WorldWideScience

Sample records for dropped fuel element

  1. Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Boris Kidric, Heat Transfer Department, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning have been investigated. The St-number distribution over length and perimeter of he finning are given. The mean and minimum St{sub k}-number are plotted against the Re-number. The influence of the gap between two fuel elements upon heat transfer and pressure drop, in dependence on the Re-number, and the influence of the length of the fuel element on pressure drop across the gap are shown. The influence of the relative position of the splitters of two neighboring fuel elements on pressure drop and heat transfer is shown. The investigations were performed in the Re-number range 15,000 to 100,000 (author)

  2. Pressure drop calculation in a fuel element of a pool type reactor

    International Nuclear Information System (INIS)

    Lassance, Victor; Oliveira, Andre F.; Moreira, Maria de L.

    2013-01-01

    Even with the advances of hardware in computer sciences, sometimes it is necessary to simplify the simulation in order to optimize the results given the same calculation runtime. The object of this study is a thermodynamic analysis of the core of a pool type research reactor, focusing on natural circulation. Due to the high geometrical complexity of the core, the scale transfer process becomes an essential step to the thermodynamic study of the reactor. This process takes place by determining the effective equivalent properties obtained from a detailed simulation of the core and transferring them to a porous medium having a coarse mesh while preserving the overall characteristics. In this way, it will be able to obtain the quadratic resistance coefficient KQ by calculating the pressure drop inside the fuel element. To observe in detail the behavior of this flow, longitudinal and transversal cross sections will be made in different points, thereby observing the velocity and pressure distributions. The analysis will provide detailed data on the fluid flow between the fuel plates enabling the observation of possible critical points or undesired behavior. The whole analysis was made by using the commercial code ANSYS CFX ver. 12.1. This is study will provide data, as a first step to enable future simulations which will consider the entire reactor. (author)

  3. Validation of Pressure Drop Models for PHWR-type Fuel Elements

    International Nuclear Information System (INIS)

    Brasnarof Daniel; Daverio, H.

    2003-01-01

    In the present work an one-dimensional pressure drop analytical model and the COBRA code, are validated with experimental data of CANDU and Atucha fuel bundles in low and high pressure experimental test loops.Models have very good agreement with the experimental data, having less than 5 % of discrepancy. The analytical model results were compared with COBRA code results, having small difference between them in a wide range of pressure, temperature and mass flow

  4. Study of pressure drop in a mock-up of fuel element cluster

    International Nuclear Information System (INIS)

    Barros Filho, J.A.

    1987-01-01

    Results of single-phase tests performed in a 3 x 3 rod bundle arranged in square array are presented and analysed. The tests were performed in adiabatic conditions and with heat transfer, covering the following range of parameters: Reynolds no.: 1,5 to 20 x 10 4 ; inlet temperature [ 0 C]: 30 to 150; pressure [bar]: 1 to 15; heat flux (kW/cm 2 ]: 0 to 1000. Correlations were determined for the friction factor, isothermal and under conditions of heat transfer, spacer grids pressure drop coefficient and average heat transfer coefficient. The experimental data were compared with published data obtained by other researchers and with some theoretical models selected in the literature. (Author) [pt

  5. Heat transfer and pressure drop of the reactor fuel element with polyzonal spiral finning; Prelaz toplote i pad pritiska reaktorskog gorivnog elementa sa polizonalno-spiralnim orebrenjem

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1964-06-15

    Heat transfer and pressure drop of the reactor fuel element with polyzonal spiral finning were investigated. Longitudinal and circumferential distributions of Sr-number of finnings in the fuel element are given. Dependences of St{sub kmin} and St{sub ksr} on the Re number are derived. The influence of gap between two fuel elements on the heat transfer, pressure drop is presented dependent on the Re number. The influence of mutual position of flow separators of two neighbouring fuel elements on the pressure drop and heat transfer is shown as well. Investigations were performed in the range of Re numbers from 15000 to 100000. Ispitivan je prelaz toplote i pad pritiska modela reaktorskog gorivnog elementa sa polizonalno-spiralnim orebrenjem. Dat je uzduznu i obimni raspored Sr-broja na orebrenju gorivnog elementa. Izvedene su zavisnosti St{sub kmin} i St{sub ksr} u funkciji od Re-broja. Pokazan je uticaj prekida izmedju dva gorivna elementa na prelaz toplote i pad pritiska u zavisnosti od Re-broja. Pokazan je uticaj medjusobnog polozaja razdeljivaca struje dva susedna gorivna elementa na pad pritiska i prelaz toplote. Ispitivanja su vrsena u oblasti Re-brojeva od 15000 do 100000 (author)

  6. Fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  7. Fuel element

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1982-01-01

    A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)

  8. PWR simplified fuel element simulation using calculation trailer ANSYS CFX and PARCS including pressure drop and turbulence in the spacer

    International Nuclear Information System (INIS)

    Pena-Monferrer, C.; Chiva, S.; Miro, R.; Barrachina, T.; Pellacani, F.; Macian-Juan, R.

    2012-01-01

    With the recent development of a new computational tool for calculations of nuclear reactors based on the coupling between the PARCS neutron transport code and computational fluid dynamics commercial code (CFD) ANSYS CFX opens new possibilities in the fuel element design that contributes to a better understanding and a better simulation of the processes of heat transfer and specific phenomena of fluid dynamics as the c rossflow .

  9. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  10. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  11. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  12. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  13. Dropped fuel damage prediction techniques and the DROPFU code

    International Nuclear Information System (INIS)

    Mottershead, K.J.; Beardsmore, D.W.; Money, G.

    1995-01-01

    During refuelling, and fuel handling, at UK Advanced Gas Cooled Reactor (AGR) stations it is recognised that the accidental dropping of fuel is a possibility. This can result in dropping individual fuel elements, a complete fuel stringer, or a whole assembly. The techniques for assessing potential damage have been developed over a number of years. This paper describes how damage prediction techniques have subsequently evolved to meet changing needs. These have been due to later fuel designs and the need to consider drops in facilities outside the reactor. The paper begins by briefly describing AGR fuel and possible dropped fuel scenarios. This is followed by a brief summary of the damage mechanisms and the assessment procedure as it was first developed. The paper then describes the additional test work carried out, followed by the detailed numerical modelling. Finally, the paper describes the extensions to the practical assessment methods. (author)

  14. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  15. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  16. Pressure drop ana velocity measurements in KMRR fuel rod bundles

    International Nuclear Information System (INIS)

    Yagn, Sun Kyu; Chung, Heung June; Chung, Chang Whan; Chun, Se Young; Song, Chul Wha; Won, Soon Yeun; Chung, Moon Ki

    1990-01-01

    The detailed hydraulic characteristic measurements in subchannels of longitudinally finned rod bundles using one-component LDV(Laser Doppler Velocimeter) were performed. Time mean axial velocity, turbulent intensity, and turbulent micro scales, such as time auto-correlation, Eulerian integral and micro scale, Kolmogorov length and time scale, and Taylor micro length scale were measured. The signals from LDV are inherently more or less discontinuous. The spectra of signals having such intermittent defects can be obtained by the fast Fourier transformation (FFT) of the auto-correlation function. The turbulent crossflow mixing rate between neighboring subchannels and dominant frequencies were evaluated from the measured data. Pressure drop data were obtained for the typical 36-element and 18-element fuel rod bundles fabricated by the design requirement of KMRR fuel and for other type of fuels assembled with 6-fin rods to investigate the fin effects on the pressure drop characteristics

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  18. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  19. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  20. Measurements of subchannel velocity and pressure drop for HANARO fuel assembly

    International Nuclear Information System (INIS)

    Yang, Sun Kyu; Jeong, Heung Jun; Cho, Suk; Min, Kyung Ho; Jeong, Moon Ki

    1996-07-01

    This report presents the hydraulic test results for HANARO fuel assemblies, which are performed to obtain the axial velocity and pressure drop data to be used to validate the code calculation model. For both 18 and 36-element fuel assemblies axial velocities of the entrance and exit regions are obtained, and developing axial velocity profiles along the flow direction for the fuel region of 18-element fuel assembly are also obtained. Varying the pressure tap locations, pressure drop data for each component of fuel assembly are obtained for various flow conditions. From the pressure drop test results it is noted that the pressure drops across the fuel assembly are 214 kPa and 205 kPa for the 18-element and 36-element fuel assembly respectively. 39 tabs., 12 figs., 5 refs. (Author)

  1. Grid for a fuel element

    International Nuclear Information System (INIS)

    1975-01-01

    An illustrative embodiment of the invention has one or more corrugations formed in the surface of a fuel element grid for a nuclear reactor. Not only does the corrugation enhance the strength of the grid plate in which it is formed, but it also provides a simple and convenient means for regulating the reactor coolant pressure drop through an appropriate choice of the corrugation depth

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  5. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  6. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  7. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  8. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  10. Fuel element transport container

    International Nuclear Information System (INIS)

    Benna, P.; Neuenfeldt, W.

    1979-01-01

    The reprocessing system includes a large number of waterfilled ponds next to each other for the intermediate storage of fuel elements from LWR's. The fuel element transport device is allocated to a middle pond. The individual ponds are separated from each other by walls, and are only accessible from the middle pond via narrow passages. The transport device includes a telescopic running rail for a trolley with a grab device for the fuel element. The running rail is supported in turn by a second trolley, which can be moved by wheels on rails. Part of the drive of the first trolley is arranged on the second one. Using this transport device, adjacent ponds can be served through the passage openings. (DG) [de

  11. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  12. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  13. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  14. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  15. Fuel element store

    International Nuclear Information System (INIS)

    Wieser, R.

    1987-01-01

    The spherical fuel elements are stored dry in cans. The cans themselves are stacked in parallel storage shafts, which are combined into a rectangular storage space. The storage space is made earthquake-proof by surrounding it with concrete. It consists of a ceiling assembled from several steel parts, which is connected to the floor by support elements. A cooling air ventilation station supplies the individual storage shaft and therefore the cans with cooling air via incoming and outgoing pipes. (DG) [de

  16. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  18. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  19. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  20. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  2. Vented nuclear fuel element

    International Nuclear Information System (INIS)

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  3. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  5. Nuclear fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, J S; Coffing, L F

    1979-04-05

    The fuel element with circular cross-section for BWR and PWR consists of a core surrounded by a compound jacket container where there is a gap between the core and jacket during operation in the reactor. The core consists of U, Pu, Th compounds and mixtures of these. The compound jacket consists of zircaloy 2 or 4. In order to for example prevent the corrosion of the compound jacket, its inner surface has a metal barrier with smaller neutron absorbers than the jacket material in the form of a zirconium sponge. The zirconium of this metal barrier has impurities of various elements in the order of magnitude of 1000 to 5000 ppm. The oxygen content is in the range of 200 to 1200 ppm and the thickness of the metal barrier is 1-30% of the thickness of the jacket.

  6. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  7. Hydrogen in CANDU fuel elements

    International Nuclear Information System (INIS)

    Sejnoha, R.; Manzer, A.M.; Surette, B.A.

    1995-01-01

    Unirradiated and irradiated CANDU fuel cladding was tested to compare the role of stress-corrosion cracking and of hydrogen in the development of fuel defects. The results of the tests are compared with information on fuel performance in-reactor. The role of hydriding (deuteriding) from the coolant and from the fuel element inside is discussed, and the control of 'hydrogen gas' content in the element is confirmed as essential for defect-free fuel performance. Finally, implications for fuel element design are discussed. (author)

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1992-01-01

    Hollow fuel pellets are piled at multi-stages in a cladding tube to form a pellet stack. A bundle of metal fine wires made of zirconium or an alloy thereof is inserted passing through the hollow portion of each of the hollow pellets over a length of the pellet stack. The metal fine wires are bundled by securing ring at a joining portions of the pellets. Then, the portion between both of adjacent rings is expanded radially and has a spring function biasing in the radial direction. With such a constitution, even if the pellet is expanded radially due to pallet gas swelling, the hollow portion is not closed, and the gas flow channel is ensured. In addition, even if the pellet is cracked due to thermal shocks, the pellet piece is prevented from dropping to the hollow portion. In this case, the thermal conduction between the pellets and the cladding tube is kept satisfactorily by the spring function of the metal wire bundle. (I.N.)

  9. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1993-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  10. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1994-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  11. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  13. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  14. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  15. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  16. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  17. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  18. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  19. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  20. Impact analysis of spent fuel dry casks under accidental drop scenarios

    International Nuclear Information System (INIS)

    Braverman, J.I.; Morante, R.J.; Xu, J.; Hofmayer, C.H.; Shaukat, S.K.

    2003-01-01

    A series of analyses were performed to assess the structural response of spent nuclear fuel dry casks subjected to various handling and on-site transfer events. The results of these analyses are being used by the Nuclear Regulatory Commission (NRC) to perform a probabilistic risk assessment (PRA). Although the PRA study is being performed for a specific nuclear plant, the PRA study is also intended to provide a framework for a general methodology that could also be applied to other dry cask systems at other nuclear plants. The dry cask system consists of a transfer cask, used for handling and moving the multi-purpose canister (MPC) that contains the fuel, and a storage cask, used to store the MPC and fuel on a concrete pad at the site. This paper describes the analyses of the casks for two loading events. The first loading consists of dropping the transfer cask while it is lowered by a crane to a concrete floor at ground elevation. The second loading consists of dropping the storage cask while it is being transferred to the concrete storage pad outdoors. Three dimensional finite element models of the transfer cask and storage cask, containing the MPC and fuel, were utilized to perform the drop analyses. These models were combined with finite element models of the target structures being impacted. The transfer cask drop analyses considered various drop heights for the cask impacting the reinforced concrete floor at ground level. The finite element model of the target included a section of the concrete floor and concrete wall supporting the floor. The storage cask drop analyses evaluated a 30.5 cm (12 in.) drop of the cask impacting three different surfaces: reinforced concrete, asphalt, and gravel. (author)

  1. Drop detachment and motion on fuel cell electrode materials.

    Science.gov (United States)

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamanaka, Tsuneyasu.

    1976-01-01

    Purpose: To provide a mechanism for the prevention of fuel pellet dislocation in fuel can throughout fuel fablication, fuel transportation and reactor operation. Constitution: A plenum spacer as a mechanism for the prevention of fuel pellet dislocation inserted into a cladding tube comprises split bodies bundled by a frame and an expansion body being capable of inserting into the central cavity of the split bodies. The expansion body is, for example, in a conical shape and the split bodies are formed so that they define in the center portion, when disposed along the inner wall of the cladding tube, a gap capable of inserting the conical body. The plenum spacer is assembled by initially inserting the split bodies in a closed state into the cladding tube after the loading of the pellets, pressing their peripheral portions and then inserting the expansion body into the space to urge the split bodies to the inner surface of the cladding tube. (Kawakami, Y.)

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  4. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Krawiec, D.M.; Bevilacqua, F.

    1974-01-01

    The fuel elements of each fuel element group are separated from each other by means of a multitude of thin, intersecting plates in the from of grid strips. Flow deflectors near the surface of the fuel elements are used in order to make the coolant flow more turbulent. They are designed as vanes and arranged at a distance on the grid strips. Each deflector vane has two arms stretching in opposite directions, each one into a neighbouring channel. In outward direction, the deflector vanes are converging. The strips with the vanes can be put on the supporting grid of the fuel elements. The vane structure can be reinforced by providing distortions in the strip material near the vanes. (DG) [de

  5. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  6. Nuclear fuel elements and assemblies

    International Nuclear Information System (INIS)

    Saito, Shozo; Maki, Hideo.

    1982-01-01

    Purpose: To facilitate the attainment of the uranium enrichment or gadolinia enrichment of a pellet filled in a fuel element. Constitution: The axial length of a pellet filled in a fuel element is set to predetermined sizes according to the uranium enrichment factor, gadolinia enrichment or their combination. Thus, the uranium enrichment factor or gadolinia enrichment can be identified by attaining the axial length of the pellet by using such a pellt. (Kamimura, M.)

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  8. Quality assurance of fuel elements

    International Nuclear Information System (INIS)

    Hoerber, J.

    1980-01-01

    The quality assurance activities for reactor fuel elements are based on a quality assurance system which implies the requirements resulting from the specifications, regulations of the authorities, national standards and international rules and regulations. The quality assurance related to production of reactor fuel will be shown for PWR fuel elements in all typical fabrication steps as conversion into UO 2 -powder, pelletizing, rodmanufacture and assembling. A wide range of destructive and nondestructive techniques is applied. Quality assurance is not only verified by testing techniques but also by process monitoring by means of parameter control in production and testing procedures. (RW)

  9. Fuel element tomography by gammametry

    International Nuclear Information System (INIS)

    Simonet, G.; Pineira, T.

    1982-03-01

    As from transversal gamma determinations of a cylindrical fuel element, the TOMOGAM program reconstitutes the distribution of fission products in a section. This direct, fast and non destructive method, makes it possible to have access to the behaviour of the fuel at any time: - the soluble fission products in the matrix represent the fuel itself and the distribution of the fissions, - the migrating elements inform on the temperature reached in accordance with the permitted powers, - the volatile nuclides build up in particular points where physical-chemical phenomena of fuel-cladding interaction are liable to corrode the latter. Hence, gamma spectrometry extends its possibilities of analysis relative to the performance of reactor elements [fr

  10. Measurement of the Velocity and Pressure Drop in a Tubular Type Fuel

    International Nuclear Information System (INIS)

    Jonghark Park; Heetaek Chae; Cheol Park; Heonil Kim

    2006-01-01

    We have developed a tubular type fuel assembly design as one of candidates for fuel to be used in the Advanced HANARO Reactor (AHR). The tubular type fuel has several merits over a rod type fuel with respect to the thermal-hydraulic and structural safety; the larger ratio of surface area to volume makes the surface temperature of a fuel element become lower, and curved plate is stronger against longitudinal bending and vibration. In the other side, a disadvantage is expected such that the flow velocity can be distributed unevenly channel by channel because the flow channels are isolated from each other in a tubular type fuel assembly. In addition to the design development, we also investigated the flow characteristics of the tubular fuel experimentally. To examine the flow velocity distribution and pressure drop, we made an experiment facility and a mockup of the tubular fuel assembly. The fuel assembly consists of 6 concentric fuel tubes so that 7 layers are made between fuel tubes. Since each layer is divided into three sections by stiffeners, 21 isolated flow channels are made in total. We employed pitot-tubes to measure the coolant velocity in each channel. The maximum velocity was measured as large as about 28% of the average velocity. It was observed in the innermost channel contrarily to the expectation from the hydraulic diameter. A change in the total flow rate did not affect the flow distribution. Meanwhile, the pressure drop was measured as about 70% of the drop in the rod type fuel assembly in use in HANARO. (authors)

  11. Reactor fuel element and fuel assembly

    International Nuclear Information System (INIS)

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  12. Fast breeder fuel element development

    International Nuclear Information System (INIS)

    Marth, W.; Muehling, G.

    1983-08-01

    This report is a compilation of the papers which have been presented during a seminar ''Fast Breeder Fuel Element Development'' held on November 15/16, 1982 at KfK. The papers give a survey of the status, of the obtained results and of the necessary work, which still has to be done in the frame of various development programmes for fast breeder fuel elements. In detail the following items were covered by the presentations: - the requirements and boundary conditions for the design of fuel pins and elements both for the reference concept of the SNR 300 core and for the large, commercial breeder type of the future (presentation 1,2 and 6); - the fabrication, properties and characterization of various mixed oxide fuel types (presentations 3,4 and 5); - the operational fuel pin behaviour, limits of different design concepts and possible mechanism for fuel pin failures (presentations (7 and 8); - the situation of cladding- and wrapper materials development especially with respect to the high burn-up values of commercial reactors (presentations 9 and 10); - the results of the irradiation experiments performed under steady-state and non-stationary operational conditions and with failed fuel pins (presentations 11, 12, 13 and 14). (orig./RW) [de

  13. Sodium-fuel interaction: dropping experiments and subassembly test

    International Nuclear Information System (INIS)

    Holtbecker, H.; Schins, H.; Jorzik, E.; Klein, K.

    1978-01-01

    Nine dropping tests, which bring together 2 to 4 kg of molten UO 2 with 150 l sodium, showed the incoherency and non-violence of these thermal interactions. The pressures can be described by sodium incipient boiling and bubble collapse; the UO 2 fragmentation by thermal stress and bubble collapse impact forces. The mildness of the interaction is principally due to the slowness and incoherency of UO 2 fragmentation. This means that parametric models which assume instantaneous mixing and fragmentation are of no use for the interpretation of dropping experiments. One parametric model, the Caldarola Fuel Coolant Interaction Variable Mass model, is being coupled to the two dimensional time dependent hydrodynamic REXCO-H code. In a first step the coupling is applicated to a monodimensional geometry. A subassembly test is proposed to validate the model. In this test rapid mixing between UO 2 and sodium has to be obtained. Dispersed molten UO 2 fuel is obtained by flashing injected sodium drops inside a UO 2 melt. This flashing is theoretically explained and modelled as a superheat limited explosion. The measured sodium drop dwell times of two experiments are compared to results obtained from the mentioned theory, which is the basis of the Press 2 Code

  14. Apparatus for locating defective nuclear fuel elements

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1979-01-01

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  15. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  16. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  17. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  18. Monitoring arrangement for vented nuclear fuel elements

    International Nuclear Information System (INIS)

    Campana, R.J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180 0 rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements

  19. Fuel element database: developer handbook

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2004-09-01

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  20. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  1. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    Science.gov (United States)

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  2. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  3. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  4. Experimental study of water flow in nuclear fuel elements

    International Nuclear Information System (INIS)

    Rodrigues, Lorena Escriche; Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos

    2013-01-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured

  5. TN-68 Spent Fuel Transport Cask Analytical Evaluation for Drop Events

    International Nuclear Information System (INIS)

    Shah, M.J.; Klymyshyn, Nicholas A.; Adkins, Harold E.; Koeppel, Brian J.

    2007-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing commercial spent nuclear fuel transported in casks certified by NRC under the Code of Federal Regulations (10 CFR), Title 10, Part 71 (1). Both the International Atomic Energy Agency regulations for transporting radioactive materials (2, paragraph 727), and 10 CFR 71.73 require casks to be evaluated for hypothetical accident conditions, which includes a 9-meter (m) (30-ft) drop-impact event onto a flat, essentially unyielding, horizontal surface, in the most damaging orientation. This paper examines the behavior of one of the NRC certified transportation casks, the TN-68 (3), for drop-impact events. The specific area examined is the behavior of the bolted connections in the cask body and the closure lid, which are significantly loaded during the hypothetical drop-impact event. Analytical work to evaluate the NRC-certified TN-68 spent fuel transport cask (3) for a 9-m (30-ft) drop-impact event on a flat, unyielding, horizontal surface, was performed using the ANSYS (4) and LS DYNA (5) finite-element analysis codes. The models were sufficiently detailed, in the areas of bolt closure interfaces and containment boundaries, to evaluate the structural integrity of the bolted connections under 9-m (30-ft) free-drop hypothetical accident conditions, as specified in 10 CFR 71.73. Evaluation of the cask for puncture, caused by a free drop through a distance of 1-m (40-in.) onto a mild steel bar mounted on a flat, essentially unyielding, horizontal surface, required by 10 CFR 71.73, was not included in the current work, and will have to be addressed in the future. Based on the analyses performed to date, it is concluded that, even though brief separation of the flange and the lid surfaces may occur under some conditions, the seals would close at the end of the drop events, because the materials remain elastic during the duration of the event

  6. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  7. Method of measuring distance between fuel element

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  8. The advanced neutron source three-element-core fuel grading

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1995-01-01

    The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW f nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U 3 Si 2 -Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of 235 U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119 degrees C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400 degrees C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered

  9. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  10. Detector for failed fuel elements

    International Nuclear Information System (INIS)

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  11. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Raven, L.F.

    1975-01-01

    A spacer grid for a nuclear fuel element comprises a plurality of cojointed cylindrical ferrules adapted to receive a nuclear fuel pin. Each ferrule has a pair of circumferentially spaced rigid stop members extending inside the ferrule and a spring locating member attached to the ferrule and also extending from the ferrule wall inwardly thereof at such a circumferential spacing relative to the rigid stop members that the line of action of the spring locating member passes in opposition to and between the rigid stop members which lie in the same diametric plane. At least some of the cylindrical ferrules have one rim shaped to promote turbulence in fluid flowing through the grid. (Official Gazette)

  12. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  13. CERCA's fuel elements instrumentation manufacturing

    International Nuclear Information System (INIS)

    Harbonnier, G.; Jarousse, C.; Pin, T.; Febvre, M.; Colomb, P.

    2005-01-01

    When research and test reactors wish to further understand the Fuel Elements behavior when operating as well as mastering their irradiation conditions, operators carry out neutron and thermo hydraulic analysis. For thermal calculation, the codes used have to be preliminary validated, at least in the range of the reactor safety operational limits. When some further investigations are requested either by safety authorities or for its own reactor needs, instrumented tools are the ultimate solution for providing representative measurements. Such measurements can be conducted for validating thermal calculation codes, at nominal operating condition as well as during transients ones, or for providing numerous and useful data in the frame of a new products qualification program. CERCA, with many years of experience for implanting thermocouples in various products design, states in this poster his manufacturing background on instrumented elements, plates or targets. (author)

  14. Analysis of reactor body for dropping of fuel flask

    International Nuclear Information System (INIS)

    Gyorgyi, J.; Zsidi, Z.; Eottevenyi, T.

    2005-01-01

    In the Hungarian Nuclear Power Plant was a project to put the fuel flask onto a special structure in the upper part of the reinforced reactor body. The structure was built form steel elements, and the fuel flask was support in four points on the structure. During the analysis we calculated the dynamic effect from the lifting procedure and the effect of earthquake too. After the discussion the power plant asked to analyse an accident situation, when the flask fall down form the middle level structure into the steel reactor container. The question was the calculation of displacements and stresses in these structures. For the calculation we used the finite element methods. The steel support structure has shell elements in the mechanical model and the reinforced walls, columns and slabs were modelling by solid elements. First step we calculated the natural circular frequencies of the mechanical model of the reactor structure. From the modal analysis we could decide the necessary numerical integration steps. The steel support structure was in plastic state, but was not broken. The reinforce walls and slabs were staying in elastic state and the stresses were under the limit. (authors)

  15. Optimal Protection of Reactor Hall Under Nuclear Fuel Container Drop Using Simulation Methods

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents of the optimal design of the damping devices cover of reactor hall under impact of nuclear fuel container drop of type TK C30. The finite element idealization of nuclear power plant structure is used in software ANSYS. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall in comparison with the experimental results. The probabilistic and sensitivity analysis of the damping devices was considered on the base of the simulation methods in program AntHill using the Monte Carlo method.

  16. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  17. Chilean fuel elements fabrication progress report

    International Nuclear Information System (INIS)

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  18. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  19. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  20. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  1. Spacer for supporting fuel element boxes

    International Nuclear Information System (INIS)

    Wild, E.

    1979-01-01

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  2. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    1999-01-01

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project

  3. Unification of fuel elements for research reactors

    International Nuclear Information System (INIS)

    Vatulyn, A.V.; Stetskyi, Y.A.; Dobrikova, I.V.

    1997-01-01

    To the purpose of fuel elements unification the possibility of rod fuel assembly (FA) using in the cores of research reactors have been considered in this paper. The calculation results of geometric, hydraulic and thermotechnical parameters of rod assembly are submitted. Several designs of finned square fuel element and fuel assembly are proposed on base of analysis of rod FA characteristics in compare of tube ones. The fuel elements specimens and the model assembly are manufactured. The developed designs are the basis for further optimization after neutron-physical calculations of cores. (author)

  4. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  5. Gamma irradiation plants using reactor fuel elements

    International Nuclear Information System (INIS)

    Suckow, W.

    1976-11-01

    Recent irradiation plants utilizing fuel elements are described. Criteria for optimizing such plants, evaluation of the plants realized so far, and applications for the facilities are discussed. (author)

  6. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    Science.gov (United States)

    1980-12-01

    Variation of the Flame Length of Drop with Time (Pure No. 4 Oil) ...... ..................... .... 154 15. Variation of the Flame Length of Drop with Time...No. 4 Oil-Water Emulsion, W = 0.08) ............. .... 155 16. Variation of the Flame Length of Drop with Time (No. 4 Oil-Water Emulsion, W = 0.15...detailed study of the effects of preheating the fuel, atomizing air-flow rate, and fuel flow 10 rate on flame properties such as flame length , radiation

  7. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  8. Comparison of atomization characteristics of drop-in and conventional jet fuels

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  9. Multidimensional simulations of fuel rod appendage effects on pressure drop and heat transfer in an annulus flow

    International Nuclear Information System (INIS)

    Banas, A.O.; Carver, M.B.; Leung, J.C.H.; Bromley, B.P.

    1992-10-01

    The general purpose computational fluid dynamics code, Harwell-FLOW3D, has been used to simulate the effects of fuel rod obstructions on pressure drop and heat transfer in single phase turbulent flows in a concentric annular channel. The results of two and three dimensional simulations are reported for obstructions approximating the geometry of bearing pads used in 37 element CANDU fuel bundles. Pressure drop penalty and augmentation of heat transfer have been quantified and correlated with the obstruction geometrical parameters and the dimensionless numbers representing operating conditions. The predicted effects on pressure drop have been compared with several experimental correlations, yielding good agreement. The methodology presented offers results that can be used directly as input into thermalhydraulic analyses in subchannel and system codes. (Author) (23 figs., 15 refs.)

  10. Loads on pebble bed fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Maly, V.

    1974-03-15

    A comparison is made of key parameters for multi-recycle pebbles and single-pass once-through (OTTO) pebbles. The parameters analyzed include heat transfer characteristics with burn-up, temperature profiles, power per element as a function of axial position in the core, and burn-up. For the OTTO-scheme, the comparisons addressed the use of the conventional fuel element and the advanced "shell ball" designed to reduce the peak fuel temperature in the center of the fuel element. All studies addressed the uranium-thorium fuel cycle.

  11. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  12. Analysis of a hypothetical dropped spent nuclear fuel shipping cask impacting a floor mounted crush pad

    International Nuclear Information System (INIS)

    Hawkes, B.D.; Uldrich, E.D.

    1998-03-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Idaho Chemical Processing Plant. The 110-ton Large Cell Cask was assumed to be accidentally dropped onto the parapet of the unloading pool, causing the cask to tumble through the pool water and impact the floor mounted crush pad with the cask's top corner. The crush pad contains rigid polyurethane foam, which was modeled in a separate computer analysis to simulate the manufacturer's testing of the foam and to determine the foam's stress and strain characteristics. This computer analysis verified that the foam was accurately represented in the analysis to follow. A detailed non-linear, dynamic finite element analysis was then performed on the crush pad and adjacent pool structure to assure that a drop of this massive cask does not result in unacceptable damage to the storage facility. Additionally, verification was made that the crush pad adequately protects the cask from severe impact loading. At impact, the cask has significant vertical, horizontal and rotational velocities. The crush pad absorbs much of the energy of the cask through plastic deformation during primary and secondary impacts. After the primary impact with the crush pad, the cask still has sufficient energy to rebound and rotate until it impacts the pool wall. An assessment is made of the damage to the crush pad and pool wall and of the impact loading on the cask

  13. Fuel elements for LWR power plants

    International Nuclear Information System (INIS)

    Roepenack, H.

    1977-01-01

    About five times more expensive than the fabrication of a fuel element is the enriched uranium contained therein; soon the monthly interest charges for the uranium value of a fuel element reload will account for five percent of the fabrication costs, and much more expensive than all this together can it be if reactor operation has to be interrupted because of damaged elements. Thus, quality assurance comes first. (orig.) [de

  14. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements

    International Nuclear Information System (INIS)

    Ganzmann, I.; Hille, D.; Staude, U.

    2009-01-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  15. Experimental Study of Elements Promoting Mixing in Fuel Elements

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2003-01-01

    In the present work a thermal tracing technique is used to measure the increase of the mixing between subchannels in the presence of different mixing elements.As representative elements a spacer, a spacer with mixing vanes and turbulence promoter buttons were considered.The performance of these elements was evaluated by studying the behavior of a thermal trace in each case.Also the pressure drop for each case is presented.The results present a qualitative and quantitative guide for the application of each one of these appendages in future nuclear elements

  16. Experimental research of fuel element reliability

    International Nuclear Information System (INIS)

    Cech, B.; Novak, J.; Chamrad, B.

    1980-01-01

    The rate and extent of the damage of the can integrity for fission products is the basic criterion of reliability. The extent of damage is measurable by the fission product leakage into the reactor coolant circuit. An analysis is made of the causes of the fuel element can damage and a model is proposed for testing fuel element reliability. Special experiments should be carried out to assess partial processes, such as heat transfer and fuel element surface temperature, fission gas liberation and pressure changes inside the element, corrosion weakening of the can wall, can deformation as a result of mechanical interactions. The irradiation probe for reliability testing of fuel elements is described. (M.S.)

  17. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    A critique is presented of current methods of transporting spent nuclear fuel and the inadequacies of the associated contingency plans, with particular reference to the transportation of irradiated fuel through London. Anti-nuclear and pro-nuclear arguments are presented on a number of factors, including tests on flasks, levels of radiation exposure, routine transport arrangements and contingency arrangements. (U.K.)

  18. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  19. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  20. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  1. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  2. MRT fuel element inspection at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  3. Requirements for materials of dispersion fuel elements

    International Nuclear Information System (INIS)

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  4. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  5. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations

    International Nuclear Information System (INIS)

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 x 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990

  6. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  7. Fundamental aspects of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO 2 , fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO 2 , radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  8. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  9. Fuel elements handling device and method

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    This invention relates to nuclear equipment and more particularly to methods and apparatus for the non-destructive inspection, manipulation, disassembly and assembly of reactor fuel elements and the like. (author)

  10. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.

    1978-01-01

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  11. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  12. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  13. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  14. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  15. HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Strand, J.B.; Cramer, G.T.

    1978-06-01

    Reprocessing of high-temperature gas-cooled reactor fuel requires development of a fuel element size reduction system. This report describes pilot plant testing of crushing equipment designed for this purpose. The test program, the test results, the compatibility of the components, and the requirements for hot reprocessing are discussed

  16. Safety assessment for Dragon fuel element production

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1963-11-01

    This report shall be the Safety Assessment covering the manufacture of the First Charge of Fuel and Fuel Elements for the Dragon Reactor Experiment. It is issued in two parts, of which Part I is descriptive and Part II gives the Hazards Analysis, the Operating Limitations, the Standing Orders and the Emergency Drill. (author)

  17. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Tanihiro, Yasunori; Sumita, Isao.

    1970-01-01

    An improved fuel element of the heat pipe type is disclosed in which the fuel element itself is given a heat pipe structure and filled with a coated particle fuel at the section thereof having a capillary tube construction, whereby the particular advantages of heat pipes and coated fuels are combined and utilized to enhance thermal control and reactor efficiency. In an embodiment, the fuel element of the present invention is filled at its lower capillary tube section with coated fuel and at its upper section with a granurated neutron absorber. Both sections are partitioned from the central shaft by a cylindrically shaped wire mesh defining a channel through which the working liquid is vaporized from below and condensed by the coolant external to the fuel element. If the wire mesh is chosen to have a melting point lower than that of the fuel but higher than that of the operating temperature of the heat pipe, the mesh will melt and release the neutron absorbing particles should hot spots develop, thus terminating fission. (Owens, K. J.)

  18. Analytical Evaluation of Preliminary Drop Tests Performed to Develop a Robust Design for the Standardized DOE Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Smith, N.L.; Snow, S.D.; Rahl, T.E.

    1999-01-01

    The Department of Energy (DOE) has developed a design concept for a set of standard canisters for the handling, interim storage, transportation, and disposal in the national repository, of DOE spent nuclear fuel (SNF). The standardized DOE SNF canister has to be capable of handling virtually all of the DOE SNF in a variety of potential storage and transportation systems. It must also be acceptable to the repository, based on current and anticipated future requirements. This expected usage mandates a robust design. The canister design has four unique geometries, with lengths of approximately 10 feet or 15 feet, and an outside nominal diameter of 18 inches or 24 inches. The canister has been developed to withstand a drop from 30 feet onto a rigid (flat) surface, sustaining only minor damage - but no rupture - to the pressure (containment) boundary. The majority of the end drop-induced damage is confined to the skirt and lifting/stiffening ring components, which can be removed if de sired after an accidental drop. A canister, with its skirt and stiffening ring removed after an accidental drop, can continue to be used in service with appropriate operational steps being taken. Features of the design concept have been proven through drop testing and finite element analyses of smaller test specimens. Finite element analyses also validated the canister design for drops onto a rigid (flat) surface for a variety of canister orientations at impact, from vertical to 45 degrees off vertical. Actual 30-foot drop testing has also been performed to verify the final design, though limited to just two full-scale test canister drops. In each case, the analytical models accurately predicted the canister response

  19. Prediction for the flow distribution and the pressure drop of a plate type fuel assembly

    International Nuclear Information System (INIS)

    Park, Jong Hark; Jo, Dea Sung; Chae, Hee Taek; Lee, Byung Chul

    2011-01-01

    A plate type fuel assembly widely used in many research reactors does not allow the coolant to mix with neighboring fuel channels due to the completely separated flow channels. If there is a serious inequality of coolant distribution among channels, it can reduce thermal-hydraulic safety margin, as well as it can cause a deformation of fuel plates by the pressure difference between neighboring channels, thus the flow uniformity in the fuel assembly should be confirmed. When designing a primary cooling system (PCS), the pressure drop through a reactor core is a dominant value to determine the PCS pump size. The major portion of reactor core pressure drop is caused by the fuel assemblies. However it is not easy to get a reasonable estimation of pressure drop due to the geometric complexity of the fuel assembly and the thin gaps between fuel assemblies. The flow rate through the gap is important part to determine the total flow rate of PCS, so it should be estimated as reasonable as possible. It requires complex and difficult jobs to get useful data. In this study CFD analysis to predict the flow distribution and the pressure drop were conducted on the plate type fuel assembly, which results would be used to be preliminary data to determine the PCS flow rate and to improve the design of a fuel assembly

  20. Grids for nuclear fuel elements

    International Nuclear Information System (INIS)

    Nicholson, G.

    1980-01-01

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  1. Drop testing of the Westinghouse fresh nuclear fuel package

    International Nuclear Information System (INIS)

    Shappert, L.B.; Sanders, C.F.

    1992-01-01

    In recent years, the Westinghouse Columbia Fuel Fabrication Facility has been faced with increasing pressure from utilities that wished to take the fuel in their nuclear power plants to higher burnups. To help accommodate this trend, Westinghouse has determined that it needs the ability to increase the enrichment of the fresh fuel it delivers to its customers. One critical step in this process is to certify a new (Type A, fissile) fresh fuel package design that has the capability to transport fuel with a higher enrichment than was previously available. A prototype package was tested in support of the Safety Analysis Report of the Packaging. This paper provides detailed information on those tests and their results

  2. Development and testing of the EDF-2 reactor fuel element

    International Nuclear Information System (INIS)

    Delpeyroux, P.

    1964-01-01

    This technical report reviews the work which has been necessary for defining the EDF-2 fuel element. After giving briefly the EDF-2 reactor characteristics and the preliminary choice of parameters which made it possible to draw up a draft plan for the fuel element, the authors consider the research proper: - Uranium studies: tests on the passage into the β phase of an internal crown of a tube, bending of the tube under the effect of a localized force, welding of the end-pellets and testing for leaks. The resistance of the tube to crushing and of the pellets to yielding under the external pressure have been studied in detail in another CEA report. - Can studies: conditions of production and leak proof testing of the can, resistance of the fins to creep due to the effect of the gas flow. - Studies of the extremities of the element: creep under compression and welding of the plugs to the can. - Cartridge studies: determination of the characteristics of the can fuel fixing grooves and of the canning conditions, verification of the resistance of the fuel element to thermal cycling, determination of the temperature drop at the can-fuel interface dealt with in more detail in another CEA report. - Studies of the whole assembly: this work which concerns the graphite jacket, the support and the cartridge vibrations has been carried out by the Mechanical and Thermal Study Service (Mechanics Section). In this field the Fuel Element Study Section has investigated the behaviour of the centering devices in a gas current. The outcome of this research is the defining of the plan of the element the production process and the production specifications. The validity of ail these out-of-pile tests will be confirmed by the in-pile tests already under way and by irradiation of the elements in the EDF-2 reactor itself. In conclusion the programme is given for improving the fuel element and for defining the fuel element for the second charge. (authors) [fr

  3. Computer simulation of fuel element performance

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, G I

    1979-01-01

    The review presents reports made at the Conference on the Bahaviour and Production of Fuel for Water Reactors on March 13-17, 1979. Discussed at the Conference are the most developed and tested calculation models specially evolved to predict the behaviour of fuel elements of water reactors. The following five main aspects of the problem are discussed: general conceptions and programs; mechanical mock-ups and their applications; gas release, gap conductivity and fuel thermal conductivity; analysis of nonstationary processes; models of specific phenomena. The review briefly describes the physical principles of the following models and programs: the RESTR, providing calculation of the radii of zones of columnar and equiaxial grains as well as the radius of the internal cavity of the fuel core; programs for calculation of fuel-can interaction, based on the finite elements method; a model predicting the behaviour of the CANDU-PHW fuel elements in transient conditions. General results are presented of investigations of heat transfer through a can-fuel gap and thermal conductivity of UO/sub 2/ with regard for cracking and gas release of the fuel. Many programs already suit the accepted standards and are intensively tested at present.

  4. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1981-01-01

    Fuel elements which consist of parallel longitudinal fuel rods of circular crossection, can be provided with spiral distance pieces, by which the fuel rods support one another, if they are collected together by an outer enclosure. According to the invention, the enclosure includes several strips extending over a small fraction of the rod length, which are connected together by a skeleton rod instead of a fuel rod. The strips can be composed of flat parts which are connected together by the skeleton rod acting as a hinge. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  5. Technique for mass-spectrometric determination of moisture content in fuel elements and fuel element claddings

    International Nuclear Information System (INIS)

    Kurillovich, A.N.; Pimonov, Yu.I.; Biryukov, A.S.

    1988-01-01

    A technique for mass-spectroimetric determination of moisture content in fuel elements and fuek claddings in the 2x10 -4 -1.5x10 -2 g range is developed. The relative standard deviation is 0.13. A character of moisture extraction from oxide uranium fuels in the 20-700 deg C temperature range is studied. Approximately 80% of moisture is extracted from the fuels at 300 deg C. The moisture content in fuel elements with granular uranium oxide fuels is measured. Dependence of fuel element moisture content on conditions of hot vacuum drying is shown. The technique permits to optimize the fuel element fabrication process to decrease the moisture content in them. 4 refs.; 3 figs.; 2 tabs

  6. Drop testing of the Westinghouse fresh nuclear fuel package

    International Nuclear Information System (INIS)

    Shappert, L.B.; Sanders, C.F.

    1993-01-01

    The Westinghouse Columbia Fuel Fabrication Facility has decided to develop and certify a new fresh fuel package design (type A, fissile) that has the capability to transport more highly enriched fuel than was previously possible. A prototype package was tested in support of the Safety Analysis Report of the Packaging (SARP). This paper provides detailed information on the tests and test results. A first prototype test was carried out at the STF, and the design did not give the safety margin that Westinghouse wanted for their containers. The data from the test were used to redesign the connection between the clamping frame and the pressure pad, and the tests were reinitiated. Three packages were then tested at the STF. All packages met the acceptance criteria and acceleration information was obtained that provided an indication of the behavior of the cradle and strongback which holds the fuel assemblies and nuclear poison in place. (J.P.N.)

  7. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1980-01-01

    An invention is described whereby end fittings are formed from lattices of mutually perpendicular plates. At the plate intersections, sockets are secured to the end fittings in a manner that permits the longitudinal axes of each of the sockets to align with the respective lines of intersection of the plates. The sockets all protrude above one of the surfaces of the end fitting. Further, a detent is formed in the proturding sides of each of the sockets. Annular grooves are formed in each of the ends of the fuel rods that are to be mounted between the end fittings. The socket detents protrude into the respective annular grooves, thus engaging the grooves and retaining the fuel rods and end fittings in one integral structure. (auth)

  8. Fuel element performance computer modelling

    International Nuclear Information System (INIS)

    Locke, D.H.

    1978-01-01

    The meeting was attended by 88 participants from 17 countries. Altogether 47 papers were presented. The majority of the presentations contained a description of the equations and solutions used to describe and evaluate some of the physical processes taking place in water reactor fuel pins under irradiation. At the same time, particular attention was paid to the ''bench marking'' of the codes wherein solutions arrived at for particular experiments are compared with the results at the experiments

  9. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  10. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  11. Drop Test Using Finite Element Method for Transport Package of Radioactive Material

    International Nuclear Information System (INIS)

    Xu Xiaoxiao; Zhao Bing; Zhang Jiangang; Li Gouqiang; Wang Xuexin; Tang Rongyao

    2010-01-01

    Mechanical test for transport package of radioactive material is one of the important tests for demonstrating package structure design. Drop test of package is a kind of destructive test. It is a common method of adopting the pre-analysis to determine drop orientation.Mechanical test of a sealed source package was calculated with finite element method (FEM) software. Based on the analysis of the calculation results, some values were obtained such as the stress, strain, acceleration and the drop orientation which causes the most severe damage, and the calculation results were compared with the results of test. (authors)

  12. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  13. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  14. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  15. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  16. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  17. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  18. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  19. Drop analysis for structural integrity evaluation of KJRR fuel transport container

    International Nuclear Information System (INIS)

    Yang, Yun Young; Lim, Jong Min; Choi, Woo Seok; Lee, Ju Chan

    2016-01-01

    A fuel transport container for KiJang Research Reactor(KJRR) has been developed to transport fresh fuel assemblies and fission molly targets which are used for a research reactor built in Kijang. The KJRR fuel transport container is a type-A(F) container, which is defined in domestic and foreign regulations of a radioactive substance container. According to Nuclear Safety and Security Commission's notification, the container should meet the accident conditions defined in IAEA safety Standard Series, US NRC and etc. In this study, a structural integrity of the KJRR fuel transport container is evaluated by conducting computational analyses of 9-meter free drop and 1 meter puncture. It is confirmed that structural integrity of the KJRR fuel transport container can be maintained in the transportation accident condition. Hereafter, when the test model is produced, a safety test will be conducted and its result will be compared with the result of drop and puncture analyses.

  20. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  1. Safety assessment of a dry storage container drop into irradiated fuel bays

    International Nuclear Information System (INIS)

    Parlatan, Y.; Oh, D.; Arguner, D.; Lei, Q.M.; Kulpa, T.; Bayoumi, M.H.

    2004-01-01

    In Pickering nuclear stations, Dry Storage Containers (DSCs) are employed to transfer used (irradiated) fuel from an irradiated fuel bay to a dry storage facility for interim storage. Each DSC is wet-loaded in the bay water with 4 fuel modules containing up to a total of 384 used fuel bundles that have been out of the reactor core for at least 10 years. Once the DSC is fully loaded, the crane in the bay raises the DSC for spray-wash such that the bottom of the DSC is never more than 2 m above the bay water surface. This paper presents a safety assessment of consequences of an unlikely event that a fully loaded DSC is accidentally dropped into an irradiated fuel bay from the highest possible elevation. Experiments and analyses performed elsewhere show that the DSC drop-generated shock waves will not threaten the structural integrity of an irradiated fuel bay. Therefore, this assessment only assesses the potential damage to the spent fuel bundles in the bay due to pressure transients generated by an accidental DSC drop. A bounding estimate approach has been used to calculate the upper limit of the pressure pulse and the resulting static and dynamic stresses on the fuel sheath. The bounding calculations and relevant experimental results demonstrate that an accidental drop of a fully loaded DSC into an irradiated fuel bay will not cause additional failures of the main fuel inventories stored in modules in the bay water, thus no consequential release of fission products into the bay water. (author)

  2. Storage container for radioactive fuel elements

    International Nuclear Information System (INIS)

    1984-01-01

    The interim storage cask for spent fuel elements or the glass moulds for high-level radioactive waste are made up of heat-resistant, reinforced concrete with chambers and highgrade steel lining. Cooling systems with natural air circulation are connected with the chambers. (HP) [de

  3. Prevention of criticality accidents. Fuel elements storage

    International Nuclear Information System (INIS)

    Canavese, S.I.; Capadona, N.M.

    1990-01-01

    Before the need to store fuel elements of the plate type MTR (Materials Testing Reactors), produced with enriched uranium at 20% in U235 for research reactors, it requires the design of a deposit for this purpose, which will give intrinsic security at a great extent and no complaints regarding its construction, is required. (Author) [es

  4. Nondestructive examination techniques on Candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  5. Positioning device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    1987-01-01

    The positioning device consists of individual containers, similar to cases, for the fuel elements. These cases are arranged vertically next to one another and are held by means of vertical support posts and horizontal arms. The openings of the cases can be individually approached by the trolleys. (DG) [de

  6. CONSTOR registered V/TC drop tests. Pre-test analysis by finite element method

    International Nuclear Information System (INIS)

    Voelzer, W.; Koenig, S.; Klein, K.; Tso, C.F.; Owen, S.; Monk, C.

    2004-01-01

    The CONSTOR registered family of steel-concrete-steel sandwich cask designs have been developed to fulfil both the internationally valid IAEA criteria for transportation and the requirements for long-term intermediate storage in the US and various European countries. A comprehensive drop testing programme using a full-scale prototype test cask (CONSTOR registered V/TC) has been developed as part of the application for a transport license in both Germany and the US. The drop tests using the full-scale cask will be performed by BAM at test facilities in Horstwalde. The tests will include five different 9m drops onto flat unyielding targets and seven different 1m drops onto a punch. The first drop test, a 9m side drop, will be performed during PATRAM 2004. The other drop tests will take place during the following year. The development of the cask design and the formulation of the drop test programme has been supported by an extensive series of finite element analyses. The objectives of the finite element analyses were; to provide an intermediate step in demonstrating the performance of the CONSTOR registered in fulfilling the requirements of 10 CFR 71 and the IAEA transport regulations. To justify the selection of drop tests. To predict the performance of V/TC during the drop tests. To estimate the strain and acceleration time histories at measuring points on the test cask and to aid in the setting up of the test instrumentation. To develop an analysis model that can be used in future safety analyses for transport and storage license applications and which can confidently be used to demonstrate the performance of the package. This paper presents an overview of the analyses performed, including a summary of all the different drop orientations that were considered. The major assumptions employed during the analyses are also discussed, as are the specifics of the modelling techniques that were employed. At the end of the paper, the key results obtained from the analyses

  7. Research and Test Reactor Fuel Elements (RTRFE)

    International Nuclear Information System (INIS)

    Pace, Brett W.; Marinak, Edward A.

    1999-01-01

    BWX Technologies Inc. (BWXT) has experienced several production improvements over the past year. The homogeneity yields in 4.8 gU/cc U 3 Si 2 plates have increased over last year's already high yields. Through teamwork and innovative manufacturing techniques, maintaining high quality surface finishes on plates and elements is becoming easier and less expensive. Currently, BWXT is designing a fabrication development plan to reach a fuel loading of 9 gU/cc within 2 - 4 years. This development will involve a step approach requested by ANL to produce plates using U-8Mo at a loading of 6 gU/cc first and qualify the fuel at those levels. In achieving the goal of a very high-density fuel loading of 9 gU/cc, BWXT is considering employing several new, state of the art, ultrasonic testing techniques for fuel core evaluation. (author)

  8. Catalogue of fuel elements - 1. addendum October 1958

    International Nuclear Information System (INIS)

    Even, A.

    1957-01-01

    This document contains sheets presenting various characteristics of nuclear fuel elements which are distinguished with respect to their shape: cylinder bar, plate, tube. Each sheet comprises an indication of the atomic pile in which the fuel element is used, dimensions, cartridge data, data related to cooling, to combustion rate, and to fuel handling. A drawing of the fuel element is also given

  9. Spacer device for nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gaines, A.L.; Krawiec, D.M.

    1974-01-01

    The grid-type spacer device consists of two rows of main spacers arranged parallel to each other with some space in between, the first row extending perpendicular to the second row. Parallel to the respective rows of main spacers there are rows of secondary spacers interlocked with the main spacers. The individual spacers are welded together at their points of intersection. A large number of spring cages are installed within the spacer device to hold in place the main spacers which are oriented at right angles relative to each other. In addition, the spring cages serve for supporting the fuel elements. The spacers are made of zirconium which does not greatly influence the neutron capture cross section of the reactor. The material of the spring cages with the spring elements is a nickel alloy. It has the necessary stress relaxation properties to be able to force the fuel elements against the spacers under the action of the spring. (DG) [de

  10. Nuclear reactor core and fuel element therefor

    International Nuclear Information System (INIS)

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  11. Laser assisted decontamination of nuclear fuel elements

    International Nuclear Information System (INIS)

    Padma Nilaya, J.; Biswas, Dhruba J.; Kumar, Aniruddha

    2010-04-01

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  12. Automatic inspection for remotely manufactured fuel elements

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, J.E.; Gibbs, K.S.; Benedict, R.W.

    1995-01-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results

  13. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  14. Device for manipulating a nuclear reactor fuel element in a fuel element pond containing water

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Using this device a fuel element can be manipulated inside a water filled storage pond for inspection purposes. A transport arrangement which is normally situated above such a pond is modified for this purpose. A crane bridge runs on rails on the upper edge of the pond. A type of trolley runs transversely to the direction of travel of the bridge between 2 wide flange supports forming the crane support. During movement this trolley moves a submerged combination of periscope and TV camera pendant from it at about half the pond height horizontally along the crane support. 2 vehicles move between these on 4 rollers each, on the under flanges of the crane support at spacings of about one fuel element length. A pendant arm of the same length as the periscope dips vertically into the pond from each vehicle. There is a bar of about fuel element length resting on the lower ends of both arms. The surface of a fuel element lying on this bar can be inspected through the periscope on longitudinal travel of the trolley. The bar with the fuel element can be rotated 90 0 downwards into a vertical position after removal of one or more rotating kingpins and release of a rope hanging on the end away from the kingpin. The rope is actuated by a winch on the crane support. The bar has vertical plates at both ends to hold the fuel element in its vertical position. (HP) [de

  15. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  16. Nuclear criticality assessment of LEU and HEU fuel element storage

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1984-01-01

    Criticality aspects of storing LEU (20%) and HEU (93%) fuel elements have been evaluated as a function of 235 U loading, element geometry, and fuel type. Silicide, oxide, and aluminide fuel types have been evaluated ranging in 235 U loading from 180 to 620 g per element and from 16 to 23 plates per element. Storage geometry considerations have been evaluated for fuel element separations ranging from closely packed formations to spacings of several centimeters between elements. Data are presented in a form in which interpolations may be made to estimate the eigenvalue of any fuel element storage configuration that is within the range of the data. (author)

  17. Study of the thermal drop at the uranium-can interface for fuel elements in gas-graphite reactors; Etude de la chute thermique au contact uranium-gaine pour des elements combustibles de reacteur de la filiere graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Faussat, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Levenes, G; Michel, M [Societe Industrielle de Combustible Nucleaire (France)

    1964-07-01

    The report reviews the tests now under way at the CEA, for determining the thermal contact resistance at the uranium-can interface for fuel elements used in gas-graphite type reactors. These are laboratory tests carried out with equipment based on the principle of a heat flow across a stack of test pieces having planar contact surfaces. The following points emerge from this work: - for a metallic uranium element canned in magnesium, of the type G-2 or EDF-2, a value of 0.2 deg C/W/cm{sup 2} seems reasonable for can temperatures of 400 deg C and above. - this value is independent of the micro-geometric state of the uranium surface in a range of roughness which easily includes those observed on tubes and rods produced industrially. - for the internal cans of elements cooled internally and externally, the value of the contact resistance for temperatures of under 400 deg C as a function of the stresses in the can has not yet been measured exactly. (authors) [French] Le rapport fait le point des essais actuellement en cours au CEA pour determiner la resistance thermique de contact uranium-gaine pour des reacteurs de la filiere graphite-gaz. Ces essais sont effectues en laboratoire sur des appareils bases sur le principe d'une circulation de flux de chaleur a travers un empilement d'eprouvettes dont les faces en contact sont planes. De l'etude, il ressort essentiellement que: - pour un element a uranium metallique et gaine de magnesium type G-2 ou EdF-2, on peut admettre la valeur de 0,2 deg C/W/cm{sup 2} pour des temperatures de gaines de 400 deg C et plus. - cette valeur ne depend pas de l'etat de surface microgeometrique de l'uranium pour un domaine de rugosites couvrant largement celles que l'on observe sur des tubes et barreaux fabriques en serie. - pour les gaines internes d'elements a refroidissement interne et externe la valeur de la resistance de contact reste a preciser pour les temperatures inferieures a 400 deg C, en fonction des contraintes existant dans les

  18. Fuel element cluster for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1976-01-01

    The claim refers to the constructional design of a fuel element cluster the elements of which are held by upper and lower end plates connected to each other in upright position, the bearing being formed by a screw connection between at least one guide tube for control rods and the two end plates. The claims are directed, especially, to the connection of the parts as well as to the materials selection which are determined to a high degree by the thermal expansion coefficients. (UA) [de

  19. Method of detecting a fuel element failure

    International Nuclear Information System (INIS)

    Cohen, P.

    1975-01-01

    A method is described for detecting a fuel element failure in a liquid-sodium-cooled fast breeder reactor consisting of equilibrating a sample of the coolant with a molten salt consisting of a mixture of barium iodide and strontium iodide (or other iodides) whereby a large fraction of any radioactive iodine present in the liquid sodium coolant exchanges with the iodine present in the salt; separating the molten salt and sodium; if necessary, equilibrating the molten salt with nonradioactive sodium and separating the molten salt and sodium; and monitoring the molten salt for the presence of iodine, the presence of iodine indicating that the cladding of a fuel element has failed. (U.S.)

  20. Nuclear fuel element nut retainer cup

    International Nuclear Information System (INIS)

    Walton, L.A.

    1977-01-01

    A typical embodiment has an end fitting for a nuclear reactor fuel element that is joined to the control rod guide tubes by means of a nut plate assembly. The nut plate assembly has an array of nuts, each engaging the respective threaded end of the control rod guide tubes. The nuts, moreover, are retained on the plate during handling and before fuel element assembly by means of hollow cylindrical locking cups that are brazed to the plate and loosely circumscribe the individual enclosed nuts. After the nuts are threaded onto the respective guide tube ends, the locking cups are partially deformed to prevent one or more of the nuts from working loose during reactor operation. The locking cups also prevent loose or broken end fitting parts from becoming entrained in the reactor coolant

  1. Tests on CANDU fuel elements sheath samples

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Prisecaru, I.

    2016-01-01

    This work is a study of the behavior of CANDU fuel elements after irradiation. The tests are made on ring samples taken from fuel cladding in INR Pitesti. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory. By metallographic and ceramographic examination we determinate that the hydride precipitates are orientated parallel to the cladding surface. A content of hydrogen of about 120 ppm was estimated. After the preliminary tests, ring samples were cut from the fuel rod, and were subject of tensile test on an INSTRON 5569 model machine in order to evaluate the changes of their mechanical properties as consequence of irradiation. Scanning electron microscopy was performed on a microscope model TESCAN MIRA II LMU CS with Schottky FE emitter and variable pressure. The analysis shows that the central zone has deeper dimples, whereas on the outer zone, the dimples are tilted and smaller. (authors)

  2. Fuel element radiometry system for quality control

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  3. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  4. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Larsson, A.E.

    1967-04-01

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples

  5. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Larsson, A E

    1967-04-15

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples.

  6. Experimental study of pressure drops through LOCA-generated debris deposited on a fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Kwan, E-mail: jksuh@khnp.co.kr [KHNP Central Research Institute, 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Won; Kwon, Sun Guk; Lee, Jae Yong [KHNP Central Research Institute, 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Cho, Hyoung Kyu; Park, Goon Cherl [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-08-15

    Highlights: • In-vessel downstream effect tests were performed in the presence of LOCA-generated debris. • Available driving heads under each LOCA scenario were verified using experimental data. • Fibrous debris was prepared to satisfy the length distribution obtained from the bypass test. • Limiting test conditions were identified through sensitivity studies. - Abstract: Under post loss-of-coolant accident (LOCA) conditions, it is postulated that debris can be generated and transported to the containment sump strainer. Some of the debris may pass through the strainer and could challenge the long-term core cooling capability of the plant. To address this safety issue, in-vessel downstream effect tests for the advanced power reactor (APR) 1400 were performed. Fibrous debris is the most crucial material in terms of causing pressure drops, and was prepared in this study to satisfy the fiber length distribution obtained through a strainer bypass test. Sensitivity studies on pressure drops through LOCA-generated debris deposited on a fuel assembly were performed to evaluate the effects of water chemistry and fiber length distribution. The pressure drops with debris laden pure water were substantially less than those with debris laden ordinary tap water. The experiment with fiber length distribution suggested by WCAP-16793 showed lower pressure drops than those with the APR1400 specific fiber length distribution. All the experimental results showed that the pressure drops in the mock-up fuel assembly were less than the available driving head at each LOCA scenario.

  7. Development of the Fuel Element Database of PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Naim Syauqi Hamzah; Nurfazila Husain; Yahya Ismail; Mat Zin Mat Husin; Mohd Fairus Abd Farid

    2015-01-01

    Since June 28th, 1982, the PUSPATI TRIGA Reactor (RTP) operates safely with an accumulated energy release of about 17,200 MWhr, which corresponds to about 882 g of uranium burn-up. The reactor core has been reconfigured 15th times. Presently, there are 111 TRIGA fuel elements in the core, which 66 of the fuel elements are from the initial criticality while the rest of the fuel elements have been added to compensate the uranium consumption. As 59 % of the fuel elements are older than 30 years old, it is necessary to put the history of every fuel element in a database for easy access of the fuel element movement, inspection results history and integrity status. This paper intends to describe how the fuel element database is developed and related formulae used in determining the RTP fuel element elongation. (author)

  8. Measurement and analysis of vibrational behaviour of an SNR-fuel element in sodium flow

    International Nuclear Information System (INIS)

    Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.

    1975-01-01

    Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 0 C system temperature in the AKB sodium loop at Interatom, Bensberg. Investigations of the hydraulic characteristics by measurements of specific pressure losses, flow velocities, leakage flow through the piston rings and investigations of its vibrational behaviour were part of this endurance test at elevated temperatures. The pressure drop versus flow and the leakage measurement are mentioned briefly to confirm the correctness of the test hydraulics. The vibrational behaviour of the element and the approach to analysis is the main object of this report. (Auth.)

  9. Design of fuel element for RA10

    International Nuclear Information System (INIS)

    Estevez, Esteban A.; Markiewicz, Mario; Gerding, Roberto

    2012-01-01

    The RA-10 reactor is an open pool multipurpose reactor. It is intended for radioisotopes production, fuel irradiation and use of neutron beam experiments. The nominal configuration core consists of 19 fuel elements (FE) and 6 in-core irradiation positions. With regard to the FE, although both conceptual design and manufacturing technology are similar to the already developed and qualified by CNEA (MTR fuel flat plate), the conditions imposed by the new reactor on FE's are more demanding that previous supplies. Here it should be mentioned the magnitude of the hydrodynamic forces acting on the FE caused by coolant flow through the core (upward) and mainly by the high coolant velocity between fuel plates (greater than 5 times than those currently in operation). Moreover, the high power density results in higher heat flux in fuel plates and greater temperature gradient. As a result of these increased demands present during irradiation, and in order to maintain a high level of reliability, it is necessary carry out some modifications in the mechanical design of the FE (with respect to the so-called ECBE design or s tandard ) . Design verification is performed through analytical and code calculations, and hydrodynamic tests on a full-scale prototype. This article describes the design of the FE for RA 10 reactor, with special emphasis on those aspects that represent innovations in the traditional design (ECBE). It also presents the functional requirements, design criteria and design limits established according to the reactor operational states (author)

  10. An improved assembly for the transport of fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1979-01-01

    An improved assembly for the transport and storage of radioactive nuclear fuel elements is described. The fuel element transport canister is of the type in which the fuel elements are submerged in liquid with a self regulating ullage system, so that the fuel elements are always submerged in the liquid even when the assembly is used in one orientation during loading and another orientation during transportation. (UK)

  11. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  12. Automatic welding of fuel elements; Soudure automatique des elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Briola, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [French] Suivant le type d'element combustible, le materiau de gaine et l'importance de la serie a fabriquer, le soudeur dispose des differents procedes examines dans cette communication: - soudure classique a l'arc sous gaz inerte (utilisee pour G2 et le premier jeu EL3), - soudure en atmosphere complete d'argon (utilisee pour la soudure d'uranium et de zirconium), - soudure electronique (utilisee pourdeuxieme jeu EL3 et la cuve de Proserpine). (auteur)

  13. Nuclear reactor fuel element sub-assemblies

    International Nuclear Information System (INIS)

    Hill, G.D.; Trevalion, P.A.

    1977-01-01

    A fuel element sub-assembly for a liquid metal cooled fast reactor is described. It comprises a bundle of fuel pins enclosed by a tubular wrapper having a lower end journal for plugging into an upper aperture in a core supporting structure and a spike bar with an articulated bush for engaging a lower aperture in the core supporting structure. The articulated bush is retained on a spherical end portion of the spike bar by a pair of parallel retaining pins arranged transversely and disposed one each side of the spike bar. The pins are tubular and collapsible at a predetermined loading to enable the spherical end portion to pass between them. The articulated bush has an internal groove for engagement by a lifting grab, this groove being formed in a bore for receiving the spherical end portion of the spike bar. The construction lessens liability to rattling of the fuel element sub-assemblies and aids removal for replacement. (U.K.)

  14. Searching for a possible fuel element leak

    International Nuclear Information System (INIS)

    Dodd, B.; Johnson, A.G.

    1986-01-01

    A gamma spectrum analysis of a filter paper from an Oregon State University TRIGA Reactor (OSTR) continuous air monitor (CAM) which routinely monitors the air directly over the reactor tank revealed just-detectable levels of several short-lived particulate fission products typically associated with a fuel cladding failure. This prompted an intensive.search to determine the origin of these radionuclides. A number of methods were used, including a fuel element rotation program designed to ultimately remove all of the fuel elements from the core in groups of three, and a scheme to selectively sample bubbles from different parts of the core during operation. Determination of the source was made very difficult by the fact that its presence was erratic in nature and because radioactivity levels found on filter papers were on the border of detectability even when the reactor was operated at the maximum allowable power level of 1MW. The origin and source of the fission product activity was not found, no other abnormality was identified and the reactor was therefore returned to normal operation. In addition to continuing the routine operation of the reactor-top CAM, further surveillance designed to detect a positive reappearance of the source was also implemented and currently involves a complete gamma spectrum analysis of a CAM filter paper each week after a standard (controlled) 3 hour reactor run at 1 MW. (author)

  15. Modeling of PHWR fuel elements using FUDA code

    International Nuclear Information System (INIS)

    Tripathi, Rahul Mani; Soni, Rakesh; Prasad, P.N.; Pandarinathan, P.R.

    2008-01-01

    The computer code FUDA (Fuel Design Analysis) is used for modeling PHWR fuel bundle operation history and carry out fuel element thermo-mechanical analysis. The radial temperature profile across fuel and sheath, fission gas release, internal gas pressure, sheath stress and strains during the life of fuel bundle are estimated

  16. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    Kjellbert, N.

    1978-03-01

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  17. Test of high temperature fuel element, (1)

    International Nuclear Information System (INIS)

    Akino, Norio; Shiina, Yasuaki; Nekoya, Shin-ichi; Takizuka, Takakazu; Emori, Koichi

    1980-11-01

    Heat transfer experiment to measure the characteristics of a VHTR fuel in the same condition of the reactor core was carried out using HTGL (High Temperature Helium Gas Loop) and its test section. In this report, the details of the test section, related problems of construction and some typical results are described. The newly developed heater with graphite heat transfer surface was used as a simulated fuel element to determine the heat transfer characteristics. Following conclusions were obtained; (1) Reynolds number between turbulent and transitional region is about 2600. (2) Reynolds number between transitional and laminar region is about 4800. (3) The laminarization phenomena have not been observed and are hardly occurred in annular tubes comparing with round tube. (4) Measured Nusselt numbers agree to the established correlations in turbulent and laminar regions. (author)

  18. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu K; Nekrasova, G A; Sukhanov, G I

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified.

  19. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Nekrasova, G.A.; Sukhanov, G.I.

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified

  20. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  1. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  2. Hydraulic and hydrodynamic tests for design evaluation of research reactors fuel elements

    International Nuclear Information System (INIS)

    Kulichevsky, R.; Martin Ghiselli, A.; Fiori, J.; Yedros, P.

    2002-01-01

    During the design steps of research reactors fuel elements some tests are usually necessary to verify its design, i.e.: its hydraulic characteristics, dynamical response and structural integrity. The hydraulic tests are developed in order to know the pressure drops characteristics of different parts or elements of the prototype and of the whole fuel element. Also, some tests are carried out to obtain the velocity distribution of the coolant water across different prototype's sections. The hydrodynamic tests scopes are the assessment of the dynamical characteristics of the fuel elements and their components and its dynamical response considering the forces generated by the coolant flowing water at different flow rate conditions. Endurance tests are also necessary to qualify the structural design of the FE prototypes and their corresponding clamp tools, verifying the whole system structural integrity and wear processes influences. To carry out these tests a special test facility is needed to obtain a proper representation of the hydraulic and geometric boundary conditions of the fuel element. In some cases changes on the fuel element prototype or dummy are necessary to assure that the data results are representative of the case under study. Different kind of sensors are mounted on the test section and also on the fuel element itself when necessary. Some examples of the instrumentation used are strain gauges, displacement transducers, absolute and differential pressure transducers, pitot tubes, etc. The obtained data are, for example, plates' vibration amplitudes and frequencies, whole bundle displacement characterization, pressure drops and flow velocity measurements. The Experimental Low Pressure Loop is a hydraulic loop located at CNEA's Constituyentes Atomic Center and is the test facility where different kind of tests are performed in order to support and evaluate the design of research reactor fuel elements. A brief description of the facility, and examples of

  3. Method of manufacturing nuclear fuel elements

    International Nuclear Information System (INIS)

    Ishida, Masao; Oguma, Masaomi.

    1980-01-01

    Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)

  4. Finite Element Simulations of Two Vertical Drop Tests of F-28 Fuselage Sections

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Annett, Martin S.; Haskin, Ian M.

    2018-01-01

    In March 2017, a vertical drop test of a forward fuselage section of a Fokker F-28 MK4000 aircraft was conducted as part of a joint NASA/FAA project to investigate the performance of transport aircraft under realistic crash conditions. In June 2017, a vertical drop test was conducted of a wing-box fuselage section of the same aircraft. Both sections were configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in seats using standard lap belt restraints. The forward fuselage section was also configured with luggage in the cargo hold. Both sections were outfitted with two hat racks, each with added ballast mass. The drop tests were performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The measured impact velocity for the forward fuselage section was 346.8-in/s onto soil. The wing-box section was dropped with a downward facing pitch angle onto a sloping soil surface in order to create an induced forward acceleration in the airframe. The vertical impact velocity of the wing-box section was 349.2-in/s. A second objective of this project was to assess the capabilities of finite element simulations to predict the test responses. Finite element models of both fuselage sections were developed for execution in LS-DYNA(Registered Trademark), a commercial explicit nonlinear transient dynamic code. The models contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, the luggage in the cargo hold for the forward section, and the detailed under-floor structure in the wing-box section. Initially, concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. However, later simulations were performed that included finite element representations of the seats, restraints, and ATD occupants. These models were developed to more

  5. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  6. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  7. Pre-irradiation testing of experimental fuel elements

    International Nuclear Information System (INIS)

    Basova, B.G.; Davydov, E.F.; Dvoretskij, V.G.; Ivanov, V.B.; Syuzev, V.N.; Timofeev, G.A.; Tsykanov, V.A.

    1979-01-01

    The problems of testing of experimental fuel elements of nuclear reactors on the basis of complex accountancy of the factors defining operating capacity of the fuel elements are considered. The classification of the parameters under control and the methods of initial technological testing, including testing of the fuel product, cladding and fished fuel element, is given. The requirements to the apparatus used for complex testing are formulated. One of the possible variants of representation of the information obtained in the form of the input certificate of a single fuel element under study is proposed. The processing flowsheet of the gathered information using the computer is given. The approach under consideration is a methodological basis of investigation of fuel element operating life at the testing stage of the experimental fuel elements

  8. A CFD numerical model for the flow distribution in a MTR fuel element

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho; Angelo, Gabriel

    2015-01-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  9. A CFD numerical model for the flow distribution in a MTR fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho, E-mail: acprado@ipen.br, E-mail: delvonei@ipen.br, E-mail: dpedro_digiovanni_s@hotmail.com, E-mail: fabio@ipen.br, E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br, E-mail: jasouza@ipen.br, E-mail: abelchior@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Edvaldo, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Angelo, Gabriel, E-mail: gangelo@fei.edu.br [Fundacao Educacional Inaciana (FEI), Sao Bernardo do Campo, SP (Brazil)

    2015-07-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  10. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  11. Diethyl Ether as an Ignition Enhancer for Naphtha Creating a Drop in Fuel for Diesel

    KAUST Repository

    Vallinayagam, R.

    2016-12-01

    Direct use of naphtha in compression ignition (CI) engines is not advisable because its lower cetane number negatively impacts the auto ignition process. However, engine or fuel modifications can be made to operate naphtha in CI engines. Enhancing a fuel’s auto ignition characteristics presents an opportunity to use low cetane fuel, naphtha, in CI engines. In this research, Di-ethyl ether (DEE) derived from ethanol is used as an ignition enhancer for light naphtha. With this fuel modification, a “drop-in” fuel that is interchangeable with existing diesel fuel has been created. The ignition characteristics of DEE blended naphtha were studied in an ignition quality tester (IQT); the measured ignition delay time (IDT) for pure naphtha was 6.9 ms. When DEE was added to naphtha, IDT decreased and D30 (30% DEE + 70% naphtha) showed comparable IDT with US NO.2 diesel. The derived cetane number (DCN) of naphtha, D10 (10% DEE + 90% naphtha), D20% DEE + 80% naphtha) and D30 were measured to be 31, 37, 40 and 49, respectively. The addition of 30% DEE in naphtha achieved a DCN equivalent to US NO.2 diesel. Subsequent experiments in a CI engine exhibited longer ignition delay for naphtha compared to diesel. The peak in-cylinder pressure is higher for naphtha than diesel and other tested fuels. When DEE was added to naphtha, the ignition delay shortened and peak in-cylinder pressure is reduced. A 3.7% increase in peak in-cylinder pressure was observed for naphtha compared to US NO.2 diesel, while D30 showed comparable results with diesel. The pressure rise rate dropped with the addition of DEE to naphtha, thereby reducing the ringing intensity. Naphtha exhibited a peak heat release rate of 280 kJ/m3deg, while D30 showed a comparable peak heat release rate to US NO.2 diesel. The amount of energy released during the premixed combustion phase decreased with the increase of DEE in naphtha. Thus, this study demonstrates the suitability of DEE blended naphtha mixtures as a “drop

  12. Diethyl Ether as an Ignition Enhancer for Naphtha Creating a Drop in Fuel for Diesel

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Sarathy, Mani; Dibble, Robert W.

    2016-01-01

    Direct use of naphtha in compression ignition (CI) engines is not advisable because its lower cetane number negatively impacts the auto ignition process. However, engine or fuel modifications can be made to operate naphtha in CI engines. Enhancing a fuel’s auto ignition characteristics presents an opportunity to use low cetane fuel, naphtha, in CI engines. In this research, Di-ethyl ether (DEE) derived from ethanol is used as an ignition enhancer for light naphtha. With this fuel modification, a “drop-in” fuel that is interchangeable with existing diesel fuel has been created. The ignition characteristics of DEE blended naphtha were studied in an ignition quality tester (IQT); the measured ignition delay time (IDT) for pure naphtha was 6.9 ms. When DEE was added to naphtha, IDT decreased and D30 (30% DEE + 70% naphtha) showed comparable IDT with US NO.2 diesel. The derived cetane number (DCN) of naphtha, D10 (10% DEE + 90% naphtha), D20% DEE + 80% naphtha) and D30 were measured to be 31, 37, 40 and 49, respectively. The addition of 30% DEE in naphtha achieved a DCN equivalent to US NO.2 diesel. Subsequent experiments in a CI engine exhibited longer ignition delay for naphtha compared to diesel. The peak in-cylinder pressure is higher for naphtha than diesel and other tested fuels. When DEE was added to naphtha, the ignition delay shortened and peak in-cylinder pressure is reduced. A 3.7% increase in peak in-cylinder pressure was observed for naphtha compared to US NO.2 diesel, while D30 showed comparable results with diesel. The pressure rise rate dropped with the addition of DEE to naphtha, thereby reducing the ringing intensity. Naphtha exhibited a peak heat release rate of 280 kJ/m3deg, while D30 showed a comparable peak heat release rate to US NO.2 diesel. The amount of energy released during the premixed combustion phase decreased with the increase of DEE in naphtha. Thus, this study demonstrates the suitability of DEE blended naphtha mixtures as a “drop

  13. Fabrication of the Spent Fuel Elements Rack on the ISFSF

    International Nuclear Information System (INIS)

    Slamet Wiranto; Sigit Purwanto; Safrul, H.

    2004-01-01

    The Interim Storage For Spent Fuel elements (ISFSF) was designed to be able to store the 33 spent fuel element racks with capacity of 1386 of normal spent fuel elements and 2 racks for 36 of defected ones. Until now, only 9 out of 33 racks of normal spent fuel elements and lout of 2 racks of defected fuel elements are available. Five of them have suffered from corrosion so that they are not fulfilled the requirements of the spent fuel elements storage anymore. Meanwhile, the spent fuel storage racks in the reactor are almost full. It means, the transfer of the spent fuel from reactor spent fuel storage to the ISFSF pool are compulsory needed. Therefore, it is necessary to provide the new ISFSF spent fuel storage rack with better material and fabrication method than the old one. In this design all materials consist of SS 316 L that are welded with the Argon TIG-welding. Right now there has been one new spent fuel storage rack fabricated with capacity of 42 normal spent fuel elements. (author)

  14. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  15. Device for taking gaseous samples from irradiated fuel elements

    International Nuclear Information System (INIS)

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  16. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  17. Thermal-hydraulic investigations of fuel elements

    International Nuclear Information System (INIS)

    Rehme, K.; Weinberg, D.

    1983-01-01

    Extensive fluid-dynamic examining of flow distribution and turbulent flow distribution was done to control and safeguard calculation methods allowing the determination of three-dimensional flow distribution in fuel elements. Results show that the flow distribution greatly depends on the frequency of pulse exchange between subchannels in narrow rod grids. The comparison of these measured values to VELASCO's results shows that the calculation methods need to be considerably improved. The subchannel analysis proved to be very suitable to calculate mean flow temperatures conforming with the subchannel analysis principle. However, this does not include statements on wall temperatures occurring in the structures. Mean wall temperatures can be determined by empirical interrelationships for Nusseltnumbers. On the other hand, the calculation of detailed wall temperature distributions is not possible with the subchannel analysis unless it can be further improved due to more detailed measurement results. (orig.) [de

  18. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  19. Study of fuel element characteristic of SM and SMP (SM-PRIMA) fuel assemblies

    International Nuclear Information System (INIS)

    Klinov, A.V.; Kuprienko, V.A.; Lebedev, V.A.; Makhin, V.M.; Tuchnin, L.M.; Tsykanov, V.A.

    1999-01-01

    The paper discusses the techniques and results of reactor tests and post-reactor investigations of the SM reactor fuel elements and fuel elements developed in the process of designing the specialized PRIMA test reactor with the SM reactor fuel elements used as a prototype and which are referred to as the SMP fuel elements. The behavior of fuel elements under normal operating conditions and under deviation from normal operating conditions was studied to verify the calculation techniques, to check the calculation results during preparation of the SM reactor safety substantiation report and to estimate the possibility of using such fuel elements in other projects. During tests of fuel rods under deviation from normal operating conditions their advantages were shown over fuel elements, the components of which were produced using the Al-based alloys. (author)

  20. Trunnions for spent fuel element shipping casks

    International Nuclear Information System (INIS)

    Cooke, B.

    1989-01-01

    Trunnions are used on spent fuel element shipping casks for one or more of a combination of lifting, tilting or securing to a transport vehicle. Within the nuclear transportation industry there are many different philosophies on trunnions, concerning the shape, manufacture, attachment, inspection, maintenance and repair. With the volume of international transport of spent fuel now taking place, it is recognized that problems are occurring with casks in international traffic due to the variance of the philosophies, national standards, and the lack of an international standard. It was agreed through the ISO that an international standard was required to harmonize. It was not possible to evolve an international standard. It was only possible to evolve an international guide. To evolve a standard would mean superseding any existing national standards which already cover particular aspects of trunnions i.e. deceleration forces imposed on trunnions used as tie down features. Therefore the document is a guide only and allows existing national standards to take precedence where they exist. The guide covers design, manufacture, maintenance, repair and quality assurance. The guide covers trunnions used on spent fuel casks transported by road, rail and sea. The guide details the considerations which should be taken account of by cask designers, i.e. stress intensity, design features, inspection and test methods etc. Manufacture, attachment and pre-service testing is also covered. The guide details user requirements which should also be taken account of, i.e. servicing frequency, content, maintenance and repair. The application of quality assurance is described separately although the principles are used throughout the guide

  1. Some properties for modeling of fuel elements

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1979-01-01

    Two areas key to the materials modeling of fuel element behavior are discussed. The relative importance of atomic diffusion vs. bubble migration is first surveyed and the interplay of bubble mobility and re-solution parameter is highlighted. It is concluded that biased bubble migration at higher temperatures is required to explain available gas-release data, especially during transients. At intermediate temperatures, random bubble migration is required to explain both gas-release rates and the observation of large (approx. 700A) intragranular bubbles following in-pile and post-irradiation transients. Different fuel models employ different values of re-solution parameter, both below and above an experimentally determined value. Bubble mobilities are deduced to approach theoretical, surface diffusion-controlled values during transients, but they may be somewhat less mobile during steady-state operation. Next, the present understanding of radiation-induced hardening and creep is discussed, highlighting the interplay of these two phenomena. An overall constitutive scheme is presented and predictions of failure limits are deduced therefrom employing instability analysis

  2. PWR simplified fuel element simulation using calculation trailer ANSYS CFX and PARCS including pressure drop and turbulence in the spacer; Simulacion de un elemento combustible PWR simplicificado mediante el calculo acoplado ANSYS CFX y PARCS incluyendo caida de presion y turbulencia en el espaciador

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Monferrer, C.; Chiva, S.; Miro, R.; Barrachina, T.; Pellacani, F.; Macian-Juan, R.

    2012-07-01

    With the recent development of a new computational tool for calculations of nuclear reactors based on the coupling between the PARCS neutron transport code and computational fluid dynamics commercial code (CFD) ANSYS CFX opens new possibilities in the fuel element design that contributes to a better understanding and a better simulation of the processes of heat transfer and specific phenomena of fluid dynamics as the {sup c}rossflow{sup .}.

  3. Further developments of PWR and BWR fuel elements

    International Nuclear Information System (INIS)

    Sofer, G.A.; Busselman, G.J.; Federico, L.J.

    1988-01-01

    The performance, safety, and economy of nuclear power plants in inluenced very decisively by the quality of their fuel elements. This is why quality assurance in fuel fabrication has been a factor of great importance from the outset. Operating experince and more stringent performance requirements have resulted in a continuous process of further development of fuel elements, which has been reflected also in lower and lower failure rates and increasingly higher burn-ups. Next to further development also innovation has been an important factor contributing to the present high quality level of fuel elements, which also has allowed fuel cycle costs to be decreased quite considerably. (orig.) [de

  4. Premiering SAFE for Safety Added Fuel Element - 15020

    International Nuclear Information System (INIS)

    Bhowmik, P.K.; Shamim, J.A.; Suh, K.Y.; Suh, K.S.

    2015-01-01

    The impact of the Fukushima accident has been the willingness to implement passive safety measures in reactor design and to simplify reactor design itself. Within this framework, a new fuel element, named SAFE (Safety Added Fuel Element) based on the concept of accident tolerant fuel, is presented. SAFE is a new type of fuel element cooled internally and externally by light water and with stainless steel as the cladding material. The removal of boron may trigger a series of changes which may simplify the system greatly. A simplified thermal analysis of SAFE shows that the fuel centerline temperature is well below the maximal limit during the normal operation of the plant

  5. News from the fuel elements industry

    International Nuclear Information System (INIS)

    Racine, R.; Delannay, M.; Dehon, C.; Jouan, J.; Beuneche, M.

    1981-01-01

    This article deals successively with: the re-structuring of the PWR fuel industry in France, with the setting up of Fragema and Cogema Framatome Combustible; Fragema products, from standard fuel assembly to the development of a new advanced fuel assembly; Framatome's experience with PWR fuel; fuel performances in the light of requirements imposed by network needs follow-up; devices developed by Fragema for on-site analysis of irradiated fuel [fr

  6. The development of fuel elements for boiling water reactors

    International Nuclear Information System (INIS)

    Holzer, R.; Kilian, P.

    1984-01-01

    The longevity of today's standard fuel elements constitutes a sound basis for designing advanced fuel elements for higher discharge burnups. Operating experience as well as postirradiation examinations of discharged fuel elements indicate that the technical limits have not reached by far. However, measures to achieve an economic and reliable fuel cycle are not restricted to the design of fuel elements, but also extend into such fields as fuel management and the mode of reactor operation. Fuel elements can be grouped together in zones in the core as a function of burnup and reactivity. The loading scheme can be aligned to this approach by concentrating on typical control rod positions. Reloads can also be made up of two sublots of fuel elements with different gadolinium contents. Longer cycles, e.g., of eighteen instead of twelve months, are easy to plan reactivitywise by increasing the quantity to be replaced from at present one quarter to one third. In fuel elements designed for higher burnups, the old scheme of reloading one quarter of the fuel inventory can be retained. The measures already introduced or in the planning stage incorporate a major potential for technical and economic optimization of the fuel cycle in boiling water reactors. (orig.) [de

  7. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1992-01-01

    Information and data are provided on several aspects of the transportation of spent fuel elements. These aspects include contract, transportation, reprocessing batch size, and economical considerations. (author)

  8. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  9. TAPIR, Thermal Analysis of HTGR with Graphite Sleeve Fuel Elements

    International Nuclear Information System (INIS)

    Weicht, U.; Mueller, W.

    1983-01-01

    1 - Nature of the physical problem solved: Thermal analysis of a reactor core containing internally and/or externally gas cooled prismatic fuel elements of various geometries, rating, power distribution, and material properties. 2 - Method of solution: A fuel element in this programme is regarded as a sector of a fuelled annulus with graphite sleeves of any shape on either side and optional annular gaps between fuel and graphite and/or within the graphite. It may have any centre angle and the fuelled annulus may become a solid cylindrical rod. Heat generation in the fuel is assumed to be uniform over the cross section and peripheral heat flux into adjacent sectors is ignored. Fuel elements and coolant channels are treated separately, then linked together to fit a specified pattern. 3 - Restrictions on the complexity of the problem: Maxima of: 50 fuel elements; 50 cooled channels; 25 fuel geometries; 25 coolant channel geometries; 10 axial power distributions; 10 graphite conductivities

  10. Fuel element transfer cask modelling using MCNP technique

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2009-01-01

    Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)

  11. Fuel Element Transfer Cask Modelling Using MCNP Technique

    International Nuclear Information System (INIS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  12. Methodology for substantiation of the fast reactor fuel element serviceability

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Maershin, A.A.

    1988-01-01

    Methodological aspects of fast reactor fuel element serviceability substantiation are presented. The choice of the experimental program and strategies of its realization to solve the problem set in short time, taking into account available experimental means, are substantiated. Factors determining fuel element serviceability depending on parameters and operational conditions are considered. The methodological approach recommending separate studing of the factors, which points to the possibility of data acquisition, required for the development of calculational models and substantiation of fuel element serviceability in pilot and experimental reactors, is described. It is shown that the special-purpose data are more useful for the substantiation of fuel element serviceability and analytical method development than unsubstantial and expensive complex tests of fuel elements and fuel assemblies, which should be conducted only at final stages for the improvement of the structure on the whole

  13. Reproduction of the RA reactor fuel element fabrication

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    This document includes the following nine reports: Final report on task 08/12 - testing the Ra reactor fuel element; design concept for fabrication of RA reactor fuel element; investigation of the microstructure of the Ra reactor fuel element; Final report on task 08/13 producing binary alloys with Al, Mo, Zr, Nb and B additions; fabrication of U-Al alloy; final report on tasks 08/14 and 08/16; final report on task 08/32 diffusion bond between the fuel and the cladding of the Ra reactor fuel element; Final report on task 08/33, fabrication of the RA reactor fuel element cladding; and final report on task 08/36, diffusion of solid state metals [sr

  14. Fuel element structure - design, production and operational behaviour

    International Nuclear Information System (INIS)

    Pott, G.; Dietz, W.

    1985-01-01

    The lectures held at the meeting of the fuel element section of the Kerntechnische Gesellschaft gives a survey of developments in fuel element structure design for PWR-type, BWR-type and fast breeder reactors. For better utilization of the fuel, concepts have been developed for re-usable, removable and thus repairable fuel elements. Furthermore, the manufacturing methods for fuel element structures were refined to achieve better quality and more efficient manufacturing methods. Statements on the dimensional behaviour and on the mechanical stability of fuel element structures in normal and accident operation could be made on the basis of post-irradiation inspections. Finally, the design, manufacture and irradiation behaviour of graphite reflectors in HTGR-type reactors are described. The 12 lectures have been recorded in the data base separately. (RF) [de

  15. Determining fissile content of nuclear fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.; Grossman, L.N.; Schoenig, F.C.

    1980-01-01

    This invention relates to the determination of the fissile fuel content of fuel for nuclear reactors. A nondestructive method is described for determining rapidly, accurately and simultaneously the fissile content, enrichment and location of fuel material which may also contain amounts of burnable poison, by detecting the γ-rays emitted from the fuel material due to natural radioactive decay. (U.K.)

  16. Storage device for a long nuclear reactor fuel element and/or a long nuclear reactor fuel element part

    International Nuclear Information System (INIS)

    Vogt, M.; Schoenwitz, H.P.; Dassbach, W.

    1986-01-01

    The storage device can be erected in a dry storage room for new fuel elements and also in a storage pond for irradiated fuel elements. It consists of shells, which are arranged vertically and which have a lid. A suspension for the fuel element is provided on the underside of the lid, which acts as a support against squashing or bending in case of vertical forces acting (earthquake). (DG) [de

  17. Coherence of reactor design and fuel element design

    International Nuclear Information System (INIS)

    Vom Scheidt, S.

    1995-01-01

    Its background of more than 25 years of experience makes Framatome the world's leading company in the design and sales of fuel elements for pressurized water reactors (PWR). In 1994, the fuel fabrication units were incorporated as subsidiaries, which further strengthens the company's position. The activities in the fuel sector comprise fuel element design, selection and sourcing of materials, fuel element fabrication, and the services associated with nuclear fuel. Design responsibility lies with the Design and sales Management, which closely cooperates with the engineers of the reactor plant for which the fuel elements are being designed, for fuel elements are inseparable parts of the respective reactors. The Design and Sales Management also has developed a complete line of services associated with fuel element inspection and repair. As far as fuel element sales are concerned, Framatome delivers the first core in order to be able to assume full responsibility vis-a-vis the customer for the performance of the nuclear steam supply system. Reloads are sold through the Fragema Association established by Framatome and Cogema. (orig.) [de

  18. Probabilistic Risk Assessment of Cask Drop Accident during On-site Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jae Hyun; Christian, Robby; Momani, Belal Al; Kang, Hyun Gook [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There are two ways to transfer the SNF from a site to other site, one is land transportation and the other is maritime transportation. Maritime transportation might be used because this way uses more safe route which is far from populated area. The whole transportation process can be divided in two parts: transferring the SNF between SNP and wharf in-Nuclear Power Plant (NPP) site by truck, and transferring the SNF from the wharf to the other wharf by ship. In this research, on-site SNF transportation between SNP and wharf was considered. Two kinds of single accident can occur during this type of SNF transportation, impact and fire, caused by internal events and external events. In this research, PRA of cask drop accident during onsite SNF transportation was done, risk to a person (mSv/person) from a case with specific conditions was calculated. In every 11 FEM simulation drop cases, FDR is 1 even the fuel assemblies are located inside of the cask. It is a quite larger value for all cases than the results with similar drop condition from the reports which covers the PRA on cask storage system. Because different from previous reports, subsequent impact was considered. Like in figure 8, accelerations which are used to calculate the FDR has extremely higher values in subsequent impact than the first impact for all SNF assemblies.

  19. Experience related to the safety of advanced LMFBR fuel elements

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1975-07-01

    Experiments and experience relative to the safety of advanced fuel elements for the liquid metal fast breeder reactor are reviewed. The design and operating parameters and some of the unique features of advanced fuel elements are discussed breifly. Transient and steady state overpower operation and loss of sodium bond tests and experience are discussed in detail. Areas where information is lacking are also mentioned

  20. Assembly for transport and storage of radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1978-01-01

    The invention concerns the self-control of coolant deficiencies on the transport of spent fuel elements from nuclear reactors. It guarantees that drying out of the fuel elements is prevented in case of a change of volume of the fluid contained in storage tanks and accumulators and serving as coolant and shielding medium. (TK) [de

  1. Design and main characteristics of HTGR fuel elements

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Kolesov, V.S.; Permyakov, L.N.; Koshelev, Yu.V.; Mikhajlichenko, L.I.

    1983-01-01

    Two types of spherical fuel elements and coated particles were investigated under the operating conditions of the high temperature reactors in the Soviet Union (VGR-50 and VG-400). This paper gives the main characteristics of spherical fuel elements (thermal conductivity, static and dynamic strength, wear resistance, release of gaseous fission products, etc.) as determined in test facilities. (author)

  2. Hastelloy X fuel element creep relaxation and residual effects

    International Nuclear Information System (INIS)

    Castle, R.A.

    1971-01-01

    A worst case, seven element, asymmetric fuel, thermal environment was assumed and a creep relaxation analysis generated. The fuel element clad is .020 inch Hastelloy X. The contact load decreased from 11.6 pounds to 5.87 pounds in 100,000 hours. The residual stresses were then computed for various shutdown times. (U.S.)

  3. Legal questions concerning the termination of spent fuel element reprocessing

    International Nuclear Information System (INIS)

    John, Michele

    2005-01-01

    The thesis on legal aspects of the terminated spent fuel reprocessing in Germany is based on the legislation, jurisdiction and literature until January 2004. The five chapters cover the following topics: description of the problem; reprocessing of spent fuel elements in foreign countries - practical and legal aspects; operators' responsibilities according to the atomic law with respect to the reprocessing of Geman spent fuel elements in foreign countries; compatibility of the prohibition of Geman spent fuel element reprocessing in foreign countries with international law, European law and German constitutional law; results of the evaluation

  4. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    Soentono, S.; Suripto, A.

    1991-01-01

    After the successful experiment to produce U 3 Si 2 powder and U 3 Si 2 -Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x -Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U 3 Si 2 -Al fuel elements, having similar specifications to the ones of U 3 O 8 -Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  5. Improved techniques for appendage attachment to PHWR fuel elements

    International Nuclear Information System (INIS)

    Raj, R.N.J.; Laxminarayana, B.; Narayanan, P.S.A.; Gupta, U.C.; Varma, B.P.; Sinha, K.K.

    1995-01-01

    Nuclear Fuel Complex, India switched-over to split-wart type PHWR fuel bundles in mid-80s. Since then over 60,000 bundles of this type have been fabricated for Indian PHWRs. After considering various technical aspects, resistance welding was chosen for appendage attachment to the fuel elements. The paper describes experiences in scaling up of the technique to industrial production of PHWR fuel bundles, design and development of special-purpose equipment for this purpose, and the QA procedures employed for regular production. It also deals with appendage welding of 37 Element fuel bundles and improvements planned in the appendage welding process. (author)

  6. Fuel element clusters for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1975-01-01

    In the fuel element assembly for nuclear reactors the influence of temperature cycles upon the stability of the joints between the individual components, especially between the control rod guide tubes and the connecting rods and end plates, respectively, is reduced. For this purpose, the connection is designed as a bolted connection connecting, on the one hand, the guide tubes and guide bolts and, on the other hand, these two components and the end plates. Moreover, the materials of the guide tubes, bolts and end plates are selected so that their respective thermal expansion coefficients differ. The material which can be used for the end plates and the guide bolts is stainless steel and stainless steel plus inconel (nickel-chrome-iron alloy), respectively; for the guide tubes it is a zirconium alloy (zircaloy). In addition to some technical designs of the bolted connections the materials and lengths of the components are selected in such a way that the expansion path of the components held by a bolted connection is equal to that of the stressing part. (DG/RF) [de

  7. Fuel element shipping shim for nuclear reactor

    International Nuclear Information System (INIS)

    Gehri, A.

    1975-01-01

    A shim is described for use in the transportation of nuclear reactor fuel assemblies. It comprises a member preferably made of low density polyethylene designed to have three-point contact with the fuel rods of a fuel assembly and being of sufficient flexibility to effectively function as a shock absorber. The shim is designed to self-lock in place when associated with the fuel rods. (Official Gazette)

  8. Experimental study of water flow in nuclear fuel elements; Estudo experimental do escoamento de agua em elementos combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Lorena Escriche, E-mail: ler@cdtn.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos, E-mail: hcr@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: jabf@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured.

  9. Device for a nuclear reactor. [Fuel element spacers

    Energy Technology Data Exchange (ETDEWEB)

    Foulds, R B; Kasberg, A H; Puechl, K H; Bleiberg, M L

    1972-03-08

    A spacer design for fuel element clusters for PWR type reactors is described. It consists of a frame supporting an egg-carton like grid each sector of which is provided with springs which grip the fuel pins. The spring design is such as to prevent fuel pin vibrations and at same time accommodate fuel pin deformations. Formulae for the calculation of natural frequencies, spring stiffness and friction loads are presented.

  10. CARA, new concept of advanced fuel element for HWR

    International Nuclear Information System (INIS)

    Florido, P.C.; Crimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.

    1999-01-01

    All Argentinean NPPs (2 in operation, 1 under construction), use heavy water as coolant and moderator. With very different reactor concepts (pressure Vessel and CANDU type designs), the fuel elements are completely different in its concepts too. Argentina produces both types of fuel elements at a manufacturing fuel element company, called CONUAR. The very different fuel element's designs produce a very complex economical behavior in this company, due to the low production scale. The competitiveness of the Argentinean electric system (Argentina has a market driven electric system) put another push towards to increase the economical competitiveness of the nuclear fuel cycle. At present, Argentina has a very active Slightly Enriched Uranium (SEU) Program for the pressure vessel HWR type, but without strong changes in the fuel concept itself. Then, the Atomic Energy Commission in Argentina (CNEA) has developed a new concept of fuel element, named CARA, trying to achieve very ambitious goals, and substantially improved the competitiveness of the nuclear option. The ambitious targets for CARA fuel element are compatibility (a single fuel element for all Argentinean's HWR) using a single diameter fuel rod, improve the security margins, increase the burnup and do not exceed the CANDU fabrication costs. In this paper, the CARA concept will be presented, in order to explained how to achieve all together these goals. The design attracted the interest of the nuclear power operator utility (NASA), and the fuel manufacturing company (CONUAR). Then a new Project is right now under planning with the cooperation of three parts (CNEA - NASA - CONUAR) in order to complete the whole development program in the shortest time, finishing in the commercial production of CARA fuel bundle. At the end of the this paper, future CARA development program will be described. (author)

  11. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2011-07-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has

  12. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    International Nuclear Information System (INIS)

    Pena, C.; Pellacani, F.; Macian Juan, R.; Chiva, S.; Barrachina, T.; Miro, R.

    2011-01-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has been

  13. IR1 flow tube and In-Pile Test Section Pressure drop test for the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, K. N.; Chi, D. Y.; Sim, B. S.; Park, S. K.; Lee, J. M.; Lee, C. Y.; Kim, H. N

    2006-02-15

    The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vertical hole call IR1 of HANARO reactor core. In order to verify the pressure drop and flow rate both the inside region of IPS at the annular region between IPS and IR1 flow tube, a pressure drop was measured by varing the flow rate on both regions. The measured pressure drop in the annular region is 209kpa at 14.9kg/s which meets the limiting condition of operation of 200kpa. The measured pressure drop in side the IPS becomes 260.25kpa which is lower than the designed value of 306.65kpa. As the pressure drop is lower than the design value, it is quite conservative from the safety and operating point of view.

  14. Statistical estimation of fast-reactor fuel-element lifetime

    International Nuclear Information System (INIS)

    Proshkin, A.A.; Likhachev, Yu.I.; Tuzov, A.N.; Zabud'ko, L.M.

    1980-01-01

    On the basis of a statistical analysis, the main parameters having a significant influence on the theoretical determination of fuel-element lifetimes in the operation of power fast reactors in steady power conditions are isolated. These include the creep and swelling of the fuel and shell materials, prolonged-plasticity lag, shell-material corrosion, gap contact conductivity, and the strain diagrams of the shell and fuel materials obtained for irradiated materials at the corresponding strain rates. By means of deeper investigation of these properties of the materials, it is possible to increase significantly the reliability of fuel-element lifetime predictions in designing fast reactors and to optimize the structure of fuel elements more correctly. The results of such calculations must obviously be taken into account in the cost-benefit analysis of projected new reactors and in choosing the optimal fuel burnup. 9 refs

  15. Model studying the processes arising during fuel element overheating

    International Nuclear Information System (INIS)

    Usynin, G.B.; Anoshkin, Yu.I.; Vlasichev, G.N.; Galitskikh, Yu.N.; Semenychev, M.A.

    1986-01-01

    A calculational technique for studying heating and melting of fuel elements in the BN type reactors during an accident with heat release failure and a simulator with central rod heater intended for out-of-pile experiments is developed. The time rangeof the characteristic melting steps for the most thermally stressed fuel element at the reactor nominal power is calculated. The experimental study of the fuel element melting using a simulator with a tungsten heater has proved that the technique for the simultor and fuel can melting, respectively, is correct. The developed technique is used for determining the geometrical values and operational conditions for experiments with simulators, when quantitative and qualitative characteristics of the process under study are rather close to those natural for fuel elements

  16. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behavior and physical requirements of operating cycle sequences and fueling strategies having practical use in the management of nuclear fuel. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and maneuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy, and which govern fueling decisions normally made by the fuel manager. It is also demonstrated in this application that the simple batch size effect is not valid for non-integer fueling strategies, even in the simplest sequence configurations, and that it systematically underestimates the fueling requirements of degenerate sequences in general

  17. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    Roellig, K.; Theymann, W.

    1985-01-01

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWel eq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  18. The Temperature of the Dimethylhydrazine Drops Moving in the Atmosphere after Depressurization of the Fuel Tank Rockets

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2016-01-01

    Full Text Available This work includes the results of the numerical modeling of temperature changes process of the dimethylhydrazine (DMH drops, taking into account the radial temperature gradient in the air after the depressurization of the fuel compartments rockets at high altitude. There is formulated a mathematical model describing the process of DMH drops thermal state modifying when it's moving to the Earth's surface. There is the evaluation of the influence of the characteristic size of heptyl drops on the temperature distribution. It's established that the temperatures of the small size droplets practically completely coincide with the distribution of temperature in the atmosphere at altitudes of up to 40 kilometers.

  19. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  20. Nuclear criticality assessment of Oak Ridge research fuel element storage

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-06-01

    Spent and partially spent Oak Ridge Research Reactor (ORR) fuel elements are retained in the storage section of the ORR pool facility. Determination of a maximum expected neutron multiplication factor for the storage area is accomplished by a validated calculational method. The KENO Monte Carlo code and the Hansen-Roach 16-group neutron cross section sets were validated by calculations of critical experiments performed with early ORR fuel elements and with SPERT-D fuel elements. Calculations of various fuel element arrangements are presented which confirm the subcriticality previously inferred from critical experiments and indicate the k/sub eff/ would not exceed 0.85, were the storage area to be filled to capacity with storage racks containing elements with the fissionable material loading increased to 350 g of 235 U

  1. Nuclear fuel element, and method of producing same

    International Nuclear Information System (INIS)

    Armijo, J.S.; Esch, E.L.

    1986-01-01

    This invention relates to an improvement in nuclear fuel elements having a composite container comprising a cladding sheath provided with a protective barrier of zirconium metal covering the inner surface of the sheath, rendering such fuel elements more resistant to hydrogen accumulation in service. The invention specifically comprises removing substantially all zirconium metal of the barrier layer from the part of the sheath surrounding and defining the plenum region. Thus the protective barrier of zirconium metal covers only the inner surface of the fuel container in the area immediately embracing the fissionable fuel material

  2. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  3. WELWING, Material Buckling for HWR with Annular Fuel Elements

    International Nuclear Information System (INIS)

    Grosskopf, O.G.P.

    1973-01-01

    1 - Nature of the physical problem solved: WELWING was developed to calculate the material buckling of reactor systems consisting of annular fuel elements in heavy water as moderator for various moderator to fuel ratios. The moderator to fuel ratio for the maximum material buckling for the particular system is selected automatically and the corresponding material buckling is calculated. 2 - Method of solution: The method used is an analytical solution of the one-group diffusion equations with various corrections and approximations. 3 - Restrictions on the complexity of the problem: Up to 32 different materials in the fuel element may be used

  4. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  5. Design of experiments for test of fuel element reliability

    International Nuclear Information System (INIS)

    Boehmert, J.; Juettner, C.; Linek, J.

    1989-01-01

    Changes of fuel element design and modifications of the operational conditions have to be tested in experiments and pilot projects for nuclear safety. Experimental design is an useful statistical method minimizing costs and risks for this procedure. The main problem of our work was to investigate the connection between failure rate of fuel elements, sample size, confidence interval, and error probability. Using the statistic model of the binomial distribution appropriate relations were derived and discussed. A stepwise procedure based on a modified sequential analysis according to Wald was developed as a strategy of introduction for modifications of the fuel element design and of the operational conditions. (author)

  6. Method of removing crud deposited on fuel element clusters

    International Nuclear Information System (INIS)

    Yokota, Tokunobu; Yashima, Akira; Tajima, Jun-ichiro.

    1982-01-01

    Purpose: To enable easy elimination of claddings deposited on the surface of fuel element. Method: An operator manipulates a pole from above a platform, engages the longitudinal flange of the cover to the opening at the upper end of a channel box and starts up a suction pump. The suction amount of the pump is set such that water flow becomes within the channel box at greater flow rate than the operational flow rate in the channel box of the fuel element clusters during reactor operation. This enables to remove crud deposited on the surface of individual fuel elements with ease and rapidly without detaching the channel box. (Moriyama, K.)

  7. Sodium removal of fuel elements by vacuum distillation

    International Nuclear Information System (INIS)

    Buescher, E.; Haubold, W.; Jansing, W.; Kirchner, G.

    1978-01-01

    Cleaning of sodium-wetted core components can be performed by using either lead, moist nitrogen, or alcohol. The advantages of these methods for cleaning fuel elements without causing damage are well known. The disadvantage is that large amounts of radioactive liquids are formed during handling in the latter two cases. In this paper a new method to clean components is described. The main idea is to remove all liquid metal from the core components within a comparatively short period of time. Fuel elements removed from the reactor must be cooled because of high decay heat release. To date, vacuum distillation of fuel elements has not yet been applied

  8. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  9. Thermally-induced bowing of CANDU fuel elements

    International Nuclear Information System (INIS)

    Suk, H.C.; Sim, K.S.; Park, J.H.; Park, G.S.

    1995-01-01

    Considering only the thermally-induced bending moments which are generated both within the sheath and between the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element, a generalized and explicit analytical formula for the thermally-induced bending is developed in this paper, based on the cases of 1) the bending of an empty tube treated by neglecting of the fuel/sheath mechanical interaction and 2) the fuel/sheath interaction due to the pellet and sheath temperature variations. In each of the cases, the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. Investigating the relative importance of the various parameters affecting fuel element bowing, the element bowing is found to be greatly affected with the variations of element length, sheath diameter, pellet/sheath mechanical interaction and neutron flux depression factors, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient, and sheath and pellet thermal conductivities. Also, the element bowing of the standard 37-element bundle and CANFLEX 43-element bundle for the use in CANDU-6 reactors was analyzed with the formula, which could help to demonstrate the integrity of the fuel. All the required input data for the analyses were generated in terms of the reactor operation conditions on the reactor physics, thermal hydraulics and fuel performance by using various CANDU computer codes. The analysis results indicate that the CANFLEX 43-element

  10. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo F.; Souza, Luiz C.A., E-mail: pfo@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  11. Drop of canistered spent fuel segments into a deep borehole and subsequent aerosol release

    International Nuclear Information System (INIS)

    Bantle, S.; Herbe, H.; Miu, J.

    1991-09-01

    The source term of the released aerosols is estimated. First, the number of failing canisters is calculated for the case of an axial symmetric canister (POLLUX) pile, and then, for the case of a 'zig-zag' pile, as found in reality. The weight-specific energy acting on the fuel - a measure for the degree of fuel fractioning - is determined from the acceleration acting on the pin segments. In the borehole prevails a steady-state flow pattern which is stimulated by the heat of the disposed waste canister, and is also influenced by the ventilation of the drift above the borehole. Based on this stationary flow pattern flow velocities are calculated by means of fluid mechanical methods. Further investigations deal with the unsteady case which occurs during and immediately after the canister drop as well as with the wake behind the canister. The most relevant result is that under the considered boundary conditions no release form the borehole into the repository is to be expected. (orig./HP) [de

  12. Burnable poison fuel element and its fabrication

    International Nuclear Information System (INIS)

    Zukeran, Atsushi; Inoue, Kotaro; Aizawa, Hiroko.

    1985-01-01

    Purpose: To enable to optionally vary the excess reactivity and fuel reactivity. Method: Burnable poisons with a large neutron absorption cross section are contained in fuel material, by which the excess reactivity at the initial stage in the reactor is suppressed by the burnable poisons and the excess reactivity is released due to the reduction in the atomic number density of the burnable poisons accompanying the burning. The burnable poison comprises spherical or rod-like body made of a single material or spherical or rod-like member made of a plurality kind of materials laminated in a layer. These spheres or rods are dispersed in the fuel material. By adequately selecting the shape, combination and the arrangement of the burnable poisons, the axial power distribution of the fuel rods are flattened. (Moriyama, K.)

  13. Evaluation of finite element codes for demonstrating the performance of radioactive material packages in hypothetical accident drop scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.F. [Arup (United Kingdom); Hueggenberg, R. [Gesellschaft fuer Nuklear-Behaelter mbH (Germany)

    2004-07-01

    Drop testing and analysis are the two methods for demonstrating the performance of packages in hypothetical drop accident scenarios. The exact purpose of the tests and the analyses, and the relative prominence of the two in the license application, may depend on the Competent Authority and will vary between countries. The Finite Element Method (FEM) is a powerful analysis tool. A reliable finite element (FE) code when used correctly and appropriately, will allow a package's behaviour to be simulated reliably. With improvements in computing power, and in sophistication and reliability of FE codes, it is likely that FEM calculations will increasingly be used as evidence of drop test performance when seeking Competent Authority approval. What is lacking at the moment, however, is a standardised method of assessing a FE code in order to determine whether it is sufficiently reliable or pessimistic. To this end, the project Evaluation of Codes for Analysing the Drop Test Performance of Radioactive Material Transport Containers, funded by the European Commission Directorate-General XVII (now Directorate-General for Energy and Transport) and jointly performed by Arup and Gesellschaft fuer Nuklear-Behaelter mbH, was carried out in 1998. The work consisted of three components: Survey of existing finite element software, with a view to finding codes that may be capable of analysing drop test performance of radioactive material packages, and to produce an inventory of them. Develop a set of benchmark problems to evaluate software used for analysing the drop test performance of packages. Evaluate the finite element codes by testing them against the benchmarks This paper presents a summary of this work.

  14. Evaluation of finite element codes for demonstrating the performance of radioactive material packages in hypothetical accident drop scenarios

    International Nuclear Information System (INIS)

    Tso, C.F.; Hueggenberg, R.

    2004-01-01

    Drop testing and analysis are the two methods for demonstrating the performance of packages in hypothetical drop accident scenarios. The exact purpose of the tests and the analyses, and the relative prominence of the two in the license application, may depend on the Competent Authority and will vary between countries. The Finite Element Method (FEM) is a powerful analysis tool. A reliable finite element (FE) code when used correctly and appropriately, will allow a package's behaviour to be simulated reliably. With improvements in computing power, and in sophistication and reliability of FE codes, it is likely that FEM calculations will increasingly be used as evidence of drop test performance when seeking Competent Authority approval. What is lacking at the moment, however, is a standardised method of assessing a FE code in order to determine whether it is sufficiently reliable or pessimistic. To this end, the project Evaluation of Codes for Analysing the Drop Test Performance of Radioactive Material Transport Containers, funded by the European Commission Directorate-General XVII (now Directorate-General for Energy and Transport) and jointly performed by Arup and Gesellschaft fuer Nuklear-Behaelter mbH, was carried out in 1998. The work consisted of three components: Survey of existing finite element software, with a view to finding codes that may be capable of analysing drop test performance of radioactive material packages, and to produce an inventory of them. Develop a set of benchmark problems to evaluate software used for analysing the drop test performance of packages. Evaluate the finite element codes by testing them against the benchmarks This paper presents a summary of this work

  15. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  16. Optimization of FBR fuel element for high burnup

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.

    1985-03-01

    After a brief historical background showing evolution of the French fast reactor fuel element from RAPSODIE to PHENIX and SUPER PHENIX we have examined the main points which have permitted to increase irradiation performance of the subassembly

  17. Method to mount defect fuel elements i transport casks

    International Nuclear Information System (INIS)

    Borgers, H.; Deleryd, R.

    1996-01-01

    Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs

  18. Dynamic characterization of the CAREM fuel element prototype

    International Nuclear Information System (INIS)

    Ghiselli, Alberto M.; Fiori, Jose M.; Ibanez, Luis A.

    2004-01-01

    As a previous step to make a complete test plan to evaluate the hydrodynamic behavior of the present configuration of the CAREM type fuel element, a dynamic characterization analysis is required, without the dynamic response induced by the flowing fluid. This paper presents the tests made, the methods and instrumentation used, and the results obtained in order to obtain a complete dynamic characterization of the CAREM type fuel element. (author)

  19. Method for fuel element leak detection in pressurized water reactors

    International Nuclear Information System (INIS)

    Kunze, U.

    1983-01-01

    The method is aimed at detecting fuel element leaks during reactor operation. It is based on neutron flux measurements at many points in the core, using at least two detectors at a time. The detectors must be arranged in the direction of the coolant flow. Values obtained from periodic measurements are compared with threshold values. The location of fuel element leaks is determined from those values exceeding the threshold of individual detectors

  20. A computer program for structural analysis of fuel elements

    International Nuclear Information System (INIS)

    Hayashi, I.M.V.; Perrotta, J.A.

    1988-01-01

    It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equivalent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt

  1. Determining reactor fuel elements broken by Cerenkov counting

    International Nuclear Information System (INIS)

    Guo Juhao; Dong Shiyuan; Feng Yuying

    1996-01-01

    The basis and method of determining fuel elements broken in a reactor by Cerenkov counting measured with liquid scintillation spectrometer are introduced. The radioactive characteristic of the radiation nuclides generating Cherenkov radiation in the primary water of 200 MW nuclear district heating reactor is analyzed. The activity of the activation products in the primary water and the fission products in the fuel elements are calculated. A feasibility of Cerenkov counting measure was analyzed. This method is simple and quick

  2. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behaviour and physical requirements of operating cycle sequences and fueling strategies having practical use in fuel management. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and manoeuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy. Numerical evaluations of degenerate equilibrium cycle sequences are then performed for a typical PWR core, and accompanying fuel cycle costs are calculated. The impact of design and operational limits as constraints on the performance mappings for this reactor are also studied with respect to achieving improved cost performance from the once-through fuel cycle. The dynamics of transition cycle sequences are then examined using the generalized theory. Proof of the existence of non-degenerate equilibrium cycle sequences is presented when the mechanics of the fixed reload batch size strategy are developed analytically for transition sequences. Finally, an analysis of the fixed reload enrichment strategy demonstrates the potential for convergence of the transition sequence to a fully degenerate equilibrium sequence. (author)

  3. Nuclear fuel element recovery using PEDSCO RMI Unit

    International Nuclear Information System (INIS)

    Martin, D.G.; Pedersen, B.V.

    1984-01-01

    In September 1982, a PEDSCO Remote Mobile Investigation Unit was used to recover damaged irradiated fuel elements from a fueling machine and trolley deck at Bruce Nuclear Generating Station 'A'. This Canadian-made remote controlled vehicle was originally designed for explosive ordinance disposal by law enforcement agencies. This paper describes its adaptation to nuclear service and its first mission, within a nuclear facility

  4. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  5. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  6. Detection and location of leaking TRIGA fuel elements

    International Nuclear Information System (INIS)

    Bouchey, G.D.; Gage, S.J.

    1970-01-01

    Several TRIGA facilities have experienced difficulty resulting from cladding failures of aluminum clad TRIGA fuel elements. Recently, at the University of Texas at Austin reactor facility, fission product releases were observed during 250 kW operation and were attributed to a leaking fuel element. A rather extensive testing program has been undertaken to locate the faulty element. The used sniffer device is described, which provides a quick, easily constructed, and extremely sensitive means of locating leaking fuel elements. The difficulty at The University of Texas was compounded by extremely low levels and the sporadic nature of the releases. However, in the more typical situation, in which a faulty element consistently releases relatively large quantities of fission gas, such a device should locate the leak with little difficulty

  7. Element bow profiles from new and irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    Dennier, D.; Manzer, A.M.; Ryz, M.A.

    1996-01-01

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  8. Measuring element for determining the internal pressure in fuel rods

    International Nuclear Information System (INIS)

    Deckers, H.; Drexler, H.; Reiser, H.

    1983-01-01

    A pressure cell is situated inside the fuel rod, which contains a magnetic core or a core influenced by magnetism, whose position relative to an outer front surface of an end stopper of the fuel rod can vary. The fuel rod contains a pressure cell directly above the lower end stopper or connected to it. This can consist of closed bellows, where if the internal pressure in the fuel rod rises, a ferrite core moves axially. When the pressure drops, this returns to the initial position, which is precisely defined by a stop. To detect a rod defect, the position of the soft iron core relative to the lower edge of the end stopper is scanned by a special measuring device. (orig./HP) [de

  9. Push piece for spent fuel elements magazine

    International Nuclear Information System (INIS)

    Griveau, R.; Kerlau, D.; Tucoulat, D.; Colas, J.; Pellier, R.

    1989-01-01

    The push piece permits the displacement of little section elements in a magazine of high section. At the end of cut, the push piece leans its flank against an auxiliary blank holder and the element is pushed by a paddle, the push piece being immobilized [fr

  10. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  11. Sipping test on a failed MTR fuel element

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da

    2002-01-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes 131 I and 133 I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (author)

  12. Storage device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Kempf, B.

    1983-01-01

    The storage device, which can be flexibly matched to the number of fuel rods to be stored and is not tied to a space, has a vertical support post situated on the floor and a stiff upright also situated vertically on the floor, which is used to accommodate at least one fuel rod. The stiff upright is connected directly to the support post by connections which can be undone, or form locking via another vertical stiff upright situation on the floor. (orig./HP) [de

  13. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  14. Process for assembling a nuclear fuel element

    International Nuclear Information System (INIS)

    Wachtendonk, H.J. von.

    1984-01-01

    Before insertion into the spacers, the fuel rocks are coated with a self-hardening layer of water-soluble polyvinyl and/or polyether polymer to prevent scratches on the cladding tubes. After insertion, the protective conting is removed by means of water. (orig.) [de

  15. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh, R., E-mail: rakesh.rad87@gmail.com [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Kohli, D. [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Sinha, V.P.; Prasad, G.J. [Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum–aluminum (case A) and aluminum–aluminum + yttria (Y{sub 2}O{sub 3}) dispersion (case B). Case B approximated aluminum–uranium silicide (U{sub 3}Si{sub 2}) ‘fuel-meat’ in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in ‘out-of-plane’ residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  16. Thermal-hydraulic analysis of an annular fuel element: The Achilles' heel of the particle bed reactor

    International Nuclear Information System (INIS)

    Dibben, M.J.; Tuttle, R.F.

    1993-01-01

    The low pressure nuclear thermal propulsion (LPNTP) concept offers significant improvements in rocket engine specific impulse over rockets employment chemical propulsion. This study investigated a parametric thermal-hydraulic analysis of an annular fueld element, also referred to as a fuel pipe, using the computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer). The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through the element. In this study, the outlet temperature of the hydrogen is parametrically related to key effects, including the reactor power at two different pressure drops, the effect of power coupling for in-core testing, and the effect of hydrogen flow rates. Results show that the temperature is linearly related to the reactor power, but not to pressure drop, and that cross flow inside the fuelpipe occurs at approximately 0.3 percent of the radial flow rates

  17. Handling system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Hawke, B.C.; Goldman, L.A.

    1980-01-01

    A system for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor is described. The canning mechanism operates in a sealed gaseous environment and visual and mechanical inspection of the elements is possible by an operator from a remote shielded area. (UK)

  18. Applications and experience with a new instrumented fuel element

    International Nuclear Information System (INIS)

    Morris, F.M.

    1972-01-01

    Previously reported information to TRIGA Reactor Conference I concerning the development of a new concept in an instrumented fuel element is updated and expanded. The evaluation of these new instrumented elements is discussed and some areas of application to reactor behavior are described. Experiments concerning temperature and flux mapping under varying conditions are investigated and conclusions are given. (author)

  19. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  20. Gap's dimensions in fuel elements from neutron radiography

    International Nuclear Information System (INIS)

    Notea, A.; Segal, Y.; Trichter, F.

    1985-01-01

    Quantitative Nondestructive evaluation (QNDE) is of upmost importance in the design and manufacture of nuclear fuel elements. Accurate non-destructive measurements of gaps, cracks, displacements, etc. supply vital information for optimizing fuel manufacturing. Neutron radiography is a powerful NDT method for examining spent fuel elements. However, it turned out that the extraction of dimensions, especially in the submillimetric range is questionable. In this paper neutron radiography of pellet-to-pellet gaps in fuel elements is modelled and two procedures for dimension extraction are presented. It is shown that for a wide gap the dimension is preferable, extracted from the width of the film profile, while for narrow gaps it is preferable to extract it from the maximum of the density profile

  1. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  2. Quality control in the fuel elements production process

    International Nuclear Information System (INIS)

    Katanic-Popovic, J.; Spasic, Z.; Djuricis, Lj.

    1977-01-01

    Recently great attention has been paid at the international level to the analysis of production processes and quality control of fuel and fuel elements with the aim to speed up activity of proposing and accepting standards and measurement methods. IAEA also devoted great interest to these problems appealing to more active participation of all users and producers fuel elements in a general effort to secure successful work of nuclear plants. For adequate and timely participation in future in the establishment and analysis of general requirements and documentation for the control of purchased or self produced fuel elements in out country it is necessary to be well informed and to follow this activity at the international level. (author)

  3. Fuel Retrieval and Management of Fuel Element Debris

    International Nuclear Information System (INIS)

    Chande, Shridhar; Lachaume, J. L.

    2013-01-01

    Nuclear accidents involving core meltdown have not been so rare. While the first occurred in early fifties, it is reported that about 20 have occurred worldwide in military and commercial reactors. The more recent and major accidents are 1. Three Mile Island, USA in 1979: Approximately half the core was melted, and flowed to the bottom of the reactor pressure vessel however the pressure vessel remained intact and contained the damaged fuel. 2. Chernobyl, former USSR in 1984: Explosive release of radioactive material occurred. About 6 tons of fuel was dispersed as air-borne particles. Most of the core was damaged or melted. 3. Fukushima, Japan 2011: Three units suffered melt down. In unit 1 almost all the fuel assemblies melted and accumulated at the bottom of the vessel. It is reported that the vessel failed and the molten corium has penetrated the concrete. In the units 2 and 3, partial melting of cores has occurred. In several of these cases, fuel retrieval and management activities have been carried out. The experience and insights gained from these activities will be extremely useful for planning and execution of similar activities in future if ever they are needed. The purpose of this session was to exchange this experience and also to share the lessons learned. This is of particularly important, at this juncture, when planning and preparation for retrieval of damaged cores in Fukushima NPP is in progress. (author)

  4. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan

    2013-01-01

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established

  5. Neutron physics computation of CERCA fuel elements for Maria Reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.J.; Kulikowska, T.; Marcinkowska, Z.

    2008-01-01

    Neutron physics parameters of CERCA design fuel elements were calculated in the framework of the RERTR (Reduced Enrichment for Research and Test Reactors) program for Maria reactor. The analysis comprises burnup of experimental CERCA design fuel elements for 4 cycles in Maria Reactor To predict the behavior of the mixed core the differences between the CERCA fuel (485 g U-235 as U 3 Si 2 , 5 fuel tubes, low enrichment 19.75 % - LEU) and the presently used MR-6 fuel (430 g as UO 2 , 6 fuel tubes, high enrichment 36 % - HEU) had to be taken into account. The basic tool used in neutron-physics analysis of Maria reactor is program REBUS using in its dedicated libraries of effective microscopic cross sections. The cross sections were prepared using WIMS-ANL code, taking into account the actual structure, temperature and material composition of the fuel elements required preparation of new libraries.The problem is described in the first part of the present paper. In the second part the applicability of the new library is shown on the basis of the fuel core computational analysis. (author)

  6. Weld Joint Design for SFR Metallic Fuel Element Closures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Yoon, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The sodium-cooled fast reactor (SFR) system is among the six systems selected for Gen-IV promising systems and expected to become available for commercial introduction around 2030. In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the joint designs for endplug welding were investigated. For the irradiation test of SFR metallic fuel element, the TIG welding technique was adopted and the welding joint design was developed based on the welding conditions and parameters established. In order to make SFR metallic fuel elements, the weld joint design was developed based on the TIG welding technique.

  7. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established.

  8. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  9. Transuranium element recovering method for spent nuclear fuel

    International Nuclear Information System (INIS)

    Todokoro, Akio; Kihara, Yoshiyuki; Okada, Hisashi

    1998-01-01

    Spent fuels are dissolved in nitric acid, the obtained dissolution liquid is oxidized by electrolysis, and nitric acid of transuranium elements are precipitated together with nitric acid of uranium elements from the dissolution solution and recovered. Namely, the transuranium elements are oxidized to an atomic value level at which nitric acid can be precipitated by an oxidizing catalyst, and cooled to precipitate nitric acid of transuranium elements together with nitric acid of transuranium elements, accordingly, it is not necessary to use a solvent which has been used so far upon recovering transuranium elements. Since no solvent waste is generated, a recovery method taking the circumstance into consideration can be provided. Further, nitric acid of uranium elements and nitric acid of transuranium elements precipitated and recovered together are dissolved in nitric acid again, cooled and only uranium elements are precipitated selectively, and recovered by filtration. The amount of wastes can be reduced to thereby enabling to mitigate control for processing. (N.H.)

  10. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  11. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  12. Validation of structural design of JHR fuel element

    International Nuclear Information System (INIS)

    Brisson, S.; Miras, G.; Le Bourdonnec, L.; Lemoine, P.; Anselmet, M.C.; Marelle, V.

    2010-01-01

    The validation of the structural design of the Jules Horowitz Reactor fuel element was made by the Finite Element Method, starting from the Computer Aided Design. The JHR fuel element is a cylindrical assembly of three sectors composed of eight rolled fuel plates. A roll-swaging process is used to join the fuel plates to three aluminium stiffeners. The hydraulic gap between each plate is 1.95 mm. The JHR fuel assembly is fastened at both ends to the upper and lower endfittings by riveting. The main stresses are essentially thermal loads, imposed on the fuel zone of the plates. These thermal loads result from the nuclear heat flux (W/cm 2 ). The mechanical loads are mainly hydraulic thrust forces. The average coolant velocity is 15 m/s. Seismic effects are also studied. The fuel assembly is entirely modelled by thin shells. The model takes into account asymmetric thermal loads which often appear in Research Reactors. The mechanics of the fuel plates vary in function of the burn up. These mechanical properties are derived from the data sets used in the MAIA code, and the validity of the structure is demonstrable at throughout the life of the fuel. Results concerning displacement are compared to functional criteria, while results concerning stress are compared to RCC-MX criteria. The results of this analysis show that the mechanical and geometrical integrity of the JHR fuel elements is respected for Operating Categories 1 and 2. This paper presents the methodology of this demonstration for the results obtained. (author)

  13. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  14. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  15. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  16. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  17. Nuclear fuel element and a method of manufacture thereof

    International Nuclear Information System (INIS)

    Wood, J.C.

    1975-01-01

    A nuclear fuel element having a sheath of zirconium or a zirconium alloy and a cross-linked siloxane lacquer coating on the inner surface of the sheath and separating the nuclear fuel material from the sheath is described. The siloxane lacquer coating retards cracking of the sheath by iodine vapor emitted by the fuel during burn-up, and acts as a lubricant for the fuel to prevent rupture of the sheath by thermal ratchetting of the fuel against the sheath and caused by differential thermal expansion between the fuel and the sheath. A silicone grease is applied as a thin layer in the sheath and then baked so that oxidative cleavage of the side chains of the grease occurs to form a cross-linked siloxane lacquer coating bonded to the sheath

  18. Memory list for the ordering of nuclear fuel elements with UO2 fuel

    International Nuclear Information System (INIS)

    1977-01-01

    The memory list will help to simplify and speed up the technical procedure of fuel element supply for nuclear reactors. Operators of nuclear power plants take great interest in the latest state of thechnology, if sufficiently tested, being applied with regard to material, manufacturing and testing methods. In order to obtain an unlimited availability of the nuclear plant in the future, this application of technology should be taken care of when designing and producing fuel elements. When ordering fuel elements special attention should be drawn to the interdependence of reactor and fuel element with reqard to design and construction, about which, howevers, no further details are given. When ordering fuel elements the operator give the producer all design data of the reactor core and the fuel elements as well as the planned operation mode. He also hands in the respective graphs and the required conditions for design so that a correct and detailed offer can be supplied. An exemplary extent of supply is shown in the given memory list. The regulations required herefore on passing technical material to the fuel element producers have to be established by agreements made by the customer. The order to be given should be itemized as follows: requirements, quality controland quality assurance, warranties and conditions, limits and extent of supply, terms of delivery. (orig./HP) [de

  19. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  20. Fuel element production at BWX technologies

    International Nuclear Information System (INIS)

    Pace, Brett

    1997-01-01

    Effective July 1, 1997, the Government Group portion of the Babcock and Wilcox company was incorporated separately to become BWX Technologies, Inc. (BWXT) a wholly-owned subsidiary of the Babcock and Wilcox Company. The names of the divisions and other business units of the former Babcock and Wilcox Government Group (Advanced Systems Operations, Naval Nuclear Fuel Division, and Nuclear Equipment Division) will remain unchanged, but they are now known as divisions or business units of BWXT. The management of all units and their reporting relationships will likewise remain unchanged. (author)

  1. Production of pellets for nuclear fuel elements

    International Nuclear Information System (INIS)

    Butler, G.G.

    1982-01-01

    A method for producing nuclear fuel pellets each made up of a central portion and an outer annular portion surrounding the central portion, the two portions differing in composition. Such pellets are termed annular-layered pellets. The method comprises the steps of pressing powdered refractory material which has been granulated to form separately a central portion and an outer annular portion, assembling the portions together, compacting the assembly and sintering the compact. The portions are bonded together during sintering. The difference in composition may include a difference in density or isotopic enrichment as well as a chemical difference. (author)

  2. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    Ensinger, U.; Koehler, B.; Mester, W.; Riotte, H.G.; Sehrbrock, H.W.

    1988-01-01

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO 2 , MOX and HTR fuel elements. (orig./DG) [de

  3. Commercial Aspect of Research Reactor Fuel Element Production

    International Nuclear Information System (INIS)

    Susanto, B.G; Suripto, A

    1998-01-01

    Several aspects affecting the commercialization of the Research Reactor Fuel Element Production Installation (RR FEPI) under a BUMN (state-owned company)have been studied. The break event point (BEP) value based on total production cost used is greatly depending upon the unit selling price of the fuel element. At a selling price of USD 43,500/fuel element, the results of analysis shows that the BEP will be reached at 51% of minimum available capacity. At a selling price of US$ 43.500/fuel element the total income (after tax) for 7 years ahead is US $ 4.620.191,- The net present value in this study has a positive value is equal to US $ 2.827.527,- the internal rate of return will be 18% which is higher than normal the bank interest rare (in US dollar) at this time. It is concluded therefore that the nuclear research reactor fuel element produced by state-owned company BUMN has a good prospect to be sold commercially

  4. Finite element simulation of thermal, elastic and plastic phenomena in fuel elements

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    1999-01-01

    Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)

  5. In-pile tests of HTGR fuel particles and fuel elements

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Kolesov, V.S.; Deryugin, A.I.

    1985-01-01

    Main types of in-pile tests for specimen tightness control at the initial step, research of fuel particle radiation stability and also study of fission product release from fuel elements during irradiation are described in this paper. Schemes and main characteristics of devices used for these tests are also given. Principal results of fission gas product release measurements satisfying HTGR demands are illustrated on the example of fuel elements, manufactured by powder metallurgy methods and having TRISO fuel particles on high temperature pyrocarbon and silicon carbide base. (author)

  6. Mechanisms of the initial stage of fuel elements degradation of BN reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zagorul'ko, Yu.I.; Kashcheev, M.V.; Ganichev, N.S.

    2015-01-01

    On the base of developed calculational technique numerical evaluation is carried out to the time of fuel element fracture in conditions of loss of sodium flow through fuel element jacket. Data on mechanical properties of steel EhK-164 is used in calculations. Calculations are carried out for different conditions of jacket outer surface cooling: by sodium of 1073 K temperature, by boiling sodium and by sodium in condition of film boiling. It is shown that time to jacket fracture under considered rupture mechanisms essentially depends on fuel element cooling conditions [ru

  7. Performance and management of IPR-R1 fuel elements

    International Nuclear Information System (INIS)

    Stasiulevicius, R.; Maretti Junior, F.

    1983-01-01

    The performance of fuel elements during the 23 years of the reactor operation, is presented aiming to introduce improvements in the fuel load distribution and consequent increase of the reactivity. A computer code CORE was developed aiming to calculate the individual burnup of the fuel elements and the value of the reactivity for several core configurations, establishing a routine to control the nuclear material in the IPR-R1. The values calculated were compared with the experimental results. Some alternatives to augment the reactivity of the present core are presented foreseeing the fuel load availability for operation with 100Km and, for angmenting the power reaction in a next stage. (E.G.) [pt

  8. Fission product release from HTGR coated microparticles and fuel elements

    International Nuclear Information System (INIS)

    Gusev, A.A.; Deryugin, A.I.; Lyutikov, R.A.; Chernikov, A.S.

    1991-01-01

    The article presents the results of the investigation of fission products release from microparticles with UO 2 core and five-layer HII PyC- and SiC base protection layers of TRICO type as well as from spherical fuel elements based thereon. It is shown that relative release of short-lived xenon and crypton from microparticles does not exceed (2-3) 10 -7 . The release of gaseous fission products from fuel elements containing no damaged coated microparticles, is primarily determined by the contamination of matrix graphite with fuel. An analytical dependence is derived, the dependence described the relation between structural parameters of coated microparticles, irradiation conditions and fuel burnup at which depressurization of coated microparticles starts

  9. Calculating the plutonium in spent fuel elements

    International Nuclear Information System (INIS)

    Barnham, Keith

    1992-01-01

    Many members of the public are concerned about plutonium. They are worried about its environmental, health and proliferation risks. Fundamental to all such considerations are two related questions: how much plutonium do nuclear reactors produce ? and how accurately do the relevant authorities know these production figures ? These two questions have been studied with particular reference to the UK civil Magnox reactors. In 1990 these were still the only UK civil reactors whose spent fuel had been reprocessed to extract plutonium in routine production. It has not been possible to conclude that the relevant government industry and safeguard authorities are aware of how much plutonium these reactors produce and that the figures are known to the highest achievable accuracy. To understand why, this chapter will outline some of the history of the attempts to get answers to these two questions. (author)

  10. Method of making a graphite fuel element having carbonaceous fuel bodies

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1977-01-01

    Particulate nuclear fuel material, particulate carbon and pitch are combined with an additive which is effective to reduce the coke yield upon carbonization to mold a green fuel body. The additive may be polystyrene, a styrene-butadiene copolymer, an aromatic hydrocarbon having a molecular weight between about 75 and 300 or a saturated hydrocarbon polymer. The green fuel body is inserted in a complementary cavity within a porous nuclear fuel element body and heated in situ to decompose the pitch and additive, leaving a relatively close-fitting fuel body in the cavity

  11. The manufacture of LEU fuel elements at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  12. CONDOR: neutronic code for fuel elements calculation with rods

    International Nuclear Information System (INIS)

    Villarino, E.A.

    1990-01-01

    CONDOR neutronic code is used for the calculation of fuel elements formed by fuel rods. The method employed to obtain the neutronic flux is that of collision probabilities in a multigroup scheme on two-dimensional geometry. This code utilizes new calculation algorithms and normalization of such collision probabilities. Burn-up calculations can be made before the alternative of applying variational methods for response flux calculations or those corresponding to collision normalization. (Author) [es

  13. Analysis of the ATR fuel element swaging process

    International Nuclear Information System (INIS)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B ampersand W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF

  14. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  15. Properties of U3Si2-Al dispersion fuel element and its application

    International Nuclear Information System (INIS)

    Yin Changgeng

    2001-01-01

    The properties of U 3 Si 2 fuel and U 3 Si 2 -Al dispersion fuel element are introduced, which include U-loading; the banding quality, U-homogeneity and 'dog-bone' phenomenon, the minimum thickness of cladding and the corrosion performances. The fabrication technique of fuel elements, NDT for fuel plates, assemble technique of fuel elements and the application of U 3 Si 2 -Al dispersion fuel elements in the world are introduced

  16. Expert system for surveillance and diagnosis of breach fuel elements

    Science.gov (United States)

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  17. Expert system for surveillance and diagnosis of breach fuel elements

    International Nuclear Information System (INIS)

    Gross, K.C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor

  18. Design and research of fuel element for pulsed reactor

    International Nuclear Information System (INIS)

    Tian Sheng

    1994-05-01

    The fuel element is the key component for pulsed reactor and its design is one of kernel techniques for pulsed reactor. Following the GA Company of US the NPIC (Nuclear Power Institute of China) has mastered this technique. Up to now, the first pulsed reactor in China (PRC-1) has been safely operated for about 3 years. The design and research of fuel element undertaken by NPIC is summarized. The verification and evaluation of this design has been carried out by using the results of measured parameters during operation and test of PRC-1 as well as comparing the design parameters published by others

  19. Reactor fuel element heat conduction via numerical Laplace transform inversion

    International Nuclear Information System (INIS)

    Ganapol, Barry D.; Furfaro, Roberto

    2001-01-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  20. Reactor fuel element heat conduction via numerical Laplace transform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu

    2001-07-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  1. Experimental study of some mounting brackets to support fuel elements

    International Nuclear Information System (INIS)

    Aubert, M.; Poglia, S.; Roche, R.

    1958-09-01

    In an atomic pile with vertical channels, fuel elements are stacked on one another. According to a possible assembly, fuel element can be contained by a graphite sleeve and be supported by a mounting bracket in this sleeve. Sleeves are then stacked on one another. The authors report the investigation of different designs for these mounting brackets. They describe their mechanical role and their mechanical, aerodynamic, neutronic and test conditions. They report tests performed on brackets made in graphite and on brackets made in stainless steel and graphite, and discuss the obtained results

  2. Store for burnt-up fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Burnt-up fuel elements of nuclear reactors have to be cooled during storage. For this reason the boxes which surround the fuel elements can have cooling air flowing round them in natural flow. This air is taken through the walls of a storage building through zones of parallel pipes, whose diameter and spacing are in the ratio of 1 : 0.5 to 1 : 2. The pipes have dust filters. Prefilters with fan drive are situated in parallel with the inlet pipe zones. (orig.) [de

  3. Fuel element load/unload machine for the PEC reactor

    International Nuclear Information System (INIS)

    Clayton, K.F.

    1984-01-01

    GEC Energy Systems Limited are providing two fuel element load/unload machines for use in the Italian fast reactor programme. One will be used in the mechanism test facility (IPM) at Casaccia, to check the salient features of the machine operating in a sodium environment prior to the second machine being installed in the PEC Brasimone Reactor. The machine is used to handle fuel elements, control rods and other reactor components in the sodium-immersed core of the reactor. (U.K.)

  4. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  5. The source regime for irradiation plant operated with fuel elements

    International Nuclear Information System (INIS)

    Suckow, W.

    1976-11-01

    The rapid and irregular decay of the gamma radiation from reactor fuel elements requires the establishment of an optimal source regime in order to utilise reactor fuel elements as radiation sources on a technological basis. Critical values have been derived which enable the determination of optimal conditions. In this context all technologically interesting types of source regimes have been examined. Methods to achieve a high gamma yield and a satisfactory dose consistency with time have been developed and important values for these two aspects have been derived. The conditions for optimal radiation source regimes are described in the final conclusions. (author)

  6. Design and fabrication procedures of Super-Phenix fuel elements

    International Nuclear Information System (INIS)

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  7. Pyrochemical head-end treatment for fast reactor fuel elements

    International Nuclear Information System (INIS)

    Avogadro, A.

    1978-01-01

    The paper presents the R and D work performed at Ispra and Mol during the period 1965-1975 in order to find a way to overcome technical and economical difficulties arising when the conventional reprocessing is applied to fast reactor fuel elements. The work had been directed towards 3 specific topics: a) liquid-metal decladding of spent stainless steel - clad fuels (solinox process). b) oxidative pulverisation by fused salts and extraction of volatile fission products (satex process). c) Pyrochemical separation of plutonium from the bulk of the fuel

  8. Finite element analysis of advanced neutron source fuel plates

    International Nuclear Information System (INIS)

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles

  9. Drying damaged K West fuel elements (Summary of whole element furnace runs 1 through 8); TOPICAL

    International Nuclear Information System (INIS)

    LAWRENCE, L.A.

    1998-01-01

    N Reactor fuel elements stored in the Hanford K Basins were subjected to high temperatures and vacuum conditions to remove water. Results of the first series of whole element furnace tests i.e., Runs 1 through 8 were collected in this summary report. The report focuses on the six tests with breached fuel from the K West Basin which ranged from a simple fracture at the approximate mid-point to severe damage with cladding breaches at the top and bottom ends with axial breaches and fuel loss. Results of the tests are summarized and compared for moisture released during cold vacuum drying, moisture remaining after drying, effects of drying on the fuel element condition, and hydrogen and fission product release

  10. Neutronic analysis of a fuel element with variations in fuel enrichment and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Martins, Felipe; Velasquez, Carlos E.; Cardoso, Fabiano; Fortini, Angela; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In this work, the goal was to evaluate the neutronic behavior during the fuel burnup changing the amount of burnable poison and fuel enrichment. For these analyses, it was used a 17 x 17 PWR fuel element, simulated using the 238 groups library cross-section collapsed from ENDF/BVII.0 and TRITON module of SCALE 6.0 code system. The results confirmed the effective action of the burnable poison in the criticality control, especially at Beginning Of Cycle (BOC) and in the burnup kinetics, because at the end of the fuel cycle there was a minimal residual amount of neutron absorbers ({sup 155}Gd and {sup 157}Gd), as expected. At the end of the cycle, the fuel element was still critical in all simulated situations, indicating the possibility of extending the fuel burn. (author)

  11. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1980-01-01

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits

  12. Improved lumped parameter for annular fuel element thermohydraulic analysis

    International Nuclear Information System (INIS)

    Duarte, Juliana Pacheco; Su, Jian; Alvim, Antonio Carlos Marques

    2011-01-01

    Annular fuel elements have been intensively studied for the purpose of increasing power density in light water reactors (LWR). This paper presents an improved lumped parameter model for the dynamics of a LWR core with annular fuel elements, composed of three sub-models: the fuel dynamics model, the neutronics model, and the coolant energy balance model. The transient heat conduction in radial direction is analyzed through an improved lumped parameter formulation. The Hermite approximation for integration is used to obtain the average temperature of the fuel and cladding and also to obtain the average heat flux. The volumetric heat generation in fuel rods was obtained with the point kinetics equations with six delayed neutron groups. The equations for average temperature of fuel and cladding are solved along with the point kinetic equations, assuming linear reactivity and coolant temperature in cases of reactivity insertion. The analytical development of the model and the numeric solution of the ordinary differential equation system were obtained by using Mathematica 7.0. The dynamic behaviors for average temperatures of fuel, cladding and coolant in transient events as well as the reactor power were analyzed. (author)

  13. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  14. The permission of transport of irradiated nuclear fuel elements

    International Nuclear Information System (INIS)

    Klomberg, T.J.M.

    2000-01-01

    In July and October 2000 the Dutch government granted permits for the transportation of irradiated nuclear fuel elements. The environmental organization Greenpeace objected against the permit, but that was rejected by the Dutch Council of State. A brief overview is given of the judgements and the state-of-the-art with respect to the transportation of the elements from Dutch reactors and storage facilities in Petten, Dodewaard and Borssele to Cogema in La Hague, France and BNFL in Sellafield, England

  15. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  16. Safety analysis of LWR irradiated fuel element pool storages before reprocessing

    International Nuclear Information System (INIS)

    Lefort, G.; Leclerc, J.; Hoffman, A.; Frejaville, C.; Domage, M.

    1984-01-01

    The protection of operators and environment requires imperatively that the safety must be taken into account as early as the design of the pools takes place and working conditions are defined. The analysis of criticality, irradiation, contamination, external or internal aggression hazards... allows to draw the main constraints which must be retained in the sizing of these pools: the criticality risk needs distances between fuel elements which results in a not very good utilization of the available area which leads to the utilization of neutron shieldings or requires a safe knowledge of the fuel elements burn up; the irradiation and contamination risks require a special quality of the pool water (temperature, activity, purity...) a good tightness of the basins to locate and to isolate the dubions fuel elements; the external or internal aggression risks such as earthquakes, missiles or loads drops, explosion, imply the civil engineering and involve the use of special technical devices. A brief presentation of the pool storages of the next UP2-800 and UP3 A reprocessing plants allows to show how the requirement drawn by safety analysis have been enforced, while carrying out civil engineering works without equivalent in the world, in this field. The foreseeable evolution of the uranium enrichment rate and burn-up of next PWR fuel elements have an effect upon the risk evaluations; a device apparatus, developed in CEA, for the measurement of burn up and cooling time is presented. At least, a short presentation of the mechanical structure durability studies of the reception and storage spent fuels installations are allowed to improve our knowledge in working conditions and in case of serious accidents

  17. Review of fuel element development for nuclear rocket engines

    International Nuclear Information System (INIS)

    Taub, J.M.

    1975-06-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program involving uranium-loaded graphite fuels, hydrogen propellant, and a target exhaust temperature of approximately 2500 0 C. A very extensive uranium-loaded graphite fuel element technology evolved from the program. Selection and composition of raw materials for the extrusion mix had to be coupled with heat treatment studies to give optimum element properties. The highly enriched uranium in the element was incorporated as UO 2 , pyrocarbon-coated UC 2 , or solid solution UC . ZrC particles. An extensive development program resulted in successful NbC or ZrC coatings on elements to withstand hydrogen corrosion at elevated temperatures. Hot gas, thermal shock, thermal stress, and NDT evaluation procedures were developed to monitor progress in preparation of elements with optimum properties. Final evaluation was made in reactor tests at NRDS. Aerojet-General, Westinghouse Astronuclear Laboratory, and the Oak Ridge Y-12 Plant of Union Carbide Nuclear Company entered the program in the early 1960's, and their activities paralleled those of LASL in fuel element development. (U.S.)

  18. Fission product release from defected nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Lewis, B.J.

    1983-01-01

    The release of gaseous (krypton and xenon) and iodine radioactive fission products from defective fuel elements is described with a semi-empirical model. The model assumes precursor-corrected 'Booth diffusional release' in the UO 2 and subsequent holdup in the fuel-to-sheath gap. Transport in the gap is separately modelled with a phenomenological rate constant (assuming release from the gap is a first order rate process), and a diffusivity constant (assuming transport in the gap is dominated by a diffusional process). Measured release data from possessing various states of defection are use in this analysis. One element (irradiated in an earlier experiment by MacDonald) was defected with a small drilled hole. A second element was machined with 23 slits while a third element (fabricated with a porous end plug) displayed through-wall sheath hydriding. Comparison of measured release data with calculated values from the model yields estimates of empirical diffusion coefficients for the radioactive species in the UO 2 (1.56 x 10 -10 to 7.30 x 10 -9 s -1 ), as well as escape rate constants (7.85 x 10 -7 to 3.44 x 10 -5 s -1 ) and diffusion coefficients (3.39 x 10 -5 to 4.88 x 10 -2 cm 2 /s) for these in the fuel-to-sheath gap. Analyses also enable identification of the various rate-controlling processes operative in each element. For the noble gas and iodine species, the rate-determining process in the multi-slit element is 'Booth diffusion'; however, for the hydrided element an additional delay results from diffusional transport in the fuel-to-heath gap. Furthermore, the iodine species exhibit an additional holdup in the drilled element because of significant trapping on the fuel and/or sheath surfaces. Using experimental release data and applying the theoretical results of this work, a systematic procedure is proposed to characterize fuel failures in commercial power reactors (i.e., the number of fuel failures and average leak size)

  19. Temperature Analysis and Failure Probability of the Fuel Element in HTR-PM

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Tang Chunhe

    2014-01-01

    Spherical fuel element is applied in the 200-MW High Temperature Reactor-Pebble-bed Modular (HTR-PM). Each spherical fuel element contains approximately 12,000 coated fuel particles in the inner graphite matrix with a diameter of 50mm to form the fuel zone, while the outer shell with a thickness of 5mm is a fuel-free zone made up of the same graphite material. Under high burnup irradiation, the temperature of fuel element rises and the stress will result in the damage of fuel element. The purpose of this study is to analyze the temperature of fuel element and to discuss the stress and failure probability. (author)

  20. Fabrication of fuel elements interplay between typical SNR Mark Ia specifications and the fuel element fabrication

    International Nuclear Information System (INIS)

    Biermann, W.K.; Heuvel, H.J.; Pilate, S.; Vanderborck, Y.; Pelckmans, E.; Vanhellemont, G.; Roepenack, H.; Stoll, W.

    1987-01-01

    The core and fuel were designed for the SNR-300 first core by Interatom GmbH and Belgonucleaire. The fuel was fabricated by Alkem/RBU and Belgonucleaire. Based on the preparation of drawings and specifications and on the results of the prerun fabrication, an extensive interplay took place between design requirements, specifications, and fabrication processes at both fuel plants. During start-up of pellet and pin fabrication, this solved such technical questions as /sup 239/Pu equivalent linear weight, pellet density, stoichiometry of the pellets, and impurity content. Close cooperation of designers and manufacturers has allowed manufacture of 205 fuel assemblies without major problems

  1. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  2. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    Energy Technology Data Exchange (ETDEWEB)

    LeePhD, John [Aramco Services Company; TzanetakisPhD, Tom [Aramco Services Company; Travers, Michael [Aramco Services Company; Storey, John Morse [ORNL; DeBusk, Melanie Moses [ORNL; Lance, Michael J [ORNL; Partridge Jr, William P [ORNL

    2017-01-01

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modification to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.

  3. Neutron physical aspects of the storage of BWR fuel elements

    International Nuclear Information System (INIS)

    Woloch, F.; Sdouz, G.; Suda, M.

    1980-01-01

    For the storage of BWR fuel elements in a high density fuel rack using boronated steel absorbers and in a fuel rack with a larger pitch without absorber, criticality calculations are performed. The cooling water density is varied for the storage without absorbers. For the selected pitches of 16.5 cm for the high density fuel rack and 25 cm for the fuel rack without absorber respectively the ksub(infinitely) values of 0.933 and 0.748 are obtained. The dependence of the results on different calculational methods and on the influence of the variation of three important design parameters, i.e. of the concentration of boron, of the thickness of the boronated steel and of the watergap is investigated for the high density fuel rack. The average isothermal temperature coefficient is obtained for the high density fuel rack as -4.5 x 10 -40 sup(0)C -1 and as approx. 2.0 x 10 -40 sup(0)C -1 for the fuel rack without absorbers. For both ways of storage the aspects of safety of the results are discussed thoroughly. (orig.) 891 RW/orig. 892 CKA [de

  4. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  5. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  6. Design of JMTR high-performance fuel element

    International Nuclear Information System (INIS)

    Sakurai, Fumio; Shimakawa, Satoshi; Komori, Yoshihiro; Tsuchihashi, Keiichiro; Kaminaga, Fumito

    1999-01-01

    For test and research reactors, the core conversion to low-enriched uranium fuel is required from the viewpoint of non-proliferation of nuclear weapon material. Improvements of core performance are also required in order to respond to recent advanced utilization needs. In order to meet both requirements, a high-performance fuel element of high uranium density with Cd wires as burnable absorbers was adopted for JMTR core conversion to low-enriched uranium fuel. From the result of examination of an adaptability of a few group constants generated by a conventional transport-theory calculation with an isotropic scattering approximation to a few group diffusion-theory core calculation for design of the JMTR high-performance fuel element, it was clear that the depletion of Cd wires was not able to be predicted accurately using group constants generated by the conventional method. Therefore, a new generation method of a few group constants in consideration of an incident neutron spectrum at Cd wire was developed. As the result, the most suitable high-performance fuel element for JMTR was designed successfully, and that allowed extension of operation duration without refueling to almost twice as long and offer of irradiation field with constant neutron flux. (author)

  7. Design evaluation of the HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Strand, J.B.

    1978-06-01

    A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures

  8. Storage frame for long fuel elements for nuclear reactors

    International Nuclear Information System (INIS)

    Ristow, U.; Krainer, F.; Heinz, G.

    1986-01-01

    Vertical shafts with a cross section suitable for the fuel element cross section and made of metal can have corrugations for spacing from one another. These corrugations are machined parallel to the wall surface of the shafts. One thus obtains great accuracy of distancing. (orig./HP) [de

  9. Leakage monitoring equipment of fuel element by delayed neutron method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1999-01-01

    Based on monitoring results of delayed neutrons from reactor first circle water, the leakage of reactor fuel elements is monitored. A monitoring equipment consisted of an array of 3 He proportional counter tubes with 75 s delay has been developed. The neutron detection efficiency of 6.1% is obtained

  10. Fuel element database: developer handbook; Entwicklerhandbuch zur Brennelement-Datenbank

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M [Atominstitut der Oesterreichischen Universitaeten (Austria)

    2004-09-15

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  11. Facility for electrochemical dissolution of rejected fuel elements

    International Nuclear Information System (INIS)

    Deniskin, V.P.; Filatov, O.N.; Konovalov, E.A.; Kolesnikov, B.P.; Bukharin, A.D.

    2003-01-01

    A facility for electrochemical dissolution of rejected fuel elements with the stainless steel can and uranium of 90% enrichment is described. The start-adjustment works and trial-commercial tests of the facility are carried out. A s a result its technological parameters are determined [ru

  12. Fuel element transport container with a removable cover

    International Nuclear Information System (INIS)

    Dannehl, G.; Fink, W.; Haenle, G.

    1980-01-01

    The cover of the fuel element transport container is removably fixed with screws on a flange as mechanical loads have to be expected during the transfer to the disposal plant. A ring-shaped or star-shaped clamping device grips over the cover. It has a clamp claw to lock the cover and permits unscrewing without unlocking the cover. (DG) [de

  13. Competitive strength by rearrangement of fuel element activities

    International Nuclear Information System (INIS)

    Pekarek, H.

    1993-01-01

    The fuel element activities of Siemens AG and Siemens Power Corporation (SPC) were merged, in particular by creation of a world-wide manufacturing network; establishment of priorities in research and development; intensified standardization of products and processes; continued quality improvement by TQM (Total Quality Management), and by fusion of European marketing systems. (orig./DG) [de

  14. Holding device for gas-cooled reactor fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.

    1980-01-01

    The sheathed fuel elements of the GCFR are inserted with their pedestal in a grid plate arranged below the reactor core and are clamped there. The clamping force as well as the force required for hydraulic holding-down against the flow pressure of the coolant are applied through the differential pressure between inlet and outlet of the coolant. (DG) [de

  15. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  16. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  17. Poolside inspection, repair and reconstitution of LWR fuel elements

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the meeting was to review the state of the art in the area of poolside inspection, repair and reconstitution of light water fuel elements. In the present publication it appears that techniques of inspection, repair and reconstitution of fuel elements have been developed by fuel suppliers and are now routinely and successfully applied in many countries. For the first time, the subject of control rod poolside examination was dealt with, poolside inspection and repair of a MOX assembly were reported and the inspection and repair of WWER assemblies were examined. Compared to the results of the previous meeting, present developments in the area aim now at reaching better economics, better reliability, reduction of personal doses and waste volume. Thirty-six participants representing twelve countries attended the meeting. Fifteen papers were presented in two sessions. An abstract was prepared for each of these papers. Refs, figs, tabs, diagrams, pictures and photos

  18. Method to produce fuel element blocks for HTR reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The patent claim relates to one partial step of the multi-stage pressing process in the production of fuel elements. A binder resin with a softening point at least 15 0 C but preferably 25-40 0 C above the melting point of the lubricant is proposed. The pressed block is expelled from the forging die in the temperature interval between the melting point of the lubricant and the softening point of the binder resin. The purpose of the invention is that the pressed fuel element blocks are expelled from the machine tool without damage at a pressure low enough to protect the mechanical integrity of the coated fuel particles or fertile particles. (UA) [de

  19. Fuel element for high-temperature nuclear power reactors

    International Nuclear Information System (INIS)

    Schloesser, J.

    1974-01-01

    The fuel element of the HTGR consists of a spherical graphite body with a spherical cavity. A deposit of fissile material, e.g. coated particles of uranium carbide, is fixed to the inner wall using binders. In addition to the fissile material, there are concentric deposits of fertile material, e.g. coated thorium carbide particles. The remaining cavity is filled with a graphite mass, preferably graphite powder, and the filling opening with a graphite stopper. At the beginning of the reactor operation, the fissile material layer provides the whole power. With progressing burn-up, the energy production is taken over by the fertile layer, which provides the heat production until the end of burn-up. Due to the relatively small temperature difference between the outer wall of the outer graphite body and the maximum fuel temperature, the power of the fuel element can be increased. (DG) [de

  20. Reactor physics assessment of modified 37-element CANDU fuel bundles

    International Nuclear Information System (INIS)

    Pristavu, R.; Rizoiu, A.

    2016-01-01

    Reducing the central element diameter in order to improve the total flow area of CANDU fuel bundle and redistribute the power density of all remaining elements was studied in Canada and Korea when considering the effect of aging pressure tube diametral creep. The aim of this paper is to study the modified bundle behavior using the transport codes WIMS and DRAGON. In calculations, a WIMS nuclear data library on 172 energy groups was used. 2-D transport calculations were performed with WIMS and DRAGON, leading to similar results in estimated cell parameters. Additionally, 3-D DRAGON calculations were carried on in order to evaluate the local flux distribution shift, as well as the incremental cross sections for supercells containing modified CANDU bundles and reactivity devices. The overall effect of using modified fuel bundles was meaningless for both cell and supercell parameters, thus ensuring this possibility of fuel improvement for thermal-hydraulic purposes only. (authors)

  1. Heat diffusion in cylindrical fuel elements of water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1961-09-15

    This report contains a theoretical study of heat diffusion in the cylindrical fuel elements of water reactors. After setting up appropriate boundary conditions on the temperature, the steady state Fourier equation is solved both for a flat and a tilted fission power source. It is shown that source tilting does not have an appreciable effect on the peak fuel temperature while the heat flux to the coolant suffers a circumferential variation of less than a half of that of the fission power. In the last section, the theory is extended to include the effect of a flat, time dependent fission power. The time dependent Fourier equation is solved by means of a Dini series of Bessel functions which is shown to be rapidly convergent. From this series is derived expressions for the fuel element transfer functions required in reactor servo-analysis. These have the form of a rapidly convergent series of time-lag terms. (author)

  2. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  3. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  4. Gamma scanning of full scale HTR fuel elements

    International Nuclear Information System (INIS)

    Harrison, T.A.; Simpson, J.A.H.; Nabielek, H.

    1983-04-01

    Gamma scanning for the determination of burn-up and fission product inventory has been developed at the Dragon Project, suitable for measurements on fuel elements and segments from full-sized integral block elements. This involved the design and construction of a new lead flask with sophisticated collimator design. State-of-the art gamma spectrometric equipment was set up to cope with strong variations of count-rate and high data throughput. Software efforts concentrated on the calculation of the self absorption and absorption corrections in the complicated geometry of multi-hole graphite block segments with a corrugated circumference. The techniques described here are applicable to the non-destructive examination of a wide range of fuel element designs. (author)

  5. Effect of bundle junction face and misalignment on the pressure drops across a randomly loaded and aligned 12 bundles in CANDU fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Sim, K. S.; Chang, C. H.; Lee, Y. O. [Korea Atomic Energy Reaearch Institute, Taejon (Korea, Republic of)

    1996-06-01

    The pressure drop of twelve fuel bundle string in the CANDU-6 fuel channel is equal to the sum of the eleven junction pressure losses, the bundle string entrance and exit pressure losses, the skin friction pressure loss, and other appendage pressure losses, where the junction loss is dependent on the bundle and faces and angular alignments of the junctions. The results of the single junction pressure drop tests in a short rig show that the most probable pressure drop of the eleven junction was analytically equal to the eleven times of average pressure drop of all the possible single junction pressure drops, and also that the largest and smallest junction pressure drops across the eleven junctions probably occurred only with BA and BB type junctions, respectively, where A and B denote the bundle end sides with an end-plates on which a company monogram is stamped and unstamped, respectively. 5 refs., 7 figs., 1 tab. (author).

  6. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  7. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  8. Quality control procedures for HTGR fuel element components

    International Nuclear Information System (INIS)

    Delle, W.W.; Koizlik, K.; Luhleich, H.; Nickel, H.

    1976-08-01

    The growing use of nuclear reactors for the production of electric power throughout the world, and the consequent increase in the number of nuclear fuel manufacturers, is giving enhanced importance to the consideration of quality assurance in the production of nuclear fuels. The fuel is the place, where the radioactive fission products are produced in the reactor and, therefore, the integrity of the fuel is of utmost importance. The first and most fundamental means of insuring that integrity is through the exercise of properly designed quality assurance programmes during the manufacture of the fuel and other fuel element components. The International Atomic Energy Agency therefore conducted an International Seminar on Nuclear Fuel Quality Assurance in Oslo, Norway from 24 till 28 May, 1976. This KFA report contains a paper which was distributed preliminary during the seminar and - in the second part - the text of the oral presentation. The paper gives a summary of the procedures available in the present state for the production control of HTGR core materials and of the meaning of the particular properties for reactor operation. (orig./UA) [de

  9. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  10. Moisture transfer and pressure drop of humidifying elements made of non-woven fabric (Rayon/PET)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae-Hyun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    In modern buildings, humidity control is an essential constituent of the building management, where spray-type humidifying element is widely used. For the spray-type element, there is a concern about the durability and the resistance to formation of mold. In this study, we made new humidifying elements were made using non-woven fabric rayon/PET and investigated the moisture transfer and pressure drop characteristics. Samples consisted of two different rayon compositions (30 % and 50 %). From the results the sample with 50 % rayon and 50 % PET showed superior moisture transfer performance than the sample with 50 % Kraft fiber and 50 % PET, probably due to better water absorption characteristics of rayon over Kraft fiber. However, pressure drop of the rayon/PET sample was larger than Kraft fiber/PET sample due to increased surface roughness. The moisture transfer performance of the rayon/PET sample deteriorated as the rayon content decreased. The efficiency (j{sub m}/{sup f}1/3) was the largest for rayon/PET (5:5) sample, followed by Kraft fiber/PET and rayon/PET (3:7) sample. The efficiency of commercially available Glasdek was much lower than other samples.

  11. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  12. Equipment for detach the fuel elements of the irradiated candu fuel bundle

    International Nuclear Information System (INIS)

    Cojocaru, V.; Dinuta, G.

    2013-01-01

    Monitoring the behaviour of the fuel bundles during their combustion provides useful information for the operation of the nuclear power plant as well as for the fuel manufacturer. Before placing it inside the reactor, the fuel bundle is inspected visually, dimensionally and, during combustion in the reactor, its radioactive behaviour is monitored. The purpose of the presented equipment is to allow the visual external inspection of the damaged fuel bundle in order to identify visible defects and to detach the fuel element by breaking the welded connection between the cap and grid. These devices are operated using the handler devices already existing in the hot cells Post-Irradiation Examination Laboratory (LEPI). This equipment has been used successfully in the LEPI laboratory at SCN Pitesti to inspect the damaged fuel from Cernavoda NPP, in March 2013. (authors)

  13. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of nuclear electricity generation in Mexico in 1976 is described: two nuclear reactors were under construction but no definite programme on the type and start-up dates for the next power plants existed. However, the existence of a general plan on nuclear power plants is mentioned, which, according to the latest estimates, will provide 10,000MW installed by 1990. The national intention, as laid down in an appropriate Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reloading of the two BWRs at the first national station in Laguna Verde, required at the end of 1981 and 1982, respectively. Before this can be achieved and to provide the relatively small amounts of fuel elements for the two reactors, Mexico must adopt a strategy of fuel elements fabrication. The two main options are analysed: (1) to delay local fabrication until a national nuclear programme has been defined, meanwhile purchasing abroad the necessary initial cores and refuelling; (2) to start local fabrication of fuel elements as soon as possible in order to provide the first refuelling of the first unit of Laguna Verde, confronting the economic risks of such a decision with the advantages of immediate action. Both options are analysed in detail, comparing them especially from the economic point of view. Current information from potential licensors for design and manufacture are used in the analysis. (author)

  14. Fuel Element Mechanical Design for CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Estevez, Esteban; Markiewicz, Mario; Gerding, Jose

    2000-01-01

    The Fuel Element mechanical design and spider-control reactivity and security rods assembly for the CAREM-25 reactor is introduced. The CAREM-25 Fuel Element has a hexagonal cross section with 127 positions, in a triangular arrangement.There are 108 positions for the fuel rods while the guide tubes and instrumentation tube occupy the 19 remaining positions.From the structural point of view, the fuel element is being composed by a framework formed by the guides and instrumentation tubes, 4 spacer grids and the upper and lower coupling pieces.The spider is a plane piece, with a central body and six radial branches in T form, which has holes where the absorber rods are fitted.The central body ends in a joint in the upper side, which allows connect the assembly whit the reactor control mechanisms.The absorber rods are made of a neutron absorber material (Ag-In-Cd) hermetically closed in a stainless steel cladding. In this work are determined, in addition to the basic design, the operational conditions, the functional requirements to be satisfied and in agreement with those, the adopted criteria and limits to avoid systematics failure during normal operation conditions. The proposed program for the verification and evaluation of design is detailed.To consolidate the design, a prototype was manufactures, based on drawings and specifications needed for its construction

  15. The behaviour of spherical HTR fuel elements under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, W; Naoumidis, A [Institute for Reactor Material, KFA Juelich (Germany)

    1985-07-01

    Hypothetical accidents may lead to significantly higher temperatures in HTR fuel than during normal operation. In order to obtain meaningful statements on fission product behaviour and release, irradiated spherical fuel elements containing a large number of coated particles (20,000-40,000) with burnups between 6 and 16% FIMA were heated at temperatures between 1400 and 2500 deg. C. HTI-pyrocarbon coating retains the gaseous fission products (e.g. Kr) very well up to about 2400 deg. C if the burnup does not exceed the specified value for THTR (11.5%). Cs diffuses through the pyrocarbon significantly faster than Kr and the diffusion is enhanced at higher fuel burnups because of irradiation induced kernel microstructure changes. Below about 1800 deg. C the Cs release rate is controlled by diffusion in the fuel kernel; above this temperature the diffusion in the pyrocarbon coating is the controlling parameter. An additional SiC coating interlayer (TRISO) ensures Cs retention up to 1600 deg. C. However, the release obtained in the examined fuel elements was only by a factor of three lower than through the HTI pyrocarbon. Solid fission products added to UO{sub 2}-TRISO particles to simulate high burnup behave in various ways and migrate to attack the SiC coating. Pd migrates fastest and changes the SiC microstructure making it permeable.

  16. Use of plate fuel elements for the RA3 reactor

    International Nuclear Information System (INIS)

    Parodi, C.; Parkanski, D.; Higa, M.; Marajofsky, A.

    1992-01-01

    The RA3 reactor is a pool reactor, redesigned for 5 MW dissipation. Nineteen plates are used in each fuel element. The utilization of 20% enriched U, gives the possibility of the development of rod type fuel with Al/U 3 O 8 cermets. The thermohydraulic and neutronic conditions are studied in this work in order to satisfy the stipulated power. In addition, the fabrication conditions of Al/U 3 O 8 and Al/U 3 O 8 /Zr H 2 cermets with densities within the limits imposed by the thermohydraulics and neutronics conditions are studied. (author)

  17. Radial heat conduction in a power reactor fuel element

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1998-01-01

    Two radial conduction models, one for steady state and another for unsteady state, in a nuclear power reactor fuel element are developed. The objective is to obtain the temperatures in the fuel pellet and the cladding. The lumped-parameter hypothesis are adopted to represent the system. Both models are verified and their results are compared with similar ones. A method to calculate the conductance in the gap between the UO 2 pellet and the clad and its associated uncertainty is included in the steady state model. (author) [es

  18. Characteristics and behaviour of the PHENIX fuel element

    International Nuclear Information System (INIS)

    Delpeyroux, P.; Balloffet, Y.; Blanchard, P.; Courcon, P.; Jallade, M.; Millet, P.; Rousseau, J.; Carteret, Y.; Coulon, P.

    1977-01-01

    The Phenix reactor has been in regular industrial operation for two years and has functioned very satisfactorily thanks in particular to the very good behaviour of the fuel element. A brief description is given of the fuel element and the operating conditions which were set for the fuel at the time of start-up (50000 MWd/t). The surveillance scheme is then described with the examinations in the hot laboratory on the basis of which it was possible to achieve the nominal specific burn-up and then to clear the Phenix fuel for a specific burn-up of 60000 MWd/t or 7 at.%. The behaviour of the mixed oxide (U, Pu)O 2 is quite normal and conforms to predictions as regards the heat conditions, swelling and fission gas release. The corrosion reaction between the oxide and the clad is progressing slowly and affects only small thicknesses of cladding. The mechanical integrity of the clad under thermal stresses and the stresses produced by swelling and fission gas pressure do not pose any special problem. The present limitation of the irradiation level is essentially based on the permissible deformations due to swelling and irradiation creep in the fuel pin cladding and in the hexagonal tube. This corresponds to damage to the steel of the order of 80 dpa. The mechanical behaviour of the bundle of pins, its interaction with the hexagonal tube and the thermohydraulic consequences of the deformations are all satisfactory to date. The absence of fuel failures is also worth noting; the only burst can detected to date did not affect either the operation of the fuel assembly or the performance of the reactor [fr

  19. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  20. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  1. Cumulative damage fraction design approach for LMFBR metallic fuel elements

    International Nuclear Information System (INIS)

    Johnson, D.L.; Einziger, R.E.; Huchman, G.D.

    1979-01-01

    The cumulative damage fraction (CDF) analytical technique is currently being used to analyze the performance of metallic fuel elements for proliferation-resistant LMFBRs. In this technique, the fraction of the total time to rupture of the cladding is calculated as a function of the thermal, stress, and neutronic history. Cladding breach or rupture is implied by CDF = 1. Cladding wastage, caused by interactions with both the fuel and sodium coolant, is assumed to uniformly thin the cladding wall. The irradiation experience of the EBR-II Mark-II driver fuel with solution-annealed Type 316 stainless steel cladding provides an excellent data base for testing the applicability of the CDF technique to metallic fuel. The advanced metal fuels being considered for use in LMFBRs are U-15-Pu-10Zr, Th-20Pu and Th-2OU (compositions are given in weight percent). The two cladding alloys being considered are Type 316 stainless steel and a titanium-stabilized Type 316 stainless steel. Both are in the cold-worked condition. The CDF technique was applied to these fuels and claddings under the assumed steady-state operating conditions

  2. Design and operational behaviour of the SNR-reactor fuel element structure

    International Nuclear Information System (INIS)

    Dietz, W.; Toebbe, H.

    1985-01-01

    The fuel element and core concept of a fast breeder reactor is described by the example of the SNR 300 (1st core), and the requirements made on the fuel elements with respect to burnup and neutron dose are listed for existing and projected plants. Irradiation experiments carried out and operational experience gained with fuel elements show that the residence time of the fuel elements is influenced mainly by the stability of shape of the fuel element components. The requirements made with reference to neutron loading for future advanced high-performance fuel elements can not be anticipated from the present state of experience. Besides optimization of fuel element design and checking-out of the limits of operation by PFADFINDERELEMENTE elements, R and D work for the improvement of fuel element materials is also necessary. (orig.) [de

  3. Hydraulic modelling of the CARA Fuel element; Desarrollo hidraulico del combustible CARA

    Energy Technology Data Exchange (ETDEWEB)

    Brasnarof, Daniel O; Juanico, Luis [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Disenios Avanzados y Evaluacion Economica; Giorgi, M [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; Ghiselli, Alberto M; Zampach, Ruben; Fiori, Jose M; Yedros, Pablo A [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Ensayos no Destructivos

    2004-07-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10{sup 4} and 1,5x10{sup 5}) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [Spanish] Con el objeto de validar la similitud hidraulica del elemento combustible CARA con los actuales combustibles de Atucha y Embalse, se realizaron ensayos de perdida de carga en el circuito CBP del CAC con un nuevo diseno de separador de mejor desempeno hidraulico. Se presenta aqui el analisis de los mismos, de los cuales se validaron modelos de base racional para estimar las restricciones hidraulicas de los distintos componentes estructurales (separadores, grillas y barras combustibles) en funcion del flujo refrigerante. Se estimo asi la caida de presion del CARA dentro del canal combustible Embalse en condiciones nominales de reactor, siendo la misma similar al del combustible actual de 37 barras. (autor)

  4. Finite element analysis of optimized H shape spring in a nuclear fuel spacer grid by using contact definition

    International Nuclear Information System (INIS)

    Kim, Jae-Yong; Yoon, Kyung-Ho

    2007-01-01

    The primary role of the grid springs in spacer grid is to hold the fuel rods in an appropriate position using friction force and to prevent the fuel rods dropping during reactor operation. The spring force decreases as the fuel burn-up increases since the spring stiffness is degraded due to the high temperature and the irradiation effect in the reactor core. So this phenomenon has to be considered when the initial spring force of grid spring is designed. To check whether the spring have suitable spring force, the characterization test of spring is conducted. In this paper, finite element analysis using contact definition is established for prediction the spring stiffness without test. The test and analysis results are compared to check the availability of finite element model for investing the spring characteristics in assembly condition. (author)

  5. The industrial production of fuel elements; La fabrication en france des elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Nadal, J [Societe Industrielle de Combustible Nucleaire (SICN), 75 - Paris (France); Pellen, A [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques (CERCA), 75 - Paris (France)

    1964-07-01

    The authors deal successively with the industrial production of fuel elements for power reactors of the natural uranium-graphite-gas type, and more particularly for the EDF power stations, and with the industrial production of fuel elements containing enriched uranium designed for swimming-pool type reactors. 1. part: advanced fuel elements for the EDF reactors. After recalling the characteristics of the fuel elements now being produced industrially for the Marcoule and Chinon reactors, the authors give the various steps leading to the industrial production of a new type of fuel element both as concerns the can, and in certain cases the graphite sleeve, and the fuel itself. As for as the production of the fuel is concerned, they describe the various operations, stressing the original aspects of the production and of the equipment such as: - casting in hot moulds, - thermal treatments, of Uranium containing 1% in weight molybdenum, - welding of the pellets for closing the tubes of uranium, - canning, - controls in the various steps. As far as can production is concerned they show why the extruded can was replaced by a machined can and give a few characteristics of the equipment used as well as the controls effected. They give also some details concerning the production and machining of the sleeves. After recalling the state of the nuclear fuel industry in France in mid-1964 the authors stress the economic aspects of the production of fuel elements. They show the relative importance of capital costs on the cost price of the fuel itself and examine the various items involved. They analyse the cost price of a completed fuel element using present date knowledge. In conclusion the authors show the particular points which should be the subject of future efforts in order to decrease the cost of a production which is perhaps delicate but now will define, and review the development of this new industrial branch. 2. part: industrial production of fuel elements for swimming

  6. Block fuel element for gas-cooled high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.F.

    1978-01-01

    The invention concerns a block fuel element consisting of only one carbon matrix which is almost isotropic of high crystallinity into which the coated particles are incorporated by a pressing process. This block element is produced under isostatic pressure from graphite matrix powder and coated particles in a rubber die and is subsequently subjected to heat treatment. The main component of the graphite matrix powder consists of natural graphite powder to which artificial graphite powder and a small amount of a phenol resin binding agent are added

  7. A procedure validation for high conversion reactors fuel elements calculation

    International Nuclear Information System (INIS)

    Ishida, V.N.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The present work includes procedure validation of cross sections generation starting from nuclear data and the calculation system actually used at the Bariloche Atomic Center Reactor and Neutrons Division for its application to fuel elements calculation of a high conversion reactor (HCR). To this purpose, the fuel element calculation belonging to a High Conversion Boiling water Reactor (HCBWR) was chosen as reference problem, employing the Monte Carlo method. Various cases were considered: with and without control bars, cold of hot, at different vacuum fractions. Multiplication factors, reaction rates, power maps and peak factors were compared. A sensitivity analysis of typical cells used, the approximations employed to solve the transport equation (Sn or Diffusion), the 1-D or 2-D representation and densification of the spatial network used, with the aim of evaluating their influence on the parameters studied and to come to an optimum combination to be used in future design calculations. (Author) [es

  8. Fuel element gamma scanning at the Oak Ridge Research Reactor

    International Nuclear Information System (INIS)

    Hobbs, R.W.

    1987-01-01

    In January 1986, a demonstration program was begun at the Oak Ridge Research Reactor (ORR) to convert operations from high-enrichment uranium fuel to the newly developed U 3 Si 2 low-enrichment fuel. A primary program objective is to validate neutronics calculations conducted by the Reduced Enrichment in Research and Test Reactors Program at Argonne National Laboratory. Accordingly, a new method for determining core-power distribution has been developed. The method is based on gamma-ray spectroscopy measurements to determine the relative levels of 140 La in the fuel elements after each operating cycle. The measurement and data analyses are described and a comparison of measured and diffusion theory calculated values of the core-power distribution is presented in this paper

  9. Fuel elements for pressurised-gas reactors; Elements combustibles des piles a gaz sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Englander, M; Gauthron, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The design and fabrication of fuel elements for the first CO{sub 2} pressurized reactors have induced to investigate: various cladding materials, natural uranium base fuels, canning processes. The main analogical tests used in connection with the fuel element study are described. These various tests have enabled, among others, the fabrication of the fuel element for the EL2 reactor. Lastly, future solutions for electrical power producing reactors are foreseen. (author)Fren. [French] L'etude et la realisation d'elements combustibles pour les premieres piles a CO{sub 2} sous pression ont conduit a examiner: les divers materiaux de gaine, les combustibles a base d'uranium naturel, les modes de gainage. Les principaux essais analogiques ayant servi au cours de l'etude de la cartouche sont decrits. Ces divers essais ont notamment permis la realisation de la cartouche de la pile EL2. Enfin sont envisagees les solutions futures pour les piles productrices d'energie electrique. (auteur)

  10. CARA CVN: inherently safe fuel element for PHWR power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Lestani, Hector A.; Agueda, Horacio C.; Marino, Armando C.; Florido, Pablo C.; Daverio, Hernando

    2007-01-01

    This paper presents design alternatives of the CARA fuel element with negative void reactivity coefficient (CVN) enhancing the PHWR safety for L-LOCA sequences. This design enhances the safety and the operation performance in Atucha and Embalse without changes in the operation conditions. This new design balances wide performance margins of CARA SEU 0.9% previous design, with new intrinsic safety requirements without economic penalties. (author) [es

  11. Quality assurance in nuclear fuel element component supply

    International Nuclear Information System (INIS)

    Jenkins, B.P.

    1987-01-01

    The paper describes the application of Quality Assurance to nuclear fuel element component supply. The Quality Assurance programme includes integrated procurement, purchasing, surveillance and receipt inspection functions. Purchasing policy is based on a consistent preference for competitive tendering. Multiple sourcing is used to encourage competitive pricing and increase security of supply. A receipt inspection facility is maintained to ensure the high product quality levels demanded by the nuclear industry. (U.K.)

  12. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Quihillalt, O.J.

    1993-01-01

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  13. Design verification testing for fuel element type CAREM

    International Nuclear Information System (INIS)

    Martin Ghiselli, A.; Bonifacio Pulido, K.; Villabrille, G.; Rozembaum, I.

    2013-01-01

    The hydraulic and hydrodynamic characterization tests are part of the design verification process of a nuclear fuel element prototype and its components. These tests are performed in a low pressure and temperature facility. The tests requires the definition of the simulation parameters for setting the test conditions, the results evaluation to feedback mathematical models, extrapolated the results to reactor conditions and finally to decide the acceptability of the tested prototype. (author)

  14. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  15. Present status and further objectives of SNR fuel element development

    International Nuclear Information System (INIS)

    Karsten, G.

    Within the scope of the fuel element development program for the fast breeder reactor SNR 300, 500 fuel pins have been irradiated since 1964, 250 of them in fast flux. Results indicate that the maximum nominal target burnup of 90.000 MWd/t of the SNR 300 Mk Ia possibly can be reached. The main problems, which arise from clad swelling and internal corrosion, can be met by special pretreatments of the austenitic stainless steel 1.4970 and a fuel stoichiometry of 1.97. Beyond this target burnup either material property improvements have to be made or burnup reductions have to be accepted. The remaining questions can be answered by the use of the SNR 300 as a test reactor. A further target is the development of a carbide fuel element, which should be very effective in a high power breeder reactor because of its low fissile inventory and high breeding gain. This development program will also be finalized in the SNR 300. (U.S.)

  16. Cooling flow measurement in fuel elements of the RA-6

    International Nuclear Information System (INIS)

    Brollo, F; Silin, N

    2009-01-01

    Under the UBERA6 project for the core change and power increase of the RA-6 reactor, the total coolant flow was increased to meet the requirements imposed by the new operating conditions. The flow through the fuel elements is an important parameter and is difficult to determine due to the geometric complexity of the core. To ensure safe operation of the reactor, adequate safety margins must be kept for all operating conditions. In the present work we performed the direct measurement of the cooling flow rate of a fuel in the reactor core, for which we used a turbine flowmeter built specifically for this use. This helped to confirm previous results obtained during the launch, made by an indirect method based on measuring the pressure difference of the core. The turbine flowmeter was chosen due to its robustness, ease of operation and low disturbance of the input stream to the fuel. We describe the calibration of this instrument and the results of flow measurements made on some of the RA6 reactor fuel elements under conditions of zero power. [es

  17. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    Knight, R.W.; Morin, R.A.

    1999-01-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U 3 O 8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  18. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  19. Inspection of fuel elements in the cooling pond of a research reactor

    International Nuclear Information System (INIS)

    Pavlov, S.V.; Mestnikov, A.V.

    1992-01-01

    Nondestructive testing methods for fuel bundles and fuel elements in the cooling ponds of atomic power plants, using special inspection stands, have come into widespread use during the past decade. This paper describes a methodological stand that was built for the laboratory development of methods and individual units of inspection stands for fuel bundles of RBMK and VVER-1000 reactors. A complex of equipment was developed for the study of irradiated fuel elements, thus creating a methodological base for developing techniques for nondestructive testing of irradiated fuel elements and equipment to obtain information about the state of the fuel elements in a reactor expeditiously. The time required to inspect a fuel element can be shortened using some techniques simultaneously. The length of a fuel element can be measured simultaneously with visual inspection, eddy-current flaw detection can be preformed at the same time as the tranverse size of the fuel element is being determined. 6 refs., 5 figs

  20. Development of experimental methods for measuring fuel elements burnup

    International Nuclear Information System (INIS)

    PEREDA, C; HENRIQUEZ, C; NAVARRO, G; TORRES, H; KLEIN, J; CALDERON, D; MEDEL, J; MUTIS, O; DAIE, J; ITURRIETA, L; LONCOMILLA, M; ZAMBRANO, J; KESTELMAN, A

    2003-01-01

    This paper is a summary of the work carried out during the last two years in fuel burning measurements at RECH-1 for different enrichments, cooling times and burning rates. The measurements were made in two gamma-spectrometric facilities, one is installed in a hot cell and the other inside of the secondary pool of the RECH-1, where the element is under 2 meters of water. The hot cell measurements need at least 100 cooling days because of the problems generated by the transport of highly active fuel elements from the Reactor to the cell. This was the main reason for using the in-pool facility because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days. The accumulated experience in measurements achieved in both facilities and the encouraging results show that this measuring method is reliable. The results agreed well with those obtained using the reactor's physics codes, which was the way they were obtained previously (Cw)

  1. Behavior of LWR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    In the frame of the German reactor safety research program, the Kernforschungszentrum Karlsruhe is carrying out a comprehensive program on the behavior of LWR fuel elements under a variety of power cooling mismatch conditions in particular during loss-of-coolant accidents. The major objectives are to establish a detailed quantitative understanding of fuel rod failures mechanisms and their thresholds, to evaluate the safety margins of power reactor cores under accident conditions and to investigate the feedback of fuel rod failures on the efficiency of emergency core cooling systems. This detailed quantitative understanding is achieved through extensive basic and integral experiments and is incorporated in a fuel behavior code. On the basis of these results the design of power reactor fuel elements and of safety devices can be further improved. The results of investigations on the inelastic deformation (ballooning) behavior of Zircaloy 4 cladding at LOCA temperatures in oxidizing atmosphere are presented. Depending upon strain rate and temperature superplastic deformation behavior was observed. In the equation of state of Zry 4 the strain rate sensitivity index depends strongly upon strain and in the superplastic region upon sample anisotropy. Oxidation kinetics experiments with Zry-tubes at 900-1300 0 C showed that the Baker-Just correlation describes the reality quite conservative. Therefore a reduction of the amount of Zry oxidation can be assumed in the course of a LOCA. The external oxidation of Zry-cladding by steam as well as internal oxidation by the oxygen in oxide fuel and fission products (Cs, I, Te) have an influence on the strain and rupture behavior of Zry-cladding at LOCA temperatures. In out-of-pile and inpile experiments the mechanical and thermal behavior of fuel rods during the blowdown, the heatup and the reflood phases of a LOCA are investigated under representative and controlled thermohydraulic conditions. The task of the inpile experiments is

  2. Water reactor fuel element fabrication, with special emphasis on its effects on fuel performance

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The performance of nuclear fuel has improved over the years and is now a minor cause of outages and of power limitations in nuclear power plants. On the other hand, an increasing number of countries are in the process of developing or implementing their own capability for manufacturing fuel elements. In this context, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) advised that a symposium be organized devoted to the relationship between fuel fabrication and performance The Czechoslovak Atomic Energy Commission agreed to co-operate in the organization of this symposium and to host it in Prague. Those factors which influence fuel fabrication requirements are now well ascertained: as little reactor primary circuit contamination as possible, the tendency to increased burnups, reactor manoeuverability to match power grid demands, the desirability of an autonomous fabrication capability. It is the general experience of fuel element suppliers that fuel quality and performance has increased over the years, the importance of quality assurance and process monitoring has been decisive in this respect The ever increasing mass-production aspect of nuclear fuel leads to some processing steps being revised and alternatives being developed. The relation between fabrication processes and fuel performance characteristics, although generally well perceived, are still the subject of a large amount of experiment and assessment in most countries, both industrial and developing This evidence is most encouraging; it means indeed that nuclear power, which is already amongst the cheapest and safest sources of energy, will continue to be improved. The performance of Zircaloy fuel cladding - presently the material used in most water reactors - is under particular consideration. Better understanding of this quite recent alloy will pave the way for broader fuel utilization limits in the future. The panel discussion, which noted some

  3. A novel microbial fuel cell sensor with biocathode sensing element.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-08-15

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA% -1 cm -2 ) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA% -1 cm -2 ). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nuclear reactor fuel element containing an end piece for maintaining the column of fuel pellets

    International Nuclear Information System (INIS)

    Pajot, Jacques; Rabellino, Jacques.

    1974-01-01

    The nuclear reactor fuel element described has an end piece for maintaining the column of fuel pellets in position inside the element cladding. This end piece has a central compression spring one end of which presses against the pellets and the other against a plug shaped piece fitted with a seat for the spring, a conical piece with an elastic ring around it diverging towards the end in contact with the spring and a head at the opposite end. The connection between the compression spring and the pellets is through an application piece. A central bore provided in the end piece helps balance the pressure inside the element. This element is particularly intended for liquid metal cooled fast neutron reactors [fr

  5. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  6. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  7. Remote real time x-ray examination of fuel elements in a hot cell environment

    International Nuclear Information System (INIS)

    Yapuncich, F.L.

    1993-01-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin

  8. Process for changing fuel elements of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Fleischmann, R.; Rau, P.

    1986-01-01

    In order to change fuel elements, a water-filled duct can be installed between the rector pressure vessel and a space for accommodating the fuel elements. The fuel elements are transported there under water by a fuelling machine. The duct is installed as watertight connection closed on all sides between the reactor pressure vessel and a fuel element transport container brought close to it. The fuelling machine works in this duct. (orig./HP) [de

  9. Nuclear fuel rod grid spring and dimple structures having chamfered edges for reduced pressure drop

    International Nuclear Information System (INIS)

    De Mario, E.E.

    1990-01-01

    This patent describes a nuclear fuel rod grid including inner and outer straps being interleaved with one another to form a matrix of hollow cells, each cell for receiving one fuel rod and being defined by pairs of opposing wall sections of the straps which wall sections are shared with adjacent cells, each cell having a central longitudinal axis defining a coolant flow direction through the cell, at least fuel rod engaging dimple structure of resiliently yieldable material being integrally formed on each wall section of the inner straps

  10. Fuel Element Experience at the Halden Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aas, S. [OECD Halden Reactor Project, Halden (Norway); Videm, K.; Hanevik, A. [Institutt for Atomenergi, Kjeller (Norway)

    1968-04-15

    The penalty for neutron absorbing materials is higher for a reactor moderated with heavy water than one with light water. As Zircaloy and enriched uranium were not readily available in 1954 when the design of the first fuel charge for HBWR was frozen, fuel elements of natural uranium metal clad in a specially developed aluminium alloy (A 1 0.3% Fe, 0.03% Si) were used. The temperature was limited to 150 Degree-Sign C and with this limitation the general behaviour of the elements was good. In I960, in another effort to maintain a good neutron economy, a couple of elements with as thin cladding as 0.25 mm A1S1 316, stainless steel with an unsegmented length of 2 m supported by wire grid spacers were tested. These elements with 1.5% enriched UO{sub 2} behaved satisfactorily at 150'C. Elements of a rather similar construction failed due to stress corrosion during the later operation at 230 'C. The reason for the different behaviour is probably the higher stresses in the cladding, due to the increased pressure, possibly combined with a short period with a high chloride content in the heavy water. The second fuel core with 1.5% enriched UO{sub 2} clad in Zircaloy-2 was installed in order to permit an increase in temperature to 230 Degree-Sign C and in power from 5 to 20 MW(th). The maximum burnup obtained is 11000 MWd/t and the maximum heat rating 375 W/cm with no fracture failure and practically no change in appearance according to the post-irradiation examination. One element was deliberately taken to burn-out conditions by throttling the water flow. After a series of burn-outs, the element finally failed because of over-temperature. The successful use of aluminium cladding at 150 Degree-Sign C mitiated an effort for making aluminium alloys suitable for normal power reactor operation. Promising properties were found for an alloy (designated IFA 3 aluminium) with A1 10% Si, 1% Ni, 1% Mg, 0.3% Fe + Ti. Despite increase in corrosion rate under heat transfer conditions

  11. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  12. Fuel-to-cladding heat transfer coefficient into reactor fuel element

    International Nuclear Information System (INIS)

    Lassmann, K.

    1979-01-01

    Models describing the fuel-to-cladding heat transfer coefficient in a reactor fuel element are reviewed critically. A new model is developed with contributions from solid, fluid and radiation heat transfer components. It provides a consistent description of the transition from an open gap to the contact case. Model parameters are easily available and highly independent of different combinations of material surfaces. There are no restrictions for fast transients. The model parameters are fitted to 388 data points under reactor conditions. For model verification another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. The fluid component takes into account peak-to-peak surface roughnesses and, approximatively, also the wavelengths of surface roughnesses. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Experimental contact data can be interpreted in very different ways. The new model differs greatly from Ross' and Stoute's contact term and results in better correlation coefficients. The numerical algorithm provides an adequate representation for calculating the fuel-to-cladding heat transfer coefficient in large fuel element structural analysis computer systems. (orig.) [de

  13. Design of the Fuel Element for the RRR Reactor (Australia)

    International Nuclear Information System (INIS)

    Estevez, E.A.; Markiewicz, M.E.; Gerding, R.

    2003-01-01

    The supply to the Replacement Research Reactor ( RRR ) to Australia represents a technological goal for our country, as much for the designers and manufacturers of this irradiation facility ( Invap SE ), as well for the responsibles of the fuel elements ( FE ) design and the suppliers of the first core ( CNEA ).In relation with the FE, although the conceptual design and fabrication technology of the FE are similar to the just developed and qualified by CNEA ( plane plates MTR fuel type ), the characteristics of this new reactor imposes most severe operation conditions on them than in previous supplies.In that sense, two distinguishing characteristics deserve to be shown: a) The magnitude of the hydrodynamics loads acting on the FE due to the coolant ascendent flow direction, and mainly, the very high flow velocities between the fuel plates ( aproximately five times higher than which presents in others Argentine FE actually in operation. b) The use of U3Si2 as fuel material.CNEA has started a programme to qualify this type of fuel.As result of these higher loads under irradiations and with the objective to maintain the high reliability level reached by our FE ( very low failure rates ), it was necessary to introduce FE mechanical-structural design modifications respect to the ECBE or standard design version, and to verify these changes through hydrodynamics tests on a 1:1 scale prototype.In this paper it is described the mechanical-structural FE design with special emphasis in the innovatives aspects incorporated.The design criteria established in function of the solicitations and limitating effects present under irradiation conditions.Also, a brief description of the proposed programme to verify and evaluate this design is presented, including analytical and numerical calculus of stresses acting on the fuel plates and others FE components, pressure loss hydrodynamics tests and endurance essays

  14. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing.

    Science.gov (United States)

    Ariza, O; Gilchrist, S; Widmer, R P; Guy, P; Ferguson, S J; Cripton, P A; Helgason, B

    2015-01-21

    Current screening techniques based on areal bone mineral density (aBMD) measurements are unable to identify the majority of people who sustain hip fractures. Biomechanical examination of such events may help determine what predisposes a hip to be susceptible to fracture. Recently, drop-tower simulations of in-vitro sideways falls have allowed the study of the mechanical response of the proximal human femur at realistic impact speeds. This technique has created an opportunity to validate explicit finite element (FE) models against dynamic test data. This study compared the outcomes of 15 human femoral specimens fractured using a drop tower with complementary specimen-specific explicit FE analysis. Correlation coefficient and root mean square error (RMSE) were found to be moderate for whole bone stiffness comparison (R(2)=0.3476 and 22.85% respectively). No correlation was found between experimentally and computationally predicted peak force, however, energy absorption comparison produced moderate correlation and RMSE (R(2)=0.4781 and 29.14% respectively). By comparing predicted strain maps to high speed video data we demonstrated the ability of the FE models to detect vulnerable portions of the bones. Based on our observations, we conclude that there exists a need to extend the current apparent level material models for bone to cover higher strain rates than previously tested experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Behavior of mixed-oxide fuel elements during the TOPI-1E transient overpower test

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.; Yamamoto, K.; Hirai, K.; Shikakura, S.

    1993-12-01

    A slow-ramp, extended overpower transient test was conducted on a group of nineteen preirradiated mixed-oxide fuel elements in EBR-II. During the transient two of the test elements with high-density fuel and tempered martensitic cladding (PNC-FMS) breached at an overpower of ∼75%. Fuel elements with austenitic claddings (D9, PNC316, and PNC150), many with aggressive design features and high burnups, survived the overpower transient and incurred little or no cladding strain. Fuel elements with annual fuel or heterogeneous fuel columns also behaved well

  16. Determination of heterogeneous medium parameters by single fuel element method

    International Nuclear Information System (INIS)

    Veloso, M.A.F.

    1985-01-01

    The neutron pulse propagation technique was employed to study an heterogeneous system consisting of a single fuel element placed at the symmetry axis of a large cylindrical D 2 O tank. The response of system for the pulse propagation technique is related to the inverse complex relaxation length of the neutron waves also known as the system dispersion law ρ (ω). Experimental values of ρ (ω) were compared with the ones derived from Fermi age - Diffusion theory. The main purpose of the experiment was to obtain the Feinberg-Galanin thermal constant (γ), which is the logaritmic derivative of the neutron flux at the fuel-moderator interface and a such a main input data for heterogeneous reactor theory calculations. The γ thermal constant was determined as the number giving the best agreement between the theoretical and experimental values of ρ (ω). The simultaneous determination of two among four parameters η,ρ,τ and L s is possible through the intersection of dispersion laws of the pure moderator system and the fuel moderator system. The parameters τ and η were termined by this method. It was shown that the thermal constant γ and the product η ρ can be computed from the real and imaginary parts of the fuel-moderator dispersion law. The results for this evaluation scheme showns a not stable behavior of γ as a function of frequency, a result not foreseen by the theoretical model. (Author) [pt

  17. The prediction problems of VVER fuel element cladding failure theory

    International Nuclear Information System (INIS)

    Pelykh, S.N.; Maksimov, M.V.; Ryabchikov, S.D.

    2016-01-01

    Highlights: • Fuel cladding failure forecasting is based on the fuel load history and the damage distribution. • The limit damage parameter is exceeded, though limit stresses are not reached. • The damage parameter plays a significant role in predicting the cladding failure. • The proposed failure probability criterion can be used to control the cladding tightness. - Abstract: A method for forecasting of VVER fuel element (FE) cladding failure due to accumulation of deformation damage parameter, taking into account the fuel assembly (FA) loading history and the damage parameter distribution among FEs included in the FA, has been developed. Using the concept of conservative FE groups, it is shown that the safety limit for damage parameter is exceeded for some FA rearrangement, though the limits for circumferential and equivalent stresses are not reached. This new result contradicts the wide-spread idea that the damage parameter value plays a minor role when estimating the limiting state of cladding. The necessary condition of rearrangement algorithm admissibility and the criterion for minimization of the probability of cladding failure due to damage parameter accumulation have been derived, for using in automated systems controlling the cladding tightness.

  18. The properties of spherical fuel elements and its behavior in the modular HTR

    International Nuclear Information System (INIS)

    Lohnert, G.H.; Ragoss, H.

    1985-01-01

    The reference fuel element for all future HTR applications in the Federal Republic of Germany as developed by NUKEM/HOBEG in the framework of the 'High temperature Fuel-Cycle Project' had to be scrutinised for its compatibility with all the other design principles of the modular HTR, or possibly for restrictions forced upon reactor layout. This reference fuel element can be characterized by the following features: moulded spherical fuel element of 60 mm in diameter with fuel free shell of 5 mm thickness, based on carbon matrix; low enriched uranium (U/Pu fuel cycle); UO 2 fuel kernels; TRISO coating (pyrocarbon and additional SiC layers)

  19. The modeling experience of fuel element units operation under MSC.MARC and MENTAT 2008R1

    International Nuclear Information System (INIS)

    Kulakov, G.; Kashirin, B.; Kosaurov, A.; Konovalov, Y.; Kuznetsov, A.; Medvedev, A.; Novikov, V.; Vatulin, A.

    2009-01-01

    MSC Software is leading developer of CAE-software in the world, so behaviour of fuel elements modeling with MSC.MARC use is of great practical importance. Behaviour of fuel elements usually is modeled in the elastic-viscous-plastic statement with account on fuel swelling during irradiation. For container type fuel elements contact interaction between fuel pellets and cladding or other parts of fuel element in top and bottom plugs must be in account. Results of simulated behaviour of various type fuel elements - container type fuel elements for PWR and RBMK reactors, dispersion type fuel elements for research reactors are presented. (authors)

  20. Rod drop in the LR-0 reactor core comprising 55 fuel assemblies

    International Nuclear Information System (INIS)

    Hadek, J.; Grundmann, U.

    1989-09-01

    Data from the third stage of kinetic measurements on the LR-0 reactor, performed in 1988, were employed for additional calculations using the 3-dimensional neutron kinetics code HEXDYN3D. The reactor consists of subassemblies similar to those in the WWER-1000 (PWR) reactor. The theoretical and experimental results are compared for the time behavior of the neutron flux caused by drop of the control rod cluster in various subassemblies of the reactor. The results demonstrate that the HEXDYN3D code is well suited to the treatment of the space-time behavior of the neutron flux. (author). 21 figs., 2 tabs., 16 refs

  1. Graphite behaviour in relation to the fuel element design

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Manzel, R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Blackstone, R. [Reactor Centrum, Petten (Netherlands); Delle, W. [Kernforschungsanlage, Juelich (Germany); Lungagnani, V. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands); Krefeld, R. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands)

    1969-09-01

    The first designs of H.T.R. power reactors will probably use a Gilsocarbon based graphite for both the moderator/carrier blocks and for the fuel tubes. The initial physical properties and changes of dimensions, thermal expansion coefficient, Young*s modulus, and thermal conductivity on irradiation of Gilsocarbon graphites to typical reactor dwell-time fast neutron doses of 4 * 1021 cm -2 Ni dose Dido equivalent are given and values for the irradiation creep constant are presented. The influence of these property changes and those of chemical corrosion are considered briefly in relation to the present fuel element designs. The selection of an eventual less costly replacement graphite for Gilsocarbon graphite is discussed in terms of materials properties.

  2. Surface coating Zr or Zr alloy nuclear fuel elements

    International Nuclear Information System (INIS)

    Donaghy, R.E.; Sherman, A.H.

    1980-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. (author)

  3. Actual Status of CAREM-25 Fuel Element Development

    International Nuclear Information System (INIS)

    Perez, Edmundo

    2000-01-01

    In the frame of the CAREM Project, under Cnea s Reactor and Nuclear Plants Program, the Nuclear Fuel Thematic Area is one among others on which the project is organized. In this area, the primary objective to reach is to actualize the mechanical fuel element and reactivity control designs, taking in account the recents conceptual and engineering modifications introduced in the reactor, and ending with a consolidated conceptual and basic development.In order to reach these objectives, it is presented the way on which the area was organized, the participating working groups, the task required, the personnel involucrated, the grade of global development reached in the areas of engineering, developments, fabrication and essays of design verification, and the found difficulties, the tasks under ejecution, just finished and necessaries to fulfill completely the objectives. Finally, it is possible to say that due to the work realized, the conceptual design of both components is finished and the basic design is under development

  4. Control and repair system for radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Hornak, L.P.; Desmarchais, W.E.

    1975-01-01

    Irradiated fuel, especially such containing Pu-239, are put in a shielding container for inspection or repair. This container consists of an inner and outer tube of, for example, stainless steel, between which there is a gap filled with water, mineral oil, or polyethylene. At the upper end of the shielding container a rotating sleeve is positioned, by means of a bearing. It contains, for instance, an access opening and an inspection opening which are shielded by means of plexiglass. The access hole is opened only for repair work. In oder to prevent radiation from escaping to the environment during withdrawal and inspection of the fuel elements a second shielding container or shielding tube may be put over the sleeve. (DG/PB) [de

  5. Store for radioactive waste and burnt-up fuel elements

    International Nuclear Information System (INIS)

    Spilker, H.; Rox, R.; Peschl, H.W.

    1985-01-01

    The invention concerns a concrete storage block in which there are several vertical storage and cooling ducts for radioactive waste and burnt-up fuel elements. The storage block is assembled from several square concrete blocks. Several vertical ducts are made in these. The square blocks are placed on a concrete baseplate. The aligned ducts of several square blocks placed above each other form storage and cooling ducts for tubular storage containers. An annular gap is left for cooling air between the outside wall of the storage containers and the inside wall of the storage and cooling ducts. (orig./HP) [de

  6. Determination of the hydrogen content of fuel elements

    International Nuclear Information System (INIS)

    Soare, M.; Petriu, F.; Toma, V.

    1995-01-01

    A new method and apparatus are reported for determination of the total hydrogen content by measurements on as-manufactured fuel elements, heated at prescribed temperature values between 200 degrees C and 600 degrees C. The method is based on the catalytic oxidation of the organic compounds and transformation of the hydrogen in the equivalent water quantity which is analysed by a special infrared detector. Different types of measurements for determination of the hydrogen content from graphite coating, UO 2 pellets and filling gas are presented. Also, experimental observation regarding water release and graphite thermal decomposition kinetic are discussed. (author)

  7. Storage system and method for spent fuel elements

    International Nuclear Information System (INIS)

    Queiser, H.; Eckardt, B.

    1981-01-01

    The proposal concerns an additional protection against leakage of a FE-transport container for interim storage of spent fuel elements. The gastight container has a second cover placed at a short distance from the first cover. The intermediate hollow space can be connected with a measuring system which indicates if part of the trace gas (mostly helium) added as indicator has escaped from the container due to leakage. The description explains the method and the assembly of required lines and measuring points etc. (UWI) [de

  8. Storage ponds for fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Heat exchangers are inserted in storage ponds for fuel elements of nuclear reactors, so that the heat to be removed is given up to an external coolant, without any radio-activity being emitted. The heat exchanger is a hollow body, which is connected to an air cooler, which works with a cooling circuit with natural circulation. A cooling pipe is enclosed in the hollow body, which forms a cooling circuit with forced flow with an open pond. One therefore obtains two successive separating walls for the external coolant. (orig.) [de

  9. Fuel elements assembling for the DON project exponential experience

    International Nuclear Information System (INIS)

    Anca Abati, R. de

    1966-01-01

    It is described the fuel unit used in the DON exponential experience, the manufacturing installments and tools as well as the stages in the fabrication.These 74 elements contain each 19 cartridges loaded with synterized urania, uranium carbide and indium, gold, and manganese probes. They were arranged in calandria-like tubes and the process-tube. This last one containing a cooling liquid simulating the reactor organic. Besides being used in the DON reactor exponential experience they were used in critic essays by the substitution method in the French reactor AQUILON II. (Author) 6 refs

  10. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  11. A combined wet/dry sipping cell for investigating failed triga fuel elements

    International Nuclear Information System (INIS)

    Boeck, H.; Gallhammer, H.; Hammer, J.; Israr, M.

    1987-08-01

    A sipping cell to detect failed triga fuel has been designed and constructed at the Atominstitut. The cell allows both wet- and dry sipping of one single standard triga fuel element. In the dry sipping method the fuel element may be electrically heated up to a maximum temperature of about 300 0 C to allow the detection of temperature dependent fission product release from the fuel element. 20 figs., 1 tab. (Author)

  12. Irradiation of MEU and LEU test fuel elements in DR 3

    International Nuclear Information System (INIS)

    Haack, K.

    1984-01-01

    Irradiation of three MEU and three LEU fuel elements in the Danish reactor DR 3. Thermal and fast neutron flux density scans of the core have been made and the results, related to the U235-content of each fuel element, are compared with the values from HEU fuel elements. The test elements were taken to burn-up percentages of 50-60%. Reactivity values of the test elements at charge and at discharge have been measured and the values are compared with those of HEU fuel elements. (author)

  13. Bending of fuel fast reactor fuel elements under action of non-uniform temperature gradients and radiation-induced swelling

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.; Karasik, E.A.

    1984-01-01

    The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties

  14. Comparative analysis of C A R A fuel element in argentinean PHWR Argentinas

    International Nuclear Information System (INIS)

    Brasnarof D; Marino, A. C; Florido, P. C; Daverio, H

    2006-01-01

    This paper presents an analysis of the thermal mechanical behaviour, fuel consumption and economical estimations of the CARA fuel element in the Atucha and Embalse nuclear power plants, compared with the present fuel performance.The present results show that the expect profit by the use of the CARA fuel element in our reactor guaranties the recovery of fund for its development. Likewise it reduces the number of spent fuel to be storage and treated [es

  15. The beginning of the LEU fuel elements manufacturing in the Chilean Commission of Nuclear Energy

    International Nuclear Information System (INIS)

    Contreras, H.; Chavez, J.C.; Marin, J.; Lisboa, J.; Olivares, L.; Jimenez, O.

    1998-01-01

    The U 3 Si 2 LEU fuel fabrication program at CCHEN has started with the assembly of four leaders fuel elements for the RECH-1 reactor. This activity has involved a stage of fuel plates qualification, to evaluate fabrication procedures and quality controls and quality assurance. The qualification extent was 50% of the fuel plates, equivalent to the number of plates required for the assembly of two fuel elements. (author)

  16. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  17. Guidance Document for Alternative Diesel Fuels Proposed as Drop-In Fuels to Displace Diesel Fuels as Specified By ASTM Specification D975

    Science.gov (United States)

    2014-07-01

    includes both direct contact with the fuel and inhalation of fuel engine exhaust. The first source of information regarding the hazards associated...maintain its registration. Only gasoline and diesel fuel and fuel additives produced and commercially distributed for use in highway motor

  18. Examination of U3Si2-Al fuel elements from the Oak Ridge Research Reactor

    International Nuclear Information System (INIS)

    Copeland, G.L.; Snelgrove, J.L.; Hofman, G.L.

    1986-01-01

    The results of postirradiation examination of low-enriched U 3 Si 2 fuel elements from the Oak Ridge Research Reactor are presented. The elements replaced standard high-enriched elements and were handled routinely except that the burnup of half the elements was extended beyond normal limits up to about 98% peak. The elements were manufactured by commercial fuel suppliers. The performance was completely satisfactory for all the elements

  19. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  20. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals.

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-09-27

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner.

  1. Quality control of CANDU6 fuel element in fabrication process

    International Nuclear Information System (INIS)

    Li Yinxie; Zhang Jie

    2012-01-01

    To enhance the fine control over all aspects of the production process, improve product quality, fuel element fabrication process for CANDU6 quality process control activities carried out by professional technical and management technology combined mode, the quality of the fuel elements formed around CANDU6 weak links - - end plug , and brazing processes and procedures associated with this aspect of strict control, in improving staff quality consciousness, strengthening equipment maintenance, improved tooling, fixtures, optimization process test, strengthen supervision, fine inspection operations, timely delivery carry out aspects of the quality of information and concerns the production environment, etc., to find the problem from the improvement of product quality and factors affecting the source, and resolved to form the active control, comprehensive and systematic analysis of the problem of the quality management concepts, effectively reducing the end plug weld microstructure after the failure times and number of defects zirconium alloys brazed, improved product quality, and created economic benefits expressly provided, while staff quality consciousness and attention to detail, collaboration department, communication has been greatly improved and achieved very good management effectiveness. (authors)

  2. Revitalization and Modification of Experimental Fuel Element Installation

    International Nuclear Information System (INIS)

    Widjaksana; Latief, A; Langenati, R; Rachmawati, M

    1998-01-01

    Based on the economic and technical study, there is a good prospect in the future to develop Experimental Fuel Element Installation into a more beneficial facility. At present the facility is not in good condition due to inappropriate design and construction of the facility. It is therefore proposed to revitalize and modify the facility to become more productive. Such a proposal includes several steps of activity starting from the engineering and design activities including economical evaluation, up to product qualification. Up to now, some engineering activities have been done. The result shows that the facility could be revitalized and modified to manufacture PWR fuel pin with five alternatives. It is recommended to revitalized and modified following the fifth alternative step by step. Such modification would result in achievement of BEP at 39.1 % capacity and IRR of 31. 4 %/year. The selling price of the product (fuel pin) used in the analysis is US $ 190/kg U which is lower the prevailing price in the market, and the additional investment to do the activity about US $ 9.070.700 (based on the contant US dollar of 1996)

  3. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  4. Test program of the drop tests with full scale and 1/2.5 scale models of spent nuclear fuel transport and storage cask

    International Nuclear Information System (INIS)

    Kuri, S.; Matsuoka, T.; Kishimoto, J.; Ishiko, D.; Saito, Y.; Kimura, T.

    2004-01-01

    MHI have been developing 5 types of spent nuclear fuel transport and storage cask (MSF cask fleet) as a cask line-up. In order to demonstrate their safety, a representative cask model for the cask fleet have been designed for drop test regulated in IAEA TS-R-1. The drop test with a full and a 1/2.5 scale models are to be performed. It describes the test program of the drop test and manufacturing process of the scale models used for the tests

  5. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  6. Status and aspects of fuel element development for advanced high-temperature reactors in the FRG

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.

    1975-01-01

    In the FRG three basic fuel element designs for application in high temperature gas cooled reactors are being persued: the spherical element, the graphite block element, and the moulded block element (monolith). This report gives the state of development reached with the three types of elements but also views their specific merits and performance margin and presents aspects of their future development potential for operation in advanced HTGR plants. The development of coated feed and breed particles for application in all HTGR fuel elements is treated in more detail. Summarizing it can be said that all the fuel elements as well as their components have proved their aptitude for the dual cycle systems in numerous fuel element and particle performance tests. To adapt these fuel elements and coated particles for advanced reactor concepts and to develop them up to full technical maturity further testing is still necessary, however. Ways of overcoming problems arising from the more stringent requirements are shown. (orig.) [de

  7. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  8. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  9. Comparison of irradiation behavior of different uranium silicide dispersion fuel element designs

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1995-01-01

    Calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 were performed for various dispersion fuel element designs. Breakaway swelling criteria in the form of critical fuel volume fractions were derived with data obtained from U 3 SiAl-Al plate irradiations. The results of the analysis show that rod-type elements remain well below the pillowing threshold. However, tubular fuel elements, which behave essentially like plates, will likely develop pillows or blisters at around 90% 235 U burnup. The U 3 Si 2 -Al compounds demonstrate stable swelling behavior throughout the entire burnup range for all fuel element designs

  10. Standard recommended practice for examination of fuel element cladding including the determination of the mechanical properties

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Guidelines are provided for the post-irradiation examination of fuel cladding and to achieve better correlation and interpretation of the data in the field of radiation effects. The recommended practice is applicable to metal cladding of all types of fuel elements. The tests cited are suitable for determining mechanical properties of the fuel elements cladding. Various ASTM standards and test methods are cited

  11. Study of behavior of cermet fuel elements on IGR reactor under RIA type accident condition

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.S.; Vurim, A.D.; Koltyshev, S.M.; Pakhnits, V.A.; Tukhvatulin, Sh.T.; Popov, V.V.; Ryzhkov, A.N.

    1996-01-01

    In 1993 December in IGR reactor of Inst. of Atomic Energy of National Nuclear Center of Republic of Kazakstan the second batch of in-pile testing of perspective cermet fuel elements under the condition, simulating RIA type accident was conducted. In the second batch of testing during eight start-ups 10 cermet fuel elements were examined. Among which 8 of monolith type and 2 fuel elements with false jacket beside cladding (FJF), as well as, 6 standard fuel elements of WWER-1000 type reactor with dioxide fuel were tested. 2 fuel elements - cermet and standard were placed into capsule filled with water. To measure energy release for the each start-up two fission monitor and inside core control gauge were placed. In all the start-ups operation mode of IGR was neutron pulse. Power of fuel element kept changing from 151 to 336 k W; energy release was 38-93 kJ/gr m 235 U; maximum temperature of cermet fuel was 1943-2173 K, of dioxide fuel - 1923-2843 K. The testing has demonstrated that operability of cermet fuel elements under reactivity accident condition with pulse width of 0,2 s is, at least, not less that operability of dioxide fuel elements, through advantages of cermet fuel under these conditions are revealed to the least extent

  12. Fuel element cellular grid structure and procedure to insert and withdraw fuel rods from that structure

    International Nuclear Information System (INIS)

    1975-01-01

    A typical embodiment of the invention provides a means for selectively inserting and withdrawing one or more fuel rods from a fuel element cellular grid structure. The transverse stubs on one side of a long, thin bar are turned through 90deg to extend across the gap between mutually perpendicular grid structure plates. The extreme ends of these stubs engage the adhacent portions of the associated plates that form part of the grid cells. Pressing the stubs against the plate portions through the application of appropriate force in a longitudinal direction relative to the bar deflects the engaged plates through a sufficient distance to enable fuel rods to be inserted into or withdrawn from respective cells. After rod insertion, the force applied to the bar is released to enable the plates to relax and engage the fuel rods. The bars are rotated once more through 90deg and withdrawn from the grid structure. A similar procedure is employed to withdraw fuel rods from the grid structure

  13. Impact Force Applied on the Spent Nuclear Fuel Disposal Canister that Accidentally Drops and Collides onto the Ground

    International Nuclear Information System (INIS)

    Kwon, Young Joo

    2016-01-01

    In this paper, a mathematical methodology was theoretically studied to obtain the impact force caused by the collision between rigid bodies. This theoretical methodology was applied to compute the impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground. From this study, the impact force required to ensure a structurally safe canister design was theoretically formulated. The main content of the theoretical study concerns the rigid body kinematics and equation of motion during collision between two rigid bodies. On the basis of this study, a general impact theory to compute the impact force caused by the collision between two bodies was developed. This general impact theory was applied to theoretically formulate the approximate mathematical solution of the impact force that affects the spent nuclear fuel disposal canister that accidentally falls to the ground. Simultaneously, a numerical analysis was performed using the computer code to compute the numerical solution of the impact force, and the numerical result was compared with the approximate mathematical solution

  14. Assessment of core characteristics during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Suk, Ho Chun

    2002-01-01

    A transition from 37-element natural uranium fuel to CANFLEX-NU fuel has been modeled in a 1200-day time-dependent fuel management simulation for a CANDU 6 reactor. The simulation was divided into three parts. The pre-transition period extended from 0 to 300 FPD, in which the reactor was fuelled only with standard 37-element fuel bundles. In the transition period, refueling took place only with the CANFLEX-NU fuel bundle. The transition stage lasted from 300 to 920 FPD, at which point all of the 37-element fuel in the core had been replaced by CANFLEX-NU fuel bundle. In the post-transition phase, refueling continued with CANFLEX-NU fuel until 1200 FPD, to arrive at estimate of the equilibrium core characteristics with CANFLEX-NU fuel. Simulation results show that the CANFLEX-NU fuel bundle has a operational compatibility with the CANDU 6 reactor during the transition core, and also show that the transition core from 37-element natural uranium fuel to CANFLEX-NU can be operated without violating any license limit of the CANDU 6 reactor

  15. Two gamma-ray detectors method for examination of fuel elements

    International Nuclear Information System (INIS)

    Kristof, E.; Pregl, G.

    1979-01-01

    Th initial experiment and method for the nondestructive determination of a fuel element burnup is given. The method eliminates the error which originates from the unknown local dependency of the attenuation coefficient for gamma rays in fuel. (author)

  16. Device for replacing the rods of a fuel element of a nuclear reactor

    International Nuclear Information System (INIS)

    Nissel, B.; Kybranz, R.; Will, R.

    1977-01-01

    In order to be able to replace several separate rods (fuel rods or absorber rods), in a fuel element, a special grab is introduced, which consists of several individual gripping devices and is operated by spring loading. (TK) [de

  17. Theoretical study of fuel element reliability in the BRIG-300 fast reactor

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Nesterenko, V.B.; Tverkovkin, B.E.

    1983-01-01

    The theoretical results on studies of the reliability of cermet symmetrically heated fuel elements under conditions of the BRIG-300 fast gas cooled reactor are presented. The investigations have been conducted at the Nuclear Power Engineering Institute of the Byelorussian Academy of Sciences. Two variants of the fuel elements are considered :the fuel element with the gas gap between fuel and can and the fuel element with tight contact between cermet fuel and can. The estimated data on can resistance, swelling of the fuel rods and cans, strains and stresses in cans, change of the gap and its thermal coductivity during the reactor operation are obtained. The results of the analysis show that cermet fuel has sufficient reliability upon oparational conditions of the reactor with dissociating gas coolant in a steady-state regime

  18. Process for the production of prismatic graphite molded articles for high temperature fuel elements

    International Nuclear Information System (INIS)

    Huschka, H.; Rachor, L.; Hrovat, M.; Wolff, W.

    1976-01-01

    Prismatic graphite molded objects for high temperature fuel elements are prepared by producing the outer geometry and the holes for cooling channels and for receiving fuel and fertile materials in the formation of the carbon object

  19. BH2201 type leakage monitoring equipment of reactor fuel elements

    International Nuclear Information System (INIS)

    Ji Changsong; Dai Zhude; Xie Liangnian; Zhang Shulan; Zhang Shuheng

    1999-01-01

    A high-sensitive equipment monitoring leakage of the reactor fuel elements has been developed. The delayed neutrons emitted from fission product-pioneer nucleus are monitored in the 1st circle water. An array of 3 He proportional counter tubes is designed as a neutron detector for delayed neutrons, the detection geometry of which is near to 4π. In order to reduce the influence of interference factors the monitoring of fission product is carried out with 75s delay. The 87 Br delayed neutron pioneer nucleus is chosen as a monitoring object. The neutron detection efficiency of the developed equipment is 6.1%, which is 3 times higher than one of all available advanced equipment of the same function both at home and abroad

  20. The fast fission effect in a cylindrical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1959-06-15

    A new formula for the fast fission factor is derived, which takes proper account to fast capture. The fission neutron spectrum is divided into two groups with constant fission cross section in one group and zero fission cross section in the other. The average total, elastic, inelastic and capture cross sections in the two groups are calculated. Different assumptions regarding anisotropic and inelastic scattering are investigated. The effects of backscattering from the moderator and fast fission in neighbouring fuel elements are pointed out. Formulas for the fast fission ratio and for the fast conversion ratio are derived. The calculated fast fission ratios are compared with experimental values. Curves are given for the fast fission factor in uranium metal and uranium oxide.

  1. Formation of actinides in irradiated HTGR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos, A. M.

    1976-03-15

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for an actinide isolation were tested with highly irradiated ThO/sub 2/. Separation and decontamination factors are presented. Build-up of /sup 232/U was discussed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal under consideration of the reprocessing technology which is available presently.

  2. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    International Nuclear Information System (INIS)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H.

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project T he Nuclear Fuel Material Development of Research Reactor . And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,

  3. Report on the disposal of radioactive wastes and spent fuel elements from Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    2017-04-01

    The report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg covers the following issues: legal framework for the nuclear disposal; producer of spent fuels and radioactive wastes in Baden- Report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg; low- and medium-level radioactive wastes (non heat generating radioactive wastes); spent fuels and radioactive wastes from waste processing (heat generating radioactive wastes); final disposal.

  4. Mathematical model of thermal and mechanical steady state fuel element behaviour TEDEF

    International Nuclear Information System (INIS)

    Dinic, N.; Kostic, Z.; Josipovic, M.

    1987-01-01

    In this paper a numerical model of thermal and thermomechanical behaviour of a cylindrical metal uranium fuel element is described. Presented are numerical method and computer program for solving the stationary temperature field and thermal stresses of a fuel element. The model development is a second phase of analysis of these phenomena, and may as well be used for analysing power nuclear reactor fuel elements behaviour. (author)

  5. Experience of developing the imitators of the fuel element for the WWER reactors

    International Nuclear Information System (INIS)

    Balashov, S.M.; Boltenko, Eh.A.; Vinogradov, V.A.

    1998-01-01

    Peculiarities of designs of fuel elements imitators for the WWER-type reactors of nominal capacity and with single-ended current feed positioning are considered. The data on the filler heat conductivity and the results of tests and application of the fuel elements imitators at various testing facilities are presented. The possibility of equipping one of the non operating WWER reactors with the fuel element imitators for conduct of large-scale experiment is indicated

  6. Calculation of plate temperatures in a Mk 4 LEU fuel element

    International Nuclear Information System (INIS)

    Haack, K.

    1988-09-01

    A calculation method for estimating the axial temperature distributions of each tube in each of the 26 fuel elements of the DR 3 core is described and demonstrated. With input data for fuel element power, D2O outlet temperature and main D2O circulator combination, a computer code calculates all important temperatures in the fuel element. 11 tabs., 32 ills. 8 refs. (author)

  7. C A R A fuel element for Atucha nuclear power plants and development plan

    International Nuclear Information System (INIS)

    Brasnarof, D. O; Marino, A. C; Bianchi, D; Giorgis M A; Orlando, O; Munoz, C; Taboada, H; Florido, P. C

    2006-01-01

    This paper presents the current state and the development plan of the C A R A fuel element.Main activities were carried out towards to welding of the end plates of the C A R A fuel element by a new process, and the assembling and hanging of the C A R A fuel element in its Atucha configuration, by using an external basket [es

  8. Analysis of the temperature field in a reactor fuel element of complex geometry

    Energy Technology Data Exchange (ETDEWEB)

    Spasojevic, D; Vehauc, A [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1969-06-15

    An effective analytical method for determining the steady integral thermal conductivity and temperature distributions in cluster fuel elements has been developed. This method takes into account: distribution of heat generation, given by nonsymmetric function over the fuel rod cross section, q = q(r,{phi}); the thermal conductivity of the fuel and cladding material dependent on temperature, {lambda} = {lambda}(t), {lambda}{sub k} = {lambda}{sub k} (t); the fuel element cooling conditions defined by boundary conditions of the first, second or third kind. The second part of the paper presents the application of the developed method to a given fuel element. (author)

  9. Investigation on laser welding characteristics for appendage of bearing pads of nuclear fuel element

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. K.; Park, C. H.; Ko, J. H.; Lee, J. W.; Yang, M. S.

    2001-01-01

    In CANDU nuclear fuel manufacturing the brazing technology has been adopted conventionally to attach the bearing pads of nuclear fuel elements. However, in order to meet good performance of nuclear fuel and improved working efficiency, we started developing the laser welding technology for attachments of the bearing pads. Since the YAG laser can be suitable for small parts and transmit the beam through the optical fiber, the process is corresponding to mass-production with working shops. Making the most of this feature, we have developed the laser welding for appendage of the bearing pads of nuclear fuel elements, and has studied on the laser welding characterisitcs of appendages for nuclear fuel element

  10. ASI: Dunaliella marine microalgae to drop-in replacement liquid transportation fuel

    KAUST Repository

    Wang, Weicheng; Allen, Elle H.; Campos, Andrew A.; Cade, Rushyannah Killens; Dean, Lisa L.; Dvora, Mia; Immer, Jeremy G.; Mixson, Stephanie M.; Srirangan, Soundarya; Sauer, Marie Laure; Schreck, Steven D.; Sun, Keyi; Thapaliya, Nirajan; Wilson, Cameron W.; Burkholder, Joann M M; Grunden, Amy M.; Lamb, Henry Henry; Winter, Heike Winter; Stikeleather, Larry F.; Roberts, William L.

    2013-01-01

    Microalgae are a promising biofuels feedstock, theoretically yielding concentrations of triacylglycerides (TAGs) per unit area that are far higher than traditional feedstocks due to their rapid growth. Dunaliella is particularly advantageous as a feedstock because it is currently commercially mass cultured, thrives in salt water, and has no cell wall. Fourteen strains of Dunaliella have been investigated for growth rates and lipid production in mass culture and tested for enhanced lipid production under a range of environmental stressors including salinity, pH, nitrogen and phosphorus limitation, and light regime. The nuclear genome has been sequenced for four of these strains, with the objective of increasing carbon flux through genetic engineering. Electroflocculation followed by osmotic membrane rupturing may be a very energy and cost efficient means of harvesting the lipid bodies from Dunaliella. A technically feasible and scalable thermo-catalytic process to convert the lipids into replacements for liquid transportation fuels has been developed. The lipids were converted into long-chain alkanes through continuous thermal hydrolysis followed by fed-batch thermo-catalytic decarboxylation. These alkanes can be reformed into renewable diesel via conventional catalytic hydrocarbon isomerization reactions to improve cold flow properties, if desired. © 2013 American Institute of Chemical Engineers Environ Prog, 32: 916-925, 2013 Copyright © 2013 American Institute of Chemical Engineers Environ Prog.

  11. ASI: Dunaliella marine microalgae to drop-in replacement liquid transportation fuel

    KAUST Repository

    Wang, Weicheng

    2013-09-11

    Microalgae are a promising biofuels feedstock, theoretically yielding concentrations of triacylglycerides (TAGs) per unit area that are far higher than traditional feedstocks due to their rapid growth. Dunaliella is particularly advantageous as a feedstock because it is currently commercially mass cultured, thrives in salt water, and has no cell wall. Fourteen strains of Dunaliella have been investigated for growth rates and lipid production in mass culture and tested for enhanced lipid production under a range of environmental stressors including salinity, pH, nitrogen and phosphorus limitation, and light regime. The nuclear genome has been sequenced for four of these strains, with the objective of increasing carbon flux through genetic engineering. Electroflocculation followed by osmotic membrane rupturing may be a very energy and cost efficient means of harvesting the lipid bodies from Dunaliella. A technically feasible and scalable thermo-catalytic process to convert the lipids into replacements for liquid transportation fuels has been developed. The lipids were converted into long-chain alkanes through continuous thermal hydrolysis followed by fed-batch thermo-catalytic decarboxylation. These alkanes can be reformed into renewable diesel via conventional catalytic hydrocarbon isomerization reactions to improve cold flow properties, if desired. © 2013 American Institute of Chemical Engineers Environ Prog, 32: 916-925, 2013 Copyright © 2013 American Institute of Chemical Engineers Environ Prog.

  12. Crossflow characteristics of flange type fuel element for very high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Kaburaki, Hideo; Suzuki, Kunihiko; Nakamura, Masahide.

    1987-01-01

    Fuel element design incorporating mating flanges at block end faces has the potential to improve thermal hydraulic performance of a VHTR (very high temperature gas-cooled reactor) core. As part of research and development efforts to establish flange type fuel element design, experiments and analyses were carried out on crossflow through interface gap between elements. Air at atmospheric pressure and ambient temperature was used as a fluid. Crossflow loss coefficient factors were obtained with three test models, having different flange mating clearances, for various interface gap configurations, gap widths and block misalignments. It was found that crossflow loss coefficient factors for flange type fuel element were much larger than those for conventional flat-faced element. Numerical analyses were also made using a simple model devised to represent the crossflow path at the fuel element interface. The close agreement between numerical results and experimental data indicated that this model could predict well the crossflow characteristics of the flange type fuel element. (author)

  13. Melting of fuel element racks and their recycling as granulate

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, T.; Kreh, R.

    1998-01-01

    In order to increase the storage capacity for spent fuel elements in the Spanish NPPs of Almaraz and Asco, the existing racks were replaced by compact one in 1991/1993. The 28 racks from Almaraz NPP were cut on site, packed in 200-I-drums and taken to intermediate storage. For the remaining 28 racks of Asco NPP, ENRESA preferred the melting alternative. To demonstrate the recycling path melting in Germany, a test campaign with six racks was performed in 1997. As a result of this test melt, the limits for Carla melting plant were modified to 200 Bq/g total, α, β, γ 100 Bq/g nuclear fuels, max. 3g/100 kg 2,000 Bq/g total Fe55, H 3 , C-14 and Ni63. After the test melt campaign, the German authorities licensed the import and treatment of the remaining 22 racks on the condition that the waste resulting from the melting process as well as the granules produced were taken back to Spain. The shipment from Asco via France to Germany has been carried out in F 20-ft-IPII containers in accordance with ADR. Size reduction to chargeable dimensions was carried out by a plasma burner and hydraulic shears. For melting, a 3.2 Mg medium frequency induction furnace, operated in a separate housing, was used. For granules production outside this housing, the liquid iron was cast into a 5Mg ladle and then, through a water jet, into the granulating basin. The total mass of 287,659 Kg of 28 fuel elements racks and components of the storage basin yielded 297,914 kg of iron granulate. Secondary waste from melting amounted to 9,920 kg, corresponding to 3.45% of the input mass. The granulating process produced 6,589 kg, corresponding to 2.28% of the total mass to be melted. Radiological analysis of samples taken from the melt and different waste components confirmed the main nuclides Co60, Cs134 and Cs137. Fe55 was highly overestimated by the preliminary analysis. (Author) 2 refs

  14. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  15. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  16. Temperature measurements of the aluminium claddings of fuel elements in nuclear reactor

    International Nuclear Information System (INIS)

    Chen Daolong

    1986-01-01

    A method for embedding the sheathed thermocouples in the aluminium claddings of some fuel elements of experimental reactors by ultrasonic welding technique is described. The measurement results of the cladding temperature of fuel elements in reactors are given. By means of this method, the joint between the sheathed thermocouples and the cladding of fuel elements can be made very tight, there are no bulges on the cladding surfaces, and the sheathed thermocouples are embedded strongly and reliably. Therefore an essential means is provided for acquiring the stable and dynamic state data of the cladding temperature of in-core fuel elements

  17. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  18. Formation of actinides in irradiated HTGR fuel elements

    International Nuclear Information System (INIS)

    Santos, A.M. dos.

    1976-03-01

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for actinide isolation were tested with highly irradiated ThO 2 . Separation and decontamination factors are presented. Actinide nuclide formation can be described by exponential functions of the type ln msub(nuclide) = A + B x % fifa. The empirical factors A and B were calculated performing a least squares analysis. Build-up of 232 U was discussed. According to the experimental results, 232 U is mainly produced from 230 Th, a certain amount (e.g. about 20% at a 10 5 MWd/t burnup) originated from a (n,2n) reaction of 233 U; a formation from 233 Th by a (n,2n) followed by a (n,γ) reaction was not observed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. After a 1,000 years' storage time, the elements Pa, Am and Cm will no longer influence the total hazard index. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal in consideration of the reprocessing technology which is available presently. (orig.) [de

  19. Effect of power variations across a fuel bundle and within a fuel element on fuel centerline temperature in PHWR bundles in uncrept and crept pressure tubes

    International Nuclear Information System (INIS)

    Onder, E.N.; Roubtsov, D.; Rao, Y.F.; Wilhelm, B.

    2017-01-01

    Highlights: • Pressure tube creep effect on fuel pin power and temperatures was investigated. • Noticeable effects were observed for 5.1% crept pressure tube. • Bundle eccentricity effect on power variations was insignificant for uncrept channels. • Difference of 112 °C was observed between top & bottom elements in 5.1% crept channel. • Not discernible fission gas release was expected with temperature difference of 112 °C. - Abstract: The neutron flux and fission power profiles through a fuel bundle and across a fuel element are important aspects of nuclear fuel analysis in multi-scale/multi-physics modelling of Pressurized Heavy Water Reactors (PHWRs) with advanced fuel bundles. Fuel channels in many existing PHWRs are horizontal. With ageing, pressure tubes creep and fuel bundles in these pressure tubes are eccentrically located, which results in an asymmetric coolant flow distribution between the top and bottom of the fuel bundles. The diametral change of the pressure tube due to creep is not constant along the fuel channel; it reaches a maximum in the vicinity of the maximum neutron flux location. The cross-sectional asymmetric positioning of fuel bundles in a crept pressure tube contributes to an asymmetric power distribution within a ring of fuel elements. Modern reactor physics lattice codes (such as WIMS-AECL) are capable of predicting the details of power distribution from basic principles. Thermalhydraulics subchannel codes (such as ASSERT-PV) use models to describe inhomogeneous power distribution within and across fuel elements (e.g., flux tilt model, different powers in different ring elements, or radial power profiles). In this work, physics and thermalhydraulics codes are applied to quantify the effect of eccentricity of a fuel bundle on power variations across it and within a fuel element, and ultimately on the fuel temperature distribution and fuel centerline temperature, which is one of the indicators of fuel performance under normal

  20. Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)