells between ommatidia in the Drosophila pupal retina. This death is required to establish the crystalline, hexagonal packing of ommatidia that characterizes the adult fly eye. In previously described echinus mutants, interommatidial cell sorting, which precedes cell death, occurred relatively normally. Interommatidial cell death was partially suppressed, resulting in adult eyes that contained excess pigment cells, and in which ommatidia were mildly disordered. These results have suggested that echinus functions in the pupal retina primarily to promote interommatidial cell death. Results We generated a number of new echinus alleles, some likely null mutants. Analysis of these alleles provides evidence that echinus has roles in cell sorting as well as cell death. echinus encodes a protein with homology to ubiquitin-specific proteases. These proteins cleave ubiquitin-conjugated proteins at the ubiquitin C-terminus. The echinus locus encodes multiple splice forms, including two proteins that lack residues thought to be critical for deubiquitination activity. Surprisingly, ubiquitous expression in the eye of versions of Echinus that lack residues critical for ubiquitin specific protease activity, as well as a version predicted to be functional, rescue the echinus loss-of-function phenotype. Finally, genetic interactions were not detected between echinus loss and gain-of-function and a number of known apoptotic regulators. These include Notch, EGFR, the caspases Dronc, Drice, Dcp-1, Dream, the caspase activators, Rpr, Hid, and Grim, the caspase inhibitor DIAP1, and Lozenge or Klumpfuss. Conclusion The echinus locus encodes multiple splice forms of a protein with homology to ubiquitin-specific proteases, but protease activity is unlikely to be required for echinus function, at least when echinus is overexpressed. Characterization of likely echinus null alleles and genetic interactions

  15. Targeted mutagenesis of the Sap47 gene of Drosophila: Flies lacking the synapse associated protein of 47 kDa are viable and fertile

    Directory of Open Access Journals (Sweden)

    Huber Saskia

    2004-04-01

    Full Text Available Abstract Background Conserved proteins preferentially expressed in synaptic terminals of the nervous system are likely to play a significant role in brain function. We have previously identified and molecularly characterized the Sap47 gene which codes for a novel synapse associated protein of 47 kDa in Drosophila. Sequence comparison identifies homologous proteins in numerous species including C. elegans, fish, mouse and human. First hints as to the function of this novel protein family can be obtained by generating mutants for the Sap47 gene in Drosophila. Results Attempts to eliminate the Sap47 gene through targeted mutagenesis by homologous recombination were unsuccessful. However, several mutants were generated by transposon remobilization after an appropriate insertion line had become available from the Drosophila P-element screen of the Bellen/Hoskins/Rubin/Spradling labs. Characterization of various deletions in the Sap47 gene due to imprecise excision of the P-element identified three null mutants and three hypomorphic mutants. Null mutants are viable and fertile and show no gross structural or obvious behavioural deficits. For cell-specific over-expression and "rescue" of the knock-out flies a transgenic line was generated which expresses the most abundant transcript under the control of the yeast enhancer UAS. In addition, knock-down of the Sap47 gene was achieved by generating 31 transgenic lines expressing Sap47 RNAi constructs, again under UAS control. When driven by a ubiquitously expressed yeast transcription factor (GAL4, Sap47 gene suppression in several of these lines is highly efficient resulting in residual SAP47 protein concentrations in heads as low as 6% of wild type levels. Conclusion The conserved synaptic protein SAP47 of Drosophila is not essential for basic synaptic function. The Sap47 gene region may be refractory to targeted mutagenesis by homologous recombination. RNAi using a construct linking genomic DNA to anti

  16. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1.

    Science.gov (United States)

    Galeone, Antonio; Han, Seung Yeop; Huang, Chengcheng; Hosomi, Akira; Suzuki, Tadashi; Jafar-Nejad, Hamed

    2017-08-04

    Mutations in the human N- glycanase 1 ( NGLY1 ) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N -glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N -glycanase enzyme.

  17. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family.

    Science.gov (United States)

    Zhou, Qingxiang; Zhang, Tianyi; Xu, Weihua; Yu, Linlin; Yi, Yongzhu; Zhang, Zhifang

    2008-03-06

    achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.

  18. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation.

    Directory of Open Access Journals (Sweden)

    Shilpi Verghese

    2016-09-01

    Full Text Available Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1 and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue.

  19. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps.

    Science.gov (United States)

    Schaeffer, Stephen W; Bhutkar, Arjun; McAllister, Bryant F; Matsuda, Muneo; Matzkin, Luciano M; O'Grady, Patrick M; Rohde, Claudia; Valente, Vera L S; Aguadé, Montserrat; Anderson, Wyatt W; Edwards, Kevin; Garcia, Ana C L; Goodman, Josh; Hartigan, James; Kataoka, Eiko; Lapoint, Richard T; Lozovsky, Elena R; Machado, Carlos A; Noor, Mohamed A F; Papaceit, Montserrat; Reed, Laura K; Richards, Stephen; Rieger, Tania T; Russo, Susan M; Sato, Hajime; Segarra, Carmen; Smith, Douglas R; Smith, Temple F; Strelets, Victor; Tobari, Yoshiko N; Tomimura, Yoshihiko; Wasserman, Marvin; Watts, Thomas; Wilson, Robert; Yoshida, Kiyohito; Markow, Therese A; Gelbart, William M; Kaufman, Thomas C

    2008-07-01

    The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.

  20. A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg.

    Science.gov (United States)

    Kojima, Tetsuya; Tsuji, Takuya; Saigo, Kaoru

    2005-03-15

    The subdivision of the developing field by region-specific expression of genes encoding transcription factors is an essential step during appendage development in arthropod and vertebrates. In Drosophila leg development, the distal-most region (pretarsus) is specified by the expression of homeobox genes, aristaless and Lim1, and its immediate neighbor (distal tarsus) is specified by the expression of a pair of Bar homeobox genes. Here, we show that one additional gene, clawless, which is a homolog of vertebrate Hox11/tlx homeobox gene family and formerly known as C15, is specifically expressed in the pretarsus and cooperatively acts with aristaless to repress Bar and possibly to activate Lim1. Similar to aristaless, the maximal expression of clawless requires Lim1 and its co-factor, Chip. Bar attenuates aristaless and clawless expression through Lim1 repression. Aristaless and Clawless proteins form a complex capable of binding to specific DNA targets, which cannot be well recognized solely by Aristaless or Clawless.

  1. Modeling Fragile X Syndrome in Drosophila

    Science.gov (United States)

    Drozd, Małgorzata; Bardoni, Barbara; Capovilla, Maria

    2018-01-01

    Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5′-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS. PMID:29713264

  2. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect.

    Science.gov (United States)

    Oikemus, Sarah R; McGinnis, Nadine; Queiroz-Machado, Joana; Tukachinsky, Hanna; Takada, Saeko; Sunkel, Claudio E; Brodsky, Michael H

    2004-08-01

    Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We demonstrate that the Drosophila homolog of ATM is encoded by the telomere fusion (tefu) gene. In the absence of ATM, telomere fusions occur even though telomere-specific Het-A sequences are still present. High levels of spontaneous apoptosis are observed in ATM-deficient tissues, indicating that telomere dysfunction induces apoptosis in Drosophila. Suppression of this apoptosis by p53 mutations suggests that loss of ATM activates apoptosis through a DNA damage-response mechanism. Loss of ATM reduces the levels of heterochromatin protein 1 (HP1) at telomeres and suppresses telomere position effect. We propose that recognition of chromosome ends by ATM prevents telomere fusion and apoptosis by recruiting chromatin-modifying complexes to telomeres.

  3. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So in the developing eye of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Barbara Jusiak

    2014-12-01

    Full Text Available The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so, which encodes a homeodomain transcription factor (TF that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available from NCBI Gene Expression Omnibus (GEO with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.

  4. NCBI nr-aa BLAST: CBRC-BTAU-01-1973 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-BTAU-01-1973 ref|NP_982299.1| porcupine isoform B [Homo sapiens] gb|AAG39629.1|AF317059_1 porcup...ine isoform B [Homo sapiens] gb|AAH19080.1| Porcupine homolog (Drosophila) [Homo sapiens] gb|EAW50778.1| porcup...ine homolog (Drosophila), isoform CRA_b [Homo sapiens] gb|ABM83558.1| porcupine homolog... (Drosophila) [synthetic construct] gb|ABM86795.1| porcupine homolog (Drosophila) [synthetic construct] NP_982299.1 0.0 91% ...

  5. Functions of the nonsense-mediated mRNA decay pathway in Drosophila development.

    Directory of Open Access Journals (Sweden)

    Mark M Metzstein

    2006-12-01

    Full Text Available Nonsense-mediated mRNA decay (NMD is a cellular surveillance mechanism that degrades transcripts containing premature translation termination codons, and it also influences expression of certain wild-type transcripts. Although the biochemical mechanisms of NMD have been studied intensively, its developmental functions and importance are less clear. Here, we describe the isolation and characterization of Drosophila "photoshop" mutations, which increase expression of green fluorescent protein and other transgenes. Mapping and molecular analyses show that photoshop mutations are loss-of-function mutations in the Drosophila homologs of NMD genes Upf1, Upf2, and Smg1. We find that Upf1 and Upf2 are broadly active during development, and they are required for NMD as well as for proper expression of dozens of wild-type genes during development and for larval viability. Genetic mosaic analysis shows that Upf1 and Upf2 are required for growth and/or survival of imaginal cell clones, but this defect can be overcome if surrounding wild-type cells are eliminated. By contrast, we find that the PI3K-related kinase Smg1 potentiates but is not required for NMD or for viability, implying that the Upf1 phosphorylation cycle that is required for mammalian and Caenorhabditis elegans NMD has a more limited role during Drosophila development. Finally, we show that the SV40 3' UTR, present in many Drosophila transgenes, targets the transgenes for regulation by the NMD pathway. The results establish that the Drosophila NMD pathway is broadly active and essential for development, and one critical function of the pathway is to endow proliferating imaginal cells with a competitive growth advantage that prevents them from being overtaken by other proliferating cells.

  6. Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster

    Science.gov (United States)

    Hughes, Stacie E.; Miller, Danny E.; Miller, Angela L.; Hawley, R. Scott

    2018-01-01

    A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over. PMID:29487146

  7. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family

    Directory of Open Access Journals (Sweden)

    Yi Yongzhu

    2008-03-01

    Full Text Available Abstract Background achaete-scute complexe (AS-C has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. Results We cloned four achaete-scute homologs (ASH from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. Conclusion There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.

  8. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    International Nuclear Information System (INIS)

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke; Miura, Masayuki

    2007-01-01

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution

  9. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.

    Science.gov (United States)

    Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Yang, Jingping; Wahi, Jessica E; Corces, Victor G

    2012-11-01

    Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.

  10. The Ubx Polycomb response element bypasses an unpaired Fab-8 insulator via cis transvection in Drosophila.

    Science.gov (United States)

    Lu, Danfeng; Li, Zhuoran; Li, Lingling; Yang, Liping; Chen, Guijun; Yang, Deying; Zhang, Yue; Singh, Vikrant; Smith, Sheryl; Xiao, Yu; Wang, Erlin; Ye, Yunshuang; Zhang, Wei; Zhou, Lei; Rong, Yikang; Zhou, Jumin

    2018-01-01

    Chromatin insulators or boundary elements protect genes from regulatory activities from neighboring genes or chromatin domains. In the Drosophila Abdominal-B (Abd-B) locus, the deletion of such elements, such as Frontabdominal-7 (Fab-7) or Fab-8 led to dominant gain of function phenotypes, presumably due to the loss of chromatin barriers. Homologous chromosomes are paired in Drosophila, creating a number of pairing dependent phenomena including transvection, and whether transvection may affect the function of Polycomb response elements (PREs) and thus contribute to the phenotypes are not known. Here, we studied the chromatin barrier activity of Fab-8 and how it is affected by the zygosity of the transgene, and found that Fab-8 is able to block the silencing effect of the Ubx PRE on the DsRed reporter gene in a CTCF binding sites dependent manner. However, the blocking also depends on the zygosity of the transgene in that the barrier activity is present when the transgene is homozygous, but absent when the transgene is heterozygous. To analyze this effect, we performed chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) experiments on homozygous transgenic embryos, and found that H3K27me3 and H3K9me3 marks are restricted by Fab-8, but they spread beyond Fab-8 into the DsRed gene when the two CTCF binding sites within Fab-8 were mutated. Consistent with this, the mutation reduced H3K4me3 and RNA Pol II binding to the DsRed gene, and consequently, DsRed expression. Importantly, in heterozygous embryos, Fab-8 is unable to prevent the spread of H3K27me3 and H3K9me3 marks from crossing Fab-8 into DsRed, suggesting an insulator bypass. These results suggest that in the Abd-B locus, deletion of the insulator in one copy of the chromosome could lead to the loss of insulator activity on the homologous chromosome, and in other loci where chromosomal deletion created hemizygous regions of the genome, the chromatin barrier could be compromised. This study highlights

  11. Dose-dependent effect of silver nanoparticles (AgNPs on fertility and survival of Drosophila: An in-vivo study.

    Directory of Open Access Journals (Sweden)

    Akanksha Raj

    Full Text Available Silver nanoparticles (AgNPs containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs.

  12. Liquid facets-related (lqfR is required for egg chamber morphogenesis during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Peter A Leventis

    Full Text Available Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR is an Epsin N-terminal homology (ENTH domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR. LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis.

  13. Multiple Arginine Residues Are Methylated in Drosophila Mre11 and Required for Survival Following Ionizing Radiation.

    Science.gov (United States)

    Yuan, Qing; Tian, Ran; Zhao, Haiying; Li, Lijuan; Bi, Xiaolin

    2018-05-31

    Mre11 is a key player for DNA double strand break repair. Previous studies have shown that mammalian Mre11 is methylated at multiple arginines in its C-terminal Glycine-Arginine-Rich motif (GAR) by protein arginine methyltransferase PRMT1. Here, we found that the Drosophila Mre11 is methylated at arginines 559, 563, 565, and 569 in the GAR motif by DART1, the Drosophila homolog of PRMT1. Mre11 interacts with DART1 in S2 cells, and this interaction does not require the GAR motif. Arginines methylated Mre11 localizes exclusively in the nucleus as soluble nuclear protein or chromatin-binding protein. To study the in vivo functions of methylation, we generated the single Arg-Ala and all Arginines mutated flies. We found these mutants were sensitive to ionizing radiation. Furthermore, Arg-Ala mutated flies had no irradiation induced G2/M checkpoint defect in wing disc and eye disc. Thus, we provided evidence that arginines in Drosophila Mre11 are methylated by DART1 methytransferase and flies loss of arginine methylation are sensitive to irradiation. Copyright © 2018 Yuan et al.

  14. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jeroen Dobbelaere

    2008-09-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM. Here, we have performed a microscopy-based genome-wide RNA interference (RNAi screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1 nine are required for centriole duplication, (2 11 are required for centrosome maturation, (3 nine are required for both functions, and (4 three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.

  15. Behavioral Teratogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  16. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  17. Female site-specific transposase-induced recombination: a high-efficiency method for fine mapping mutations on the X chromosome in Drosophila.

    OpenAIRE

    Marcus, Jeffrey M

    2003-01-01

    P-element transposons in the Drosophila germline mobilize only in the presence of the appropriate transposase enzyme. Sometimes, instead of mobilizing completely, P elements will undergo site-specific recombination with the homologous chromosome. Site-specific recombination is the basis for male recombination mapping, since the male germline does not normally undergo recombination. Site-specific recombination also takes place in females, but this has been difficult to study because of the obs...

  18. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span

    Science.gov (United States)

    Wang, Ji-Wu; Brent, Jonathan R.; Tomlinson, Andrew; Shneider, Neil A.; McCabe, Brian D.

    2011-01-01

    The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD. PMID:21881207

  19. Drosophila Longevity Assurance Conferred by Reduced Insulin Receptor Substrate Chico Partially Requires d4eBP.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Mutations of the insulin/IGF signaling (IIS pathway extend Drosophila lifespan. Based on genetic epistasis analyses, this longevity assurance is attributed to downstream effects of the FOXO transcription factor. However, as reported FOXO accounts for only a portion of the observed longevity benefit, suggesting there are additional outputs of IIS to mediate aging. One candidate is target of rapamycin complex 1 (TORC1. Reduced TORC1 activity is reported to slow aging, whereas reduced IIS is reported to repress TORC1 activity. The eukaryotic translation initiation factor 4E binding protein (4E-BP is repressed by TORC1, and activated 4E-BP is reported to increase Drosophila lifespan. Here we use genetic epistasis analyses to test whether longevity assurance mutants of chico, the Drosophila insulin receptor substrate homolog, require Drosophila d4eBP to slow aging. In chico heterozygotes, which are robustly long-lived, d4eBP is required but not sufficient to slow aging. Remarkably, d4eBP is not required or sufficient for chico homozygotes to extend longevity. Likewise, chico heterozygote females partially require d4eBP to preserve age-dependent locomotion, and both chico genotypes require d4eBP to improve stress-resistance. Reproduction and most measures of growth affected by either chico genotype are always independent of d4eBP. In females, chico heterozygotes paradoxically produce more rather than less phosphorylated 4E-BP (p4E-BP. Altered IRS function within the IIS pathway of Drosophila appears to have partial, conditional capacity to regulate aging through an unconventional interaction with 4E-BP.

  20. Drosophila duplication hotspots are associated with late-replicating regions of the genome.

    Directory of Open Access Journals (Sweden)

    Margarida Cardoso-Moreira

    2011-11-01

    Full Text Available Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans-Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is

  1. Homotopic Chain Maps Have Equal s-Homology and d-Homology

    Directory of Open Access Journals (Sweden)

    M. Z. Kazemi-Baneh

    2016-01-01

    Full Text Available The homotopy of chain maps on preabelian categories is investigated and the equality of standard homologies and d-homologies of homotopic chain maps is established. As a special case, if X and Y are the same homotopy type, then their nth d-homology R-modules are isomorphic, and if X is a contractible space, then its nth d-homology R-modules for n≠0 are trivial.

  2. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster.

    Science.gov (United States)

    Vognsen, Tina; Kristensen, Ole

    2012-03-30

    The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7Å resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a β-sheet and three α-helices forming a cone-like shape. However, known binding sites for RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chunxia He

    Full Text Available Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY, a homolog of Drosophila neuropeptide F (NPF, is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1 on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sleep during the nighttime. Further analysis demonstrated that sleep episode duration during nighttime was greatly increased and sleep latency was significantly reduced, indicating that NPF and NPFR1 promote sleep quality, and their action on sleep is not because of an impact of the NPF signal system on development. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by altered NPF signaling, since sleep deprivation decreased transcription of NPF in control flies, and there were less sleep loss during sleep deprivation and less sleep gain after sleep deprivation in flies overexpressing NPF and NPFR1 than in control flies, suggesting that NPF system auto-regulation plays an important role in sleep homeostasis. However, these effects did not occur in females, suggesting a sex-dependent regulatory function in sleep for NPF and NPFR1. NPF in D1 brain neurons showed male-specific expression, providing the cellular locus for male-specific regulation of sleep by NPF and NPFR1. This study brings a new understanding into sleep studies of a sexually dimorphic regulatory mode in female and male flies.

  4. Drosophila studies support a role for a presynaptic synaptotagmin mutation in a human congenital myasthenic syndrome.

    Directory of Open Access Journals (Sweden)

    Mallory C Shields

    Full Text Available During chemical transmission, the function of synaptic proteins must be coordinated to efficiently release neurotransmitter. Synaptotagmin 2, the Ca2+ sensor for fast, synchronized neurotransmitter release at the human neuromuscular junction, has recently been implicated in a dominantly inherited congenital myasthenic syndrome associated with a non-progressive motor neuropathy. In one family, a proline residue within the C2B Ca2+-binding pocket of synaptotagmin is replaced by a leucine. The functional significance of this residue has not been investigated previously. Here we show that in silico modeling predicts disruption of the C2B Ca2+-binding pocket, and we examine the in vivo effects of the homologous mutation in Drosophila. When expressed in the absence of native synaptotagmin, this mutation is lethal, demonstrating for the first time that this residue plays a critical role in synaptotagmin function. To achieve expression similar to human patients, the mutation is expressed in flies carrying one copy of the wild type synaptotagmin gene. We now show that Drosophila carrying this mutation developed neurological and behavioral manifestations similar to those of human patients and provide insight into the mechanisms underlying these deficits. Our Drosophila studies support a role for this synaptotagmin point mutation in disease etiology.

  5. A spontaneous body color mutation in Drosophila nappae (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    Augusto Santos Rampasso

    2017-04-01

    Full Text Available A yellow-bodied male appeared spontaneously in an isofemale line of Drosophila nappae established from a wild-caught female collected at the Forest Reserve of the Instituto de Biociências da Universidade de São Paulo, Cidade Universitária “Armando de Salles Oliveira”, São Paulo city, state of São Paulo, Brazil. This is the first mutation found in D. nappae, a species belonging to the tripunctata group. The yellow male was isolated and individually crossed to two wild-type (brown-colored virgin females from the same generation, yielding numerous offspring. All F1 individuals were wild-type, but the phenotypes yielded in the F2 generation were wild-type females, and both wild-type and yellow-bodied males. The latter yellow male mutants backcrossed with virgin wild-type F1 females yielded four phenotypes (brown-colored and yellow-colored flies of both sexes, indicating an inheritance pattern of X-linked recessive. Chi-square goodness of fit tests (α = 5% detected no significant differences among the number of flies per phenotype. The new mutation is hereby named yellow, due to its probable homology to a similar mutation with an identical inheritance pattern found in Drosophila melanogaster. Keywords: Recessive, São Paulo, Tripunctata group, X-linked, Yellow

  6. Homological stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  7. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    Directory of Open Access Journals (Sweden)

    David J Mellert

    Full Text Available Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  8. Modeling Human Cancers in Drosophila.

    Science.gov (United States)

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  9. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  10. Differential occurrence of chromosome inversion polymorphisms among Muller's elements in three species of the tripunctata group of Drosophila, including a species with fast chromosomal evolution.

    Science.gov (United States)

    Brianti, Mitsue T; Ananina, Galina; Klaczko, Louis B

    2013-01-01

    Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.

  11. Drosophila muscleblind is involved in troponin T alternative splicing and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta Vicente-Crespo

    2008-02-01

    Full Text Available Muscleblind-like proteins (MBNL have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D are coded by the unique Drosophila muscleblind gene.We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3 minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression.Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a

  12. Combination of Hypomorphic Mutations of the Drosophila Homologues of Aryl Hydrocarbon Receptor and Nucleosome Assembly Protein Family Genes Disrupts Morphogenesis, Memory and Detoxification

    OpenAIRE

    Kuzin, Boris A.; Nikitina, Ekaterina A.; Cherezov, Roman O.; Vorontsova, Julia E.; Slezinger, Mikhail S.; Zatsepina, Olga G.; Simonova, Olga B.; Enikolopov, Grigori N.; Savvateeva-Popova, Elena V.

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response...

  13. A microsatellite linkage map of Drosophila mojavensis

    Directory of Open Access Journals (Sweden)

    Schully Sheri

    2004-05-01

    Full Text Available Abstract Background Drosophila mojavensis has been a model system for genetic studies of ecological adaptation and speciation. However, despite its use for over half a century, no linkage map has been produced for this species or its close relatives. Results We have developed and mapped 90 microsatellites in D. mojavensis, and we present a detailed recombinational linkage map of 34 of these microsatellites. A slight excess of repetitive sequence was observed on the X-chromosome relative to the autosomes, and the linkage groups have a greater recombinational length than the homologous D. melanogaster chromosome arms. We also confirmed the conservation of Muller's elements in 23 sequences between D. melanogaster and D. mojavensis. Conclusions The microsatellite primer sequences and localizations are presented here and made available to the public. This map will facilitate future quantitative trait locus mapping studies of phenotypes involved in adaptation or reproductive isolation using this species.

  14. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Abraham Rosas-Arellano

    2016-02-01

    Full Text Available Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH and Ferritin 2 Light Chain Homolog (Fer2LCH are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated.

  15. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  16. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  17. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  18. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael

    2003-01-01

    The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors...... can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  19. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila.

    Science.gov (United States)

    Yamada, Takayuki; Habara, Okiko; Kubo, Hitomi; Nishimura, Takashi

    2018-03-14

    Adapting to changes in food availability is a central challenge for survival. Glucose is an important resource for energy production, and therefore many organisms synthesize and retain sugar storage molecules. In insects, glucose is stored in two different forms: the disaccharide trehalose and the branched polymer glycogen. Glycogen is synthesized and stored in several tissues, including in muscle and the fat body. Despite the major role of the fat body as a center for energy metabolism, the importance of its glycogen content remains unclear. Here, we show that glycogen metabolism is regulated in a tissue-specific manner under starvation conditions in the fruit fly Drosophila The mobilization of fat body glycogen in larvae is independent of Adipokinetic hormone (Akh, the glucagon homolog) but is regulated by sugar availability in a tissue-autonomous manner. Fat body glycogen plays a crucial role in the maintenance of circulating sugars, including trehalose, under fasting conditions. These results demonstrate the importance of fat body glycogen as a metabolic safeguard in Drosophila . © 2018. Published by The Company of Biologists Ltd.

  20. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster.

    Science.gov (United States)

    Miller, Danny E; Cook, Kevin R; Yeganeh Kazemi, Nazanin; Smith, Clarissa B; Cockrell, Alexandria J; Hawley, R Scott; Bergman, Casey M

    2016-03-08

    Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.

  2. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  3. Microevolution of cis-regulatory elements: an example from the pair-rule segmentation gene fushi tarazu in the Drosophila melanogaster subgroup.

    Directory of Open Access Journals (Sweden)

    Mohammed Bakkali

    Full Text Available The importance of non-coding DNAs that control transcription is ever noticeable, but the characterization and analysis of the evolution of such DNAs presents challenges not found in the analysis of coding sequences. In this study of the cis-regulatory elements of the pair rule segmentation gene fushi tarazu (ftz I report the DNA sequences of ftz's zebra element (promoter and a region containing the proximal enhancer from a total of 45 fly lines belonging to several populations of the species Drosophila melanogaster, D. simulans, D. sechellia, D. mauritiana, D. yakuba, D. teissieri, D. orena and D. erecta. Both elements evolve at slower rate than ftz synonymous sites, thus reflecting their functional importance. The promoter evolves more slowly than the average for ftz's coding sequence while, on average, the enhancer evolves more rapidly, suggesting more functional constraint and effective purifying selection on the former. Comparative analysis of the number and nature of base substitutions failed to detect significant evidence for positive/adaptive selection in transcription-factor-binding sites. These seem to evolve at similar rates to regions not known to bind transcription factors. Although this result reflects the evolutionary flexibility of the transcription factor binding sites, it also suggests a complex and still not completely understood nature of even the characterized cis-regulatory sequences. The latter seem to contain more functional parts than those currently identified, some of which probably transcription factor binding. This study illustrates ways in which functional assignments of sequences within cis-acting sequences can be used in the search for adaptive evolution, but also highlights difficulties in how such functional assignment and analysis can be carried out.

  4. Hermann Muller and Mutations in Drosophila

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hermann Muller and Mutations in Drosophila Resources with University of Texas. In Austin his experiments on fruit flies (Drosophila) first showed that exposure to September to spend a year at the only Drosophila laboratory in Europe which was doing parallel work

  5. Strategies for outcrossing and genetic manipulation of Drosophila compound autosome stocks.

    Science.gov (United States)

    Martins, T; Kotadia, S; Malmanche, N; Sunkel, C E; Sullivan, W

    2013-01-01

    Among all organisms, Drosophila melanogaster has the most extensive well-characterized collection of large-scale chromosome rearrangements. Compound chromosomes, rearrangements in which homologous chromosome arms share a centromere, have proven especially useful in genetic-based surveys of the entire genome. However, their potential has not been fully realized because compound autosome stocks are refractile to standard genetic manipulations: if outcrossed, they yield inviable aneuploid progeny. Here we describe two strategies, cold-shock and use of the bubR1 mutant alleles, to produce nullo gametes through nondisjunction. These gametes are complementary to the compound chromosome-bearing gametes and thus produce viable progeny. Using these techniques, we created a compound chromosome two C(2)EN stock bearing a red fluorescent protein-histone transgene, facilitating live analysis of these unusually long chromosomes.

  6. Novel ethyl methanesulfonate (EMS-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo

    Directory of Open Access Journals (Sweden)

    Mark W. Dodson

    2014-12-01

    Full Text Available Mutations in LRRK2 cause a dominantly inherited form of Parkinson’s disease (PD and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling.

  7. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo.

    Science.gov (United States)

    Dodson, Mark W; Leung, Lok K; Lone, Mohiddin; Lizzio, Michael A; Guo, Ming

    2014-12-01

    Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling. © 2014. Published by The Company of Biologists Ltd.

  8. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Kimberly R Hagel

    Full Text Available Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.

  9. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila.

    Science.gov (United States)

    Sakakibara, Yasufumi; Sekiya, Michiko; Fujisaki, Naoki; Quan, Xiuming; Iijima, Koichi M

    2018-01-01

    Wolfram syndrome (WS), caused by loss-of-function mutations in the Wolfram syndrome 1 gene (WFS1), is characterized by juvenile-onset diabetes mellitus, bilateral optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. WFS1 encodes an endoplasmic reticulum (ER)-resident transmembrane protein, and mutations in this gene lead to pancreatic β-cell death induced by high levels of ER stress. However, the mechanisms underlying neurodegeneration caused by WFS1 deficiency remain elusive. Here, we investigated the role of WFS1 in the maintenance of neuronal integrity in vivo by knocking down the expression of wfs1, the Drosophila homolog of WFS1, in the central nervous system. Neuronal knockdown of wfs1 caused age-dependent behavioral deficits and neurodegeneration in the fly brain. Knockdown of wfs1 in neurons and glial cells resulted in premature death and significantly exacerbated behavioral deficits in flies, suggesting that wfs1 has important functions in both cell types. Although wfs1 knockdown alone did not promote ER stress, it increased the susceptibility to oxidative stress-, excitotoxicity- or tauopathy-induced behavioral deficits, and neurodegeneration. The glutamate release inhibitor riluzole significantly suppressed premature death phenotypes induced by neuronal and glial knockdown of wfs1. This study highlights the protective role of wfs1 against age-associated neurodegeneration and furthers our understanding of potential disease-modifying factors that determine susceptibility and resilience to age-associated neurodegenerative diseases.

  10. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yasufumi Sakakibara

    2018-01-01

    Full Text Available Wolfram syndrome (WS, caused by loss-of-function mutations in the Wolfram syndrome 1 gene (WFS1, is characterized by juvenile-onset diabetes mellitus, bilateral optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. WFS1 encodes an endoplasmic reticulum (ER-resident transmembrane protein, and mutations in this gene lead to pancreatic β-cell death induced by high levels of ER stress. However, the mechanisms underlying neurodegeneration caused by WFS1 deficiency remain elusive. Here, we investigated the role of WFS1 in the maintenance of neuronal integrity in vivo by knocking down the expression of wfs1, the Drosophila homolog of WFS1, in the central nervous system. Neuronal knockdown of wfs1 caused age-dependent behavioral deficits and neurodegeneration in the fly brain. Knockdown of wfs1 in neurons and glial cells resulted in premature death and significantly exacerbated behavioral deficits in flies, suggesting that wfs1 has important functions in both cell types. Although wfs1 knockdown alone did not promote ER stress, it increased the susceptibility to oxidative stress-, excitotoxicity- or tauopathy-induced behavioral deficits, and neurodegeneration. The glutamate release inhibitor riluzole significantly suppressed premature death phenotypes induced by neuronal and glial knockdown of wfs1. This study highlights the protective role of wfs1 against age-associated neurodegeneration and furthers our understanding of potential disease-modifying factors that determine susceptibility and resilience to age-associated neurodegenerative diseases.

  11. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N

    2001-01-01

    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  12. Pure homology of algebraic varieties

    OpenAIRE

    Weber, Andrzej

    2003-01-01

    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  13. Crystal structure of Diedel, a marker of the immune response of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Franck Coste

    Full Text Available The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues with 10 cysteines.We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its own signal peptide and solved its crystal structure at 1.15 Å resolution by SIRAS using an iodo derivative. Diedel is composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel β-sheet covered by an α-helix and displays a ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae and Ascoviridae families.Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small family of proteins present in drosophilids, aphids and DNA viruses infecting lepidopterans. Diedel is an extracellular protein composed of two sub-domains. Two special structural features (hydrophobic surface patch and cis/trans conformation for proline 52 may indicate a putative interaction site, and support an extra cellular signaling function for Diedel, which is in accordance with its proposed role as negative regulator of the JAK/STAT signaling pathway.

  14. ENU mutagenesis reveals that Notchless homolog 1 (Drosophila affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development

    Directory of Open Access Journals (Sweden)

    Lossie Amy C

    2012-12-01

    Full Text Available Abstract Background Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4, which fall into the same complementation group, survive through implantation but fail prior to gastrulation. Results Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila (Nle1 gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. Conclusions Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals.

  15. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    Directory of Open Access Journals (Sweden)

    Apurva Barve

    2013-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1 and replication protein A 70 kDa subunit (RPA70 proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  16. Lectures on functor homology

    CERN Document Server

    Touzé, Antoine

    2015-01-01

    This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is o...

  17. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    Energy Technology Data Exchange (ETDEWEB)

    Puseenam, Aekkachai [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Nagai, Rika [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Suyari, Osamu [Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Itoh, Masanobu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Enomoto, Atsushi [Department of Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Takahashi, Masahide [Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Department of Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  18. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    International Nuclear Information System (INIS)

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-01-01

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  19. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo.

    Directory of Open Access Journals (Sweden)

    Matthieu Y Pasco

    Full Text Available In multicellular organisms, insulin/IGF signaling (IIS plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz, a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.

  20. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  1. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E; Tavera D, L; Cruces M, M P; Arceo M, C; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  2. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  3. Evaluation of Off-season Potential Breeding Sources for Spotted Wing Drosophila (Drosophila suzukii Matsumura) in Michigan.

    Science.gov (United States)

    Bal, Harit K; Adams, Christopher; Grieshop, Matthew

    2017-12-05

    It has been suggested that fruit wastes including dropped and unharvested fruits, and fruit byproducts (i.e., pomace) found in fruit plantings and cideries or wine-making facilities could serve as potential off-season breeding sites for spotted wing Drosophila (Drosophila suzukii Matsumura (Diptera: Drosophilidae)). This idea, however, has yet to be widely tested. The goal of our study was to determine the potential of dropped fruit and fruit wastes as Fall spotted wing Drosophila breeding resources in Michigan, USA. Fruit waste samples were collected from 15 farms across the lower peninsula of Michigan and were evaluated for spotted wing Drosophila and other drosophilid emergence and used in host suitability bioassays. All of the dropped apples, pears, grapes, and raspberries and 40% of apple and 100% of grape fruit pomace evaluated were found to contain spotted wing Drosophila with the highest numbers collected from dropped grapes and pears. Greater spotted wing Drosophila recovery was found in fruit wastes at sites attached with cideries and wine-making facilities and with multiple cultivated fruit crops than sites with no cideries and only one crop. Females oviposited in raspberry, pear, apple, grape, apple pomace and grape pomace samples with the highest rates of reproduction in raspberries. Our results demonstrate that fruit wastes including dropped berry, pomme and stone fruits, as well as fruit compost may be important late season reproductive resources for spotted wing Drosophila. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  5. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Mi-Sun; Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  6. The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain.

    Science.gov (United States)

    Bader, R; Sarraf-Zadeh, L; Peters, M; Moderau, N; Stocker, H; Köhler, K; Pankratz, M J; Hafen, E

    2013-06-15

    In Drosophila, Insulin-like peptide 2 (Dilp-2) is expressed by insulin-producing cells in the brain, and is secreted into the hemolymph to activate insulin signaling systemically. Within the brain, however, a more local activation of insulin signaling may be required to couple behavioral and physiological traits to nutritional inputs. We show that a small subset of neurons in the larval brain has high Dilp-2-mediated insulin signaling activity. This local insulin signaling activation is accompanied by selective Dilp-2 uptake and depends on the expression of the Imaginal morphogenesis protein-late 2 (Imp-L2) in the target neurons. We suggest that Imp-L2 acts as a licensing factor for neuronal IIS activation through Dilp-2 to further increase the precision of insulin activity in the brain.

  7. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  8. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kristina Corthals

    2017-07-01

    Full Text Available The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs, schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster, an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4 has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.

  9. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster.

    Science.gov (United States)

    Corthals, Kristina; Heukamp, Alina Sophia; Kossen, Robert; Großhennig, Isabel; Hahn, Nina; Gras, Heribert; Göpfert, Martin C; Heinrich, Ralf; Geurten, Bart R H

    2017-01-01

    The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster , an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.

  10. Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.

    Science.gov (United States)

    Swanson, Lianna E; Yu, Marcus; Nelson, Kevin S; Laprise, Patrick; Tepass, Ulrich; Beitel, Greg J

    2009-04-01

    Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.

  11. Inverse regulation of two classic Hippo pathway target genes in Drosophila by the dimerization hub protein Ctp.

    Science.gov (United States)

    Barron, Daniel A; Moberg, Kenneth

    2016-03-14

    The LC8 family of small ~8 kD proteins are highly conserved and interact with multiple protein partners in eukaryotic cells. LC8-binding modulates target protein activity, often through induced dimerization via LC8:LC8 homodimers. Although many LC8-interactors have roles in signaling cascades, LC8's role in developing epithelia is poorly understood. Using the Drosophila wing as a developmental model, we find that the LC8 family member Cut up (Ctp) is primarily required to promote epithelial growth, which correlates with effects on the pro-growth factor dMyc and two genes, diap1 and bantam, that are classic targets of the Hippo pathway coactivator Yorkie. Genetic tests confirm that Ctp supports Yorkie-driven tissue overgrowth and indicate that Ctp acts through Yorkie to control bantam (ban) and diap1 transcription. Quite unexpectedly however, Ctp loss has inverse effects on ban and diap1: it elevates ban expression but reduces diap1 expression. In both cases these transcriptional changes map to small segments of these promoters that recruit Yorkie. Although LC8 complexes with Yap1, a Yorkie homolog, in human cells, an orthologous interaction was not detected in Drosophila cells. Collectively these findings reveal that that Drosophila Ctp is a required regulator of Yorkie-target genes in vivo and suggest that Ctp may interact with a Hippo pathway protein(s) to exert inverse transcriptional effects on Yorkie-target genes.

  12. Mod two homology and cohomology

    CERN Document Server

    Hausmann, Jean-Claude

    2014-01-01

    Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: It leads more quickly to the essentials of the subject, An absence of signs and orientation considerations simplifies the theory, Computations and advanced applications can be presented at an earlier stage, Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ula...

  13. Hearing regulates Drosophila aggression.

    Science.gov (United States)

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  14. Cryptocephal, the Drosophila melanogaster ATF4, is a specific coactivator for ecdysone receptor isoform B2.

    Directory of Open Access Journals (Sweden)

    Sebastien A Gauthier

    Full Text Available The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR and Ultraspiracle (USP. In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4 is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC, the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH, an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators.

  15. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Genetic toxicity in surface water from Guaiba Hydrographic Region under the influence of industrial, urban and agricultural sewage in the Drosophila Wing-Spot Test

    International Nuclear Information System (INIS)

    Souza do Amaral, Viviane; Sinigaglia, Marialva; Reguly, Maria Luiza; Rodrigues de Andrade, Heloisa Helena

    2006-01-01

    Mutagenic and recombinagenic activity of surface waters in the Guaiba Hydrographic Region (RS, Brazil) was investigated using the SMART in Drosophila melanogaster. Two positive results in Cai River (September 2000 and August 2001) and in Taquari River (August 2001 and February 2002) - linked to direct recombinagenic toxicants were observed. In Jacui samples, an indirect mutagenic and recombinagenic action was detected in a September 2000 collection and a direct recombinational activity was observed in February 2002. Also in February 2002 - samples from Diluvio Brook and Guaiba Lake (GPC) were able to induce wing spots by mitotic recombinagenesis. The former sampling site showed toxicants to have a direct action, and the latter an increment in mitotic recombination that depended on metabolic action. The SMART wing test shows that all positive responses were mainly related to homologous mitotic recombination. - Drosophila Wing-Spot Test can be used for detection of environmental mutagenesis

  17. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model

    Directory of Open Access Journals (Sweden)

    Beatriz Llamusi

    2013-01-01

    Myotonic dystrophy type 1 (DM1 is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG480, and a collection of 1215 transgenic RNA interference (RNAi fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43 and BSF (Bicoid stability factor; homolog of human LRPPRC, were of particular interest. These factors modified i(CTG480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl, were detected in sarcomeric bands. Expression of i(CTG480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology.

  18. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  19. SNMP is a signaling component required for pheromone sensitivity in Drosophila.

    Science.gov (United States)

    Jin, Xin; Ha, Tal Soo; Smith, Dean P

    2008-08-05

    The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have identified a third component required for cVA reception: sensory neuron membrane protein (SNMP). SNMP is a homolog of CD36, a scavenger receptor important for lipoprotein binding and uptake of cholesterol and lipids in vertebrates. In humans, loss of CD36 is linked to a wide range of disorders including insulin resistance, dyslipidemia, and atherosclerosis, but how CD36 functions in lipid transport and signal transduction is poorly understood. We show that SNMP is required in pheromone-sensitive neurons for cVA sensitivity but is not required for sensitivity to general odorants. Using antiserum to SNMP infused directly into the sensillum lymph, we show that SNMP function is required on the dendrites of cVA-sensitive neurons; this finding is consistent with a direct role in cVA signal transduction. Therefore, pheromone perception in Drosophila should serve as an excellent model to elucidate the role of CD36 members in transmembrane signaling.

  20. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera

    Science.gov (United States)

    Heavner, Mary E.; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E.; Small, Chiyedza; Govind, Shubha

    2013-01-01

    Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557

  1. The molecular evolution of cytochrome P450 genes within and between drosophila species.

    Science.gov (United States)

    Good, Robert T; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-04-20

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae in Montenegro

    Directory of Open Access Journals (Sweden)

    Snježana Hrnčić

    2015-01-01

    Full Text Available The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly species was unexpectedly detected in Tephri traps baited with the three-component female-biased attractant BioLure that is regularly used for monitoring the Mediterranean fruit fly Ceratitis capitata Wiedem. (Diptera: Tephritidae in Montenegro. Brief visual inspection identified the new species as the spotted wing drosophila D. suzukii. The pest was first recorded in several localities on the Montenegrin seacoast around Boka Kotor Bay. After the finding, all Drosophila specimens were collected from traps for further laboratory observation. A quick follow-up monitoring of other Tephri traps was carried out within the next few days on the rest of the seacoast (localities from Tivat to Ulcinj. Additionally, Tephri traps were set up around Lake Skadar and in the city of Podgorica, as well as on fresh fruit markets in Podgorica. The results of this preliminary study showed that D. suzukii was present in all surveyed locations and adults were captured until late December. Both sexes were found in traps with BioLure. Our data show that D. suzukii is present in southern parts of Montenegro and there is a serious threat of its further spreading, particularly towards northern parts of the country where the main raspberry and blueberry production is placed. The results also show that Tephri traps baited with BioLure can be used for detection and monitoring of spotted wing drosophila.

  3. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    International Nuclear Information System (INIS)

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-01-01

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development

  4. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    Science.gov (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  5. Large clusters of co-expressed genes in the Drosophila genome.

    Science.gov (United States)

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  6. Chemical shift homology in proteins

    International Nuclear Information System (INIS)

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  7. New record for the invasive Spotted Wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Anillaco, Argentina

    Science.gov (United States)

    The invasive Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is reported for the first time in La Rioja, Argentina. This represents a major range expansion for this species. The natural enemies of SWD, Leptopilina clavipes and Ganaspis hookeri were also collected with the SWD at the s...

  8. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  9. In situ mapping of the hsp70 locus in seven species of the willistoni group of Drosophila

    International Nuclear Information System (INIS)

    Bonorino, C.B.C.; Valente, V.L.S.; Pereira, M.; Alonso, C.E.V.; Abdelhay, E.

    1993-01-01

    The hsp70 locus was mapped by in situ hybridization of a biotinylated probe (p PW 229) to the polythene chromosomes of seven species of the willistoni group of Drosophila. In all of them, the probe hybridized mainly at a single site of the third chromosome, corresponding in each case to a heat-induced puff site. Southern blot analysis comparing the Eco RI digested DNA of the willistoni species with D. melanogaster revealed that a large segment of DNA homologous to the hsp 70 probe detected in D. melanogaster does not exist in the willistoni group. These results suggested that this locus is not duplicated in the willistoni group as it is in the melanogaster. (author)

  10. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    Science.gov (United States)

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  11. Distribution of DNA replication proteins in Drosophila cells

    Science.gov (United States)

    Easwaran, Hariharan P; Leonhardt, Heinrich; Cardoso, M Cristina

    2007-01-01

    Background DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution. Results Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells. Conclusion We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very

  12. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  13. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  14. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    Science.gov (United States)

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  15. Phylogeny of the Genus Drosophila

    Science.gov (United States)

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  16. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection.

    Directory of Open Access Journals (Sweden)

    Jaspreet S Khurana

    2010-12-01

    Full Text Available Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.

  17. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos.

    Science.gov (United States)

    Haecker, Achim; Qi, Dai; Lilja, Tobias; Moussian, Bernard; Andrioli, Luiz Paulo; Luschnig, Stefan; Mannervik, Mattias

    2007-06-01

    Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs). How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Krüppel (Kr) and knirps (kni) genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA).

  18. The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster.

    Science.gov (United States)

    Remnant, Emily J; Morton, Craig J; Daborn, Phillip J; Lumb, Christopher; Yang, Ying Ting; Ng, Hooi Ling; Parker, Michael W; Batterham, Philip

    2014-11-01

    Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala(301) site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.

    1983-01-01

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.) [pt

  20. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.

    Science.gov (United States)

    Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H

    1999-10-01

    Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.

  1. RNAi Screen in Drosophila melanogastor Identifies Regulators of Steroidogenesis and Developmental Maturation

    DEFF Research Database (Denmark)

    Danielsen, Erik Thomas

    and duration required for juvenile-adult transition. This PhD project demonstrates the power of Drosophila genetics by taking an in vivo genome-wide RNAi screening approach to uncover genes required for the function of steroid producing tissue and developmental maturation. In total, 1909 genes were found...... to be required for the prothoracic gland function and affected the developmental timing for the juvenile-adult transition. Among the screen hits, we focused on an uncharacterized gene, sit (CG5278), which is highly expressed in the gland and is required for ecdysone production. Sit is a homolog of mammalian very...... flux of cholesterol uptake in the gland cells and affected the endosomal trafficking. Therefore this gene was suggested to be named stuck in traffic (sit). Sit’s role in cholesterol uptake was also supported by the observation that the developmental delayed phenotype from loss of sit expression...

  2. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Vognsen, Tina; Kristensen, Ole

    2012-01-01

    Highlights: ► The crystal structure of the NTF2-like domain of Rasputin protein is presented. ► Differences to known ligand binding sites of nuclear transport factor 2 are discussed. ► A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 Å resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a β-sheet and three α-helices forming a cone-like shape. However, known binding sites for RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.

  3. Characterization of Autophagic Responses in Drosophila melanogaster.

    Science.gov (United States)

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  4. Life span extension and neuronal cell protection by Drosophila nicotinamidase.

    Science.gov (United States)

    Balan, Vitaly; Miller, Gregory S; Kaplun, Ludmila; Balan, Karina; Chong, Zhao-Zhong; Li, Faqi; Kaplun, Alexander; VanBerkum, Mark F A; Arking, Robert; Freeman, D Carl; Maiese, Kenneth; Tzivion, Guri

    2008-10-10

    The life span of model organisms can be modulated by environmental conditions that influence cellular metabolism, oxidation, or DNA integrity. The yeast nicotinamidase gene pnc1 was identified as a key transcriptional target and mediator of calorie restriction and stress-induced life span extension. PNC1 is thought to exert its effect on yeast life span by modulating cellular nicotinamide and NAD levels, resulting in increased activity of Sir2 family class III histone deacetylases. In Caenorhabditis elegans, knockdown of a pnc1 homolog was shown recently to shorten the worm life span, whereas its overexpression increased survival under conditions of oxidative stress. The function and regulation of nicotinamidases in higher organisms has not been determined. Here, we report the identification and biochemical characterization of the Drosophila nicotinamidase, D-NAAM, and demonstrate that its overexpression significantly increases median and maximal fly life span. The life span extension was reversed in Sir2 mutant flies, suggesting Sir2 dependence. Testing for physiological effectors of D-NAAM in Drosophila S2 cells, we identified oxidative stress as a primary regulator, both at the transcription level and protein activity. In contrast to the yeast model, stress factors such as high osmolarity and heat shock, calorie restriction, or inhibitors of TOR and phosphatidylinositol 3-kinase pathways do not appear to regulate D-NAAM in S2 cells. Interestingly, the expression of D-NAAM in human neuronal cells conferred protection from oxidative stress-induced cell death in a sirtuin-dependent manner. Together, our findings establish a life span extending the ability of nicotinamidase in flies and offer a role for nicotinamide-modulating genes in oxidative stress regulated pathways influencing longevity and neuronal cell survival.

  5. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  6. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.

    Science.gov (United States)

    Larracuente, Amanda M

    2014-11-25

    Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)- an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. The genomic organization of the Rsp repeat in the D. melanogaster genome is complex-it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).

  7. Interorgan Communication Pathways in Physiology: Focus on Drosophila

    OpenAIRE

    Droujinine, Ilia A.; Perrimon, Norbert

    2016-01-01

    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we di...

  8. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    International Nuclear Information System (INIS)

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed

  9. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    International Nuclear Information System (INIS)

    Glassner, B.J.; Mortimer, R.K.

    1994-01-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs

  10. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  11. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  12. Isolation of protease-free alcohol dehydrogenase (ADH) from Drosophila simulans and several homozygous and heterozygous Drosophila melanogaster variants

    NARCIS (Netherlands)

    Smilda, T; Lamme, DA; Collu, G; Jekel, PA; Reinders, P; Beintema, JJ

    The enzyme alcohol dehydrogenase (ADH) from several naturally occurring ADH variants of Drosophila melanogaster and Drosophila simulans Lc,as isolated. Affinity chromatography with the ligand Cibacron Blue and elution with NAD(+) showed similar behavior for D. melanogaster ADH-FF, ADH-71k, and D.

  13. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  14. Drosophila KDM2 is a H3K4me3 demethylase regulating nucleolar organization

    Directory of Open Access Journals (Sweden)

    Birchler James A

    2009-10-01

    Full Text Available Abstract Background CG11033 (dKDM2 is the Drosophila homolog of the gene KDM2B. dKDM2 has been known to possess histone lysine demethylase activity towards H3K36me2 in cell lines and it regulates H2A ubiquitination. The human homolog of the gene has dual activity towards H3K36me2 as well as H3K4me3, and plays an important role in cellular senescence. Findings We have used transgenic flies bearing an RNAi construct for the dKDM2 gene. The knockdown of dKDM2 gene was performed by crossing UAS-RNAi-dKDM2 flies with actin-Gal4 flies. Western blots of acid extracted histones and immunofluoresence analysis of polytene chromosome showed the activity of the enzyme dKDM2 to be specific for H3K4me3 in adult flies. Immunofluoresence analysis of polytene chromosome also revealed the presence of multiple nucleoli in RNAi knockdown mutants of dKDM2 and decreased H3-acetylation marks associated with active transcription. Conclusion Our findings indicate that dKDM2 is a histone lysine demethylase with specificity for H3K4me3 and regulates nucleolar organization.

  15. FB-NOF is a non-autonomous transposable element, expressed in Drosophila melanogaster and present only in the melanogaster group.

    Science.gov (United States)

    Badal, Martí; Xamena, Noel; Cabré, Oriol

    2013-09-10

    Most foldback elements are defective due to the lack of coding sequences but some are associated with coding sequences and may represent the entire element. This is the case of the NOF sequences found in the FB of Drosophila melanogaster, formerly considered as an autonomous TE and currently proposed as part of the so-called FB-NOF element, the transposon that would be complete and fully functional. NOF is always associated with FB and never seen apart from the FB inverted repeats (IR). This is the reason why the FB-NOF composite element can be considered the complete element. At least one of its ORFs encodes a protein that has always been considered its transposase, but no detailed studies have been carried out to verify this. In this work we test the hypothesis that FB-NOF is an active transposon nowadays. We search for its expression product, obtaining its cDNA, and propose the ORF and the sequence of its potential protein. We found that the NOF protein is not a transposase as it lacks any of the motifs of known transposases and also shows structural homology with hydrolases, therefore FB-NOF cannot belong to the superfamily MuDR/foldback, as up to now it has been classified, and can be considered as a non-autonomous transposable element. The alignment with the published genomes of 12 Drosophila species shows that NOF presence is restricted only to the 6 Drosophila species belonging to the melanogaster group. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2003-08-01

    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  17. Geometric homology revisited

    OpenAIRE

    Ruffino, Fabio Ferrari

    2013-01-01

    Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...

  18. 40 CFR 798.5955 - Heritable translocation test in drosophila melanogaster.

    Science.gov (United States)

    2010-07-01

    ... drosophila melanogaster. 798.5955 Section 798.5955 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5955 Heritable translocation test in drosophila melanogaster. (a) Purpose. The heritable translocation test in Drosophila measures the induction of chromosomal translocations in germ cells of insects...

  19. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  20. Medium-term changes in Drosophila subobscura chromosomal ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... Krimbas C. B. 1993 Drosophila subobscura: biology, genetics and inversion polymorphism. Verlag Dr, Kovac, Hamburg. Menozzi P. and Krimbas C. B. 1992 The inversion polymorphism of Drosophila subobscura revisited: synthetic maps of gene arrangements frequencies and their interpretation. J. Evol.

  1. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  2. Dependence of paracentric inversion rate on tract length

    DEFF Research Database (Denmark)

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-01-01

    BACKGROUND: We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. RESULTS: We apply the method to data from...... Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions.If the two breakpoints defining...... a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions...

  3. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Vognsen, Tina, E-mail: tv@farma.ku.dk [Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Kristensen, Ole, E-mail: ok@farma.ku.dk [Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The crystal structure of the NTF2-like domain of Rasputin protein is presented. Black-Right-Pointing-Pointer Differences to known ligand binding sites of nuclear transport factor 2 are discussed. Black-Right-Pointing-Pointer A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 A resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a {beta}-sheet and three {alpha}-helices forming a cone-like shape. However, known binding sites for RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.

  4. Homologous Recombination—Experimental Systems, Analysis and Significance

    Science.gov (United States)

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  5. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  6. Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-Linked (ATRX vertebrate protein.

    Directory of Open Access Journals (Sweden)

    Brenda López-Falcón

    Full Text Available The human ATRX gene encodes hATRX, a chromatin-remodeling protein harboring an helicase/ATPase and ADD domains. The ADD domain has two zinc fingers that bind to histone tails and mediate hATRX binding to chromatin. dAtrx, the putative ATRX homolog in Drosophila melanogaster, has a conserved helicase/ATPase domain but lacks the ADD domain. A bioinformatic search of the Drosophila genome using the human ADD sequence allowed us to identify the CG8290 annotated gene, which encodes three ADD harboring- isoforms generated by alternative splicing. This Drosophila ADD domain is highly similar in structure and in the amino acids which mediate the histone tail contacts to the ADD domain of hATRX as shown by 3D modeling. Very recently the CG8290 annotated gene has been named dadd1. We show through pull-down and CoIP assays that the products of the dadd1 gene interact physically with dAtrxL and HP1a and all of them mainly co-localize in the chromocenter, although euchromatic localization can also be observed through the chromosome arms. We confirm through ChIP analyses that these proteins are present in vivo in the same heterochromatic regions. The three isoforms are expressed throughout development. Flies carrying transheterozygous combinations of the dadd1 and atrx alleles are semi-viable and have different phenotypes including the appearance of melanotic masses. Interestingly, the dAdd1-b and c isoforms have extra domains, such as MADF, which suggest newly acquired functions of these proteins. These results strongly support that, in Drosophila, the atrx gene diverged and that the dadd1-encoded proteins participate with dAtrx in some cellular functions such as heterochromatin maintenance.

  7. Lectures on homology with internal symmetries

    International Nuclear Information System (INIS)

    Solovyov, Yu.

    1993-09-01

    Homology with internal symmetries is a natural generalization of cyclic homology introduced, independently, by Connes and Tsygan, which has turned out to be a very useful tool in a number of problems of algebra, geometry topology, analysis and mathematical physics. It suffices to say cycling homology and cohomology are successfully applied in the index theory of elliptic operators on foliations, in the description of the homotopy type of pseudoisotopy spaces, in the theory of characteristic classes in algebraic K-theory. They are also applied in noncommutative differential geometry and in the cohomology of Lie algebras, the branches of mathematics which brought them to life in the first place. Essentially, we consider dihedral homology, which was successfully applied for the description of the homology type of groups of homeomorphisms and diffeomorphisms of simply connected manifolds. (author). 27 refs

  8. Compositional Homology and Creative Thinking

    Directory of Open Access Journals (Sweden)

    Salvatore Tedesco

    2015-05-01

    Full Text Available The concept of homology is the most solid theoretical basis elaborated by the morphological thinking during its history. The enucleation of some general criteria for the interpretation of homology is today a fundamental tool for life sciences, and for restoring their own opening to the question of qualitative innovation that arose so powerfully in the original Darwinian project. The aim of this paper is to verify the possible uses of the concept of compositional homology in order to provide of an adequate understanding of the dynamics of creative thinking.

  9. Rational Homological Stability for Automorphisms of Manifolds

    DEFF Research Database (Denmark)

    Grey, Matthias

    In this thesis we prove rational homological stability for the classifying spaces of the homotopy automorphisms and block di↵eomorphisms of iterated connected sums of products of spheres of a certain connectivity.The results in particular apply to the manifolds       Npg,q  = (#g(Sp x Sq)) - int...... with coefficients in the homology of the universal covering, which is studied using rational homology theory. The result for the block di↵eomorphisms is deduced from the homological stability for the homotopy automorphisms upon using Surgery theory. Themain theorems of this thesis extend the homological stability...

  10. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  11. Drosophila melanogaster as a model organism to study nanotoxicity.

    Science.gov (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  12. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  13. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  14. Rapid and highly accurate detection of Drosophila suzukii, spotted wing Drosophila (Diptera: Drosophilidae) by loop-mediated isothermal amplification assays

    Science.gov (United States)

    Drosophila suzukii, the spotted wing drosophila (SWD), is currently a major pest that causes severe economic losses to thin-skinned, small fruit growers in North America and Europe. The monitoring and early detection of SWD in the field is of the utmost importance for its proper management. Althou...

  15. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  16. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  17. Effect of Hawthorn on Drosophila Melanogaster Antioxidant-Related ...

    African Journals Online (AJOL)

    Results: The results indicate that hawthorn extract prolonged the life span of Drosophila, with 50 % survival time of 0.8 ... Drosophila's aging gene is highly similar to humans [4,5]. ..... reduces lipid peroxidation in senescence-accelerated mice .

  18. Drosophila sperm swim backwards in the female reproductive tract and are activated via TRPP2 ion channels.

    Directory of Open Access Journals (Sweden)

    Michael Köttgen

    Full Text Available Sperm have but one purpose, to fertilize an egg. In various species including Drosophila melanogaster female sperm storage is a necessary step in the reproductive process. Amo is a homolog of the human transient receptor potential channel TRPP2 (also known as PKD2, which is mutated in autosomal dominant polycystic kidney disease. In flies Amo is required for sperm storage. Drosophila males with Amo mutations produce motile sperm that are transferred to the uterus but they do not reach the female storage organs. Therefore Amo appears to be a mediator of directed sperm motility in the female reproductive tract but the underlying mechanism is unknown.Amo exhibits a unique expression pattern during spermatogenesis. In spermatocytes, Amo is restricted to the endoplasmic reticulum (ER whereas in mature sperm, Amo clusters at the distal tip of the sperm tail. Here we show that flagellar localization of Amo is required for sperm storage. This raised the question of how Amo at the rear end of sperm regulates forward movement into the storage organs. In order to address this question, we used in vivo imaging of dual labelled sperm to demonstrate that Drosophila sperm navigate backwards in the female reproductive tract. In addition, we show that sperm exhibit hyperactivation upon transfer to the uterus. Amo mutant sperm remain capable of reverse motility but fail to display hyperactivation and directed movement, suggesting that these functions are required for sperm storage in flies.Amo is part of a signalling complex at the leading edge of the sperm tail that modulates flagellar beating and that guides a backwards path into the storage organs. Our data support an evolutionarily conserved role for TRPP2 channels in cilia.

  19. Genetic modifiers of comatose mutations in Drosophila: insights into neuronal NSF (N-ethylmaleimide-sensitive fusion factor) functions.

    Science.gov (United States)

    Sanyal, Subhabrata; Krishnan, K S

    2012-09-01

    By the middle of the 20th century, development of powerful genetic approaches had ensured that the fruit fly would remain a model organism of choice for genetic and developmental studies. But in the 1970s, a few pioneering groups turned their attention to the prospect of using the fly for neurophysiological experiments. They proposed that in a poikilothermic organism such as Drosophila, temperature-sensitive or "ts" mutations in proteins that controlled nerve function would translate to a "ts" paralytic phenotype. This was by no means an obvious or even a likely assumption. However, following directed screens these groups soon reported dramatic demonstrations of reversible ts paralysis in fly mutants. Resultantly, these "simple" experiments led to the isolation of a number of conditional mutations including shibire, paralytic, and comatose. All have since been cloned and have enabled deep mechanistic insights into synaptic transmission and nerve conduction. comatose (comt) mutations, for example, were found to map to missense changes in dNSF1, a neuron-specific fly homolog of mammalian NSF (N-ethylmaleimide-sensitive fusion factor). Studies on comt were also some of the first to discriminate between nuanced models of NSF function during presynaptic transmitter release that have since been borne out by experiments in multiple preparations. Here, the authors present an overview of NSF function as it is understood today, with an emphasis on contributions from Drosophila beginning with experiments carried out by Obaid Siddiqi in the Benzer laboratory. The authors also outline initial results from a genetic screen for phenotypic modifiers of comt that hold the promise of further elucidating NSF function at the synapse. Over the years, the neuromuscular system of Drosophila has served as a uniquely accessible model to unravel mechanisms underlying synaptic transmission. To this day, ts paralysis remains one of the most emphatic demonstrations of nerve function in an

  20. Mechanisms of Inhibition of the Epidermal Growth Factor Receptor: Implications for Novel Anti-Cancer Therapies

    National Research Council Canada - National Science Library

    Klein, Daryl E

    2005-01-01

    .... No secreted or extracellular ErbB receptor inhibitors have been reported in mammals. However, two natural inhibitors of the highly homologous Drosophila EGF receptor are found in Drosophila melanogaster...

  1. Homology in Electromagnetic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Pellikka Matti

    2010-01-01

    Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.

  2. A product of the bicistronic Drosophila melanogaster gene CG31241, which also encodes a trimethylguanosine synthase, plays a role in telomere protection.

    Science.gov (United States)

    Komonyi, Orban; Schauer, Tamas; Papai, Gabor; Deak, Peter; Boros, Imre M

    2009-03-15

    Although telomere formation occurs through a different mechanism in Drosophila compared with other organisms, telomere associations result from mutations in homologous genes, indicating the involvement of similar pathways in chromosome end protection. We report here that mutations of the Drosophila melanogaster gene CG31241 lead to high frequency chromosome end fusions. CG31241 is a bicistronic gene that encodes trimethylguanosine synthase (TGS1), which forms the m3G caps of noncoding small RNAs, and a novel protein, DTL. We show that although TGS1 has no role in telomere protection, DTL is localized at specific sites, including the ends of polytene chromosomes, and its loss results in telomere associations. Mutations of ATM- and Rad3-related (ATR) kinase suppress telomere fusions in the absence of DTL. Thus, genetic interactions place DTL in an ATR-related pathway in telomere protection. In contrast to ATR kinase, mutations of ATM (ataxia telangiectasia mutated) kinase, which acts in a partially overlapping pathway of telomere protection, do not suppress formation of telomere associations in the absence of DTL. Thus, uncovering the role of DTL will help to dissect the evolutionary conserved pathway(s) controlling ATM-ATR-related telomere protection.

  3. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii.

    Science.gov (United States)

    Li, Jianwei; Handler, Alfred M

    2017-09-28

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.

  4. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila.

    Science.gov (United States)

    Baril, Caroline; Gavory, Gwenaëlle; Bidla, Gawa; Knævelsrud, Helene; Sauvageau, Guy; Therrien, Marc

    2017-01-01

    Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Enhancing Nanos expression via the bacterial TomO protein is a conserved strategy used by the symbiont Wolbachia to fuel germ stem cell maintenance in infected Drosophila females.

    Science.gov (United States)

    Ote, Manabu; Yamamoto, Daisuke

    2018-04-27

    The toxic manipulator of oogenesis (TomO) protein has been identified in the wMel strain of Wolbachia that symbioses with the vinegar fly Drosophila melanogaster, as a protein that affects host reproduction. TomO protects germ stem cells (GSCs) from degeneration, which otherwise occurs in ovaries of host females that are mutant for the gene Sex-lethal (Sxl). We isolated the TomO homologs from wPip, a Wolbachia strain from the mosquito Culex quinquefasciatus. One of the homologs, TomO w Pip 1, exerted the GSC rescue activity in fly Sxl mutants when lacking its hydrophobic stretches. The GSC-rescuing action of the TomO w Pip 1 variant was ascribable to its abilities to associate with Nanos (nos) mRNA and to enhance Nos protein expression. The analysis of structure-activity relationships with TomO homologs and TomO deletion variants revealed distinct modules in the protein that are each dedicated to different functions, i.e., subcellular localization, nos mRNA binding or Nos expression enhancement. We propose that modular reshuffling is the basis for structural and functional diversification of TomO protein members. © 2018 Wiley Periodicals, Inc.

  6. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    Science.gov (United States)

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    1999-01-01

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  8. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.

    Science.gov (United States)

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-11-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology

  9. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless

    Directory of Open Access Journals (Sweden)

    Laura Tamberg

    2015-12-01

    Full Text Available Pitt-Hopkins syndrome (PTHS is caused by haploinsufficiency of Transcription factor 4 (TCF4, one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da, homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder.

  10. Evolution of genes and genomes on the Drosophila phylogeny

    DEFF Research Database (Denmark)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R

    2007-01-01

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the ......Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here...... tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila...

  11. [Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model of human Williams syndrome].

    Science.gov (United States)

    Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M

    2004-06-01

    As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.

  12. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    Directory of Open Access Journals (Sweden)

    Julianna Bozler

    Full Text Available Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a

  13. Quantification of Drosophila Grooming Behavior.

    Science.gov (United States)

    Barradale, Francesca; Sinha, Kairav; Lebestky, Tim

    2017-07-19

    Drosophila grooming behavior is a complex multi-step locomotor program that requires coordinated movement of both forelegs and hindlegs. Here we present a grooming assay protocol and novel chamber design that is cost-efficient and scalable for either small or large-scale studies of Drosophila grooming. Flies are dusted all over their body with Brilliant Yellow dye and given time to remove the dye from their bodies within the chamber. Flies are then deposited in a set volume of ethanol to solubilize the dye. The relative spectral absorbance of dye-ethanol samples for groomed versus ungroomed animals are measured and recorded. The protocol yields quantitative data of dye accumulation for individual flies, which can be easily averaged and compared across samples. This allows experimental designs to easily evaluate grooming ability for mutant animal studies or circuit manipulations. This efficient procedure is both versatile and scalable. We show work-flow of the protocol and comparative data between WT animals and mutant animals for the Drosophila type I Dopamine Receptor (DopR).

  14. Interorgan Communication Pathways in Physiology: Focus on Drosophila.

    Science.gov (United States)

    Droujinine, Ilia A; Perrimon, Norbert

    2016-11-23

    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.

  15. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  16. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    Directory of Open Access Journals (Sweden)

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  17. Life Span Extension and Neuronal Cell Protection by Drosophila Nicotinamidase*S⃞

    Science.gov (United States)

    Balan, Vitaly; Miller, Gregory S.; Kaplun, Ludmila; Balan, Karina; Chong, Zhao-Zhong; Li, Faqi; Kaplun, Alexander; VanBerkum, Mark F. A.; Arking, Robert; Freeman, D. Carl; Maiese, Kenneth; Tzivion, Guri

    2008-01-01

    The life span of model organisms can be modulated by environmental conditions that influence cellular metabolism, oxidation, or DNA integrity. The yeast nicotinamidase gene pnc1 was identified as a key transcriptional target and mediator of calorie restriction and stress-induced life span extension. PNC1 is thought to exert its effect on yeast life span by modulating cellular nicotinamide and NAD levels, resulting in increased activity of Sir2 family class III histone deacetylases. In Caenorhabditis elegans, knockdown of a pnc1 homolog was shown recently to shorten the worm life span, whereas its overexpression increased survival under conditions of oxidative stress. The function and regulation of nicotinamidases in higher organisms has not been determined. Here, we report the identification and biochemical characterization of the Drosophila nicotinamidase, D-NAAM, and demonstrate that its overexpression significantly increases median and maximal fly life span. The life span extension was reversed in Sir2 mutant flies, suggesting Sir2 dependence. Testing for physiological effectors of D-NAAM in Drosophila S2 cells, we identified oxidative stress as a primary regulator, both at the transcription level and protein activity. In contrast to the yeast model, stress factors such as high osmolarity and heat shock, calorie restriction, or inhibitors of TOR and phosphatidylinositol 3-kinase pathways do not appear to regulate D-NAAM in S2 cells. Interestingly, the expression of D-NAAM in human neuronal cells conferred protection from oxidative stress-induced cell death in a sirtuin-dependent manner. Together, our findings establish a life span extending the ability of nicotinamidase in flies and offer a role for nicotinamide-modulating genes in oxidative stress regulated pathways influencing longevity and neuronal cell survival. PMID:18678867

  18. Independent signaling by Drosophila insulin receptor for axon guidance and growth

    Directory of Open Access Journals (Sweden)

    Caroline Rita Li

    2014-01-01

    Full Text Available The Drosophila insulin receptor (DInR regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin-receptor-substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock. In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail, important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock-binding sites were in separate portions of the C-tail from the previously identified Chico-binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth, and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all 5 NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. Mutation of these 5 NPXY motifs did not affect photoreceptor axon guidance, showing that different sites within DInR control growth and axon guidance.

  19. Isoform-specific functions of Mud/NuMA mediate binucleation of Drosophila male accessory gland cells.

    Science.gov (United States)

    Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi

    2014-12-20

    In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate

  20. Resources for Functional Genomics Studies in Drosophila melanogaster

    Science.gov (United States)

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  1. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Modelling Cooperative Tumorigenesis in Drosophila

    Science.gov (United States)

    2018-01-01

    The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression. PMID:29693007

  3. Modelling Cooperative Tumorigenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Helena E. Richardson

    2018-01-01

    Full Text Available The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.

  4. Regulation of Energy Stores and Feeding by Neuronal and Peripheral CREB Activity in Drosophila

    Science.gov (United States)

    Iijima, Koichi; Zhao, LiJuan; Shenton, Christopher; Iijima-Ando, Kanae

    2009-01-01

    The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and β-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved. PMID:20041126

  5. Low-resolution structure of Drosophila translin

    Science.gov (United States)

    Kumar, Vinay; Gupta, Gagan D.

    2012-01-01

    Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579

  6. Colored Kauffman homology and super-A-polynomials

    International Nuclear Information System (INIS)

    Nawata, Satoshi; Ramadevi, P.; Zodinmawia

    2014-01-01

    We study the structural properties of colored Kauffman homologies of knots. Quadruple-gradings play an essential role in revealing the differential structure of colored Kauffman homology. Using the differential structure, the Kauffman homologies carrying the symmetric tensor products of the vector representation for the trefoil and the figure-eight are determined. In addition, making use of relations from representation theory, we also obtain the HOMFLY homologies colored by rectangular Young tableaux with two rows for these knots. Furthermore, the notion of super-A-polynomials is extended in order to encompass two-parameter deformations of PSL(2,ℂ) character varieties

  7. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  8. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  9. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  10. Research progress on Drosophila visual cognition in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Visual cognition,as one of the fundamental aspects of cognitive neuroscience,is generally associated with high-order brain functions in animals and human.Drosophila,as a model organism,shares certain features of visual cognition in common with mammals at the genetic,molecular,cellular,and even higher behavioral levels.From learning and memory to decision making,Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected.Armed with powerful tools of genetic manipulation in Drosophila,an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective.The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila.Here,we consider a series of the higher cognitive behaviors beyond learning and memory,such as visual pattern recognition,feature and context generalization,different feature memory traces,salience-based decision,attention-like behavior,and cross-modal leaning and memory.We discuss the possible general gain-gating mechanism implementing by dopamine-mushroom body circuit in fly’s visual cognition.We hope that our brief review on this aspect will inspire further study on visual cognition in flies,or even beyond.

  11. Research progress on Drosophila visual cognition in China.

    Science.gov (United States)

    Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang

    2010-03-01

    Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.

  12. Functional requirements driving the gene duplication in 12 Drosophila species.

    Science.gov (United States)

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  13. Ejaculation Induced by the Activation of Crz Neurons Is Rewarding to Drosophila Males.

    Science.gov (United States)

    Zer-Krispil, Shir; Zak, Hila; Shao, Lisha; Ben-Shaanan, Shir; Tordjman, Lea; Bentzur, Assa; Shmueli, Anat; Shohat-Ophir, Galit

    2018-05-07

    The reward system is a collection of circuits that reinforce behaviors necessary for survival [1, 2]. Given the importance of reproduction for survival, actions that promote successful mating induce pleasurable feeling and are positively reinforced [3, 4]. This principle is conserved in Drosophila, where successful copulation is naturally rewarding to male flies, induces long-term appetitive memories [5], increases brain levels of neuropeptide F (NPF, the fly homolog of neuropeptide Y), and prevents ethanol, known otherwise as rewarding to flies [6, 7], from being rewarding [5]. It is not clear which of the multiple sensory and motor responses performed during mating induces perception of reward. Sexual interactions with female flies that do not reach copulation are not sufficient to reduce ethanol consumption [5], suggesting that only successful mating encounters are rewarding. Here, we uncoupled the initial steps of mating from its final steps and tested the ability of ejaculation to mimic the rewarding value of full copulation. We induced ejaculation by activating neurons that express the neuropeptide corazonin (CRZ) [8] and subsequently measured different aspects of reward. We show that activating Crz-expressing neurons is rewarding to male flies, as they choose to reside in a zone that triggers optogenetic stimulation of Crz neurons and display conditioned preference for an odor paired with the activation. Reminiscent of successful mating, repeated activation of Crz neurons increases npf levels and reduces ethanol consumption. Our results demonstrate that ejaculation stimulated by Crz/Crz-receptor signaling serves as an essential part of the mating reward mechanism in Drosophila. VIDEO ABSTRACT. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Conservation of cardiac L-type Ca2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model.

    Science.gov (United States)

    Limpitikul, Worawan B; Viswanathan, Meera C; O'Rourke, Brian; Yue, David T; Cammarato, Anthony

    2018-04-21

    Dysregulation of L-type Ca 2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca 2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca 2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca 2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca 2+ currents recorded in individual cells when Ca 2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca 2+ -dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca 2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research.

    Science.gov (United States)

    Staats, Stefanie; Lüersen, Kai; Wagner, Anika E; Rimbach, Gerald

    2018-04-18

    Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.

  16. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides......, and seven insect biogenic amines on the expressed receptor and found that it was activated by low concentrations of the Drosophila neuropeptide, pyrokinin-1 (TGPSASSGLWFGPRLamide; EC50, 5 x 10(-8) M). The receptor was also activated by other Drosophila neuropeptides, terminating with the sequence PRLamide...... (Hug-gamma, ecdysis-triggering-hormone-1, pyrokinin-2), but in these cases about six to eight times higher concentrations were needed. The receptor was not activated by Drosophila neuropeptides, containing a C-terminal PRIamide sequence (such as ecdysis-triggering-hormone-2), or PRVamide (such as capa...

  17. Study of radioadaptive response in Drosophila melanogaster at different oogenesis stages

    International Nuclear Information System (INIS)

    Glushkova, I.V.; Aksyutik, T.V.

    2005-01-01

    We study radioadaptive response in the Canton-S strain of Drosophila melanogaster at different oogenesis stages using the test of dominant lethal mutations (DLM). AR was not revealed at the stages of 14-7 and 7--1 oocytes in the studied Drosophila stock. It is likely to be associated with a genetic constitution of the Drosophila strain under study. (authors)

  18. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  19. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  20. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  1. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Science.gov (United States)

    Tremmel, Daniel M; Resad, Sedat; Little, Christopher J; Wesley, Cedric S

    2013-01-01

    The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  2. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Daniel M Tremmel

    Full Text Available The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD, an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  3. Apoptosis in Drosophila: which role for mitochondria?

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  4. Erythritol and Lufenuron detrimentally alter age structure of Wild Spotted Wing Drosophila (SWD) Drosophila suzukii (Diptera: Drosophilidae) populations in blueberry and blackberry

    Science.gov (United States)

    We report on the efficacy of 0.5 M (61,000 ppm) Erythritol (E) in Truvia Baking Blend®, 10 ppm Lufenuron (L), and their combination (LE) to reduce egg and larval densities of wild populations of spotted wing Drosophila, Drosophila suzukii (Matsumura) (SWD) infesting fields of rabbiteye blueberries (...

  5. Drosophila Studies on Autism Spectrum Disorders

    Institute of Scientific and Technical Information of China (English)

    Yao Tian; Zi Chao Zhang; Junhai Han

    2017-01-01

    In the past decade,numerous genes associated with autism spectrum disorders (ASDs) have been identified.These genes encode key regulators of synaptogenesis,synaptic function,and synaptic plasticity.Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis,synaptic function,synaptic plasticity,and neural circuit assembly and consolidation.Here,we review Drosophila studies on ASD genes that regulate synaptogenesis,synaptic function,and synaptic plasticity through modulating chromatin remodeling,transcription,protein synthesis and degradation,cytoskeleton dynamics,and synaptic scaffolding.

  6. NOVEL ASPECTS OF SPOTTED WING DROSOPHILA BIOLOGY AND IMPROVED METHODS OF REARING

    Science.gov (United States)

    Drosophila suzukii (Mats.) or the spotted wing Drosophila (SWD), is a global pest of soft fruits that can now be reared on a standard Drosophila diet containing the fly's own natural food: soft-skinned berries. The techniques tested here can thwart bacterial and fungal disease that can destroy more ...

  7. Drosophila melanogaster as a Model for Lead Neurotoxicology and Toxicogenomics Research

    Directory of Open Access Journals (Sweden)

    Douglas Mark Ruden

    2012-05-01

    Full Text Available Drosophila melanogaster is an excellent model animal for studying the neurotoxicology of lead. It has been known since ancient Roman times that long-term exposure to low levels of lead results in behavioral abnormalities, such as what is now known as attention deficit hyperactivity disorder (ADHD. Because lead alters mechanisms that underlie developmental neuronal plasticity, chronic exposure of children, even at blood lead levels below the current CDC community action level (10 µg/dl, can result in reduced cognitive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes in activity level, altered sensory function, delayed onset of sexual maturity in girls, and changes in immune function. In order to better understand how lead affects neuronal plasticity, we will describe recent findings from a Drosophila behavioral genetics laboratory, a Drosophila neurophysiology laboratory, and a Drosophila quantitative genetics laboratory who have joined forces to study the effects of lead on the Drosophila nervous system. Studying the effects of lead on Drosophila nervous system development will give us a better understanding of the mechanisms of Pb neurotoxicity in the developing human nervous system.

  8. Drosophila suzukii population response to environment and management strategies

    Science.gov (United States)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  9. Bioimage Informatics in the context of Drosophila research.

    Science.gov (United States)

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. On (co)homology of Frobenius Poisson algebras

    OpenAIRE

    Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo

    2014-01-01

    In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...

  11. SH3 domain-mediated binding of the Drk protein to Dos is an important step in signaling of Drosophila receptor tyrosine kinases.

    Science.gov (United States)

    Feller, Stephan M; Wecklein, Heike; Lewitzky, Marc; Kibler, Eike; Raabe, Thomas

    2002-08-01

    Activation of the Sevenless (Sev) receptor tyrosine kinase (RTK) in the developing Drosophila eye is required for the specification of the R7 photoreceptor cell fate. Daughter of Sevenless (Dos), a putative multi-site adaptor protein, is a substrate of the Sev kinase and is known to associate with the tyrosine phosphatase Corkscrew (Csw). Binding of Csw to Dos depends on the Csw Src homology 2 (SH2) domains and is an essential step for signaling by the Sev RTK. Dos, however, lacks a recognizable phosphotyrosine interaction domain and it was previously unclear how it is recruited to the Sev receptor. Here it is shown that the SH2/SH3 domain adaptor protein Drk can provide this link. Drk binds with its SH2 domain to the autophosphorylated Sev receptor while the C-terminal SH3 domain is able to associate with Dos. The Drk SH3 domain binding motifs on Dos were mapped to two sites which do not conform the known Drk SH3 domain binding motif (PxxPxR) but instead have the consensus PxxxRxxKP. Mutational analysis in vitro and in vivo provided evidence that both Drk binding sites fulfil an important function in the context of Sev and Drosophila epidermal growth factor receptor mediated signaling processes.

  12. Effects of artichoke (Cynara scolymus) leaf and bloom head extracts on chemically induced DNA lesions in Drosophila melanogaster.

    Science.gov (United States)

    Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues

    2014-03-01

    The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate - EMS and mitomycin C - MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.

  13. Characterization of the activity of β-galactosidase from Escherichia coli and Drosophila melanogaster in fixed and non-fixed Drosophila tissues

    Directory of Open Access Journals (Sweden)

    Mizuki Tomizawa

    2016-12-01

    Full Text Available β-Galactosidase encoded by the Escherichia coli lacZ gene, is widely used as a reporter molecule in molecular biology in a wide variety of animals. β-Galactosidase retains its enzymatic activity in cells or tissues even after fixation and can degrade X-Gal, a frequently used colormetric substrate, producing a blue color. Therefore, it can be used for the activity staining of fixed tissues. However, the enzymatic activity of the β-galactosidase that is ectopically expressed in the non-fixed tissues of animals has not been extensively studied. Here, we report the characterization of β-galactosidase activity in Drosophila tissues with and without fixation in various experimental conditions comparing the activity of two evolutionarily orthologous β-galactosidases derived from the E. coli lacZ and Drosophila melanogaster DmelGal genes. We performed quantitative analysis of the activity staining of larval imaginal discs and an in vitro assay using larval lysates. Our data showed that both E. coli and Drosophila β-galactosidase can be used for cell-type-specific activity staining, but they have their own preferences in regard to conditions. E. coli β-galactosidase showed a preference for neutral pH but not for acidic pH compared with Drosophila β-galactosidase. Our data suggested that both E. coli and Drosophila β-galactosidase show enzymatic activity in the physiological conditions of living animals when they are ectopically expressed in a desired specific spatial and temporal pattern. This may enable their future application to studies of chemical biology using model animals.

  14. Relative K-homology and normal operators

    DEFF Research Database (Denmark)

    Manuilov, Vladimir; Thomsen, Klaus

    2009-01-01

    -term exact sequence which generalizes the excision six-term exact sequence in the first variable of KK-theory. Subsequently we investigate the relative K-homology which arises from the group of relative extensions by specializing to abelian $C^*$-algebras. It turns out that this relative K-homology carries...

  15. Dualities in persistent (co)homology

    International Nuclear Information System (INIS)

    De Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-01-01

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm

  16. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  17. Spontaneous alternation: A potential gateway to spatial working memory in Drosophila.

    Science.gov (United States)

    Lewis, Sara A; Negelspach, David C; Kaladchibachi, Sevag; Cowen, Stephen L; Fernandez, Fabian

    2017-07-01

    Despite their ubiquity in biomedical research, Drosophila have yet to be widely employed as model organisms in psychology. Many complex human-like behaviors are observed in Drosophila, which exhibit elaborate displays of inter-male aggression and female courtship, self-medication with alcohol in response to stress, and even cultural transmission of social information. Here, we asked whether Drosophila can demonstrate behavioral indices of spatial working memory in a Y-maze, a classic test of memory function and novelty-seeking in rodents. Our data show that Drosophila, like rodents, alternate their visits among the three arms of a Y-maze and spontaneously favor entry into arms they have explored less recently versus ones they have just seen. These findings suggest that Drosophila possess some of the information-seeking and working memory facilities mammals depend on to navigate through space and might be relevant models for understanding human psychological phenomena such as curiosity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

    Science.gov (United States)

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2016-07-30

    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood.

  19. Genotoxic evaluation of two oral antidiabetic agents in the Drosophila wing spot test.

    Science.gov (United States)

    Gürbüzel, Mehmet; Çapoğlu, Ilyas; Kızılet, Halit; Halıcı, Zekai; Özçiçek, Fatih; Demirtaş, Levent

    2014-05-01

    In this study, two sulfonylureas--glimepiride and glipizide--commonly used in type 2 diabetes mellitus were investigated for genotoxicity in the Drosophila wing spot test. For this purpose, three-day-old transheterozygous larvae were treated with three mutagenic compounds, and the results obtained were compared with the control group. Mutational or recombinogenic changes were recorded in two recessive genes--multiple wing hairs (mwh) and flare (flr (3)). Two recessive markers were located on the left arm of chromosome 3, mwh in map position 0.3, and flare-3 (flr3) at 38.8, while the centromere was located in position 47.7. Wing spot tests are targeted on the loss of heterozygosity, which may be grounded in different genetic mechanisms such as mutation, mitotic recombination, deletion, half-translocation, chromosome loss, or nondisjunction. Genetic changes formatting in somatic cells of the imaginal discs cause nascence different mutant cloning in different body parts of adult flies. Our in vivo experiments demonstrated that glimepiride and glipizide show the genotoxicity, which is especially dependent on homologous somatic recombination.

  20. The OGCleaner: filtering false-positive homology clusters.

    Science.gov (United States)

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M

    2017-01-01

    Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies. https://github.com/byucsl/ogcleaner CONTACT: sfujimoto@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Mapping of gene mutations in drosophila melanogaster

    OpenAIRE

    Halvorsen, Charlotte Marie

    2004-01-01

    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  2. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    OpenAIRE

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun; Liu, Yong

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-lik...

  3. First foreign exploration for asian parasitoids of Drosophila suzukii

    Science.gov (United States)

    The invasive spotted wing drosophila, Drosophila suzukii Matsumura (Dipt.: Drosophilidae), is a native of East Asia and is now widely established in North America and Europe, where it is a serious pest of small and stone fruit crops. The lack of effective indigenous parasitoids of D. suzukii in the ...

  4. Optogenetic pacing in Drosophila melanogaster

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  5. Drosophila: Retrotransposons Making up Telomeres.

    Science.gov (United States)

    Casacuberta, Elena

    2017-07-19

    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  6. Investigating homology between proteins using energetic profiles.

    Science.gov (United States)

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  7. Investigating homology between proteins using energetic profiles.

    Directory of Open Access Journals (Sweden)

    James O Wrabl

    2010-03-01

    Full Text Available Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved

  8. Genetic human prion disease modelled in PrP transgenic Drosophila.

    Science.gov (United States)

    Thackray, Alana M; Cardova, Alzbeta; Wolf, Hanna; Pradl, Lydia; Vorberg, Ina; Jackson, Walker S; Bujdoso, Raymond

    2017-09-20

    Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrP Sc , an abnormal isomer of the normal host protein PrP C , in the brain of affected individuals. PrP Sc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host. © 2017 The Author(s).

  9. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria.

    Science.gov (United States)

    Winans, Nathan J; Walter, Alec; Chouaia, Bessem; Chaston, John M; Douglas, Angela E; Newell, Peter D

    2017-09-01

    Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome-scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions. © 2017 John Wiley & Sons Ltd.

  10. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    Science.gov (United States)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  11. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    Science.gov (United States)

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  12. A genome-wide gene function prediction resource for Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Han Yan

    2010-08-01

    Full Text Available Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.

  13. Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species.

    Science.gov (United States)

    Singhal, Kopal; Khanna, Radhika; Mohanty, Sujata

    2017-06-01

    The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS) technology and to discover the nature of their distribution across species and eco-geographic regions. Whole fly gDNA of six Drosophila species were used to generate sequences in an Illumina platform using NGS technology. De novo based assembled raw reads were blasted against the NR database of NCBI using BLASTn for identification of their bacterial loads. We have tried to include Drosophila species from different taxonomical groups and subgroups and from three different eco-climatic regions India; four species belong to Central India, while the rest two, D. melanogaster and D. ananassae, belong to West and South India to determine both their species-wise and region-wide distribution. We detected the presence of 33 bacterial genera across all six study species, predominated by the class Proteobacteria. Amongst all, D. melanogaster was found to be the most diverse by carrying around 85% of the bacterial diversity. Our findings infer both species-specific and environment-specific nature of the bacterial species inhabiting the Drosophila host. Though the present results are consistent with most of the earlier studies, they also remain incoherent with some. The present study outcome on the host-bacteria association and their species specific adaptation may provide some insight to understand the host-microbial interactions and the phenotypic implications of microbes on the host physiology. The knowledge gained may be importantly applied into the recent insect and pest population control strategy going to implement through gut microflora in India and abroad.

  14. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  15. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Masatoshi Tomaru

    2018-01-01

    Full Text Available In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611. Thus, shps may define a new class of gene responsible for sperm storage.

  16. Drosophila Courtship Conditioning As a Measure of Learning and Memory

    NARCIS (Netherlands)

    Koemans, T.S.; Oppitz, C.; Donders, R.; Bokhoven, H. van; Schenck, A.; Keleman, K.; Kramer, J.M.

    2017-01-01

    Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits

  17. Effect of localized hypoxia on Drosophila embryo development.

    Directory of Open Access Journals (Sweden)

    Zhinan Wang

    Full Text Available Environmental stress, such as oxygen deprivation, affects various cellular activities and developmental processes. In this study, we directly investigated Drosophila embryo development in vivo while cultured on a microfluidic device, which imposed an oxygen gradient on the developing embryos. The designed microfluidic device enabled both temporal and spatial control of the local oxygen gradient applied to the live embryos. Time-lapse live cell imaging was used to monitor the morphology and cellular migration patterns as embryos were placed in various geometries relative to the oxygen gradient. Results show that pole cell movement and tail retraction during Drosophila embryogenesis are highly sensitive to oxygen concentrations. Through modeling, we also estimated the oxygen permeability across the Drosophila embryonic layers for the first time using parameters measured on our oxygen control device.

  18. A local homology theory for linearly compact modules

    International Nuclear Information System (INIS)

    Nguyen Tu Cuong; Tran Tuan Nam

    2004-11-01

    We introduce a local homology theory for linearly modules which is in some sense dual to the local cohomology theory of A. Grothendieck. Some basic properties of local homology modules are shown such as: the vanishing and non-vanishing, the noetherianness of local homology modules. By using duality, we extend some well-known results in theory of local cohomology of A. Grothendieck. (author)

  19. Influence of Quercetin in the Temporal Regulation of Redox Homeostasis in Drosophila melanogaster.

    Science.gov (United States)

    Subramanian, Perumal; Kaliyamoorthy, Kanimozhi; Jayapalan, Jaime Jacqueline; Abdul-Rahman, Puteri Shafinaz; Haji Hashim, Onn

    2017-01-01

    Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. Genetic monitoring of irradiated Drosophila populations treated with antimutagen melanine

    International Nuclear Information System (INIS)

    Mosseh, I.B.; Savchenko, V.K.; Lyakh, I.P.

    1986-01-01

    It was shown that viability of irradiated Drosophila is, on an average, lower than in intact populations. The fertility first decreases then increases exceeding the control level. Melanine added to the diet increases fertility and viability of both exposed and intact Drosophila populations

  1. Evolutionary modeling and prediction of non-coding RNAs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Robert K Bradley

    2009-08-01

    Full Text Available We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different models of structural evolution and two different programs for genome alignment. We evaluated our models using alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different gene predictors and subfamilies of ncRNA gene. Our estimates for false positive rates are based on simulations which preserve local islands of conservation; using these simulations, we predict a higher rate of false positives than previous computational ncRNA screens have reported. Using one of the tested prediction grammars, we provide an updated set of ncRNA predictions for D. melanogaster and compare them to previously-published predictions and experimental data. Many of our predictions show correlations with protein-coding genes. We found significant depletion of intergenic predictions near the 3' end of coding regions and furthermore depletion of predictions in the first intron of protein-coding genes. Some of our predictions are colocated with larger putative unannotated genes: for example, 17 of our predictions showing homology to the RFAM family snoR28 appear in a tandem array on the X chromosome; the 4.5 Kbp spanned by the predicted tandem array is contained within a FlyBase-annotated cDNA.

  2. High rate of translocation-based gene birth on the Drosophila Y chromosome.

    Science.gov (United States)

    Tobler, Ray; Nolte, Viola; Schlötterer, Christian

    2017-10-31

    The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.

  3. Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Settlage, Robert; McMahon, Wyatt; Michalak, Katarzyna; Tae, Hongseok; Garner, Harold R; Stacy, Elizabeth A; Price, Donald K; Michalak, Pawel

    2016-05-30

    The Hawaiian archipelago provides a natural arena for understanding adaptive radiation and speciation. The Hawaiian Drosophila are one of the most diverse endemic groups in Hawaiì with up to 1,000 species. We sequenced and analyzed entire genomes of recently diverged species of Hawaiian picture-winged Drosophila, Drosophila silvestris and Drosophila heteroneura from Hawaiì Island, in comparison with Drosophila planitibia, their sister species from Maui, a neighboring island where a common ancestor of all three had likely occurred. Genome-wide single nucleotide polymorphism patterns suggest the more recent origin of D. silvestris and D. heteroneura, as well as a pervasive influence of positive selection on divergence of the three species, with the signatures of positive selection more prominent in sympatry than allopatry. Positively selected genes were significantly enriched for functional terms related to sensory detection and mating, suggesting that sexual selection played an important role in speciation of these species. In particular, sequence variation in Olfactory receptor and Gustatory receptor genes seems to play a major role in adaptive radiation in Hawaiian pictured-winged Drosophila. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.

    Science.gov (United States)

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-09-24

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous.

  5. Three new species of Drosophila tripunctata group (Diptera: Drosophilidae in the eastern Andes of Ecuador

    Directory of Open Access Journals (Sweden)

    Emily Ramos Guillín

    2015-12-01

    Full Text Available Three new species of the Drosophila tripunctata group are described and illustrated. These new species were captured using plastic bottles containing pieces of fermented banana with yeast. The collections were from Napo Province, Ecuador at 2 200 m and 3 362 m above sea level. The new species are: Drosophila napoensis sp. nov., Drosophila cuyuja sp. nov. and Drosophila quijos sp. nov. The first two species belong to subgroup I and the latter species belong to subgroup III of the Drosophila tripunctata group.

  6. Ionizing radiation causes the stress response in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Gruntenko, N.E.; Zakharenko, L.P.; Raushenbakh, I.Yu.

    1998-01-01

    Potentiality of the stress-reaction arising in Drosophila melanogaster under gamma-irradiation of the source with 137 Cs (irradiation dose is 10 Gy , radiation dose rate amounts 180 c Gy/min) is studied. It is shown that radiation induces the stress-reaction in Drosophila resulting in alterations in energetic metabolism (biogenic amines metabolic system) and in reproductive function [ru

  7. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Garcia, J.V.; Fenton, B.W.; Rosner, M.R.

    1988-01-01

    An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent K/sub m/ for porcine insulin of 3 μM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min x mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [ 125 I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 0 C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [ 125 I]insulin at comparable concentrations (approximately 10 -6 M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggest an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila

  8. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  9. Radiation effects on the drosophila melanogaster genoma

    International Nuclear Information System (INIS)

    Arceo-Maldonado, C.

    1989-01-01

    When DNA of living beings has been damaged, the cells show different responses depending on their physiological state. Repair mechanisms can be classified into two groups: constitutive which are always present in the cells and inductible, which must be stimulated to show themselves. It is suggested that a repair mechanism exists in the drosophila ovules which act upon the damage present in mature spermatozoids. Our aim is to verify whether or not a radiation dosis applied to the female drosophila will modify the frequency of individuals which have lost the paternal sex chromosomes. YW/YW virgin females and XEZ males and fbb-/bS Y y + y were mated for two days in order to collect radiation treated spermatozoids. The results were consistent as to the parameters being evaluated and lead one to suppose that the radiation applied to the female drosophila produced some changes in the ovule metabolism which reduced the frequency of individuals with lost chromosomes. It is believed that ionizing radiation interferes with the repair mechanisms that are existent and constitutive, retarding and hindering the restoration of chromosome fragments and this brings about death of the zygote or death of the eggs which lessens the frequencies of individuals carriers of chromosomic aberrations. Ionizing radiations applied to the female drosophila modifies the frequency of loss of patternal chromosomes and comes about when the radiation dose to the female is 700 rad. (Author)

  10. Statistical Inference for Porous Materials using Persistent Homology.

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chul [Univ. of Georgia, Athens, GA (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability, anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.

  11. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  12. K-homology and K-cohomology constructions of relations

    International Nuclear Information System (INIS)

    Abd El-Sattar, A. Dabbour; Bayoumy, F.M.

    1990-08-01

    One of the important homology (cohomology) theories, based on systems of covering of the space, is the homology (cohomology) theory of relations. In the present work, by using the idea of K-homology and K-cohomology groups different varieties of the Dowker's theory are introduced and studied. These constructions are defined on the category of pairs of topological spaces and over a pair of coefficient groups. (author). 14 refs

  13. The genetic basis of Haldane's rule and the nature of asymmetric hybrid male sterility among Drosophila simulans, Drosophila mauritiana and Drosophila sechellia.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1993-05-01

    Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. An introgression of D. sechellia Y chromosome into a fairly homogenous background of D. simulans did not show any effect of the introgressed Y on male sterility. The substitution of D. simulans Y chromosome into D. sechellia, and both reciprocal Y chromosome substitutions between D. simulans and D. mauritiana were unsuccessful. Introgressions of cytoplasm between D. simulans and D. mauritiana (or D. sechellia) also did not have any effect on hybrid male sterility. These results rule out the X-Y interaction hypothesis as a general explanation of Haldane's rule in this species group and indicate an involvement of an X-autosome interaction. Models of symmetrical and asymmetrical X-autosome interaction have been developed which explain the Y chromosome substitution results and suggest that evolution of interactions between different genetic elements in the early stages of speciation is more likely to be of an asymmetrical nature. The model of asymmetrical X-autosome interaction also predicts that different sets of interacting genes may be involved in different pairs of related species and can account for the observation that hybrid male sterility in many partially isolated species is often nonreciprocal or unidirectional.

  14. Independent signaling by Drosophila insulin receptor for axon guidance and growth.

    Science.gov (United States)

    Li, Caroline R; Guo, Dongyu; Pick, Leslie

    2013-01-01

    The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the

  15. REDfly: a Regulatory Element Database for Drosophila.

    Science.gov (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S

    2006-02-01

    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  16. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  17. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  18. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow, Rutgers University/Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  19. SUMOylation in Drosophila Development

    Directory of Open Access Journals (Sweden)

    Albert J. Courey

    2012-07-01

    Full Text Available Small ubiquitin-related modifier (SUMO, an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.

  20. Persistent homology of complex networks

    International Nuclear Information System (INIS)

    Horak, Danijela; Maletić, Slobodan; Rajković, Milan

    2009-01-01

    Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis

  1. Detecting false positive sequence homology: a machine learning approach.

    Science.gov (United States)

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M

    2016-02-24

    Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.

  2. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells

    Directory of Open Access Journals (Sweden)

    Anthony Edwards

    2011-07-01

    Combination therapy, in which two or more agents are applied, is more effective than single therapies for combating cancer. For this reason, combinations of chemotherapy with radiation are being explored in clinical trials, albeit with an empirical approach. We developed a screen to identify, from the onset, molecules that act in vivo in conjunction with radiation, using Drosophila as a model. Screens through two small molecule libraries from the NCI Developmental Therapeutics Program yielded microtubule poisons; this class of agents is known to enhance the effect of radiation in mammalian cancer models. Here we report an analysis of one microtubule depolymerizing agent, maytansinol isobutyrate (NSC292222; maytansinol, in Drosophila and in human cancer cells. We find that the effect of maytansinol is p53 dependent in Drosophila cells and human cancer cells, that maytansinol enhances the effect of radiation in both systems, and that the combinatorial effect of drug and radiation is additive. We also uncover a differential sensitivity to maytansinol between Drosophila cells and Drosophila larvae, which illustrates the value of studying cell behavior in the context of a whole organism. On the basis of these results, we propose that Drosophila might be a useful model for unbiased screens through new molecule libraries to find cancer drugs for combination therapy.

  3. Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...

  4. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila

    Directory of Open Access Journals (Sweden)

    Dennis Pauls

    2014-06-01

    Full Text Available More than a decade has passed since the release of the Drosophila melanogaster genome and the first predictions of fruit fly regulatory peptides (neuropeptides and peptide hormones. Since then, mass spectrometry-based methods have fuelled the chemical characterisation of regulatory peptides, from 7 Drosophila peptides in the pre-genomic area to more than 60 today. We review the development of fruit fly peptidomics, and present a comprehensive list of the regulatory peptides that have been chemically characterised until today. We also summarise the knowledge on peptide processing in Drosophila, which has strongly profited from a combination of MS-based techniques and the genetic tools available for the fruit fly. This combination has a very high potential to study the functional biology of peptide signalling on all levels, especially with the ongoing developments in quantitative MS in Drosophila.

  5. Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults

    Science.gov (United States)

    A.R. Stephens; M.K. Asplen; W.D. Hutchison; Robert C. Venette

    2015-01-01

    Drosophila suzukii Matsumura, often called spotted wing drosophila, is an exotic vinegar fly that is native to Southeast Asia and was first detected in the continental United States in 2008. Previous modeling studies have suggested that D. suzukii might not survive in portions of the northern United States or southern Canada...

  6. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jennifer L Bandura

    Full Text Available The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C, suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  7. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Science.gov (United States)

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  8. The role of the Drosophila LAMMER protein kinase DOA in somatic ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... Somatic sexual identity in Drosophila melanogaster is under the control of a ... between stages 12 and 14, in response to an X to autosome .... MER kinases used were Drosophila DOA, mouse CLK1, human CLK2 and.

  9. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  10. A Drosophila Model to Image Phagosome Maturation

    Directory of Open Access Journals (Sweden)

    Douglas A. Brooks

    2013-03-01

    Full Text Available Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3e mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo.

  11. Adaptive evolution of relish, a Drosophila NF-kappaB/IkappaB protein.

    OpenAIRE

    Begun, D J; Whitley, P

    2000-01-01

    NF-kappaB and IkappaB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-kappaB/IkappaB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appear...

  12. Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila.

    Directory of Open Access Journals (Sweden)

    Vanessa Nieratschker

    2009-10-01

    Full Text Available Defining the molecular structure and function of synapses is a central theme in brain research. In Drosophila the Bruchpilot (BRP protein is associated with T-shaped ribbons ("T-bars" at presynaptic active zones (AZs. BRP is required for intact AZ structure and normal evoked neurotransmitter release. By screening for mutations that affect the tissue distribution of Bruchpilot, we have identified a P-transposon insertion in gene CG11489 (location 79D which shows high homology to mammalian genes for SR protein kinases (SRPKs. SRPKs phosphorylate serine-arginine rich splicing factors (SR proteins. Since proteins expressed from CG11489 cDNAs phosphorylate a peptide from a human SR protein in vitro, we name CG11489 the Drosophila Srpk79D gene. We have characterized Srpk79D transcripts and generated a null mutant. Mutation of the Srpk79D gene causes conspicuous accumulations of BRP in larval and adult nerves. At the ultrastructural level, these correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Basic synaptic structure and function at larval neuromuscular junctions appears normal, whereas life expectancy and locomotor behavior of adult mutants are significantly impaired. All phenotypes of the mutant can be largely or completely rescued by panneural expression of SRPK79D isoforms. Isoform-specific antibodies recognize panneurally overexpressed GFP-tagged SRPK79D-PC isoform co-localized with BRP at presynaptic active zones while the tagged -PB isoform is found in spots within neuronal perikarya. SRPK79D concentrations in wild type apparently are too low to be revealed by these antisera. We propose that the Drosophila Srpk79D gene characterized here may be expressed at low levels throughout the nervous system to prevent the assembly of BRP containing agglomerates in axons and maintain intact brain function. The discovery of an SR protein kinase required for normal BRP distribution calls for the

  13. Flying Drosophila orient to sky polarization.

    Science.gov (United States)

    Weir, Peter T; Dickinson, Michael H

    2012-01-10

    Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Calcium and Egg Activation in Drosophila

    Science.gov (United States)

    Sartain, Caroline V.; Wolfner, Mariana F.

    2012-01-01

    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  15. The K-homology of nets of C∗-algebras

    Science.gov (United States)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2014-12-01

    Let X be a space, intended as a possibly curved space-time, and A a precosheaf of C∗-algebras on X. Motivated by algebraic quantum field theory, we study the Kasparov and Θ-summable K-homology of A interpreting them in terms of the holonomy equivariant K-homology of the associated C∗-dynamical system. This yields a characteristic class for K-homology cycles of A with values in the odd cohomology of X, that we interpret as a generalized statistical dimension.

  16. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  17. Mutagenic effects of irradiated glucose in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Varma, M.B.; Rao, K.P.; Nandan, S.D.; Rao, M.S.

    1982-01-01

    The mutagenic effects of irradiated glucose were studied using the sex-linked recessive lethal test in Drosophila melanogaster. Oregon K males of D. melanogaster reared on a medium containing 20 or 40% glucose irradiated with a dose of 0.02, 0.10, 0.20, 2 or 5 Mrad #betta#-rays were scored for the induction of sex-linked recessive lethals. The results showed no significant increase in the frequency of X-lethals in Drosophila at any of the dose levels. (author)

  18. Comparative evaluation of the genomes of three common Drosophila-associated bacteria

    Directory of Open Access Journals (Sweden)

    Kristina Petkau

    2016-09-01

    Full Text Available Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus. For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships.

  19. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain.

    Directory of Open Access Journals (Sweden)

    Jan J Vonk

    Full Text Available Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.

  20. Pluripotency and a secretion mechanism of Drosophila transglutaminase.

    Science.gov (United States)

    Shibata, Toshio; Kawabata, Shun-Ichiro

    2018-03-01

    Transglutaminase (TG) catalyses the formation of an isopeptide bond between glutamine and lysine residues and amine incorporation into specific glutamine residues. TG is conserved in all metazoans and functions both intracellularly and extracellularly. Here we review the existing knowledge of Drosophila TG with an emphasis on its pluripotency: Drosophila TG (i) plays a key role in cuticular morphogenesis, haemolymph coagulation, and entrapment against invading pathogens, (ii) suppresses the immune deficiency pathway to enable immune tolerance against commensal bacteria through the incorporation of polyamines into the nuclear factor-κB-like transcription factor Relish as well as through the protein-protein cross-linking of Relish, (iii) forms a physical matrix in the gut through cross-linking of chitin-binding proteins and (iv) is involved in the maintenance of homeostasis in microbiota in the gut. Moreover, we review the evidence that TG-A, one of alternative splicing-derived isoforms of Drosophila TG, is secreted through an endoplasmic reticulum/Golgi-independent pathway involving exosomes and fatty acylations.

  1. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre

    2005-01-01

    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  2. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  3. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  4. Dosage compensation and demasculinization of X chromosomes in Drosophila.

    Science.gov (United States)

    Bachtrog, Doris; Toda, Nicholas R T; Lockton, Steven

    2010-08-24

    The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Computing Homology Group Generators of Images Using Irregular Graph Pyramids

    OpenAIRE

    Peltier , Samuel; Ion , Adrian; Haxhimusa , Yll; Kropatsch , Walter; Damiand , Guillaume

    2007-01-01

    International audience; We introduce a method for computing homology groups and their generators of a 2D image, using a hierarchical structure i.e. irregular graph pyramid. Starting from an image, a hierarchy of the image is built, by two operations that preserve homology of each region. Instead of computing homology generators in the base where the number of entities (cells) is large, we first reduce the number of cells by a graph pyramid. Then homology generators are computed efficiently on...

  6. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  7. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  8. Neurophysiology of Drosophila models of Parkinson's disease.

    Science.gov (United States)

    West, Ryan J H; Furmston, Rebecca; Williams, Charles A C; Elliott, Christopher J H

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  9. Female Remating, Sperm Competition and Sexual Selection in Drosophila

    OpenAIRE

    Singh, Dr. Shree Ram; Singh, Dr. B N; Hoenigsberg, Dr. H F

    2002-01-01

    Female remating is the fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Remating in females is an important component of Drosophila mating systems because it is associated with pattern of sperm usage and sexual selection. Remating is common in females of many species of Drosophila in both natural and laboratory populations. It is reported in many insect species and vertebrates also. Female remating is prerequisite for the ...

  10. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  11. Limited taste discrimination in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  12. Drosophila melanogaster Mounts a Unique Immune Response to the Rhabdovirus Sigma virus▿

    Science.gov (United States)

    Tsai, C. W.; McGraw, E. A.; Ammar, E.-D.; Dietzgen, R. G.; Hogenhout, S. A.

    2008-01-01

    Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations. PMID:18378641

  13. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  14. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Anthony Cammarato

    2011-04-01

    Full Text Available Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25% had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

  15. The role of carcinine in signaling at the Drosophila photoreceptor synapse.

    Directory of Open Access Journals (Sweden)

    Brendan A Gavin

    2007-12-01

    Full Text Available The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downstream of the photoreceptor cell, and it is now clear that photoreceptor cell signaling is dependent upon the proper release and recycling of the neurotransmitter histamine. While the neurotransmitter transporters responsible for clearing histamine, and its metabolite carcinine, from the synaptic cleft have remained unknown, a strong candidate for a transporter of either substrate is the uncharacterized inebriated protein. The inebriated gene (ine encodes a putative neurotransmitter transporter that has been localized to photoreceptor cells in Drosophila and mutations in ine result in an abnormal ERG phenotype in Drosophila. Loss-of-function mutations in ebony, a gene required for the synthesis of carcinine in Drosophila, suppress components of the mutant ine ERG phenotype, while loss-of-function mutations in tan, a gene necessary for the hydrolysis of carcinine in Drosophila, have no effect on the ERG phenotype in ine mutants. We also show that by feeding wild-type flies carcinine, we can duplicate components of mutant ine ERGs. Finally, we demonstrate that treatment with H(3 receptor agonists or inverse agonists rescue several components of the mutant ine ERG phenotype. Here, we provide pharmacological and genetic epistatic evidence that ine encodes a carcinine neurotransmitter transporter. We also speculate that the oscillations observed in mutant ine ERG traces are the result of the aberrant activity of a putative H(3 receptor.

  16. The Role of Carcinine in Signaling at the Drosophila Photoreceptor Synapse

    Science.gov (United States)

    Gavin, Brendan A; Arruda, Susan E; Dolph, Patrick J

    2007-01-01

    The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG) analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downstream of the photoreceptor cell, and it is now clear that photoreceptor cell signaling is dependent upon the proper release and recycling of the neurotransmitter histamine. While the neurotransmitter transporters responsible for clearing histamine, and its metabolite carcinine, from the synaptic cleft have remained unknown, a strong candidate for a transporter of either substrate is the uncharacterized inebriated protein. The inebriated gene (ine) encodes a putative neurotransmitter transporter that has been localized to photoreceptor cells in Drosophila and mutations in ine result in an abnormal ERG phenotype in Drosophila. Loss-of-function mutations in ebony, a gene required for the synthesis of carcinine in Drosophila, suppress components of the mutant ine ERG phenotype, while loss-of-function mutations in tan, a gene necessary for the hydrolysis of carcinine in Drosophila, have no effect on the ERG phenotype in ine mutants. We also show that by feeding wild-type flies carcinine, we can duplicate components of mutant ine ERGs. Finally, we demonstrate that treatment with H3 receptor agonists or inverse agonists rescue several components of the mutant ine ERG phenotype. Here, we provide pharmacological and genetic epistatic evidence that ine encodes a carcinine neurotransmitter transporter. We also speculate that the oscillations observed in mutant ine ERG traces are the result of the aberrant activity of a putative H3 receptor. PMID:18069895

  17. Genetic analysis of a Drosophila microtubule-associated protein

    OpenAIRE

    1992-01-01

    The 205-kD microtubule-associated protein (205K MAP) is one of the principal MAPs in Drosophila. 205K MAP is similar to the HeLa 210K/MAP4 family of MAPs since it shares the following biochemical properties: it is present in several isoforms, has a molecular mass of approximately 200 kD, and is thermostable. Furthermore, immuno-crossreactivity has been observed between mouse MAP4, HeLa 210K, and Drosophila 205K MAP. Currently, there is little information concerning the biological function of ...

  18. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  19. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources.

    Science.gov (United States)

    De Loof, A; Schoofs, L

    1990-01-01

    1. The 4K-prothoracicotropic hormone (PTTH) or bombyxin and the melanization-reddish coloration hormone of the silkworm Bombyx mori resemble insulin and insulin-like growth factors. 2. The family of adipokinetic/red pigment concentrating hormones has some similarity with glucagon. 3. Members of the FMRFamide family are found in vertebrates as well as in invertebrates. 4. In Locusta, a molecule immunologically and biologically related to amphibian melanophore stimulating hormone has been partially characterized. 5. Enkephalins and enkephalin-related peptides occur in insects and other invertebrates. 6. Peptides belonging to the tachykinin family have been isolated from molluscan (Octopus) salivary glands and from insect nervous tissue (Locusta migratoria). 7. Invertebrate arginine-vasotocin homologs have been isolated from an insect (Locusta migratoria) and from a mollusc (Conus). 8. In Leucophaea, Locusta and Drosophila, peptides resembling those of the vertebrate gastrin/cholecystokinin family have been identified. 9. As the number of different neuro-/gut peptides with possible function(s) as hormone, neurotransmitter or neuromodulator is now estimated to be of the order of a few hundred, more similarities will probably show up in the near future.

  20. REPRODUCTIVE CHARACTER DISPLACEMENT OF EPICUTICULAR COMPOUNDS AND THEIR CONTRIBUTION TO MATE CHOICE IN DROSOPHILA SUBQUINARIA AND DROSOPHILA RECENS

    Science.gov (United States)

    Dyer, Kelly A.; White, Brooke E.; Sztepanacz, Jacqueline L.; Bewick, Emily R.; Rundle, Howard D.

    2014-01-01

    Interactions between species can alter selection on sexual displays used in mate choice within species. Here we study the epicuticular pheromones of two Drosophila species that overlap partially in geographic range and are incompletely reproductively isolated. Drosophila subquinaria shows a pattern of reproductive character displacement against Drosophila recens, and partial behavioral isolation between conspecific sympatric versus allopatric populations, whereas D. recens shows no such variation in mate choice. First, using manipulative perfuming experiments, we show that females use pheromones as signals for mate discrimination both between species and among populations of D. subquinaria. Second, we show that patterns of variation in epicuticular compounds, both across populations and between species, are consistent with those previously shown for mating probabilities: pheromone compositions differ between populations of D. subquinaria that are allopatric versus sympatric with D. recens, but are similar across populations of D. recens regardless of overlap with D. subquinaria. We also identify differences in pheromone composition among allopatric regions of D. subquinaria. In sum, our results suggest that epicuticular compounds are key signals used by females during mate recognition, and that these traits have diverged among D. subquinaria populations in response to reinforcing selection generated by the presence of D. recens. PMID:24351014

  1. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  2. The route of infection determines Wolbachia antibacterial protection in Drosophila.

    Science.gov (United States)

    Gupta, Vanika; Vasanthakrishnan, Radhakrishnan B; Siva-Jothy, Jonathon; Monteith, Katy M; Brown, Sam P; Vale, Pedro F

    2017-06-14

    Bacterial symbionts are widespread among metazoans and provide a range of beneficial functions. Wolbachia -mediated protection against viral infection has been extensively demonstrated in Drosophila. In mosquitoes that are artificially transinfected with Drosophila melanogaster Wolbachia (wMel), protection from both viral and bacterial infections has been demonstrated. However, no evidence for Wolbachia -mediated antibacterial protection has been demonstrated in Drosophila to date. Here, we show that the route of infection is key for Wolbachia -mediated antibacterial protection. Drosophila melanogaster carrying Wolbachia showed reduced mortality during enteric-but not systemic-infection with the opportunist pathogen Pseudomonas aeruginosa Wolbachia -mediated protection was more pronounced in male flies and is associated with increased early expression of the antimicrobial peptide Attacin A , and also increased expression of a reactive oxygen species detoxification gene ( Gst D8 ). These results highlight that the route of infection is important for symbiont-mediated protection from infection, that Wolbachia can protect hosts by eliciting a combination of resistance and disease tolerance mechanisms, and that these effects are sexually dimorphic. We discuss the importance of using ecologically relevant routes of infection to gain a better understanding of symbiont-mediated protection. © 2017 The Authors.

  3. A geometric model for Hochschild homology of Soergel bimodules

    DEFF Research Database (Denmark)

    Webster, Ben; Williamson, Geordie

    2008-01-01

    An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as B–equivariant intersection cohomology...... on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen....

  4. Three-dimensional imaging of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Leeanne McGurk

    2007-09-01

    Full Text Available The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT. The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

  5. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  6. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Science.gov (United States)

    Mulakkal, Nitha C.; Nagy, Peter; Takats, Szabolcs; Tusco, Radu; Juhász, Gábor; Nezis, Ioannis P.

    2014-01-01

    The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy. PMID:24949430

  7. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  8. Effects of hypo-O-GlcNAcylation on Drosophila development.

    Science.gov (United States)

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  9. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males.

    Science.gov (United States)

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2009-01-01

    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior.

  11. Neuromodulation of Innate Behaviors in Drosophila.

    Science.gov (United States)

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W

    2017-07-25

    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  12. Homology of normal chains and cohomology of charges

    CERN Document Server

    Pauw, Th De; Pfeffer, W F

    2017-01-01

    The authors consider a category of pairs of compact metric spaces and Lipschitz maps where the pairs satisfy a linearly isoperimetric condition related to the solvability of the Plateau problem with partially free boundary. It includes properly all pairs of compact Lipschitz neighborhood retracts of a large class of Banach spaces. On this category the authors define homology and cohomology functors with real coefficients which satisfy the Eilenberg-Steenrod axioms, but reflect the metric properties of the underlying spaces. As an example they show that the zero-dimensional homology of a space in our category is trivial if and only if the space is path connected by arcs of finite length. The homology and cohomology of a pair are, respectively, locally convex and Banach spaces that are in duality. Ignoring the topological structures, the homology and cohomology extend to all pairs of compact metric spaces. For locally acyclic spaces, the authors establish a natural isomorphism between their cohomology and the �...

  13. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    Science.gov (United States)

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  14. The Drosophila DmGluRA is required for social interaction and memory

    Directory of Open Access Journals (Sweden)

    Brian P. Schoenfeld

    2013-05-01

    Full Text Available Metabotropic glutamate receptors (mGluRs have well established roles in cognition andsocial behavior in mammals. Whether or not these roles have been conserved throughoutevolution from invertebrate species is less clear. Mammals have 8 mGluRs whereasDrosophila have a single DmGluRA, which has both Gi and Gq coupled signalingactivity. We have utilized Drosophila to examine the role of DmGluRA in social behaviorand various phases of memory. We have found that flies that are homozygous orheterozygous for loss of function mutations of DmGluRA have impaired social behaviorin male Drosophila. Futhermore, flies that are homozygous or heterozygous for loss offunction mutations of DmGluRA have impaired learning during training, immediate recallmemory, short-term memory and long-term memory as young adults. This workdemonstrates a role for metabotropic glutamate receptor activity in both social behaviorand memory in Drosophila.

  15. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  16. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Science.gov (United States)

    Schleede, Justin; Blair, Seth S

    2015-10-01

    The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  17. BMAA neurotoxicity in Drosophila.

    Science.gov (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  18. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  19. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    Science.gov (United States)

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  20. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster.

    Science.gov (United States)

    Webster, Claire L; Waldron, Fergal M; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F; Brouqui, Jean-Michel; Bayne, Elizabeth H; Longdon, Ben; Buck, Amy H; Lazzaro, Brian P; Akorli, Jewelna; Haddrill, Penelope R; Obbard, Darren J

    2015-07-01

    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.

  1. The role of Drosophila Merlin in spermatogenesis

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2008-01-01

    Full Text Available Abstract Background Drosophila Merlin, the homolog of the human Neurofibromatosis 2 (NF2 gene, is important for the regulation of cell proliferation and receptor endocytosis. Male flies carrying a Mer3 allele, a missense mutation (Met177→Ile in the Merlin gene, are viable but sterile; however, the cause of sterility is unknown. Results Testis examination reveals that hemizygous Mer3 mutant males have small seminal vesicles that contain only a few immotile sperm. By cytological and electron microscopy analyses of the Mer3, Mer4 (Gln170→stop, and control testes at various stages of spermatogenesis, we show that Merlin mutations affect meiotic cytokinesis of spermatocytes, cyst polarization and nuclear shaping during spermatid elongation, and spermatid individualization. We also demonstrate that the lethality and sterility phenotype of the Mer4 mutant is rescued by the introduction of a wild-type Merlin gene. Immunostaining demonstrates that the Merlin protein is redistributed to the area associated with the microtubules of the central spindle in telophase and its staining is less in the region of the contractile ring during meiotic cytokinesis. At the onion stage, Merlin is concentrated in the Nebenkern of spermatids, and this mitochondrial localization is maintained throughout sperm formation. Also, Merlin exhibits punctate staining in the acrosomal region of mature sperm. Conclusion Merlin mutations affect spermatogenesis at multiple stages. The Merlin protein is dynamically redistributed during meiosis of spermatocytes and is concentrated in the Nebenkern of spermatids. Our results demonstrated for the first time the mitochondrial localization of Merlin and suggest that Merlin may play a role in mitochondria formation and function during spermatogenesis.

  2. A new Amazonian species from the Drosophila annulimana species group (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    Marco S. Gottschalk

    2012-12-01

    Full Text Available Drosophila caxiuana sp. nov., Drosophila subgenus, is described and illustrated. This new species was collected in the Amazonian Biome (Caquajó river, Portel, Pará, Brazil and is an atypical species to the group due the unusual morphology of the male terminalia.

  3. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    Science.gov (United States)

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Second-Order Conditioning in "Drosophila"

    Science.gov (United States)

    Tabone, Christopher J.; de Belle, J. Steven

    2011-01-01

    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  5. Patterns of Nucleotide Diversity at the Regions Encompassing the Drosophila Insulin-Like Peptide (dilp) Genes: Demography vs. Positive Selection in Drosophila melanogaster

    Science.gov (United States)

    Guirao-Rico, Sara; Aguadé, Montserrat

    2013-01-01

    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events. PMID:23308258

  6. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Directory of Open Access Journals (Sweden)

    Nitha C. Mulakkal

    2014-01-01

    Full Text Available The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy.

  7. p53 regulates the repair of DNA double-strand breaks by both homologous and non-homologous recombination

    International Nuclear Information System (INIS)

    Willers, H.; Powell, S.N.; Dahm-Daphi, J.

    2003-01-01

    Full text: p53 is known to suppress spontaneous homologous recombination (HR), while its role in non-homologous recombination (NHR) remains to be clarified. Here, we sought to determine the influence of p53 on the repair of chromosomal double-strand breaks (DSBs) by HR or NHR using specially designed recombination substrates that integrate into the genome. Isogenic mouse fibroblast pairs with or without expression of exogenous p53 protein were utilized. A reporter plasmid carrying a mutated XGPRT gene was chromosomally integrated and DSBs were generated within the plasmid by the I-SceI endonuclease. Subsequent homology-mediated repair from an episomal donor resulted in XGPRT reconstitution and cellular resistance to a selection antibiotic. Analogously, the repair of chromosomal I-SceI breaks by NHR using another novel reporter plasmid restored XGPRT translation. For p53-null cells, the mean frequency of I-SceI break repair via HR was 5.5 x 10 -4 . The p53-Val135 mutant, which previously has been shown to suppress spontaneous HR by 14-fold employing the same cell system and reporter gene, only caused a 2- to 3-fold suppression of break-induced HR. In contrast, a dramatic effect of p53 on repair via NHR was found. Preliminary sequence analysis indicated that there was at least a 1000-fold reduction of illegitimate repair events resulting in loss of sequence at the break sites. The observed effects were mediated by p53 mutants defective in regulation of the cell-cycle and apoptosis. The main findings were: (1) p53 virtually blocked illegitimate rejoining of chromosomal ends. (2) The suppression of homologous DSB repair was less pronounced than the inhibition of spontaneous HR. We hypothesize that p53 allows to a certain extent error-free homology-dependent repair to proceed, while blocking error-prone NHR. The data support and extent a previous model, in which p53 maintains genomic stability by regulating recombination independently of its transactivation function

  8. Drosophila as a Model to Study the Link between Metabolism and Cancer

    DEFF Research Database (Denmark)

    Herranz, Hector; Cohen, Stephen M.

    2017-01-01

    new approaches to therapy. Drosophila melanogaster is emerging as a valuable model to study multiple aspects of tumor formation and malignant transformation. In this review, we discuss the use of Drosophila as model to study how changes in cellular metabolism, as well as metabolic disease, contribute...

  9. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  10. Tet protein function during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The TET (Ten-eleven translocation 1, 2 and 3 proteins have been shown to function as DNA hydroxymethylases in vertebrates and their requirements have been documented extensively. Recently, the Tet proteins have been shown to also hydroxylate 5-methylcytosine in RNA. 5-hydroxymethylcytosine (5hmrC is enriched in messenger RNA but the function of this modification has yet to be elucidated. Because Cytosine methylation in DNA is barely detectable in Drosophila, it serves as an ideal model to study the biological function of 5hmrC. Here, we characterized the temporal and spatial expression and requirement of Tet throughout Drosophila development. We show that Tet is essential for viability as Tet complete loss-of-function animals die at the late pupal stage. Tet is highly expressed in neuronal tissues and at more moderate levels in somatic muscle precursors in embryos and larvae. Depletion of Tet in muscle precursors at early embryonic stages leads to defects in larval locomotion and late pupal lethality. Although Tet knock-down in neuronal tissue does not cause lethality, it is essential for neuronal function during development through its affects upon locomotion in larvae and the circadian rhythm of adult flies. Further, we report the function of Tet in ovarian morphogenesis. Together, our findings provide basic insights into the biological function of Tet in Drosophila, and may illuminate observed neuronal and muscle phenotypes observed in vertebrates.

  11. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    PARUL BANERJEE

    c Indian Academy of Sciences. RESEARCH ARTICLE. The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. PARUL BANERJEE and BASHISTH N. SINGH. ∗. Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi ...

  12. Several aspects of some techniques avoiding homologous blood transfusions

    NARCIS (Netherlands)

    E.C.S.M. van Woerkens (Liesbeth)

    1998-01-01

    textabstractThe use of homologous blood products during anesthesia and surgery is not without risks. Complications due to homologous blood transfusions include transfusion reactions, isosensitization, transmission of infections (including HIV, hepatitis, CMV) and immunosuppression (resuiting in

  13. An Autosomal Factor from Drosophila Arizonae Restores Normal Spermatogenesis in Drosophila Mojavensis Males Carrying the D. Arizonae Y Chromosome

    Science.gov (United States)

    Pantazidis, A. C.; Galanopoulos, V. K.; Zouros, E.

    1993-01-01

    Males of Drosophila mojavensis whose Y chromosome is replaced by the Y chromosome of the sibling species Drosophila arizonae are sterile. It is shown that genetic material from the fourth chromosome of D. arizonae is necessary and sufficient, in single dose, to restore fertility in these males. In introgression and mapping experiments this material segregates as a single Mendelian factor (sperm motility factor, SMF). Light and electron microscopy studies of spermatogenesis in D. mojavensis males whose Y chromosome is replaced by introgression with the Y chromosome of D. arizonae (these males are symbolized as mojY(a)) revealed postmeiotic abnormalities all of which are restored when the SMF of D. arizonae is co-introgressed (these males are symbolized as mojY(a)SMF(a)). The number of mature sperm per bundle in mojY(a)SMF(a) is slightly less than in pure D. mojavensis and is even smaller in males whose fertility is rescued by introgression of the entire fourth chromosome of D. arizonae. These observations establish an interspecific incompatibility between the Y chromosome and an autosomal factor (or more than one tightly linked factors) that can be useful for the study of the evolution of male hybrid sterility in Drosophila and the genetic control of spermatogenesis. PMID:8514139

  14. Drosophila melanogaster: a fly through its history and current use.

    Science.gov (United States)

    Stephenson, R; Metcalfe, N H

    2013-01-01

    Drosophila melanogaster, the common fruit fly, has been used as a model organism in both medical and scientific research for over a century. Work by Thomas Hunt Morgan (1866-1945) and his students at Columbia University at the beginning of the twentieth century led to great discoveries such as sex-linked inheritance and that ionising radiation causes mutations in genes. However, the use of Drosophila was not limited to genetic research. Experimentation with this model organism has also led to discoveries in neuroscience and neurodevelopment, including the basis of circadian rhythms. Its complex nervous system, conserved neurological function, and human disease-related loci allow Drosophila to be an ideal model organism for the study of neurodegenerative disease, for which it is used today, aiding research into diseases such as Alzheimer's and Parkinson's, which are becoming more prevalent in today's ageing population.

  15. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  16. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans

    DEFF Research Database (Denmark)

    Klasson, Lisa; Westberg, Joakim; Sapountzis, Panagiotis

    2009-01-01

    genome of W. pipientis strain wRi that induces very strong cytoplasmic incompatibility in its natural host Drosophila simulans. A comparison with the previously sequenced genome of W. pipientis strain wMel from Drosophila melanogaster identified 35 breakpoints associated with mobile elements and repeated...... sequences that are stable in Drosophila lines transinfected with wRi. Additionally, 450 genes with orthologs in wRi and wMel were sequenced from the W. pipientis strain wUni, responsible for the induction of parthenogenesis in the parasitoid wasp Muscidifurax uniraptor. The comparison of these A...

  17. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    Science.gov (United States)

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. © 2015 John Wiley & Sons Ltd.

  18. Khovanov homology for virtual knots with arbitrary coefficients

    International Nuclear Information System (INIS)

    Manturov, Vassily O

    2007-01-01

    The Khovanov homology theory over an arbitrary coefficient ring is extended to the case of virtual knots. We introduce a complex which is well-defined in the virtual case and is homotopy equivalent to the original Khovanov complex in the classical case. Unlike Khovanov's original construction, our definition of the complex does not use any additional prescription of signs to the edges of a cube. Moreover, our method enables us to construct a Khovanov homology theory for 'twisted virtual knots' in the sense of Bourgoin and Viro (including knots in three-dimensional projective space). We generalize a number of results of Khovanov homology theory (the Wehrli complex, minimality problems, Frobenius extensions) to virtual knots with non-orientable atoms

  19. Homology groups for particles on one-connected graphs

    Science.gov (United States)

    MaciÄ Żek, Tomasz; Sawicki, Adam

    2017-06-01

    We present a mathematical framework for describing the topology of configuration spaces for particles on one-connected graphs. In particular, we compute the homology groups over integers for different classes of one-connected graphs. Our approach is based on some fundamental combinatorial properties of the configuration spaces, Mayer-Vietoris sequences for different parts of configuration spaces, and some limited use of discrete Morse theory. As one of the results, we derive the closed-form formulae for ranks of the homology groups for indistinguishable particles on tree graphs. We also give a detailed discussion of the second homology group of the configuration space of both distinguishable and indistinguishable particles. Our motivation is the search for new kinds of quantum statistics.

  20. Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Vitanov, Nikolay K.; Yankulova, Elka D.

    2006-01-01

    By means of the multifractal detrended fluctuation analysis (MFDFA) we investigate long-range correlations in the interbeat time series of heart activity of Drosophila melanogaster-the classical object of research in genetics. Our main investigation tool are the fractal spectra f(α) and h(q) by means of which we trace the correlation properties of Drosophila heartbeat dynamics for three consequent generations of species. We observe that opposite to the case of humans the time series of the heartbeat activity of healthy Drosophila do not have scaling properties. Time series from species with genetic defects can be long-range correlated. Different kinds of genetic heart defects lead to different shape of the fractal spectra. The fractal heartbeat dynamics of Drosophila is transferred from generation to generation

  1. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster.

    Science.gov (United States)

    Kahsai, Lily; Cook, Kevin R

    2018-01-04

    Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes. Copyright © 2018 Kahsai,Cook.

  2. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Lily Kahsai

    2018-01-01

    Full Text Available Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes.

  3. The ecology of the Drosophila-yeast mutualism in wineries

    Science.gov (United States)

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  4. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    Science.gov (United States)

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  5. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Science.gov (United States)

    Kuzin, Boris A; Nikitina, Ekaterina A; Cherezov, Roman O; Vorontsova, Julia E; Slezinger, Mikhail S; Zatsepina, Olga G; Simonova, Olga B; Enikolopov, Grigori N; Savvateeva-Popova, Elena V

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  6. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Directory of Open Access Journals (Sweden)

    Boris A Kuzin

    Full Text Available Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  7. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  8. The fabulous destiny of the Drosophila heart.

    Science.gov (United States)

    Medioni, Caroline; Sénatore, Sébastien; Salmand, Pierre-Adrien; Lalevée, Nathalie; Perrin, Laurent; Sémériva, Michel

    2009-10-01

    For the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system. Striking similarities with vertebrate cardiogenesis have long been stressed, in particular concerning the conservation of key molecular regulators of cardiogenesis and the new data presented here confirm Drosophila cardiogenesis as a model not only for organogenesis but also for the study of molecular mechanisms of human cardiac disease.

  9. Overview of Drosophila immunity: a historical perspective.

    Science.gov (United States)

    Imler, Jean-Luc

    2014-01-01

    The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng

    2015-12-10

    Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.

  11. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  12. Parametric representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Mattos, Joao R.L. de

    2015-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  13. Analysis of the interaction between human RITA and Drosophila Suppressor of Hairless.

    Science.gov (United States)

    Brockmann, Birgit; Mastel, Helena; Oswald, Franz; Maier, Dieter

    2014-12-01

    Notch signalling mediates intercellular communication, which is effected by the transcription factor CSL, an acronym for vertebrate CBF1/RBP-J, Drosophila Suppressor of Hairless [Su(H)] and C. elegans Lag1. Nuclear import of CBF1/RBP-J depends on co-activators and co-repressors, whereas the export relies on RITA. RITA is a tubulin and CBF1/RBP-J binding protein acting as a negative regulator of Notch signalling in vertebrates. RITA protein is highly conserved in eumatazoa, but no Drosophila homologue was yet identified. In this work, the activity of human RITA in the fly was addressed. To this end, we generated transgenic flies that allow a tissue specific induction of human RITA, which was demonstrated by Western blotting and in fly tissues. Unexpectedly, overexpression of RITA during fly development had little phenotypic consequences, even when overexpressed simultaneously with either Su(H) or the Notch antagonist Hairless. We demonstrate the in vivo binding of human RITA to Su(H) and to tubulin by co-immune precipitation. Moreover, RITA and tubulin co-localized to some degree in several Drosophila tissues. Overall our data show that human RITA, albeit binding to Drosophila Su(H) and tubulin, cannot influence the Notch signalling pathway in the fly, suggesting that a nuclear export mechanism of Su(H), if existent in Drosophila, does not depend on RITA. © 2015 The Authors.

  14. Primary homologies of the circumorbital bones of snakes.

    Science.gov (United States)

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes. Copyright © 2013 Wiley Periodicals, Inc.

  15. Quiescent gastric stem cells maintain the adult Drosophila stomach.

    Science.gov (United States)

    Strand, Marie; Micchelli, Craig A

    2011-10-25

    The adult Drosophila copper cell region or "stomach" is a highly acidic compartment of the midgut with pH stem cells (GSSCs) produces the acid-secreting copper cells, interstitial cells, and enteroendocrine cells of the stomach. Our assays demonstrate that GSSCs are largely quiescent but can be induced to regenerate the gastric epithelium in response to environmental challenge. Finally, genetic analysis reveals that adult GSSC maintenance depends on Wnt signaling. Characterization of the GSSC lineage in Drosophila, with striking similarities to mammals, will advance the study of both homeostatic and pathogenic processes in the stomach.

  16. Recovery of arrested replication forks by homologous recombination is error-prone.

    Directory of Open Access Journals (Sweden)

    Ismail Iraqui

    Full Text Available Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.

  17. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  18. How hot are drosophila hotspots? examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Brenda Manzano-Winkler

    Full Text Available Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10-100x the background rate called "hotspots." Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample.

  19. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  20. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    International Nuclear Information System (INIS)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-01-01

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo

  1. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Arking, Robert, E-mail: aa2210@wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  2. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms

    OpenAIRE

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L. S.

    2015-01-01

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, tradit...

  3. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila

    Directory of Open Access Journals (Sweden)

    Dan Landayan

    2015-12-01

    Full Text Available The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior. Recent progress in Drosophila has revealed not only some common substrates for the actions of drugs of abuse and for the regulation of feeding, but also a remarkable level of conservation with vertebrates for key neuromodulatory transmitters. We speculate that Drosophila may serve as a model for distinguishing the neural mechanisms underlying normal and pathological motivational states that will be applicable to mammals.

  4. Remembering components of food in Drosophila

    Directory of Open Access Journals (Sweden)

    Gaurav eDas

    2016-02-01

    Full Text Available Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons that innervate distinct functional zones on the mushroom bodies. This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. Dopaminergic neurons are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.

  5. The translation factors of Drosophila melanogaster.

    Science.gov (United States)

    Marygold, Steven J; Attrill, Helen; Lasko, Paul

    2017-01-02

    Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical 'translation factors'. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.

  6. CBH1 homologs and varian CBH1 cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  7. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  8. Preserved irradiated homologous cartilage for orbital reconstruction

    International Nuclear Information System (INIS)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-01-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption

  9. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    Science.gov (United States)

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  10. Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.

    Science.gov (United States)

    Prince, Lisa; Korbas, Malgorzata; Davidson, Philip; Broberg, Karin; Rand, Matthew Dearborn

    2014-08-01

    Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. Although the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1-4 (ABCC1-4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging, these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared with a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations. © The Author 2014. Published by Oxford University Press on behalf of the Society of

  11. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.

    1989-01-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  12. Toll-8/Tollo negatively regulates antimicrobial response in the Drosophila respiratory epithelium.

    Directory of Open Access Journals (Sweden)

    Idir Akhouayri

    2011-10-01

    Full Text Available Barrier epithelia that are persistently exposed to microbes have evolved potent immune tools to eliminate such pathogens. If mechanisms that control Drosophila systemic responses are well-characterized, the epithelial immune responses remain poorly understood. Here, we performed a genetic dissection of the cascades activated during the immune response of the Drosophila airway epithelium i.e. trachea. We present evidence that bacteria induced-antimicrobial peptide (AMP production in the trachea is controlled by two signalling cascades. AMP gene transcription is activated by the inducible IMD pathway that acts non-cell autonomously in trachea. This IMD-dependent AMP activation is antagonized by a constitutively active signalling module involving the receptor Toll-8/Tollo, the ligand Spätzle2/DNT1 and Ect-4, the Drosophila ortholog of the human Sterile alpha and HEAT/ARMadillo motif (SARM. Our data show that, in addition to Toll-1 whose function is essential during the systemic immune response, Drosophila relies on another Toll family member to control the immune response in the respiratory epithelium.

  13. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay

    2016-12-01

    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  14. Homological methods, representation theory, and cluster algebras

    CERN Document Server

    Trepode, Sonia

    2018-01-01

    This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...

  15. Genetic selection and DNA sequences of 4.5S RNA homologs

    DEFF Research Database (Denmark)

    Brown, S; Thon, G; Tolentino, E

    1989-01-01

    A general strategy for cloning the functional homologs of an Escherichia coli gene was used to clone homologs of 4.5S RNA from other bacteria. The genes encoding these homologs were selected by their ability to complement a deletion of the gene for 4.5S RNA. DNA sequences of the regions encoding...

  16. Drosophila Melanogaster as an Experimental Organism.

    Science.gov (United States)

    Rubin, Gerald M.

    1988-01-01

    Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)

  17. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    [Banerjee P. and Singh B. N. 2017 The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. J. Genet. 96, 97–107]. Introduction ..... loops touch the chromocenter and in our microphotograph. (depicting both the arms) too, the involvement of chromo-.

  18. La conducta de larvas de Drosophila (Diptera; Drosophilidae: su etología, desarrollo, genética y evolución The behavior of Drosophila larvae: their ethology, development, genetics and evolution

    Directory of Open Access Journals (Sweden)

    RAÚL GODOY-HERRERA

    2001-03-01

    Full Text Available Este trabajo, en honor al Profesor Doctor Danko Brncic Juricic (Q.E.P.D., es una revisión de nuestras contribuciones sobre la etología, desarrollo, genética y evolución de patrones de conducta de larvas de Drosophila. Se discute el desarrollo de conductas larvales de forrajeo y sus bases hereditarias. También se discuten estrategias de investigación dirigidas a entender las relaciones entre genotipo y conducta durante el desarrollo de los organismos. Se relacionan patrones de desarrollo de conductas larvales con la filogenia de las especies del grupo mesophragmatica de Drosophila. Finalmente, se distingue entre evolución de elementos de conducta simple y evolución de conductas complejasThis is a review about our contributions in ethology, development, genetics, and evolution of larval behavioral patterns of Drosophila in honor of the late Professor Doctor Danko Brncic Juricic. The developmental behavioral genetics of larval foraging and pupation of Drosophila are discussed. It is also emphasized the importance of research strategies lead to understand properly the relationships between genotype and behavior during development of the organisms. Finally, a comparison between phylogenetic relationships of six Drosophila species of the mesophragmatica group and their developmental patterns of larval behaviors is provided

  19. Transcription profiling of Drosophila exposed to a levitation magnet for different lengths of time

    Data.gov (United States)

    National Aeronautics and Space Administration — Drosophila samples were exposed to the levitation magnet inside a 25mm diameter tubes with 3 ml of yeast-based Drosophila food in the bottom and a chamber of only 5...

  20. Khovanov-Rozansky Graph Homology and Composition Product

    DEFF Research Database (Denmark)

    Wagner, Emmanuel

    2008-01-01

    In analogy with a recursive formula for the HOMFLY-PT polynomial of links given by Jaeger, we give a recursive formula for the graph polynomial introduced by Kauffman and Vogel. We show how this formula extends to the Khovanov–Rozansky graph homology.......In analogy with a recursive formula for the HOMFLY-PT polynomial of links given by Jaeger, we give a recursive formula for the graph polynomial introduced by Kauffman and Vogel. We show how this formula extends to the Khovanov–Rozansky graph homology....

  1. Imaging cell competition in Drosophila imaginal discs.

    Science.gov (United States)

    Ohsawa, Shizue; Sugimura, Kaoru; Takino, Kyoko; Igaki, Tatsushi

    2012-01-01

    Cell competition is a process in which cells with higher fitness ("winners") survive and proliferate at the expense of less fit neighbors ("losers"). It has been suggested that cell competition is involved in a variety of biological processes such as organ size control, tissue homeostasis, cancer progression, and the maintenance of stem cell population. By advent of a genetic mosaic technique, which enables to generate fluorescently marked somatic clones in Drosophila imaginal discs, recent studies have presented some aspects of molecular mechanisms underlying cell competition. Now, with a live-imaging technique using ex vivo-cultured imaginal discs, we can dissect the spatiotemporal nature of competitive cell behaviors within multicellular communities. Here, we describe procedures and tips for live imaging of cell competition in Drosophila imaginal discs. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A Test for Gene Flow among Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Garner, Harold R; Price, Donald K; Michalak, Pawel

    2017-06-01

    The Hawaiian Drosophila are one of the most species-rich endemic groups in Hawaii and a spectacular example of adaptive radiation. Drosophila silvestris and D. heteroneura are two closely related picture-winged Drosophila species that occur sympatrically on Hawaii Island and are known to hybridize in nature, yet exhibit highly divergent behavioral and morphological traits driven largely through sexual selection. Their closest-related allopatric species, D. planitibia from Maui, exhibits hybrid male sterility and reduced behavioral reproductive isolation when crossed experimentally with D. silvestris or D. heteroneura. A modified four-taxon test for gene flow was applied to recently obtained genomes of the three Hawaiian Drosophila species. The analysis indicates recent gene flow in sympatry, but also, although less extensive, between allopatric species. This study underscores the prevalence of gene flow, even in taxonomic groups considered classic examples of allopatric speciation on islands. The potential confounding effects of gene flow in phylogenetic and population genetics inference are discussed, as well as the implications for conservation.

  3. Maternal control of the Drosophila dorsal–ventral body axis

    Science.gov (United States)

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  4. Early events in speciation: Polymorphism for hybrid male sterility in Drosophila

    OpenAIRE

    Reed, Laura K.; Markow, Therese A.

    2004-01-01

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors p...

  5. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster

    OpenAIRE

    Vonesch, Sibylle; Mackay, Trudy; Lamparter, David; Hafen, Ernst; Bergmann, Sven

    2015-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequen...

  6. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  7. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Science.gov (United States)

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  8. Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster.

    Science.gov (United States)

    Chattopadhyay, Debarati; Chitnis, Atith; Talekar, Aishwarya; Mulay, Prajakta; Makkar, Manyata; James, Joel; Thirumurugan, Kavitha

    2017-06-01

    Hormetins are compounds that mediate hormesis by being beneficial at low doses but detrimental at high doses. Recent studies have highlighted that many compounds that extended lifespan in model organisms did so by mediating hormesis. Rutin is a glycosylate conjugate of quercetin and rutinose and is abundant in citrus fruits and buckwheat seeds. Rutin possess ROS scavenging, anti-cancer, cardio-protective, skin-regenerative and neuro-protective properties. Drosophila melanogaster is an attractive model organism for longevity studies owing to its homology of organ and cellular-pathways with mammals. In this study, we aimed to understand the effect of rutin on extending longevity in Drosophila melanogaster. Male and female flies were administered with a range of rutin doses (100-800 µM) to analyse whether rutin mediated lifespan-extension by hormesis. Effect of rutin on physiological parameters like food intake, fecundity, climbing activity, development and resistance to various stresses was also studied. Lifespan assays showed that rutin at 200 and 400 µM significantly extended median lifespan in both male and female flies beyond which flies exhibited drastically reduced longevity. Increase in survival at 400 µM was associated with reduced food intake and fecundity. Flies exhibited improved climbing capability with both 200 and 400 µM rutin. Flies fed with 100 and 200 µM rutin exhibited enhanced survival upon exposure to oxidative stress with 400 µM rutin exhibiting no improvement in median lifespan following oxidative stress. Analysis of endogenous peroxide upon treatment with rutin (100-400 µM) with or without 5% H 2 O 2 showed elevated levels of endogenous peroxide with 400 µM rutin whereas no increase in hydrogen peroxide level was observed with rutin at 100 and 200 µM. Finally, gene expression studies in male flies revealed that rutin treatment at 200 and/or 400 µM elevated transcript levels of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, d

  9. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  11. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kenmoku

    2017-03-01

    Full Text Available Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.

  12. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila.

    Science.gov (United States)

    Landayan, Dan; Wolf, Fred W

    2015-12-01

    The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior. Recent progress in Drosophila has revealed not only some common substrates for the actions of drugs of abuse and for the regulation of feeding, but also a remarkable level of conservation with vertebrates for key neuromodulatory transmitters. We speculate that Drosophila may serve as a model for distinguishing the neural mechanisms underlying normal and pathological motivational states that will be applicable to mammals. Copyright © 2016 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  13. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.; Marques, E.K.

    1987-01-01

    The mechanisms of radioresistance in Drosophila are studied. The mutagenic effects of 5KR of 60 Cobalt gamma radiation and of 0,006M dose of ethyl methanesulfonate (EMS) on four D. Melanogaster strains (RC 1 , CO 3 , BUE and LEN) are investigated. (M.A.C.) [pt

  14. Investigation of Seasonal and Latitudinal Effects on the Expression of Clock Genes in Drosophila

    Science.gov (United States)

    Hosseini, Seyede Sanaz; Nazarimehr, Fahimeh; Jafari, Sajad

    The primary goal in this work is to develop a dynamical model capturing the influence of seasonal and latitudinal variations on the expression of Drosophila clock genes. To this end, we study a specific dynamical system with strange attractors that exhibit changes of Drosophila activity in a range of latitudes and across different seasons. Bifurcations of this system are analyzed to peruse the effect of season and latitude on the behavior of clock genes. Existing experimental data collected from the activity of Drosophila melanogaster corroborate the dynamical model.

  15. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The biogenic amine serotonin (5-HT is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.

  16. Motor Control of Drosophila Courtship Song

    Directory of Open Access Journals (Sweden)

    Troy R. Shirangi

    2013-11-01

    Full Text Available Many animals utilize acoustic signals—or songs—to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1 that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a “modular” anatomical substrate for the evolution of diverse songs.

  17. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    Science.gov (United States)

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. MicroRNAs That Contribute to Coordinating the Immune Response in Drosophila melanogaster.

    Science.gov (United States)

    Atilano, Magda L; Glittenberg, Marcus; Monteiro, Annabel; Copley, Richard R; Ligoxygakis, Petros

    2017-09-01

    Small noncoding RNAs called microRNAs (miRNAs) have emerged as post-transcriptional regulators of gene expression related to host defenses. Here, we have used Drosophila melanogaster to explore the contribution of individual or clusters of miRNAs in countering systemic Candida albicans infection. From a total of 72 tested, we identify 6 miRNA allelic mutant backgrounds that modulate the survival response to infection and the ability to control pathogen number. These mutants also exhibit dysregulation of the Toll pathway target transcripts Drosomycin ( Drs ) and Immune-Induced Molecule 1 ( IM1 ). These are characteristics of defects in Toll signaling, and consistent with this, we demonstrate dependency for one of the miRNA mutants on the NF-κΒ homolog Dif. We also quantify changes in the miRNA expression profile over time in response to three pathogen types, and identify 13 mature miRNA forms affected by pathogens that stimulate Toll signaling. To complement this, we provide a genome-wide map of potential NF-κB sites in proximity to miRNA genes. Finally, we demonstrate that systemic C. albicans infection contributes to a reduction in the total amount of branch-chained amino acids, which is miRNA-regulated. Overall, our data reveal a new layer of miRNA complexity regulating the fly response to systemic fungal infection. Copyright © 2017 Atilano et al.

  19. Neurophysiology of Drosophila Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ryan J. H. West

    2015-01-01

    Full Text Available We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson’s disease- (PD- related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson’s disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak’s scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  20. Identification of functional elements and regulatory circuits by Drosophila modENCODE.

    Science.gov (United States)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L; Landolin, Jane M; Bristow, Christopher A; Ma, Lijia; Lin, Michael F; Washietl, Stefan; Arshinoff, Bradley I; Ay, Ferhat; Meyer, Patrick E; Robine, Nicolas; Washington, Nicole L; Di Stefano, Luisa; Berezikov, Eugene; Brown, Christopher D; Candeias, Rogerio; Carlson, Joseph W; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y; Will, Sebastian; Alekseyenko, Artyom A; Artieri, Carlo; Booth, Benjamin W; Brooks, Angela N; Dai, Qi; Davis, Carrie A; Duff, Michael O; Feng, Xin; Gorchakov, Andrey A; Gu, Tingting; Henikoff, Jorja G; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K; Riddle, Nicole C; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E; Schwartz, Yuri B; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E; Brent, Michael R; Cherbas, Lucy; Elgin, Sarah C R; Gingeras, Thomas R; Grossman, Robert; Hoskins, Roger A; Kaufman, Thomas C; Kent, William; Kuroda, Mitzi I; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J; Celniker, Susan E; Henikoff, Steven; Karpen, Gary H; Lai, Eric C; MacAlpine, David M; Stein, Lincoln D; White, Kevin P; Kellis, Manolis

    2010-12-24

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

  1. Genetics on the Fly: A Primer on the Drosophila Model System

    Science.gov (United States)

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  2. A homology theory for smale spaces

    CERN Document Server

    Putnam, Ian F

    2014-01-01

    The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.

  3. Homological stability for unordered configuration spaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2013-01-01

    This paper consists of two related parts. In the first part we give a self-contained proof of homological stability for the spaces C_n(M;X) of configurations of n unordered points in a connected open manifold M with labels in a path-connected space X, with the best possible integral stability range...... of the spaces C_n(M) can be considered stable when M is a closed manifold. In this case there are no stabilisation maps, but one may still ask if the dimensions of the homology groups over some field stabilise with n. We prove that this is true when M is odd-dimensional, or when the field is F_2 or Q...

  4. Homologous series of induced early mutants in Indica rice. Pt.3: The relationship between the induction of homologous series of early mutants and its different pedigree

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    2002-01-01

    The percentage of homologous series of early mutants (PHSEM) induced by irradiation was closely related to its pedigree. This study showed that PHSEM for varieties with the same pedigree were similar, and there were three different level of dominance (high, low and normal) in the homologous series induced from different pedigree. The PHSEM for varieties derived form distant-relative-parents were higher than that derived from close-relative-parents. There was the dominance pedigree for the induction of homologous series of early mutants. IR8(Peta x DGWG), IR127 (Cpslo x Sigadis) and IR24 (IR8 x IR127) were dominant pedigree, and varieties derived from them could be easily induced the homologous series of early mutants

  5. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions.

    Science.gov (United States)

    Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye

    2017-02-01

    Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

  6. RPA homologs and ssDNA processing during meiotic recombination.

    Science.gov (United States)

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  7. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Justin Schleede

    2015-10-01

    Full Text Available The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog. However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  8. Polar representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Mattos, Joao Roberto Loureiro de

    2008-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic parameters: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. Any one of these quantities can be expressed as a function of any two others. The curves showing the relationships between these four variables are called the pump characteristic curves, also referred to as four-quadrant curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, the four-quadrant configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the polar form appears as the simplest way to represent the homologous curves. In the polar method, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a

  9. Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster

    OpenAIRE

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F.; Roeder, Thomas

    2013-01-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as samplin...

  10. Domain requirements for the Dock adapter protein in growth- cone signaling

    OpenAIRE

    Rao, Yong; Zipursky, S. Lawrence

    1998-01-01

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly speci...

  11. Spotted wing drosophila prefer low hanging fruit: insights into foraging behavior and management strategies

    Science.gov (United States)

    Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive insect that attacks ripe, small fruit such as raspberries, blackberries, and blueberries. Little is known about SWD foraging ecology, and current trapping and monitoring systems are ineffective at commercial scales. In caged foragin...

  12. Multiresolution persistent homology for excessively large biomolecular datasets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin; Zhao, Zhixiong [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-10-07

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  13. Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila.

    Science.gov (United States)

    Frenkel-Pinter, Moran; Stempler, Shiri; Tal-Mazaki, Sharon; Losev, Yelena; Singh-Anand, Avnika; Escobar-Álvarez, Daniela; Lezmy, Jonathan; Gazit, Ehud; Ruppin, Eytan; Segal, Daniel

    2017-08-01

    The pathological hallmarks of Alzheimer's disease (AD) are pathogenic oligomers and fibrils of misfolded amyloidogenic proteins (e.g., β-amyloid and hyper-phosphorylated tau in AD), which cause progressive loss of neurons in the brain and nervous system. Although deviations from normal protein glycosylation have been documented in AD, their role in disease pathology has been barely explored. Here our analysis of available expression data sets indicates that many glycosylation-related genes are differentially expressed in brains of AD patients compared with healthy controls. The robust differences found enabled us to predict the occurrence of AD with remarkable accuracy in a test cohort and identify a set of key genes whose expression determines this classification. We then studied in vivo the effect of reducing expression of homologs of 6 of these genes in transgenic Drosophila overexpressing human tau, a well-established invertebrate AD model. These experiments have led to the identification of glycosylation genes that may augment or ameliorate tauopathy phenotypes. Our results indicate that OstDelta, l(2)not and beta4GalT7 are tauopathy suppressors, whereas pgnat5 and CG33303 are enhancers, of tauopathy. These results suggest that specific alterations in protein glycosylation may play a causal role in AD etiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Transgenic Drosophila simulans strains prove the identity of the speciation gene Lethal hybrid rescue.

    Science.gov (United States)

    Prigent, Stéphane R; Matsubayashi, Hiroshi; Yamamoto, Masa-Toshi

    2009-10-01

    Speciation genes are responsible for genetic incompatibilities in hybrids of incipient species and therefore participate in reproductive isolation leading to complete speciation. Hybrid males between Drosophila melanogaster females and D. simulans males die at late larval or prepupal stages due to a failure in chromosome condensation during mitosis. However a mutant male of D. simulans, named Lethal hybrid rescue (Lhr), produces viable hybrid males when crossed to females of D. melanogaster. Recently the Lhr gene has been proposed as corresponding to the CG18468 gene in D. melanogaster. However this identification relied on sequence characteristics more than on a precise mapping and the use of the GAL4/UAS system to drive the transgene in D. melanogaster might have increased the complexity of interaction. Thus here we propose an independent identification of the Lhr gene based on a more precise mapping and transgenic experiments in D. simulans. We have mapped the Lhr gene by using Single Nucleotide Polymorphisms (SNPs) and identified within the candidate region the gene homologous to CG18468 as the Lhr gene as it was previously reported. Transgenic experiments in D. simulans with the native promoter of CG18468 prove that it is the Lhr gene of D. simulans by inducing the lethality of the hybrid males.

  15. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Hauser, Frank; Kobberup, Sune

    2003-01-01

    The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also...... part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila...... and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head...

  16. Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us GETDB Expression image data of Drosophila GAL4 enhancer trap lines Data detail Data name Exp...ta contents 3,075 expression image data by developmental stages of Drosophila Images are classified into the...escription Download License Update History of This Database Site Policy | Contact Us Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive ... ...ression image data of Drosophila GAL4 enhancer trap lines DOI 10.18908/lsdba.nbdc00236-004 Description of da

  17. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2) using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/ CRISPR-associated) hom...

  18. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  19. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  20. Quandle and Biquandle Homology Calculation in R

    Directory of Open Access Journals (Sweden)

    Roger Fenn

    2018-01-01

    Full Text Available In knot theory several knot invariants have been found over the last decades. This paper concerns itself with invariants of several of those invariants, namely the Homology of racks, quandles, biracks and biquandles. The software described in this paper calculates the rack, quandle and degenerate homology groups of racks and biracks. It works for any rack/quandle with finite elements where there are homology coefficients in 'Z'k. The up and down actions can be given either as a function of the elements of 'Z'k or provided as a matrix. When calculating a rack, the down action should coincide with the identity map. We have provided actions for both the general dihedral quandle and the group quandle over 'S'3. We also provide a second function to test if a set with a given action (or with both actions gives rise to a quandle or biquandle. The program is provided as an R package and can be found at https://github.com/ansgarwenzel/quhomology.   AMS subject classification: 57M27; 57M25