WorldWideScience

Sample records for droplet microfluidic technology

  1. Next generation digital microfluidic technology: Electrophoresis of charged droplets

    Energy Technology Data Exchange (ETDEWEB)

    Im, Do Jin [Pukyong National University, Busan (Korea, Republic of)

    2015-06-15

    Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

  2. Droplet based microfluidics

    International Nuclear Information System (INIS)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  3. Fluorescence detection system for microfluidic droplets

    Science.gov (United States)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  4. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  5. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  6. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  7. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-01-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer

  8. Multiplex, Quantitative, Reverse Transcription PCR Detection of Influenza Viruses Using Droplet Microfluidic Technology

    Directory of Open Access Journals (Sweden)

    Ravi Prakash

    2014-12-01

    Full Text Available Quantitative, reverse transcription, polymerase chain reaction (qRT-PCR is facilitated by leveraging droplet microfluidic (DMF system, which due to its precision dispensing and sample handling capabilities at microliter and lower volumes has emerged as a popular method for miniaturization of the PCR platform. This work substantially improves and extends the functional capabilities of our previously demonstrated single qRT-PCR micro-chip, which utilized a combination of electrostatic and electrowetting droplet actuation. In the reported work we illustrate a spatially multiplexed micro-device that is capable of conducting up to eight parallel, real-time PCR reactions per usage, with adjustable control on the PCR thermal cycling parameters (both process time and temperature set-points. This micro-device has been utilized to detect and quantify the presence of two clinically relevant respiratory viruses, Influenza A and Influenza B, in human samples (nasopharyngeal swabs, throat swabs. The device performed accurate detection and quantification of the two respiratory viruses, over several orders of RNA copy counts, in unknown (blind panels of extracted patient samples with acceptably high PCR efficiency (>94%. The multi-stage qRT-PCR assays on eight panel patient samples were accomplished within 35–40 min, with a detection limit for the target Influenza virus RNAs estimated to be less than 10 RNA copies per reaction.

  9. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Chen, Jun; Vestergaard, Mike; Jensen, Thomas Glasdam

    2017-01-01

    -type strain and the original roseoflavin-resistant mutant JC017, respectively. The results obtained demonstrate how powerful classical mutagenesis can be when combined with droplet-based microfluidic screening technology for obtaining microorganisms with useful attributes.IMPORTANCE The food industry prefers...

  11. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

    Science.gov (United States)

    Cole, Russell H; Tang, Shi-Yang; Siltanen, Christian A; Shahi, Payam; Zhang, Jesse Q; Poust, Sean; Gartner, Zev J; Abate, Adam R

    2017-08-15

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  12. Lossless droplet transfer of droplet-based microfluidic analysis

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  13. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bio analysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  14. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bioanalysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  15. Droplet Manipulations in Two Phase Flow Microfluidics

    NARCIS (Netherlands)

    Pit, Arjen; Duits, Michael H.G.; Mugele, Friedrich Gunther

    2015-01-01

    Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of

  16. Low-Cost Experimentation for the Study of Droplet Microfluidics

    Science.gov (United States)

    Bardin, David; Lee, Abraham P.

    2014-01-01

    The continued growth of microfluidics into industry settings in areas such as point-of-care diagnostics and targeted therapeutics necessitates a workforce trained in microfluidic technologies and experimental methods. Laboratory courses for students at the university and high school levels will require cost-effective in-class demonstrations that instruct in chip design, fabrication, and experimentation at the microscale. We present a hand-operated pressure pumping system to form monodisperse picoliter to nanoliter droplet streams at low cost, and a series of exercises aimed at instructing in the specific art of droplet formation. Using this setup, the student is able to generate and observe the modes of droplet formation in flow-focusing devices, and the effect of device dimensions on the characteristics of formed droplets. Lastly, at ultra-low cost we demonstrate large plug formation in a T-junction using coffee stirrers as a master mold substitute. Our method reduces the cost of experimentation to enable intuitive instruction in droplet formation, with additional implications for creating droplets in the field or at point-of-care. PMID:25133595

  17. Finding the Needle in the Haystack—the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2017-05-01

    Full Text Available Efficient screening technologies aim to reduce both the time and the cost required for identifying rare mutants possessing a phenotype of interest in a mutagenized population. In this study, we combined a mild mutagenesis strategy with high-throughput screening based on microfluidic droplet technology to identify Lactococcus lactis variants secreting vitamin B2 (riboflavin. Initially, we used a roseoflavin-resistant mutant of L. lactis strain MG1363, JC017, which secreted low levels of riboflavin. By using fluorescence-activated droplet sorting, several mutants that secreted riboflavin more efficiently than JC017 were readily isolated from the mutagenesis library. The screening was highly efficient, and candidates with as few as 1.6 mutations per million base pairs (Mbp were isolated. The genetic characterization revealed that riboflavin production was triggered by mutations inhibiting purine biosynthesis, which is surprising since the purine nucleotide GTP is a riboflavin precursor. Purine starvation in the mutants induced overexpression of the riboflavin biosynthesis cluster ribABGH. When the purine starvation was relieved by purine supplementation in the growth medium, the outcome was an immediate downregulation of the riboflavin biosynthesis cluster and a reduction in riboflavin production. Finally, by applying the new isolates in milk fermentation, the riboflavin content of milk (0.99 mg/liter was improved to 2.81 mg/liter, compared with 0.66 mg/liter and 1.51 mg/liter by using the wild-type strain and the original roseoflavin-resistant mutant JC017, respectively. The results obtained demonstrate how powerful classical mutagenesis can be when combined with droplet-based microfluidic screening technology for obtaining microorganisms with useful attributes.

  18. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  19. Frugal Droplet Microfluidics Using Consumer Opto-Electronics.

    Science.gov (United States)

    Frot, Caroline; Taccoen, Nicolas; Baroud, Charles N

    2016-01-01

    The maker movement has shown how off-the-shelf devices can be combined to perform operations that, until recently, required expensive specialized equipment. Applying this philosophy to microfluidic devices can play a fundamental role in disseminating these technologies outside specialist labs and into industrial use. Here we show how nanoliter droplets can be manipulated using a commercial DVD writer, interfaced with an Arduino electronic controller. We couple the optical setup with a droplet generation and manipulation device based on the "confinement gradients" approach. This device uses regions of different depths to generate and transport the droplets, which further simplifies the operation and reduces the need for precise flow control. The use of robust consumer electronics, combined with open source hardware, leads to a great reduction in the price of the device, as well as its footprint, without reducing its performance compared with the laboratory setup.

  20. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  1. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  2. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  3. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  4. Droplet-based microfluidic method for synthesis of microparticles

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available Droplet-based microfluidics has, in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology such as the synthesis of hydrogel microparticles. Hydrogels have been used in many..., in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology, such as synthesis of hydrogel microparticles. CONCLUSION AND OUTLOOK The droplet-based microfluidic method offers...

  5. Binary particle separation in droplet microfluidics using acoustophoresis

    Science.gov (United States)

    Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria

    2018-02-01

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  6. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    Science.gov (United States)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  7. Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices

    KAUST Repository

    Zhang, Jiaming; Aguirre-Pablo, Andres A.; Li, Erqiang; Buttner, Ulrich; Thoroddsen, Sigurdur T

    2016-01-01

    Droplet-based microfluidics is a rapidly growing field of research and involves various applications from chemistry to biology. Droplet generation techniques become the pre-requisite focus. Additive manufacturing (3D printing) technology has

  8. Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter.

    Science.gov (United States)

    Ding, Ruihua; Ung, W Lloyd; Heyman, John A; Weitz, David A

    2017-01-01

    Active manipulation of droplets is crucial in droplet microfluidics. However, droplet polydispersity decreases the accuracy of active manipulation. We develop a microfluidic "droplet filter" that accurately separates droplets by size. The droplet filter has a sharp size cutoff and is capable of distinguishing droplets differing in volume by 20%. A simple model explains the behavior of the droplets as they pass through the filter. We show application of the filter in improving dielectric sorting efficiency.

  9. Method for using magnetic particles in droplet microfluidics

    Science.gov (United States)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  10. Engineering of Droplet Manipulation in Tertiary Junction Microfluidic Channels

    Science.gov (United States)

    2017-06-30

    mechanics point-of-view, the larger motivation to carry out this research work derives from its application in biomedical engineering for sorting CTCs...AFRL-AFOSR-JP-TR-2017-0055 Engineering of Droplet Manipulation in Tertiary Junction Microfluidic Channels Shalini Gupta INDIAN INSTITUTE OF...2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 14 May 2015 to 13 Nov 2016 4. TITLE AND SUBTITLE Engineering of Droplet Manipulation in

  11. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  12. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.

  13. Fast electric control of the droplet size in a microfluidic T-junction droplet generator

    Science.gov (United States)

    Shojaeian, Mostafa; Hardt, Steffen

    2018-05-01

    The effect of DC electric fields on the generation of droplets of water and xanthan gum solutions in sunflower oil at a microfluidic T-junction is experimentally studied. The electric field leads to a significant reduction of the droplet diameter, by about a factor of 2 in the case of water droplets. The droplet size can be tuned by varying the electric field strength, an effect that can be employed to produce a stream of droplets with a tailor-made size sequence. Compared to the case of purely hydrodynamic droplet production without electric fields, the electric control has about the same effect on the droplet size if the electric stress at the liquid/liquid interface is the same as the hydrodynamic stress.

  14. Droplet Microfluidic and Magnetic Particles Platform for Cancer Typing.

    Science.gov (United States)

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, M; Malaquin, Laurent; Descroix, Stéphanie; de Cremoux, Patricia; Viovy, Jean-Louis

    2017-01-01

    Analyses of nucleic acids are routinely performed in hospital laboratories to detect gene alterations for cancer diagnosis and treatment decision. Among the different possible investigations, mRNA analysis provides information on abnormal levels of genes expression. Standard laboratory methods are still not adapted to the isolation and quantitation of low mRNA amounts and new techniques needs to be developed in particular for rare subsets analysis. By reducing the volume involved, time process, and the contamination risks, droplet microfluidics provide numerous advantages to perform analysis down to the single cell level.We report on a droplet microfluidic platform based on the manipulation of magnetic particles that allows the clinical analysis of tumor tissues. In particular, it allows the extraction of mRNA from the total-RNA sample, Reverse Transcription, and cDNA amplification, all in droplets.

  15. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion\\'s water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  16. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; McKerricher, Garret; Castro, David; Foulds, Ian G.

    2016-01-01

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion's water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  17. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    Science.gov (United States)

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  18. Droplet microfluidic platform for cell electrofusion

    NARCIS (Netherlands)

    Schoeman, R.M.

    2015-01-01

    In this thesis a lab on a chip platform is described which is capable of electrofusing cells in a picoliter droplet. The platform consist out of glass part containing recessed platinum electrodes plasma bonded to a PDMS slab containing microchannels. First the two cell populations are introduced

  19. Fabrication of polymeric Janus particles by droplet microfluidics

    KAUST Repository

    Lone, Saifullah

    2014-01-01

    Janus particles (JPs), with their fascinating property of asymmetry, have received considerable attention in recent years in the fields of colloidal and particulate chemistry. The particles offer a range of exciting potential applications as they possess two distinctive parts with different chemistry, colors, polarities, and/or surfaces. Currently, a number of methodologies are available for the synthesis of JPs. This review presents a short description of polymeric JPs synthesized by droplet microfluidics. This journal is © the Partner Organisations 2014.

  20. Multiple and high-throughput droplet reactions via combination of microsampling technique and microfluidic chip

    KAUST Repository

    Wu, Jinbo; Zhang, Mengying; Li, Xiaolin; Wen, Weijia

    2012-01-01

    Microdroplets offer unique compartments for accommodating a large number of chemical and biological reactions in tiny volume with precise control. A major concern in droplet-based microfluidics is the difficulty to address droplets individually

  1. Microfluidic generation of droplets with a high loading of nanoparticles.

    Science.gov (United States)

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J; Anthony, John E; Sinko, Patrick J; Prudhomme, Robert K; Stone, Howard A

    2012-09-18

    Microfluidic approaches for controlled generation of colloidal clusters, for example, via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (60 wt %) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt % PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt % PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt %, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Q(oil)/Q(water) from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (>25 wt %) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt %. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions filled with a high loading of nanoparticles, which are useful for drug delivery applications.

  2. Microfluidic generation of droplets with a high loading of nanoparticles

    Science.gov (United States)

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J.; Anthony, John E.; Sinko, Patrick J.; Prudhomme, Robert K.; Stone, Howard A.

    2012-01-01

    Microfluidic approaches for controlled generation of colloidal clusters, e.g., via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension ( 60 wt%) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt% PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt% PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt%, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Qoil/Qwater from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (> 25 wt%) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt%. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions of microparticles that are filled with a high loading of nanoparticles and which are useful for drug delivery applications. PMID:22934976

  3. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-04-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology to manipulate small amounts of liquid samples. In addition to microdroplets, microbubbles are also needed for various pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad- dition, current methods have the limited capabilities for fabrication of microfluidic devices within three dimensional (3D) structures. Novel methods for fabrication of droplet-based microfluidic devices for the generation microdroplets and microbubbles are therefore of great interest in current research. In this thesis, we have developed several simple, rapid and low-cost methods for fabrication of microfluidic devices, especially for generation of microdroplets and mi- crobubbles. We first report an inexpensive full-glass microfluidic devices with as- sembly of glass capillaries, for generating monodisperse multiple emulsions. Different types of devices have been designed and tested and the experimental results demon- strated the robust capability of preparing monodisperse single, double, triple and multi-component emulsions. Second, we propose a similar full-glass device for generation of microbubbles, but with assembly of a much smaller nozzle of a glass capillary. Highly monodisperse microbubbles with diameter range from 3.5 to 60 microns have been successfully produced, at rates up to 40 kHz. A simple scaling law based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. Recently, the emergent 3D printing technology provides an attractive fabrication technique, due to its simplicity and low cost. A handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, two

  4. Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-08-04

    Droplet-based microfluidics is a rapidly growing field of research and involves various applications from chemistry to biology. Droplet generation techniques become the pre-requisite focus. Additive manufacturing (3D printing) technology has recently been exploited in microfluidics due to its simplicity and low cost. However, only relatively large droplets can be produced in current 3D-printed droplet generators, due to the channel dimension limitations on how fine a channel can be 3D-printed. Here we report a novel design of a 3D-printed

  5. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  6. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  7. AC electric field induced droplet deformation in a microfluidic T-junction.

    Science.gov (United States)

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-02

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

  8. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  9. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.

    Science.gov (United States)

    Okura, Naoaki; Nakashoji, Yuta; Koshirogane, Toshihiro; Kondo, Masaki; Tanaka, Yugo; Inoue, Kohei; Hashimoto, Masahiko

    2017-10-01

    We have exploited a compact and facile microfluidic droplet creation device consisting of a poly(dimethylsiloxane) microfluidic chip possessing T-junction channel geometry, two inlet reservoirs, and one outlet reservoir, and a piezoelectric (PZT) diaphragm micropump with controller. Air was evacuated from the outlet reservoir using the PZT pump, reducing the pressure inside. The reduced pressure within the outlet reservoir pulled oil and aqueous solution preloaded in the inlet reservoirs into the microchannels, which then merged at the T-junction, successfully forming water-in-oil emulsion droplets at a rate of ∼1000 per second with minimal sample loss. We confirmed that the onset of droplet formation occurred immediately after turning on the pump (<1 s). Over repeated runs, droplet formation was highly reproducible, with droplet size purity (polydispersity, <4%) comparable to that achieved using other microfluidic droplet preparation techniques. We also demonstrated single-molecule PCR amplification in the created droplets, suggesting that the device could be used for effective droplet digital PCR platforms in most laboratories without requiring great expense, space, or time for acquiring technical skills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microfluidic technology for PET radiochemistry

    International Nuclear Information System (INIS)

    Gillies, J.M.; Prenant, C.; Chimon, G.N.; Smethurst, G.J.; Dekker, B.A.; Zweit, J.

    2006-01-01

    This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using 18 F and 124 I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [ 18 F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4 s. The radiolabelling efficiency of 124 I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides

  11. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Uddalok; Chatterjee, Souvick [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607 (United States); Sen, Swarnendu [Mechanical Engineering Department, Jadavpur University, Kolkata, 700032 India (India); Tiwari, Manish K. [Department of Mechanical Engineering, University College London, London, WC1E 7JE UK (United Kingdom); Mukhopadhyay, Achintya [Mechanical Engineering Department, Jadavpur University, Kolkata, 700032 India (India); Ganguly, Ranjan, E-mail: ranjan@pe.jusl.ac.in [Department of Power Engineering, Jadavpur University, Kolkata, 700098 India (India)

    2017-01-01

    Active control of droplet generation in a microfluidic platform attracts interest for development of digital microfluidic devices ranging from biosensors to micro-reactors to point-of-care diagnostic devices. The present paper characterizes, through an unsteady three-dimensional Volume of Fluid (VOF) simulation, the active control of ferrofluid droplet generation in a microfluidic T-junction in presence of a non-uniform magnetic field created by an external magnetic dipole. Two distinctly different positions of the dipole were considered – one upstream of the junction and one downstream. While keeping the ferrofluid flow rate fixed, a parametric variation of the continuous phase capillary number, dipole strength, and dipole position was carried out. Differences in the flow behaviour in terms of dripping or jetting and the droplet characteristics in terms of droplet formation time period and droplet size were studied. The existence of a threshold dipole strength, below which the magnetic force was not able to influence the flow behaviour, was identified. It was also observed that, for dipoles placed upstream of the junction, droplet formation was suppressed at some higher dipole strengths, and this value was found to increase with increasing capillary number. Droplet time period was also found to increase with increasing dipole strength, along with droplet size, i.e. an increase in droplet volume. - Highlights: • Active control of ferrofluid droplet generation in a microfluidic T-junction is demonstrated. • Unsteady three-dimensional Volume of Fluid (VOF) simulation is adopted. • Capillary number, dipole strength and position influence droplet shedding behaviour. • Magnetic actuation of a microfluidic droplet generator is characterised.

  12. Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size

    Science.gov (United States)

    Nekouei, Mehdi; Vanapalli, Siva A.

    2017-03-01

    We used volume-of-fluid (VOF) method to perform three-dimensional numerical simulations of droplet formation of Newtonian fluids in microfluidic T-junction devices. To evaluate the performance of the VOF method we examined the regimes of drop formation and determined droplet size as a function of system parameters. Comparison of the simulation results with four sets of experimental data from the literature showed good agreement, validating the VOF method. Motivated by the lack of adequate studies investigating the influence of viscosity ratio (λ) on the generated droplet size, we mapped the dependence of drop volume on capillary number (0.001 1. In addition, we find that at a given capillary number, the size of droplets does not vary appreciably when λ 1. We develop an analytical model for predicting the droplet size that includes a viscosity-dependent breakup time for the dispersed phase. This improved model successfully predicts the effects of the viscosity ratio observed in simulations. Results from this study are useful for the design of lab-on-chip technologies and manufacture of microfluidic emulsions, where there is a need to know how system parameters influence the droplet size.

  13. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    Science.gov (United States)

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  14. Module-Based Synthesis of Digital Microfluidic Biochips with Droplet-Aware Operation Execution

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2013-01-01

    operations are executed by moving the droplets. So far, researchers have ignored the locations of droplets inside devices, considering that all the electrodes forming the device are occupied throughout the operation execution. In this article, we consider a droplet-aware execution of microfluidic operations......, which means that we know the exact position of droplets inside the modules at each time-step. We propose a Tabu Search-based metaheuristic for the synthesis of digital biochips with droplet-aware operation execution. Experimental results show that our approach can significantly reduce the application...... completion time, allowing us to use smaller area biochips and thus reduce costs....

  15. Parallelization of Droplet Microfluidic Systems for the Sustainable Production of Micro-Reactors at Industrial Scale

    KAUST Repository

    Conchouso Gonzalez, David

    2017-04-01

    At the cutting edge of the chemical and biological research, innovation takes place in a field referred to as Lab on Chip (LoC), a multi-disciplinary area that combines biology, chemistry, electronics, microfabrication, and fluid mechanics. Within this field, droplets have been used as microreactors to produce advanced materials like quantum dots, micro and nanoparticles, active pharmaceutical ingredients, etc. The size of these microreactors offers distinct advantages, which were not possible using batch technologies. For example, they allow for lower reagent waste, minimal energy consumption, increased safety, as well as better process control of reaction conditions like temperature regulation, residence times, and response times among others. One of the biggest drawbacks associated with this technology is its limited production volume that prevents it from reaching industrial applications. The standard production rates for a single droplet microfluidic device is in the range of 1-10mLh-1, whereas industrial applications usually demand production rates several orders of magnitude higher. Although substantial work has been recently undertaken in the development scaled-out solutions, which run in parallel several droplet generators. Complex fluid mechanics and limitations on the manufacturing capacity have constrained these works to explore only in-plane parallelization. This thesis investigates a three-dimensional parallelization by proposing a microfluidic system that is comprised of a stack of droplet generation layers working on the liquid-liquid ow regime. Its realization implied a study of the characteristics of conventional droplet generators and the development of a fabrication process for 3D networks of microchannels. Finally, the combination of these studies resulted in a functional 3D parallelization system with the highest production rate (i.e. 1 Lh-1) at the time of its publication. Additionally, this architecture can reach industrially relevant

  16. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    Science.gov (United States)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  17. Effects of surface properties on droplet formation inside a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy

    2004-11-01

    Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.

  18. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.

    Science.gov (United States)

    Ueno, Naoko; Banno, Taisuke; Asami, Arisa; Kazayama, Yuki; Morimoto, Yuya; Osaki, Toshihisa; Takeuchi, Shoji; Kitahata, Hiroyuki; Toyota, Taro

    2017-06-06

    We evaluated the speed profile of self-propelled underwater oil droplets comprising a hydrophobic aldehyde derivative in terms of their diameter and the surrounding surfactant concentration using a microfluidic device. We found that the speed of the oil droplets is dependent on not only the surfactant concentration but also the droplet size in a certain range of the surfactant concentration. This tendency is interpreted in terms of combination of the oil and surfactant affording spontaneous emulsification in addition to the Marangoni effect.

  19. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications

    Science.gov (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sen, Swarnendu; Tiwari, Manish K.; Mukhopadhyay, Achintya; Ganguly, Ranjan

    2017-01-01

    Active control of droplet generation in a microfluidic platform attracts interest for development of digital microfluidic devices ranging from biosensors to micro-reactors to point-of-care diagnostic devices. The present paper characterizes, through an unsteady three-dimensional Volume of Fluid (VOF) simulation, the active control of ferrofluid droplet generation in a microfluidic T-junction in presence of a non-uniform magnetic field created by an external magnetic dipole. Two distinctly different positions of the dipole were considered - one upstream of the junction and one downstream. While keeping the ferrofluid flow rate fixed, a parametric variation of the continuous phase capillary number, dipole strength, and dipole position was carried out. Differences in the flow behaviour in terms of dripping or jetting and the droplet characteristics in terms of droplet formation time period and droplet size were studied. The existence of a threshold dipole strength, below which the magnetic force was not able to influence the flow behaviour, was identified. It was also observed that, for dipoles placed upstream of the junction, droplet formation was suppressed at some higher dipole strengths, and this value was found to increase with increasing capillary number. Droplet time period was also found to increase with increasing dipole strength, along with droplet size, i.e. an increase in droplet volume.

  20. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  1. Multiple and high-throughput droplet reactions via combination of microsampling technique and microfluidic chip

    KAUST Repository

    Wu, Jinbo

    2012-11-20

    Microdroplets offer unique compartments for accommodating a large number of chemical and biological reactions in tiny volume with precise control. A major concern in droplet-based microfluidics is the difficulty to address droplets individually and achieve high throughput at the same time. Here, we have combined an improved cartridge sampling technique with a microfluidic chip to perform droplet screenings and aggressive reaction with minimal (nanoliter-scale) reagent consumption. The droplet composition, distance, volume (nanoliter to subnanoliter scale), number, and sequence could be precisely and digitally programmed through the improved sampling technique, while sample evaporation and cross-contamination are effectively eliminated. Our combined device provides a simple model to utilize multiple droplets for various reactions with low reagent consumption and high throughput. © 2012 American Chemical Society.

  2. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements

    Science.gov (United States)

    Sessoms, D. A.; Belloul, M.; Engl, W.; Roche, M.; Courbin, L.; Panizza, P.

    2009-07-01

    We present experimental, numerical, and theoretical studies of droplet flows in hydrodynamic networks. Using both millifluidic and microfluidic devices, we study the partitioning of monodisperse droplets in an asymmetric loop. In both cases, we show that droplet traffic results from the hydrodynamic feedback due to the presence of droplets in the outlet channels. We develop a recently-introduced phenomenological model [W. Engl , Phys. Rev. Lett. 95, 208304 (2005)] and successfully confront its predictions to our experimental results. This approach offers a simple way to measure the excess hydrodynamic resistance of a channel filled with droplets. We discuss the traffic behavior and the variations in the corresponding hydrodynamic resistance length Ld and of the droplet mobility β , as a function of droplet interdistance and confinement for channels having circular or rectangular cross sections.

  3. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    Science.gov (United States)

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  4. Microfluidic droplet generator with controlled break-up mechanism

    KAUST Repository

    Gonzalez, David Conchouso

    2017-04-13

    Droplet generation devices and systems that parallelize droplet generation devices are provided. The droplet generation devices can include a symmetric block-and-break system and a tapered droplet generation zone. The symmetric block-and-break system can include a pair of break channels and a pair of bypass channels symmetrically arranged with respect to the dispersed-phase input channel and the output channel. The droplet generation devices can generate monodisperse droplets with a predefined volume over a range of flow rates, pressures, and fluid properties. The droplet generation devices are therefore capable of parallelization to achieve large-capacity droplet generation, e.g. greater than 1 L/hr, with small overall coefficients of variation.

  5. Capacitive sensor for continuous monitoring of high-volume droplet microfluidic generation

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper presents a capacitive sensor for monitoring parallel microfluidic droplet generation. The great electric permittivity difference between common droplet microfluidic fluids such as air, oil and water (ϵoil ≈ 2–3 and ϵwater ≈ 80.4), allows for accurate detection of water in oil concentration changes. Capacitance variations as large as 10 pF between a channel filled with water or dodecane, are used to continuously monitor the output of a parallelization system producing 150 µl/min of water in dodecane emulsions. We also discuss a low cost fabrication process to manufacture these capacitive sensors, which can be integrated to different substrates.

  6. Practical Packaging Technology for Microfluidic Systems

    International Nuclear Information System (INIS)

    Lee, Hwan Yong; Han, Song I; Han, Ki Ho

    2010-01-01

    This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI): the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI

  7. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets......, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  8. Ultrahigh throughput microfluidic platform for in-air production of microscale droplets

    Science.gov (United States)

    Tirandazi, Pooyan; Healy, John; Hidrovo, Carlos H.

    2017-11-01

    In-air droplet formation inside microfluidic networks is an alternative technique to the conventional in-liquid systems for creating uniform, microscale droplets. Recent works have highlighted and quantified the use of a gaseous continuous phase for controlled generation of droplets in the Dripping regime in planar structures. Here we demonstrate a new class of non-planar droplet-based systems which rely on controlled breakup of a liquid microjet within a high speed flow of air inside a confined microfluidic flow-focusing PDMS channel. We investigate the physics of confined gas-liquid flows and the effect of geometry on the behavior of a liquid water jet in a gaseous flow. Droplet breakup in the Jetting regime is studied both numerically and experimentally and the results are compared. We show droplet production capability at rates higher than 100 KHz with droplets ranging from 15-30 μm in diameter and a polydispersity index of less than 15%. This work represents an important investigation into the Jetting regime in confined microchannels. The ability to control jet behavior, generation rate, and droplet size in gas-liquid microflows will further expand the potential applications of this system for high throughput operations in material synthesis and biochemical analysis. We acknowledge funding support from NSF CAREER Award Grant CBET-1522841.

  9. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David

    2016-06-28

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.

  10. [Synthesis of hollow titania microspheres by using microfluidic droplet-template].

    Science.gov (United States)

    Ma, Jingyun; Jiang, Lei; Qin, Jianhu

    2011-09-01

    Droplet-based microfluidics is of great interest due to its particular characteristics compared with the conventional methods, such as reduced reagent consumption, rapid mixing, high-throughput, shape controlled, etc. A novel method using microfluidic droplet as soft template for the synthesis of hollow titania microspheres was developed. A typical polydimethylsiloxane (PDMS) microfluidic device containing "flow-focusing" geometry was used to generate water/oil (W/O) droplet. The mechanism for the hollow structure formation was based on the interfacial hydrolysis reaction between the continuous phase containing titanium butoxide precursor and the dispersed containing water. The continuous phase mixed with butanol was added in the downstream of the channel after the hydrolysis reaction. This step was used for drawing the water out of the microgels for further hydrolysis. The microgels obtained through a glass pipe integrated were washed, dried under vacuum and calcined after aging for a certain time. The fluorescence and scanning electron microscope (SEM) image of the microspheres indicated the hollow structure and the thickness of the shell. In addition, these microspheres with thin shell (about 2 microm) were apt to rupture and collapse. Droplet-based microfluidic offered a gentle and size-controllable manner to moderate this problem. Moreover, it has potential applications in photocatalysis combined with some modification realized on the chip simultaneously.

  11. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    Science.gov (United States)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  12. Taking advantage of reduced droplet-surface interaction to optimize transport of bioanalytes in digital microfluidics.

    Science.gov (United States)

    Freire, Sergio L S; Thorne, Nathaniel; Wutkowski, Michael; Dao, Selina

    2014-11-10

    Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of "lab-on-a-chip" platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique. Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives. Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation.

  13. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    Directory of Open Access Journals (Sweden)

    Piyush Dak

    2016-04-01

    Full Text Available Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  14. Liquid droplet radiator technology issues

    International Nuclear Information System (INIS)

    Mattick, A.T.; Hertzberg, A.

    1985-01-01

    The operation of the liquid droplet radiator (LDR) is analyzed to establish design constraints for the LDR components and to predict the performance of an integrated LDR system. The design constraints largely result from mass loss considerations: fluid choice is governed by evaporation loss; droplet generation techniques must be capable of precise aiming of >10 5 droplet streams; and collection losses must be less than 1 droplet in 10 7 . Concepts for droplet generation and collection components are discussed and incorporated into a mass model for an LDR system. This model predicts that LDR's using lithium, Dow 705 silicone fluid, or NaK may be several times lighter than heat pipe radiators. 13 refs

  15. SU-8 micropatterning for microfluidic droplet and microparticle focusing

    International Nuclear Information System (INIS)

    Debuisson, Damien; Senez, Vincent; Arscott, Steve

    2011-01-01

    We demonstrate micropatterned surfaces consisting of concentric circles and spirals which can focus an evaporating sessile droplet to a specific location on a surface. We also study the micropattern geometry to focus microparticles contained within the droplet. The micropatterned surfaces are fabricated using the photoresist SU-8. Our process enables the modification of the surface wetting via the formation of smooth trench-like defects in the SU-8 which define the micropatterns; the geometry of these micropatterns determines the droplet/microparticle focusing. It is clearly shown that the introduction of small gaps into the micropatterns promotes microparticle centring due to the modification of the depinning angle of the droplet. We also show that the use of spiral micropatterns promotes microparticle centring. Finally, microparticle focusing can be enhanced by modification of surface wetting via the addition of a thin fluorocarbon hydrophobic layer onto the SU-8

  16. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.

    Science.gov (United States)

    Ngo, Ich-Long; Dang, Trung-Dung; Byon, Chan; Joo, Sang Woo

    2015-03-01

    In this study, droplet formations in microfluidic double T-junctions (MFDTD) are investigated based on a two-dimensional numerical model with volume of fluid method. Parametric ranges for generating alternating droplet formation (ADF) are identified. A physical background responsible for the ADF is suggested by analyzing the dynamical stability of flow system. Since the phase discrepancy between dispersed flows is mainly caused by non-symmetrical breaking of merging droplet, merging regime becomes the alternating regime at appropriate conditions. In addition, the effects of channel geometries on droplet formation are studied in terms of relative channel width. The predicted results show that the ADF region is shifted toward lower capillary numbers when channel width ratio is less than unity. The alternating droplet size increases with the increase of channel width ratio. When this ratio reaches unity, alternating droplets can be formed at very high water fraction (wf = 0.8). The droplet formation in MFDTD depends significantly on the viscosity ratio, and the droplet size in ADF decreases with the increase of the viscosity ratio. The understanding of underlying physics of the ADF phenomenon is useful for many applications, including nanoparticle synthesis with different concentrations, hydrogel bead generation, and cell transplantation in biomedical therapy.

  17. Enhancing Protease Activity Assay in Droplet-Based Microfluidics Using a Biomolecule Concentrator

    Science.gov (United States)

    Chen, Chia-Hung; Sarkar, Aniruddh; Song, Yong-Ak; Miller, Miles A.; Kim, Sung Jae; Griffith, Linda G.; Lauffenburger, Douglas A.; Han, Jongyoon

    2011-01-01

    We introduce an integrated microfluidic device consisting of a biomolecule concentrator and a microdroplet generator, which enhances the limited sensitivity of low-abundance enzyme assays by concentrating biomolecules before encapsulating them into droplet microreactors. We used this platform to detect ultra low levels of matrix metalloproteinases (MMPs) from diluted cellular supernatant and showed that it significantly (∼10-fold) reduced the time required to complete the assay and the sample volume used. PMID:21671557

  18. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  19. Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics

    Science.gov (United States)

    Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue

    2017-10-01

    Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.

  20. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction

    Science.gov (United States)

    Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo

    2017-12-01

    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.

  1. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.

    Science.gov (United States)

    Glawdel, Tomasz; Elbuken, Caglar; Ren, Carolyn L

    2012-01-01

    This is the second part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime. In the preceding paper [Phys. Rev. E 85, 016322 (2012)], we presented our experimental observations of droplet formation and decomposed the process into three sequential stages defined as the lag, filling, and necking stages. Here we develop a model that describes the performance of microfluidic T-junction generators working in the squeezing to transition regimes where confinement of the droplet dominates the formation process. The model incorporates a detailed geometric description of the drop shape during the formation process combined with a force balance and necking criteria to define the droplet size, production rate, and spacing. The model inherently captures the influence of the intersection geometry, including the channel width ratio and height-to-width ratio, capillary number, and flow ratio, on the performance of the generator. The model is validated by comparing it to speed videos of the formation process for several T-junction geometries across a range of capillary numbers and viscosity ratios.

  2. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions

    KAUST Repository

    Conchouso Gonzalez, David

    2014-01-01

    This paper looks at the design, fabrication and characterization of stackable microfluidic emulsion generators, with coefficients of variation as low as ~6% and with production rates as high as ~1 L h-1. This work reports the highest throughput reported in the literature for a microfluidic device with simultaneous operation of liquid-liquid droplet generators. The device was achieved by stacking several layers of 128 flow-focusing droplet generators, organized in a circular array. These layers are interconnected via through-holes and fed with designated fractal distribution networks. The proposed layers were milled on poly(methylmethacrylate) (PMMA) sheets and the stack was thermo-compression bonded to create a three-dimensional device with a high density of generators and an integrated hydraulic manifold. The effect of stacking multiple layers was studied and the results show that fabrication accuracy has a greater impact on the dispersity of the emulsion than the addition of more layers to the stack. Particle crystallization of drugs was also demonstrated as a possible application of this technology in industry. © 2014 the Partner Organisations.

  3. Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues

    Energy Technology Data Exchange (ETDEWEB)

    Hong Jongin; DeMello, Andrew J [Nanostructured Materials and Devices Group, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Jayasinghe, Suwan N, E-mail: a.demello@imperial.ac.u, E-mail: s.jayasinghe@ucl.ac.u [BioPhysics Group, Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2010-04-15

    Bio-electrospraying (BES) has demonstrated great promise as a rapidly evolving strategy for tissue engineering and regenerative biology/medicine. Since its discovery in 2005, many studies have confirmed that cells (immortalized, primary and stem cells) and whole organisms (Danio rerio, Xenopus tropicalis, Caenorhabditis elegans to Drosophila) remain viable post-bio-electrospraying. Although this bio-protocol has achieved much, it suffers from one crucial problem, namely the ability to precisely control the number of cells within droplets and or encapsulations. If overcome, BES has the potential to become a high-efficiency biotechnique for controlled cell encapsulation, a technique most useful for a wide range of applications in biology and medicine ranging from the forming of three-dimensional cultures to an approach for treating diseases such as type I diabetes. In this communication, we address this issue by demonstrating the coupling of BES with droplet-based microfluidics for controlling live cell numbers within droplets and residues. (communication)

  4. Complex Dynamics of Droplet Traffic in a Bifurcating Microfluidic Channel: Periodicity, Multistability, and Selection Rules

    Science.gov (United States)

    Sessoms, D. A.; Amon, A.; Courbin, L.; Panizza, P.

    2010-10-01

    The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.

  5. Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues

    International Nuclear Information System (INIS)

    Hong Jongin; DeMello, Andrew J; Jayasinghe, Suwan N

    2010-01-01

    Bio-electrospraying (BES) has demonstrated great promise as a rapidly evolving strategy for tissue engineering and regenerative biology/medicine. Since its discovery in 2005, many studies have confirmed that cells (immortalized, primary and stem cells) and whole organisms (Danio rerio, Xenopus tropicalis, Caenorhabditis elegans to Drosophila) remain viable post-bio-electrospraying. Although this bio-protocol has achieved much, it suffers from one crucial problem, namely the ability to precisely control the number of cells within droplets and or encapsulations. If overcome, BES has the potential to become a high-efficiency biotechnique for controlled cell encapsulation, a technique most useful for a wide range of applications in biology and medicine ranging from the forming of three-dimensional cultures to an approach for treating diseases such as type I diabetes. In this communication, we address this issue by demonstrating the coupling of BES with droplet-based microfluidics for controlling live cell numbers within droplets and residues. (communication)

  6. Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method.

    Science.gov (United States)

    Gu, Shuqing; Lu, Youlan; Ding, Yaping; Li, Li; Zhang, Fenfen; Wu, Qingsheng

    2013-09-24

    A simple but robust droplet-based microfluidic system was developed for dose-response enzyme inhibition assay by combining concentration gradient generation method with electrochemical detection method. A slotted-vials array and a tapered tip capillary were used for reagents introduction and concentration gradient generation, and a polydimethylsiloxane (PDMS) microfluidic chip integrated with microelectrodes was used for droplet generation and electrochemical detection. Effects of oil flow rate and surfactant on electrochemical sensing were investigated. This system was validated by measuring dose-response curves of three types of acetylcholinesterase (AChE) inhibitors, including carbamate pesticide, organophosphorus pesticide, and therapeutic drugs regulating Alzheimer's disease. Carbaryl, chlorpyrifos, and tacrine were used as model analytes, respectively, and their IC50 (half maximal inhibitory concentration) values were determined. A whole enzyme inhibition assay was completed in 6 min, and the total consumption of reagents was less than 5 μL. This microfluidic system is applicable to many biochemical reactions, such as drug screening and kinetic studies, as long as one of the reactants or products is electrochemically active. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Path selection rules for droplet trains in single-lane microfluidic networks

    Science.gov (United States)

    Amon, A.; Schmit, A.; Salkin, L.; Courbin, L.; Panizza, P.

    2013-07-01

    We investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops, reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by the drops. As the dilution increases, this number continuously decreases until only one path remains explored. Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because of extra degrees of freedom.

  8. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations.

    Science.gov (United States)

    Glawdel, Tomasz; Elbuken, Caglar; Ren, Carolyn L

    2012-01-01

    This is the first part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime where confinement of the droplet creates a large squeezing pressure that influences droplet formation. In this regime, the operation of the T-junction depends on the geometry of the intersection (height-to-width ratio, inlet width ratio), capillary number, flow ratio, and viscosity ratio of the two phases. Here in paper I we presented our experimental observations through the analysis of high-speed videos of the droplet formation process. Various parameters are tracked during the formation cycle such as the shape of the droplet (penetration depth and neck), interdroplet spacing, production rate, and flow of both phases across several T-junction designs and flow conditions. Generally, the formation process is defined by a two-stage model consisting of an initial filling stage followed by a necking stage. However, video evidence suggests the inclusion of a third stage, which we term the lag stage, at the beginning of the formation process that accounts for the retraction of the interface back into the injection channel after detachment. Based on the observations made in this paper, a model is developed to describe the formation process in paper II, which can be used to understand the design and operation of T-junction generators in the transition regime.

  9. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  10. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-throughput screening for industrial enzyme production hosts by droplet microfluidics

    DEFF Research Database (Denmark)

    Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao

    2014-01-01

    A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α......-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host...

  12. Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jung Wook; Chang, Woo-Jin [University of Wisconsin-Milwaukee, Milwaukee (United States); Choi, Joo Hyung; Koo, Yoon Mo [Department of Biological Engineering, Incheon (Korea, Republic of); Choi, Bum Joon; Lee, Gyu Do; Lee, Sang Woo [Yonsei University, Wonju (Korea, Republic of)

    2016-01-15

    We have characterized micro-droplet generation using water immiscible hexafluorophosphate ([PF{sub 6}])- and bis(trifluoro methylsulfonyl)imide ([Tf{sub 2}N])-based room temperature ionic liquids (RTILs). The interfacial tension between total 7 RTILs and phosphate buffered saline (PBS) was measured using a tensiometer for the first time. PBS is one of the most commonly used buffer solutions in cell-related researches. The measured interfacial tension ranges from 8.51 to 11.62 and from 9.56 to 13.19 for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The RTILs micro-droplets were generated in a microfluidic device. The micro-droplet size and generation frequency were determined based on continuous monitoring of light transmittance at the interface in microchannel. The size of RTIL micro-droplets was inversely proportional to the increase of PBS solution flow rate and RTILs hydrophobicity, while droplet generation frequency was proportional to those changes. The measured size of RTILs droplets ranged from 0.6 to 10.5 nl, and from 1.0 to 17.1 nl for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The measured frequency of generated RTILs droplets ranged from 2.3 to 37.2 droplet/min, and from 2.7 to 17.1 droplet/min for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The capillary numbers were calculated depending on the RTILs, and ranged from 0.51x10{sup -3} to 1.06x10{sup -3} and from 5.00x10{sup -3} to 8.65x10{sup -3}, for [Tf{sub 2}N]- and [PF{sub 6}]-based RTILs, respectively. The interfacial tension between RTILs and PBS will contribute to developing bioprocesses using immiscible RTILs. Also, the RTILs micro-droplets will enable the high-throughput monitoring of various biological and chemical reactions using RTILs as new reaction media.

  13. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Abdel-Fattah, Amr I.; Thoroddsen, Sigurdur T

    2016-01-01

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  14. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-06-15

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  15. Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-07-01

    Full Text Available The T-junction microchannel device makes available a sharp edge to form micro-droplets from bio-material solutions. This article investigates the effects of injection angle, flow rate ratio, density ratio, viscosity ratio, contact angle, and slip length in the process of formation of uniform droplets in microfluidic T-junctions. The governing equations were solved by the commercial software. The results show that contact angle, slip length, and injection angles near the perpendicular and parallel conditions have an increasing effect on the diameter of generated droplets, while flow rate, density and viscosity ratios, and other injection angles had a decreasing effect on the diameter. Keywords: Microfluidics, Droplet formation, Flow rate ratio, Density ratio

  16. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    Science.gov (United States)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  17. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.

    Science.gov (United States)

    Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko

    2017-07-12

    Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.

  18. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    Science.gov (United States)

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  19. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

    Science.gov (United States)

    Garstecki, Piotr; Fuerstman, Michael J; Stone, Howard A; Whitesides, George M

    2006-03-01

    This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resistance to flow of the continuous (carrier) fluid in the thin films that separate the droplet from the walls of the microchannel when the droplet fills almost the entire cross-section of the channel. A simple scaling relation, based on this assertion, predicts the size of droplets and bubbles produced in the T-junctions over a range of rates of flow of the two immiscible phases, the viscosity of the continuous phase, the interfacial tension, and the geometrical dimensions of the device.

  20. Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery.

    Science.gov (United States)

    Yu, Ziyi; Zheng, Yu; Parker, Richard M; Lan, Yang; Wu, Yuchao; Coulston, Roger J; Zhang, Jing; Scherman, Oren A; Abell, Chris

    2016-04-06

    Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated host-guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble (fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized structure benefits from the dynamic nature of the supramolecular interaction and offers synergistic delivery of cargos with triggered release or through photocontrolled porosity. This demonstration of premeditated hierarchical assembly, where interactions from the molecular to microscale are designed, illustrates the power of this route toward accessing the next generation of functional materials and encapsulation strategies.

  1. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  2. Numerical simulation of droplet formation regimes and sizes in microfluidic T-junction devices

    Science.gov (United States)

    Nekouei, Mehdi; Vanapalli, Siva

    2014-11-01

    The T-junction geometry has been widely used for producing monodisperse droplets in microfluidic devices. Droplet formation regimes and sizes are expected to depend on a variety of conditions including flow rates, capillary number, channel geometry and viscosity ratio. Experiments have investigated drop production at a T-junction in a narrow control parameter space and developed analytical models for specific operating regimes. In this study, we take advantage of numerical simulations based on volume-of-fluid method to explore this broad parameter space systematically, and contrast our results with prior experimental data. We find our simulations predict well the regimes of squeezing, dripping and jetting. We also observe that our drop size data is in good agreement with three different experimental reports. Although our results match experimental data, the analytical models do not agree with each other since they are based on specific operating conditions. We use numerical simulations to elucidate the missing components in the physics of drop formation at a T-junction, with an attempt to reconcile existing analytical models.

  3. Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction

    Directory of Open Access Journals (Sweden)

    Enrico Chiarello

    2015-11-01

    Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.

  4. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  5. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.

    Science.gov (United States)

    Wang, Xiu-Li; Zhu, Ying; Fang, Qun

    2014-01-07

    In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.

  6. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).

  7. ALL-ELECTRONIC DROPLET GENERATION ON-CHIP WITH REAL-TIME FEEDBACK CONTROL FOR EWOD DIGITIAL MICROFLUIDICS

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin “CJ”

    2009-01-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909

  8. Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks.

    Science.gov (United States)

    Cybulski, Olgierd; Jakiela, Slawomir; Garstecki, Piotr

    2015-12-01

    The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.

  9. The Microfluidic Jukebox

    Science.gov (United States)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  10. Droplet Size-Aware and Error-Correcting Sample Preparation Using Micro-Electrode-Dot-Array Digital Microfluidic Biochips.

    Science.gov (United States)

    Li, Zipeng; Lai, Kelvin Yi-Tse; Chakrabarty, Krishnendu; Ho, Tsung-Yi; Lee, Chen-Yi

    2017-12-01

    Sample preparation in digital microfluidics refers to the generation of droplets with target concentrations for on-chip biochemical applications. In recent years, digital microfluidic biochips (DMFBs) have been adopted as a platform for sample preparation. However, there remain two major problems associated with sample preparation on a conventional DMFB. First, only a (1:1) mixing/splitting model can be used, leading to an increase in the number of fluidic operations required for sample preparation. Second, only a limited number of sensors can be integrated on a conventional DMFB; as a result, the latency for error detection during sample preparation is significant. To overcome these drawbacks, we adopt a next generation DMFB platform, referred to as micro-electrode-dot-array (MEDA), for sample preparation. We propose the first sample-preparation method that exploits the MEDA-specific advantages of fine-grained control of droplet sizes and real-time droplet sensing. Experimental demonstration using a fabricated MEDA biochip and simulation results highlight the effectiveness of the proposed sample-preparation method.

  11. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

    DEFF Research Database (Denmark)

    Juul, Sissel; Nielsen, Christine Juul Fælled; Labouriau, Rodrigo

    2012-01-01

    detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite....../μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate...

  12. Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects.

    Science.gov (United States)

    Glawdel, Tomasz; Ren, Carolyn L

    2012-08-01

    This study extends our previous work on droplet generation in microfluidic T-junction generators to include dynamic interfacial tension effects created by the presence of surfactants. In Paper I [T. Glawdel, C. Elbuken, and C. L. Ren, Phys. Rev. E 85, 016322 (2012)], we presented experimental findings regarding the formation process in the squeezing-to-transition regime, and in Paper II [T. Glawdel, C. Elbuken, and C. L. Ren, Phys. Rev. E 85, 016323 (2012)] we developed a theoretical model that describes the performance of T-junction generators without surfactants. Here we study dynamic interfacial tension effects for two surfactants, one with a small molecular weight that adsorbs quickly, and the other with a large molecular weight that adsorbs slowly. Using the force balance developed in Paper II we extract the dynamic interfacial tension from high speed videos obtained during experiments. We then develop a theoretical model to predict the dynamic interfacial tension in microfluidic T-junction generators as a function of the surfactant properties, flow conditions, and generator design. This model is then incorporated into the overall model for generator performance to effectively predict the size of droplets produced when surfactants are present.

  13. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor.

    Science.gov (United States)

    Zhu, Xiaocui; Xu, Lei; Wu, Tongbo; Xu, Anqin; Zhao, Meiping; Liu, Shaorong

    2014-05-15

    We demonstrate a novel fluorescent sensor for real-time and continuous monitoring of the variation of bisulfide in microdialysis effluents by using a nanoparticle-glutathione-fluorescein isothiocyanate (AuNP-GSH-FITC) probe coupled with on-line droplet-based microfluidic chip. The AuNP-GSH-FITC fluorescent probe was firstly developed and used for bisulfide detection in bulk solution by quantitative real-time PCR, which achieved a linear working range from 0.1 μM to 5.0 μM and a limit of detection of ~50 nM. The response time was less than 2 min. With the aid of co-immobilized thiol-polyethylene glycol, the probe exhibited excellent stability and reproducibility in high salinity solutions, including artificial cerebrospinal fluids (aCSF). By adding 0.1% glyoxal to the probe solution, the assay allowed quantification of bisulfide in the presence of cysteine at the micro-molarity level. Using the AuNP-GSH-FITC probe, a droplet-based microfluidic fluorescent sensor was further constructed for online monitoring of bisulfide variation in the effluent of microdialysis. By using fluorescence microscope-charge-coupled device camera as the detector, the integrated microdialysis/microfluidic chip device achieved a detection limit of 2.0 μM and a linear response from 5.0 μM to 50 μM for bisulfide in the tested sample. The method was successfully applied for the on-line measurement of bisulfide variation in aCSF and serum samples. It will be a very useful tool for tracking the variation of bisulfide or hydrogen sulfide in extracellular fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Screening applications in drug discovery based on microfluidic technology.

    Science.gov (United States)

    Eribol, P; Uguz, A K; Ulgen, K O

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.

  15. Screening applications in drug discovery based on microfluidic technology

    Science.gov (United States)

    Eribol, P.; Uguz, A. K.; Ulgen, K. O.

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904

  16. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics.

    Science.gov (United States)

    Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2009-11-01

    We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.

  17. Droplet Microfluidics Approach for Single-DNA Molecule Amplification and Condensation into DNA-Magnesium-Pyrophosphate Particles

    Directory of Open Access Journals (Sweden)

    Greta Zubaite

    2017-02-01

    Full Text Available Protein expression in vitro has broad applications in directed evolution, synthetic biology, proteomics and drug screening. However, most of the in vitro expression systems rely on relatively high DNA template concentrations to obtain sufficient amounts of proteins, making it harder to perform in vitro screens on gene libraries. Here, we report a technique for the generation of condensed DNA particles that can serve as efficient templates for in vitro gene expression. We apply droplet microfluidics to encapsulate single-DNA molecules in 3-picoliter (pL volume droplets and convert them into 1 μm-sized DNA particles by the multiple displacement amplification reaction driven by phi29 DNA polymerase. In the presence of magnesium ions and inorganic pyrophosphate, the amplified DNA condensed into the crystalline-like particles, making it possible to purify them from the reaction mix by simple centrifugation. Using purified DNA particles, we performed an in vitro transcription-translation reaction and successfully expressed complex enzyme β-galactosidase in droplets and in the 384-well format. The yield of protein obtained from DNA particles was significantly higher than from the corresponding amount of free DNA templates, thus opening new possibilities for high throughput screening applications.

  18. MULTIPHASE DROPLET/SLUG BREAK-UP MECHANISM IN MICROFLUIDIC T-JUNCTIONS AT VARIOUS WEBER NUMBERS

    Directory of Open Access Journals (Sweden)

    Wan Leng (Dawn Leow

    2011-10-01

    Full Text Available Normal 0 false false false EN-MY X-NONE X-NONE The formation of immiscible liquid droplets, or slugs, in microchannels features the advantages of volume control and mixing enhancement over single-phase microflows. Although the applications of droplet-based microfluidics have been widely demonstrated, the fundamental physics governing droplet break-up remains an area of active research. This study defines an effective Weber (Weeff number that characterizes the interplay of interfacial tension, shear stress and channel pressure drop in driving slug formation in T-junction microchannel for a relative range of low, intermediate and high flow rates. The immiscible fluid system in this study consists of Tetradecane slug formation in Acetonitrile. The progressive deformation of slug interfaces during break-up events is observed. Experimental results indicate that, at a relatively low Weeff, clean slug break-up occurs at the intersection of the side and main channels. At intermediate Weeff, the connecting neck of the dispersed phase is stretched to a short and thin trail of laminar flow prior to breaking up a short distance downstream of the T-junction. At a relatively high Weeff, the connecting neck develops into a longer and thicker trail of laminar flow that breaks up further downstream of the main channel.

  19. Parallelization of Droplet Microfluidic Systems for the Sustainable Production of Micro-Reactors at Industrial Scale

    KAUST Repository

    Conchouso Gonzalez, David

    2017-01-01

    fluid mechanics and limitations on the manufacturing capacity have constrained these works to explore only in-plane parallelization. This thesis investigates a three-dimensional parallelization by proposing a microfluidic system that is comprised of a

  20. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-01-01

    pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad

  1. Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics

    Science.gov (United States)

    Nikapitiya, N. Y. Jagath B.; Nahar, Mun Mun; Moon, Hyejin

    2017-12-01

    This letter reports two novel electrode design considerations to satisfy two very important aspects of EWOD operation—(1) Highly consistent volume of generated droplets and (2) Highly improved accuracy in the generated droplet volume. Considering the design principles investigated two novel designs were proposed; L-junction electrode design to offer high throughput droplet generation and Y-junction electrode design to split a droplet very fast while maintaining equal volume of each part. Devices of novel designs were fabricated and tested, and the results are compared with those of conventional approach. It is demonstrated that inaccuracy and inconsistency of droplet volume dispensed in the device with novel electrode designs are as low as 0.17 and 0.10%, respectively, while those of conventional approach are 25 and 0.76%, respectively. The dispensing frequency is enhanced from 4 to 9 Hz by using the novel design.

  2. Millisecond-Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Droplet-Based Microfluidics.

    Science.gov (United States)

    Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J

    2015-08-26

    The early-time kinetics (conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    Science.gov (United States)

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  4. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    NARCIS (Netherlands)

    Chen, J.-Z.; Darhuber, A.A.; Troian, S.M.; Wagner, S.

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is

  5. Microfluidic Mixing Technology for a Universal Health Sensor

    Science.gov (United States)

    Chan, Eugene Y.; Bae, Candice

    2009-01-01

    A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.

  6. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Min [Institute of Microanalytical; Zhu, Ying [Institute of Microanalytical; Jin, Di-Qiong [Institute of Microanalytical; Kelly, Ryan T. [Environmental; Fang, Qun [Institute of Microanalytical

    2017-08-15

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.

  7. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  8. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.

    Science.gov (United States)

    Bsoul, Anas; Pan, Sheng; Cretu, Edmond; Stoeber, Boris; Walus, Konrad

    2016-08-16

    In this paper, we present a disposable inkjet dispenser platform technology and demonstrate the Lab-on-a-Printer concept, an extension of the ubiquitous Lab-on-a-Chip concept, whereby microfluidic modules are directly integrated into the printhead. The concept is demonstrated here through the integration of an inkjet dispenser and a microfluidic mixer enabling control over droplet composition from a single nozzle in real-time during printing. The inkjet dispenser is based on a modular design platform that enables the low-cost microfluidic component and the more expensive actuation unit to be easily separated, allowing for the optional disposal of the former and reuse of the latter. To limit satellite droplet formation, a hydrophobic-coated and tapered micronozzle was microfabricated and integrated with the fluidics to realize the dispenser. The microfabricated devices generated droplets with diameters ranging from 150-220 μm, depending mainly on the orifice diameter, with printing rates up to 8000 droplets per second. The inkjet dispenser is capable of dispensing materials with a viscosity up to ∼19 mPa s. As a demonstration of the inkjet dispenser function and application, we have printed type I collagen seeded with human liver carcinoma cells (cell line HepG2), to form patterned biological structures.

  9. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David; McKerricher, Garret; Carreno, Armando Arpys Arevalo; Castro, David; Shamim, Atif; Foulds, Ian G.

    2016-01-01

    with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction

  10. Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis

    DEFF Research Database (Denmark)

    Ohlin, M.; Fornell, A.; Bruus, Henrik

    2017-01-01

    , by using acoustic actuation, (99.8 ± 0.4)% of all encapsulated microparticles can be detected compared to only (79.0 ± 5.1)% for unactuated operation. In our experiments we observed a strong ordering of the microparticles in distinct patterns within the droplet when using 2D acoustophoresis; to explain...

  11. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    OpenAIRE

    Chen, Jian Z.; Darhuber, Anton A.; Troian, Sandra M.; Wagner, Sigurd

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable wi...

  12. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  13. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique

    International Nuclear Information System (INIS)

    Chen, Jinyang; Ji, Xinghu; He, Zhike

    2015-01-01

    In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing. - Highlights: • A simple, robust and low-cost sample-introduction technique was developed. • Convenient and flexible sample changing was achieved in microfluidic system. • Novel strategy of concentration gradient generation was presented for barcoding. • High-throughput droplet screening could be realized in the integrated platform. • Multiplex DNA assay was successfully carried out in the droplet platform

  14. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinyang; Ji, Xinghu [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); He, Zhike, E-mail: zhkhe@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Suzhou Institute of Wuhan University, Suzhou 215123 (China)

    2015-08-12

    In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing. - Highlights: • A simple, robust and low-cost sample-introduction technique was developed. • Convenient and flexible sample changing was achieved in microfluidic system. • Novel strategy of concentration gradient generation was presented for barcoding. • High-throughput droplet screening could be realized in the integrated platform. • Multiplex DNA assay was successfully carried out in the droplet platform.

  15. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  16. Effects of geometry and fluid elasticity during polymeric droplet pinch-off in microfluidic environments

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Sureshkumar, Radhakrishna

    2006-11-01

    We investigate the effects of fluid elasticity and channel geometry on polymeric droplet pinch-off by performing systematic experiments using viscoelastic polymer solutions which possess practically shear rate-independent viscosity (Boger fluids). Four different geometric sizes (width and depth are scaled up proportionally at the ratio of 0.5, 1, 2, 20) are used to study the effect of the length scale, which in turn influences the ratio of elastic to viscous forces as well as the Rayleigh time scale associated with the interfacial instability of a cylindrical column of liquid. We observe a power law relationship between the dimensionless (scaled with respect to the Rayleigh time scale) capillary pinch-off time, T, and the elasticity number, E, defined as the ratio of the fluid relaxation time to the time scale of viscous diffusion. In general, T increases dramatically with increasing E. The inhibition of ``bead-on-a-string'' formation is observed for flows with effective Deborah number, De, defined as the ratio of the fluid relaxation time to the Rayleigh time scale becomes greater than 10. For sufficiently large values of De, the Rayleigh instability may be modified substantially by fluid elasticity.

  17. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  19. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hanczyc, Martin; Hoyland, James

    2016-01-01

    are analyzed in situ based on optical signal intensities. By controlling the hydrodynamic flow focusing, uniform droplets of sizes between 100 μm and 300 μm are created with precise size control. Cross-flow shearing allows one to divide these droplets into anything from 2 to 9 individual droplets, depending...

  20. Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death

    Science.gov (United States)

    2015-12-20

    droplet-based microfluidic technology to generate population ‘bottleneck’. This platform will serve as a critical foundation for our long-term goal to...Final Report: Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death The views, opinions and/or findings contained...Triangle Park, NC 27709-2211 Microfluidics , systems biology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM

  1. Chip-based droplet sorting

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2017-11-21

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  2. Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime

    Science.gov (United States)

    Mahdi, Yassine; Daoud, Kamel; Tadrist, Lounès

    2017-04-01

    Generating micrometer sized droplets has been studied in a microfluidic system with T-junction geometry 250 μm in internal diameter and with PTFE capillary tubing. Several experiments were conducted by varying the flow rate of the dispersed phase from 2.78 ṡ10-11 m3 /s to 5.28 ṡ10-9 m3 /s and that of the continuous phase from 2.78 ṡ10-10 m3 /s to 1.94 ṡ10-9 m3 /s. The visualization of different flow regimes (drop, plug, and annular) was carried out for three configurations (not inverted in a horizontal position, inverted in a horizontal position, and inverted in a vertical position) for low capillary numbers. The model of Gauss was also chosen for a droplet size distribution in the dispersed phase, with the flow quality x varying from 0.016 to 0.44. The evolution of the drop size distribution as a function of the flow quality in the dispersed phase shows that the variation coefficient of the droplet's diameter is inversely proportional to the flow quality.

  3. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

    2016-10-01

    In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip.

    Science.gov (United States)

    Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa

    2008-10-01

    Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.

  5. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues.

    Science.gov (United States)

    Huang, Yu; Williams, Justin C; Johnson, Stephen M

    2012-06-21

    Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.

  6. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    Science.gov (United States)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  7. Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design

    DEFF Research Database (Denmark)

    Araci, Ismail Emre; Pop, Paul; Chakrabarty, Krishnendu

    2015-01-01

    of this paper is on continuous-flow biochips, where the basic building block is a microvalve. By combining these microvalves, more complex units such as mixers, switches, multiplexers can be built, hence the name of the technology, “microfluidic Very Large-Scale Integration” (mVLSI). A roadblock......Microfluidic biochips are replacing the conventional biochemical analyzers by integrating all the necessary functions for biochemical analysis using microfluidics. Biochips are used in many application areas, such as, in vitro diagnostics, drug discovery, biotech and ecology. The focus...... presents the state-of-the-art in the mVLSI platforms and emerging research challenges in the area of continuous-flow microfluidics, focusing on testing techniques and fault-tolerant design....

  8. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.

    Science.gov (United States)

    Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew

    2015-01-21

    We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.

  9. Droplet digital PCR technology promises new applications and research areas.

    Science.gov (United States)

    Manoj, P

    2016-01-01

    Digital Polymerase Chain Reaction (dPCR) is used to quantify nucleic acids and its applications are in the detection and precise quantification of low-level pathogens, rare genetic sequences, quantification of copy number variants, rare mutations and in relative gene expressions. Here the PCR is performed in large number of reaction chambers or partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid. Results are calculated by counting amplified target sequence (positive droplets) and the number of partitions in which there is no amplification (negative droplets). The mean number of target sequences was calculated by Poisson Algorithm. Poisson correction compensates the presence of more than one copy of target gene in any droplets. The method provides information with accuracy and precision which is highly reproducible and less susceptible to inhibitors than qPCR. It has been demonstrated in studying variations in gene sequences, such as copy number variants and point mutations, distinguishing differences between expression of nearly identical alleles, assessment of clinically relevant genetic variations and it is routinely used for clonal amplification of samples for NGS methods. dPCR enables more reliable predictors of tumor status and patient prognosis by absolute quantitation using reference normalizations. Rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging can be accurately detected with droplet digital PCR.

  10. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology.

    Science.gov (United States)

    Li, Peiwu; Zhang, Zhaowei; Zhang, Qi; Zhang, Ning; Zhang, Wen; Ding, Xiaoxia; Li, Ran

    2012-08-01

    Mycotoxin contamination in the food chain has caused serious health issues in humans and animals. Thus, a rapid on-site and lab-independent detection method for mycotoxins, such as aflatoxins (AFTs), is desirable. Microfluidic chip based immunosensor technology is one of the most promising methods for fast mycotoxin assays. In this review, we cover the major microfluidic immunosensors used for mycotoxin analysis, via flow-through (capillary electromigration) and lateral flow technology. Sample preparation from different matrices of agricultural products and foodstuffs is summarized. The choice of materials, fabrication strategies, and detection methods for microfluidic immunosensors are further discussed in detail. The sensors application in mycotoxin determination is also outlined. Finally, future challenges and opportunities are discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  12. Organ/body-on-a-chip based on microfluidic technology for drug discovery.

    Science.gov (United States)

    Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo

    2018-02-01

    Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  13. The application of microfluidic-based technologies in the cycle of metabolic engineering

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2016-09-01

    Full Text Available The process of metabolic engineering consists of multiple cycles of design, build, test and learn, which is typically laborious and time-consuming. To increase the efficiency and the rate of success of strain engineering, novel instrumentation must be applied. Microfluidics, the control of liquid flow in microstructures, has enabled flexible, accurate, automatic, and high-throughput manipulation of cells in liquid at picoliter to nanoliter scale. These attributes hold great promise in advancing metabolic engineering in terms of the phases of design, build, test and learn. To promote the application of microfluidic-based technologies in strain improvement, this review addressed the potentials of microfluidics and the related approaches in DNA assembly, transformation, strain screening, genotyping and phenotyping, and highlighted their adaptations for single-cell analysis. As a result, this facilitates in-depth understanding of the metabolic network, which in turn promote efficient optimization in the following cycles of strain engineering. Taken together, microfluidic-based technologies enable on-chip workflow, and could greatly accelerate the turnaround of metabolic engineering.

  14. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Science.gov (United States)

    Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina

    2015-01-01

    A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409

  15. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Directory of Open Access Journals (Sweden)

    George Luka

    2015-12-01

    Full Text Available A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter, increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.

  16. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    Science.gov (United States)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to membranes may be non-porous or porous (with controllable pore sizes from 200 nm to technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  17. A microfluidic platform for the rapid determination of distribution coefficients by gravity assisted droplet-based liquid-liquid extraction

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Wootton, Robert C. R.; Wolff, Anders

    2015-01-01

    The determination of pharmacokinetic properties of drugs, such as the distribution coefficient, D, is a crucial measurement in pharmaceutical research. Surprisingly, the conventional (gold standard) technique used for D measurements, the shake-flask method, is antiquated and unsuitable...... for the testing of valuable and scarce drug candidates. Herein we present a simple micro fluidic platform for the determination of distribution coefficients using droplet-based liquid-liquid extraction. For simplicity, this platform makes use of gravity to enable phase separation for analysis and is 48 times...... the apparent acid dissociation constant, pK', as a proxy for inter-system comparison. Our platform determines a pK' value of 7.24 ± 0.15, compared to 7.25 ± 0.58 for the shake-flask method in our hands and 7.21 for the shake-flask method in literature. Devices are fabricated using injection moulding, the batch...

  18. Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology

    Science.gov (United States)

    Gerdes, B.; Zengerle, R.; Koltay, P.; Riegger, L.

    2018-07-01

    Drop-on demand printing of molten metal droplets could be used for prototyping 3D objects as a promising alternative to laser melting technologies. However, to date, only few printheads have been investigated for this purpose, and they used only a limited range of materials. The pneumatically actuated StarJet technology enables the direct and non-contact printing of molten metal microdroplets from metal melts at high temperatures. StarJet printheads utilize nozzle chips featuring a star-shaped orifice geometry that leads to formation of droplets inside the nozzle with high precision. In this paper, we present a novel StarJet printhead for printing aluminum (Al) alloys featuring a hybrid design with a ceramic reservoir for the molten metal and an outer shell fabricated from stainless steel. The micro machined nozzle chip is made from silicon carbide (SiC). This printhead can be operated at up to 950 °C, and is capable of printing high melting point metals like Al alloys in standard laboratory conditions. In this work, an aluminum–silicon alloy that features 12% silicon (AlSi12) is printed. The printhead, nozzle, and peripheral actuation system are optimized for stable generation of AlSi12 droplets with high monodispersity, low angular deviation, and miniaturized droplet diameters. As a result, a stable drop-on-demand printing of droplets exhibiting diameters of d droplet  =  702 µm  ±  1% is demonstrated at 5 Hz with a low angular deviation of 0.3°, when a nozzle chip with 500 µm orifice diameter is used. Furthermore, AlSi12 droplets featuring d droplet  =  176 µm  ±  7% are printed when using a nozzle chip with an orifice diameter of 130 µm. Moreover, we present directly printed objects from molten Al alloy droplets, such as high aspect ratio, free-standing walls (aspect ratio 12:1), and directly printed, flexible springs, to demonstrate the principle of 3D printing with molten metal droplets.

  19. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  20. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    Science.gov (United States)

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  1. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    Directory of Open Access Journals (Sweden)

    Vasa Radonić

    2017-04-01

    Full Text Available In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed.

  2. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  3. Dielectrophoresis microjets: a merging of electromagnetics and microfluidics for on-chip technologies

    Science.gov (United States)

    Hill, Kyle A.; Collier, Christopher M.; Holzman, Jonathan F.

    2014-05-01

    Digital (droplet-based) microfluidic systems apply electromagnetic characteristics as the fundamental fluid actuation mechanism. These systems are often implemented in two-dimensional architectures, overcoming one-dimensional continuous flow channel practical issues. The fundamental operation for digital microfluidics requires the creation of an electric field distribution to achieve desired fluid actuation. The electric field distribution is typically non-uniform, enabling creation of net dielectrophoresis (DEP) force. The DEP force magnitude is proportional to the difference between microdroplet and surrounding medium complex dielectric constants, and the gradient of the electric field magnitude squared. Force sign/direction can be manipulated to achieve a force towards higher (positive DEP) or lower (negative DEP) electrostatic energy by tailoring the relative difference between microdroplet and surrounding medium complex dielectric constants through careful selection of the devices fabrication materials. The DEP force magnitudes and directions are applied here for well-controlled and high-speed microdroplet actuation. Control and speed characteristics arise from significant differences in the microdroplet/medium conductivity and the use of a micropin architecture with strong electric field gradients. The implementation, referred to here as a DEP microjet, establishes especially strong axial propulsion forces. Single- and double-micropin topologies achieve strong axial propulsion force, but only the double-micropin topology creates transverse converging forces for stable and controlled microdroplet actuation. Electric field distributions for each topology are investigated and linked to axial and transverse forces. Experimental results are presented for both topologies. The double-micropin topology is tested with biological fluids. Microdroplet actuation speeds up to 25 cm/s are achieved—comparable to the fastest speeds to-date.

  4. One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis

    NARCIS (Netherlands)

    Rakszewska, A.; Tel, J.; Chokkalingam, V.; Huck, W.T.

    2014-01-01

    Miniaturization has been the key driver for many remarkable technological developments in recent decades. Miniaturization has now also extended into biology, thereby setting the stage for high-throughput single-cell analysis. This advancement is important because, despite detailed molecular

  5. A versatile technology platform for microfluidic handling systems, part II : channel design and technology

    NARCIS (Netherlands)

    Groenesteijn, Jarno; de Boer, Meint J.; Lötters, Joost C.; Wiegerink, Remco J.

    2017-01-01

    Microfluidic devices often require channels of a specific size and shape. These devices are then made in a fabrication process that is often specialized to produce only those (and very similar) channels. As a result, devices requiring channels of different size and shape cannot easily be integrated

  6. A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems

    International Nuclear Information System (INIS)

    Charlot, Samuel; Gué, Anne-Marie; Tasselli, Josiane; Marty, Antoine; Abgrall, Patrick; Estève, Daniel

    2008-01-01

    This paper describes a new technology permitting a hybrid integration of silicon chips in polymer (PDMS and SU8) microfluidic structures. This two-step technology starts with transferring the silicon device onto a rigid substrate (typically PCB) and planarizing it, and then it proceeds with stacking of the polymer-made fluidic network onto the device. The technology is low cost, based on screen printing and lamination, can be applied to treat large surface areas, and is compatible with standard photolithography and vacuum based approaches. We show, as an example, the integration of a thermal sensor inside channels made of PDMS or SU8. The developed structures had no fluid leaks at the Si/polymer interfaces and the electrical circuit was perfectly tightproof. (note)

  7. Digital microfluidics: A promising technique for biochemical applications

    Science.gov (United States)

    Wang, He; Chen, Liguo; Sun, Lining

    2017-12-01

    Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.

  8. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies.

    Science.gov (United States)

    Yanez, Livia Z; Camarillo, David B

    2017-04-01

    Measurement of oocyte and embryo biomechanical properties has recently emerged as an exciting new approach to obtain a quantitative, objective estimate of developmental potential. However, many traditional methods for probing cell mechanical properties are time consuming, labor intensive and require expensive equipment. Microfluidic technology is currently making its way into many aspects of assisted reproductive technologies (ART), and is particularly well suited to measure embryo biomechanics due to the potential for robust, automated single-cell analysis at a low cost. This review will highlight microfluidic approaches to measure oocyte and embryo mechanics along with their ability to predict developmental potential and find practical application in the clinic. Although these new devices must be extensively validated before they can be integrated into the existing clinical workflow, they could eventually be used to constantly monitor oocyte and embryo developmental progress and enable more optimal decision making in ART. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Synthesis of hypoxia imaging agent 1-(5-deoxy-5-fluoro-α-D-arabinofuranosyl)-2-nitroimidazole using microfluidic technology

    International Nuclear Information System (INIS)

    Bouvet, Vincent R.; Wuest, Melinda; Wiebe, Leonard I.; Wuest, Frank

    2011-01-01

    Introduction: Microfluidic technology allows fast reactions in a simple experimental setup, while using very low volumes and amounts of starting material. Consequently, microfluidic technology is an ideal tool for radiolabeling reactions involving short-lived positron emitters. Optimization of the complex array of different reaction conditions requires knowledge of the different reaction parameters linked to the microfluidic system as well as their influence on the radiochemical yields. 1-(5-Deoxy-5-fluoro-α-D-arabinofuranosyl)-2-nitroimidazole ([ 18 F]FAZA) is a frequently used radiotracer for PET imaging of tumor hypoxia. The present study describes the radiosynthesis of [ 18 F]FAZA by means of microfluidic technology and subsequent small animal PET imaging in EMT-6 tumor-bearing mice. Methods: Radiosyntheses were performed using the NanoTek Microfluidic Synthesis System (Advion BioSciences, Inc.). Optimal reaction conditions were studied through screening different reaction parameters like temperature, flow rate, residency time, concentration of the labeling precursor (1-(2,3-di-O-acetyl-5-O-tosyl-α-D-arabinofuranosyl)-2-nitroimidazole) and the applied volume ratio between the labeling precursor and [ 18 F]fluoride. Results: Optimized reaction conditions at low radioactivity levels (1 to 50 MBq) afforded 63% (decay-corrected) of HPLC-purified [ 18 F]FAZA within 25 min. Higher radioactivity levels (0.4 to 2.1 GBq) gave HPLC-purified [ 18 F]FAZA in radiochemical yields of 40% (decay-corrected) within 60 min at a specific activity in the range of 70 to 150 GBq/μmol. Small animal PET studies in EMT-6 tumor-bearing mice showed radioactivity accumulation in the tumor (SUV 20min 0.74 ± 0.08) resulting in an increasing tumor-to-muscle ratio over time. Conclusions: Microfluidic technology is an ideal method for the rapid and efficient radiosynthesis of [ 18 F]FAZA for preclinical radiopharmacological studies. Careful analysis of various reaction parameters is an

  10. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  11. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis of hollow titania microspheres by using microfluidic droplet-template%微流控液滴软模板制备二氧化钛中空微球

    Institute of Scientific and Technical Information of China (English)

    马静云; 姜雷; 秦建华

    2011-01-01

    Droplet-based microfluidics is of great interest due to its particular characteristics compared with the conventional methods, such as reduced reagent consumption, rapid mixing, high-throughput, shape controlled, etc. A novel method using microfluidic droplet as soft template for the synthesis of hollow titania microspheres was developed. A typical polydimethylsi-loxane (PDMS) microfluidic device containing "flow-focusing" geometry was used to generate water/oil (W/O) droplet. The mechanism for the hollow structure formation was based on the interfacial hydrolysis reaction between the continuous phase containing titanium butoxide precursor and the dispersed containing water. The continuous phase mixed with butanol was added in the downstream of the channel after the hydrolysis reaction. This step was used for drawing the water out of the microgels for further hydrolysis. The microgels obtained through a glass pipe integrated were washed, dried under vacuum and calcined after aging for a certain time. The fluorescence and scanning electron microscope ( SEM) image of the microspheres indicated the hollow structure and the thickness of the shell. In addition, these microspheres with thin shell (about 2 u.m) were apt to rupture and collapse. Droplet-based microfluidic offered a gentle and size-controllable manner to moderate this problem. Moreover, it has potential applications in photocatalysis combined with some modification realized on the chip simultaneously.%应用微流控液滴技术合成功能材料已发展成为一个新兴领域.本文以夹流结构微流控芯片产生的微液滴作为软模板,以液滴模板界面处发生的水解反应生成二氧化钛球壳,并经后续脱核处理,制备二氧化钛中空微球.采用激光诱导荧光成像、扫描电镜等手段对微球形貌结构进行了分析表征.结果表明,通过控制微流控芯片液滴合成条件,可以得到壁厚约2 μm的二氧化钛中空微球.这种以微流控液滴为

  13. Leveraging liquid dielectrophoresis for microfluidic applications

    International Nuclear Information System (INIS)

    Chugh, Dipankar; Kaler, Karan V I S

    2008-01-01

    Miniaturized fluidic systems have been developed in recent years and offer new and novel means of leveraging the domain of microfluidics for the development of micro-total analysis systems (μTAS). Initially, such systems employed closed microchannels in order to facilitate chip-based biochemical assays, requiring very small quantities of sample and/or reagents and furthermore providing rapid and low-cost analysis on a compact footprint. More recently, advancements in the domain of surface microfluidics have suggested that similar low volume sample handling and manipulation capabilities for bioassays can be attained by leveraging the phenomena of liquid dielectrophoresis and droplet dielectrophoresis (DEP), without the need for separate pumps or valves. Some of the key aspects of this surface microfluidic technology and its capabilities are discussed and highlighted in this paper. We, furthermore, examine the integration and utility of liquid DEP and droplet DEP in providing rapid and automated sample handling and manipulation capabilities on a compact chip-based platform

  14. Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine

    Science.gov (United States)

    Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David

    2018-04-01

    We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.

  15. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    Science.gov (United States)

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  16. Commercialization of microfluidic devices.

    Science.gov (United States)

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    Science.gov (United States)

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  18. Split and flow: reconfigurable capillary connection for digital microfluidic devices.

    Science.gov (United States)

    Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent

    2014-09-21

    Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.

  19. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  20. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Michael E. [Univ. of California, Los Angeles, CA (United States)

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies

  1. Operation placement for application-specific digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate onchip all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow......, but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  2. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  3. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  4. A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation.

    Science.gov (United States)

    Ji, Qinglei; Zhang, Jia Ming; Liu, Ying; Li, Xiying; Lv, Pengyu; Jin, Dongping; Duan, Huiling

    2018-03-19

    3D-printing (3DP) technology has been developing rapidly. However, limited studies on the contribution of 3DP technology, especially multimaterial 3DP technology, to droplet-microfluidics have been reported. In this paper, multimaterial 3D-printed devices for the pneumatic control of emulsion generation have been reported. A 3D coaxial flexible channel with other rigid structures has been designed and printed monolithically. Numerical and experimental studies have demonstrated that this flexible channel can be excited by the air pressure and then deform in a controllable way, which can provide the active control of droplet generation. Furthermore, a novel modular microfluidic device for double emulsion generation has been designed and fabricated, which consists of three modules: function module, T-junction module, and co-flow module. The function module can be replaced by (1) Single-inlet module, (2) Pneumatic Control Unit (PCU) module and (3) Dual-inlet module. Different modules can be easily assembled for different double emulsion production. By using the PCU module, double emulsions with different number of inner droplets have been successfully produced without complicated operation of flow rates of different phases. By using single and dual inlet module, various double emulsions with different number of encapsulated droplets or encapsulated droplets with different compositions have been successfully produced, respectively.

  5. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    Science.gov (United States)

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  6. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  7. Analytical detection techniques for droplet microfluidics—A review

    International Nuclear Information System (INIS)

    Zhu, Ying; Fang, Qun

    2013-01-01

    Graphical abstract: -- Highlights: •This is the first review paper focused on the analytical techniques for droplet-based microfluidics. •We summarized the analytical methods used in droplet-based microfluidic systems. •We discussed the advantage and disadvantage of each method through its application. •We also discuss the future development direction of analytical methods for droplet-based microfluidic systems. -- Abstract: In the last decade, droplet-based microfluidics has undergone rapid progress in the fields of single-cell analysis, digital PCR, protein crystallization and high throughput screening. It has been proved to be a promising platform for performing chemical and biological experiments with ultra-small volumes (picoliter to nanoliter) and ultra-high throughput. The ability to analyze the content in droplet qualitatively and quantitatively is playing an increasing role in the development and application of droplet-based microfluidic systems. In this review, we summarized the analytical detection techniques used in droplet systems and discussed the advantage and disadvantage of each technique through its application. The analytical techniques mentioned in this paper include bright-field microscopy, fluorescence microscopy, laser induced fluorescence, Raman spectroscopy, electrochemistry, capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption detection, chemiluminescence, and sample pretreatment techniques. The importance of analytical detection techniques in enabling new applications is highlighted. We also discuss the future development direction of analytical detection techniques for droplet-based microfluidic systems

  8. Integration of microplasma and microfluidic technologies for localised microchannel surface modification

    Science.gov (United States)

    Szili, Endre J.; Al-Bataineh, Sameer A.; Priest, Craig; Gruner, Philipp J.; Ruschitzka, Paul; Bradley, James W.; Ralston, John; Steele, David A.; Short, Robert D.

    2011-12-01

    In this paper we describe the spatial surface chemical modification of bonded microchannels through the integration of microplasmas into a microfluidic chip (MMC). The composite MMC comprises an array of precisely aligned electrodes surrounding the gas/fluid microchannel. Pairs of electrodes are used to locally ignite microplasmas inside the microchannel. Microplasmas, comprising geometrically confined microscopic electrically-driven gas discharges, are used to spatially functionalise the walls of the microchannels with proteins and enzymes down to scale lengths of 300 μm inside 50 μm-wide microchannels. Microchannels in poly(dimethylsiloxane) (PDMS) or glass were used in this study. Protein specifically adsorbed on to the regions inside the PDMS microchannel that were directly exposed to the microplasma. Glass microchannels required pre-functionalisation to enable the spatial patterning of protein. Firstly, the microchannel wall was functionalised with a protein adhesion layer, 3-aminopropyl-triethoxysilane (APTES), and secondly, a protein blocking agent (bovine serum albumin, BSA) was adsorbed onto APTES. The functionalised microchannel wall was then treated with an array of spatially localised microplasmas that reduced the blocking capability of the BSA in the region that had been exposed to the plasma. This enabled the functionalisation of the microchannel with an array of spatially separated protein. As an alternative we demonstrated the feasibility of depositing functional thin films inside the MMC by spatially plasma depositing acrylic acid and 1,7-octadiene within the microchannel. This new MMC technology enables the surface chemistry of microchannels to be engineered with precision, which is expected to broaden the scope of lab-on-a-chip type applications.

  9. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Capretto L

    2012-01-01

    Full Text Available Lorenzo Capretto1, Stefania Mazzitelli2, Eleonora Brognara2, Ilaria Lampronti2, Dario Carugo1, Martyn Hill1, Xunli Zhang1, Roberto Gambari2, Claudio Nastruzzi31Engineering Sciences, University of Southampton, Southampton, UK; 2Department of Biochemistry and Molecular Biology, 3Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, ItalyAbstract: This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH, based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol

  10. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  11. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.

    Science.gov (United States)

    Lin, Hangyu; Chen, Junfang; Chen, Chuanpin

    2016-09-01

    Microbubbles are used as ultrasound contrast agents, which enhance ultrasound imaging techniques. In addition, microbubbles currently show promise in disease therapeutics. Microfluidic devices have increased the ability to produce microbubbles with precise size, and high monodispersity compared to microbubbles created using traditional methods. This paper will review several variations in microfluidic device structures used to produce microbubbles as ultrasound contrast agents. Microfluidic device structures include T-junction, and axisymmetric and asymmetric flow-focusing. These devices have made it possible to produce microbubbles that can enter the vascular space; these microbubbles must be less than 10 μm in diameter and have high monodispersity. For different demands of microbubbles production rate, asymmetric flow-focusing devices were divided into individual and integrated devices. In addition, asymmetric flow-focusing devices can produce double layer and multilayer microbubbles loaded with drug or biological components. Details on the mechanisms of both bubble formation and device structures are provided. Finally, microfluidically produced microbubble acoustic responses, microbubble stability, and microbubble use in ultrasound imaging are discussed.

  12. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

    Science.gov (United States)

    Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.

    2018-01-01

    Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

  13. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Science.gov (United States)

    Capretto, Lorenzo; Mazzitelli, Stefania; Brognara, Eleonora; Lampronti, Ilaria; Carugo, Dario; Hill, Martyn; Zhang, Xunli; Gambari, Roberto; Nastruzzi, Claudio

    2012-01-01

    This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of β-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying β-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for β-thalassemia. PMID:22287841

  14. Droplet size effects on film drainage between droplet and substrate.

    Science.gov (United States)

    Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q

    2006-06-06

    When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.

  15. Controlled and tunable polymer particles' production using a single microfluidic device

    Science.gov (United States)

    Amoyav, Benzion; Benny, Ofra

    2018-04-01

    Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

  16. Research Progress of Microfluidic Chips Preparation and its Optical Element

    Directory of Open Access Journals (Sweden)

    Feng WANG

    2014-03-01

    Full Text Available Microfluidic technology is the emerging technologies in researching fluid channel and related applications in the micro and nano-scale space. Microfluidic chip is a new miniaturized rapid analysis platform by microfluidic technology, it has many characteristics such as liquid flow control, minimal reagent consumption, rapid analysis, which is widely used in physics, chemistry, biology, and engineering science and other fields, it has strong interdisciplinary. This paper mainly discusses research progress of materials used for microfluidic chips and the devices based on microfluidic technology, including microfluidic chip, microfluidic optical devices, microfluidic laser preparation, microfluidic chip applications, focusing on the quasi-molecular laser processing technology and femtosecond laser processing technology in the microfluidic devices preparation, and make development prospects for it.

  17. Morphing and vectoring impacting droplets by means of wettability-engineered surfaces.

    Science.gov (United States)

    Schutzius, Thomas M; Graeber, Gustav; Elsharkawy, Mohamed; Oreluk, James; Megaridis, Constantine M

    2014-11-13

    Driven by its importance in nature and technology, droplet impact on solid surfaces has been studied for decades. To date, research on control of droplet impact outcome has focused on optimizing pre-impact parameters, e.g., droplet size and velocity. Here we follow a different, post-impact, surface engineering approach yielding controlled vectoring and morphing of droplets during and after impact. Surfaces with patterned domains of extreme wettability (high or low) are fabricated and implemented for controlling the impact process during and even after rebound--a previously neglected aspect of impact studies on non-wetting surfaces. For non-rebound cases, droplets can be morphed from spheres to complex shapes--without unwanted loss of liquid. The procedure relies on competition between surface tension and fluid inertial forces, and harnesses the naturally occurring contact-line pinning mechanisms at sharp wettability changes to create viable dry regions in the spread liquid volume. Utilizing the same forces central to morphing, we demonstrate the ability to rebound orthogonally-impacting droplets with an additional non-orthogonal velocity component. We theoretically analyze this capability and derive a We(-.25) dependence of the lateral restitution coefficient. This study offers wettability-engineered surfaces as a new approach to manipulate impacting droplet microvolumes, with ramifications for surface microfluidics and fluid-assisted templating applications.

  18. Novel mixing method for cross linker introduction into droplet emulsions

    CSIR Research Space (South Africa)

    Land, KJ

    2013-10-01

    Full Text Available the introduction of cross linker after droplet formation, together with the utilisation of topological microfluidic channel structures, allowing for the novel manufacture of particles. Flow over these structures has been simulated in order to choose the most...

  19. Designed pneumatic valve actuators for controlled droplet breakup and generation.

    Science.gov (United States)

    Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

    2010-02-21

    The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

  20. Towards Multiplex Molecular Diagnosis—A Review of Microfluidic Genomics Technologies

    Directory of Open Access Journals (Sweden)

    Ismail Hussain Kamal Basha

    2017-08-01

    Full Text Available Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.

  1. The thermal-hydraulic for the new technologies: the micro-fluidics

    International Nuclear Information System (INIS)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J.

    2000-01-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  2. Application-specific fault-tolerant architecture synthesis for digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    , but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  3. Effect of surface wettability on microfluidic EDGE emulsification

    NARCIS (Netherlands)

    Maan, A.A.; Sahin, S.; Mujawar, L.H.; Boom, R.M.; Schroen, C.G.P.H.

    2013-01-01

    The effect of wettability on microfluidic EDGE emulsification was investigated at dispersed phase contact angles between 90 and 160. The highest contact angle (160) produced monodispersed emulsions with droplet size 5.0 lm and coefficient of variation

  4. Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter

    Science.gov (United States)

    Hibert, Kurt James

    Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the

  5. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  6. Synthesis of Application-Specific Fault-Tolerant Digital Microfluidic Biochip Architectures

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2016-01-01

    Digital microfluidic biochips (DMBs) are microfluidic devices that manipulate droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, and split, are performed on the electrode array to perform a biochemical application. All previous work assumes that the DMB...

  7. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.

    Science.gov (United States)

    Nishimura, Kazuya; Suzuki, Hiroaki; Toyota, Taro; Yomo, Tetsuya

    2012-06-15

    The production of giant lipid vesicles with controlled size and structure will be an important technology in the design of quantitative biological assays in cell-mimetic microcompartments. For establishing size control of giant vesicles, we investigated the vesicle formation process, in which inverted emulsion droplets are transformed into giant unilamellar vesicles (GUVs) when they pass through an oil/water interface. The relationship between the size of the template emulsion and the converted GUVs was studied using inverted emulsion droplets with a narrow size distribution, which were prepared by microfluidics. We successfully found an appropriate centrifugal acceleration condition to obtain GUVs that had a desired size and narrow-enough size distribution with an improved yield so that emulsion droplets can become the template for GUVs. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

    OpenAIRE

    Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,

    2018-01-01

    Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystallization conditions. Commercially-available microfluidic junctions and tubing are combined to create the appropriate geometry. In addition, a " chemical library " is produced in tubing. The microfluidic geometry for a " crystallization agent-based chemica...

  9. Compilation and Synthesis for Fault-Tolerant Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, by integrating all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips (DMBs) manipulate discrete amounts of fluids of nanoliter volume, named droplets, on an array...... of the operations in the application. During the execution of a bioassay, operations could experience transient faults, thus impacting negatively the correctness of the application. We have proposed both offline (design time) and online (runtime) recovery strategies. The online recovery strategy decides...

  10. Fabrication of three-dimensional freestanding metal micropipes for microfluidics and microreaction technology

    International Nuclear Information System (INIS)

    Lang, P; Neiß, S; Woias, P

    2011-01-01

    In this paper, we describe a simple and novel fabrication process to produce three-dimensional freestanding metal micropipes. This process is based on conventional micromachining and electroless nickel plating inside a microfluidic channel of structured and stacked silicon substrates. The nickel micropipe resists an etching with KOH, which facilitates to fabricate freestanding, functional micropipes. The in-channel electroless plating achieves a continuous and homogeneous deposition of nickel and shows an accurate coating of small microstructures down to 20 µm. Furthermore, the deposited nickel layers possess a high tensile strength for bonding (>200–300 N mm −2 ), are chemically inert against fluorine gas and withstand pressures up to 6 bar. Thermal measurements have shown that released micropipes show better heat flux densities than embedded micropipes with 86% at a cooling flow rate of 16 ml h −1 . Hence, released micropipes feature accurate control of the temperature in the micropipe via a variance of the cooling fluid flow rate.

  11. Routing-based Synthesis of Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the basic functsions for biochemical analysis. The "digital" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array...... of electrodes. Basic microfluidic operations, such as mixing and dilution, are performed on the array, by routing the corresponding droplets on a series of electrodes. So far, researchers have assumed that these operations are executed on rectangular virtual devices, formed by grouping several adjacent...

  12. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  13. Routing-based synthesis of digital microfluidic biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The “digital” biochips are manipulating liquids as discrete droplets on a two-dimensional array of electrodes. Basic microfluidic...... electrodes are considered occupied during the operation execution, although the droplet uses only one electrode at a time. Moreover, the operations can actually be performed by routing the droplets on any sequence of electrodes on the microfluidic array. Hence, in this paper, we eliminate the concept...... on the surface of the microfluidic array. We have extended the GRASP-based algorithm to consider contamination avoidance during routing-based synthesis. Several real-life examples and synthetic benchmarks are used to evaluate the proposed approaches....

  14. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  15. Moving-part-free microfluidic systems for lab-on-a-chip

    International Nuclear Information System (INIS)

    Luo, J K; Fu, Y Q; Du, X Y; Flewitt, A J; Milne, W I; Li, Y; Walton, A J

    2009-01-01

    Microfluidic systems are part of an emerging technology which deals with minute amounts of liquids (biological samples and reagents) on a small scale. They are fast, compact and can be made into a highly integrated system to deliver sample purification, separation, reaction, immobilization, labelling, as well as detection, thus are promising for applications such as lab-on-a-chip and handheld healthcare devices. Miniaturized micropumps typically consist of a moving-part component, such as a membrane structure, to deliver liquids, and are often unreliable, complicated in structure and difficult to be integrated with other control electronics circuits. The trend of new-generation micropumps is moving-part-free micropumps operated by advanced techniques, such as electrokinetic force, surface tension/energy, acoustic waves. This paper reviews the development and advances of relevant technologies, and introduces electrowetting-on-dielectrics and acoustic wave-based microfluidics. The programmable electrowetting micropump has been realized to dispense and manipulate droplets in 2D with up to 1000 addressable electrodes and electronics built underneath. The acoustic wave-based microfluidics can be used not only for pumping, mixing and droplet generation but also for biosensors, suitable for single-mechanism-based lab-on-a-chip applications

  16. Integrated microfluidic technology for sub-lethal and behavioral marine ecotoxicity biotests

    Science.gov (United States)

    Huang, Yushi; Reyes Aldasoro, Constantino Carlos; Persoone, Guido; Wlodkowic, Donald

    2015-06-01

    Changes in behavioral traits exhibited by small aquatic invertebrates are increasingly postulated as ethically acceptable and more sensitive endpoints for detection of water-born ecotoxicity than conventional mortality assays. Despite importance of such behavioral biotests, their implementation is profoundly limited by the lack of appropriate biocompatible automation, integrated optoelectronic sensors, and the associated electronics and analysis algorithms. This work outlines development of a proof-of-concept miniaturized Lab-on-a-Chip (LOC) platform for rapid water toxicity tests based on changes in swimming patterns exhibited by Artemia franciscana (Artoxkit M™) nauplii. In contrast to conventionally performed end-point analysis based on counting numbers of dead/immobile specimens we performed a time-resolved video data analysis to dynamically assess impact of a reference toxicant on swimming pattern of A. franciscana. Our system design combined: (i) innovative microfluidic device keeping free swimming Artemia sp. nauplii under continuous microperfusion as a mean of toxin delivery; (ii) mechatronic interface for user-friendly fluidic actuation of the chip; and (iii) miniaturized video acquisition for movement analysis of test specimens. The system was capable of performing fully programmable time-lapse and video-microscopy of multiple samples for rapid ecotoxicity analysis. It enabled development of a user-friendly and inexpensive test protocol to dynamically detect sub-lethal behavioral end-points such as changes in speed of movement or distance traveled by each animal.

  17. Microfluidic organ-on-chip technology for blood-brain barrier research.

    Science.gov (United States)

    van der Helm, Marinke W; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue. It protects the brain from harmful compounds from the blood and provides homeostasis for optimal neuronal function [corrected]. Studying BBB function and dysfunction is important for drug development and biomedical research. Microfluidic BBBs-on-chips enable real-time study of (human) cells in an engineered physiological microenvironment, for example incorporating small geometries and fluid flow as well as sensors. Examples of BBBs-on-chips in literature already show the potential of more realistic microenvironments and the study of organ-level functions. A key challenge in the field of BBB-on-chip development is the current lack of standardized quantification of parameters such as barrier permeability and shear stress. This limits the potential for direct comparison of the performance of different BBB-on-chip models to each other and existing models. We give recommendations for further standardization in model characterization and conclude that the rapidly emerging field of BBB-on-chip models holds great promise for further studies in BBB biology and drug development.

  18. Breakup of confined droplets in microfluidics

    NARCIS (Netherlands)

    Hoang, A.D.

    2013-01-01

    Segmented-flow microreactors have emerged as an attractive tool for fine chemical synthesis and (bio)chemical analysis, owing to their high heat and mass transfer rate, low axial dispersion, as well as rapid mixing. A key challenge for the use of segmented-flow microreactors in large-scale

  19. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    Science.gov (United States)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  20. Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines

    International Nuclear Information System (INIS)

    Vespini, Veronica; Coppola, Sara; Grilli, Simonetta; Paturzo, Melania; Ferraro, Pietro

    2013-01-01

    Liquid handling at micron- and nano-scale is of paramount importance in many fields of application such as biotechnology and biochemistry. In fact, the microfluidics technologies play an important role in lab-on-a-chip devices and, in particular, the dispensing of liquid droplets is a required functionality. Different approaches have been developed for manipulating, dispensing and controlling nano-droplets under a wide variety of configurations. Here we demonstrate that nano-droplets can be drawn from liquid drop or film reservoirs through a sort of milking effect achieved by the absorption of IR laser radiation into a pyroelectric crystal. The generation of the pyroelectric field induced by the IR laser is calculated numerically and a specific experiment has been designed to visualize the electric field stream lines that are responsible for the liquid milking effect. The experiments performed are expected to open a new route for the visualization, measure and characterization procedures in the case of electrohydrodynamic applications. (paper)

  1. Spintronic microfluidic platform for biomedical and environmental applications

    Science.gov (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  2. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement

    Science.gov (United States)

    Li, Yi; Liu, Zhaomiao

    2017-01-01

    Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence (η) in a microgroove is higher (50% T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency (η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics. PMID:28890680

  3. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.

    Science.gov (United States)

    Shen, Feng; Li, Yi; Liu, Zhaomiao; Li, XiuJun

    2017-04-01

    Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence ( η ) in a microgroove is higher (50% < η < 92%) than that in a T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency ( η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics.

  4. Droplet Growth

    Science.gov (United States)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  5. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  6. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    Science.gov (United States)

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  7. Internal flow inside droplets within a concentrated emulsion during droplet rearrangement

    Science.gov (United States)

    Leong, Chia Min; Gai, Ya; Tang, Sindy K. Y.

    2018-03-01

    Droplet microfluidics, in which each droplet serves as a micro-reactor, has found widespread use in high-throughput biochemical screening applications. These droplets are often concentrated at various steps to form a concentrated emulsion. As part of a serial interrogation and sorting process, such concentrated emulsions are typically injected into a tapered channel leading to a constriction that fits one drop at a time for the probing of droplet content in a serial manner. The flow physics inside the droplets under these flow conditions are not well understood but are critical for predicting and controlling the mixing of reagents inside the droplets as reactors. Here we investigate the flow field inside droplets of a concentrated emulsion flowing through a tapered microchannel using micro-particle image velocimetry. The confining geometry of the channel forces the number of rows of drops to reduce by one at specific and uniformly spaced streamwise locations, which are referred to as droplet rearrangement zones. Within each rearrangement zone, the phase-averaged velocity results show that the motion of the droplets involved in the rearrangement process, also known as a T1 event, creates vortical structures inside themselves and their adjacent droplets. These flow structures increase the circulation inside droplets up to 2.5 times the circulation in droplets at the constriction. The structures weaken outside of the rearrangement zones suggesting that the flow patterns created by the T1 process are transient. The time scale of circulation is approximately the same as the time scale of a T1 event. Outside of the rearrangement zones, flow patterns in the droplets are determined by the relative velocity between the continuous and disperse phases.

  8. Equilibrium and Nonequilibrium States in Microfluidic Double Emulsions

    DEFF Research Database (Denmark)

    Pannacci, N.; Bruus, Henrik; Bartolo, D.

    2008-01-01

    We describe experimental and theoretical studies dedicated to establishing the physics of formation of double droplets in microfluidic systems. We show that the morphologies (complete engulfing, partial engulfing, and nonengulfing) obtained at late times minimize the interfacial energy of the sys......We describe experimental and theoretical studies dedicated to establishing the physics of formation of double droplets in microfluidic systems. We show that the morphologies (complete engulfing, partial engulfing, and nonengulfing) obtained at late times minimize the interfacial energy...... of the system. We explain that nonequilibrium morphologies generated in the system can have long lifetimes. Remarkably, the physics of formation of the double droplets with microfluidics allows the synthesis of particles with new morphologies....

  9. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow...

  10. Influence of complex interfacial rheology on the thermocapillary migration of a surfactant-laden droplet in Poiseuille flow

    Science.gov (United States)

    Das, Sayan; Chakraborty, Suman

    2018-02-01

    the other hand, surface viscosities do not have any effect on the motion of the droplet. These results are likely to have far-reaching consequences in designing an optimal migration path in droplet-based microfluidic technology.

  11. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei

    2013-10-10

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  12. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.; Kodzius, Rimantas

    2013-01-01

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  13. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  14. Coalescence kinetics of oil-in-water emulsions studied with microfluidics

    NARCIS (Netherlands)

    Krebs, T.; Schroen, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report the results of experiments on the coalescence dynamics in flowing oil-in-water emulsions using an integrated microfluidic device. The microfluidic circuit permits direct observation of shear-induced collisions and coalescence events between emulsion droplets. Three mineral oils with a

  15. Addressable droplet microarrays for single cell protein analysis.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  16. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  17. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  18. Microfluidic Biochip Design

    Science.gov (United States)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  19. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  20. Towards droplet size-aware biochemical application compilation for AM-EWOD biochips

    DEFF Research Database (Denmark)

    Pop, Paul; Alistar, Mirela

    2015-01-01

    a droplet size-aware compilation by proposing a routing algorithm that considers the droplet size. Our routing algorithm is developed for a novel digital microfluidic biochip architecture based on Active Matrix Electrowetting on Dielectric, which uses a thin film transistor array for the electrodes. We also...

  1. Toward single enzyme analysis in a droplet-based micro and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai

    2012-01-01

    In this thesis, we have demonstrated the application of micro- and nanofluidic devices to generate an array of aqueous droplets in oil phase for single-enzyme encapsulation and activity measurement. We chose droplet-based microfluidics for this purpose of monitoring single-enzyme reactions since the

  2. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  3. Logic control of microfluidics with smart colloid

    KAUST Repository

    Wang, Limu

    2010-01-01

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate. © The Royal Society of Chemistry 2010.

  4. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  5. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.

    2013-01-01

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  6. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  7. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  8. An optimized resistor pattern for temperature gradient control in microfluidics

    Science.gov (United States)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-06-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117-23, Erickson et al 2003 Lab Chip 3 141-9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors.

  9. An optimized resistor pattern for temperature gradient control in microfluidics

    International Nuclear Information System (INIS)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-01-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117–23, Erickson et al 2003 Lab Chip 3 141–9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors

  10. Bioanalysis in microfluidic devices.

    Science.gov (United States)

    Khandurina, Julia; Guttman, András

    2002-01-18

    Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.

  11. Microfluidic interconnects

    Science.gov (United States)

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  12. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Science.gov (United States)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  13. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  14. Digital Microfluidic System with Vertical Functionality

    Directory of Open Access Journals (Sweden)

    Brian F. Bender

    2015-11-01

    Full Text Available Digital (droplet microfluidics (DµF is a powerful platform for automated lab-on-a-chip procedures, ranging from quantitative bioassays such as RT-qPCR to complete mammalian cell culturing. The simple MEMS processing protocols typically employed to fabricate DµF devices limit their functionality to two dimensions, and hence constrain the applications for which these devices can be used. This paper describes the integration of vertical functionality into a DµF platform by stacking two planar digital microfluidic devices, altering the electrode fabrication process, and incorporating channels for reversibly translating droplets between layers. Vertical droplet movement was modeled to advance the device design, and three applications that were previously unachievable using a conventional format are demonstrated: (1 solutions of calcium dichloride and sodium alginate were vertically mixed to produce a hydrogel with a radially symmetric gradient in crosslink density; (2 a calcium alginate hydrogel was formed within the through-well to create a particle sieve for filtering suspensions passed from one layer to the next; and (3 a cell spheroid formed using an on-chip hanging-drop was retrieved for use in downstream processing. The general capability of vertically delivering droplets between multiple stacked levels represents a processing innovation that increases DµF functionality and has many potential applications.

  15. Redundancy Optimization for Error Recovery in Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2015-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets. Research......Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets....... Researchers have proposed approaches for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. During the execution...... propose an online recovery strategy, which decides during the execution of the biochemical application the introduction of the redundancy required for fault-tolerance. We consider both time redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creating redundant droplets...

  16. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    Science.gov (United States)

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  17. Active Mesogenic Droplets: Impact of Liquid Crystallinity and Collective Behavior

    Science.gov (United States)

    Bahr, Christian

    Droplets of common mesogenic compounds show a self-propelled motion when immersed in aqueous solutions containing ionic surfactants at concentrations well above the critical micelle concentration. After introducing some general properties of this type of artificial microswimmer, we focus on two topics: the influence of liquid crystallinity on the swimming behavior and the collective behavior of ensembles of a larger number of droplets. The mesogenic properties are not essential for the basic mechanism of self-propulsion, nevertheless they considerably influence the swimming behavior of the droplets. For instance, the shape of the trajectories strongly depends on whether the droplets are in the nematic or isotropic state. The droplet swimmers are also ideally suited for the study of collective behavior: Microfluidics enables the generation of large numbers of identical swimmers and we can tune their buoyancy. We report on the collective behavior in three-dimensional environments. Supported by the Deutsche Forschungsgemeinschaft (SPP 1726 ``Microswimmers'').

  18. Universal evaporation dynamics of a confined sessile droplet

    Science.gov (United States)

    Bansal, Lalit; Hatte, Sandeep; Basu, Saptarshi; Chakraborty, Suman

    2017-09-01

    Droplet evaporation under confinement is ubiquitous to multitude of applications such as microfluidics, surface patterning, and ink-jet printing. However, the rich physics governing the universality in the underlying dynamics remains grossly elusive. Here, we bring out hitherto unexplored universal features of the evaporation dynamics of a sessile droplet entrapped in a 3D confined fluidic environment. We show, through extensive set of experiments and theoretical formulations, that the evaporation timescale for such a droplet can be represented by a unique function of the initial conditions. Moreover, using same theoretical considerations, we are able to trace and universally merge the volume evolution history of the droplets along with evaporation lifetimes, irrespective of the extent of confinement. We also showcase the internal flow transitions caused by spatio-temporal variation of evaporation flux due to confinement. These findings may be of profound importance in designing functionalized droplet evaporation devices for emerging engineering and biomedical applications.

  19. Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing

    International Nuclear Information System (INIS)

    Donvito, Lidia; Galluccio, Laura; Lombardo, Alfio; Morabito, Giacomo; Nicolosi, Alfio; Reno, Marco

    2015-01-01

    Three-dimensional printing has been recently proposed and assessed for continuous flow microfluidic devices. In this paper the focus is on a new application of this rapid and low cost method for microfluidic device prototyping: droplets production through a T-junction generator. The feasibility of this new methodology is assessed by means of an experimental study in which the statistical parameters which characterize the production of droplets are analyzed. Furthermore, this study assesses the validity of previous theoretical and experimental results, obtained for a PDMS T-junction droplet generator, also in the case of a 3D printed Acrylonitrile microfluidic chip. Finally, the feasibility of producing monodisperse droplets by analyzing the polydispersity index of the prepared droplets is demonstrated. (paper)

  20. Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing

    Science.gov (United States)

    Donvito, Lidia; Galluccio, Laura; Lombardo, Alfio; Morabito, Giacomo; Nicolosi, Alfio; Reno, Marco

    2015-03-01

    Three-dimensional printing has been recently proposed and assessed for continuous flow microfluidic devices. In this paper the focus is on a new application of this rapid and low cost method for microfluidic device prototyping: droplets production through a T-junction generator. The feasibility of this new methodology is assessed by means of an experimental study in which the statistical parameters which characterize the production of droplets are analyzed. Furthermore, this study assesses the validity of previous theoretical and experimental results, obtained for a PDMS T-junction droplet generator, also in the case of a 3D printed Acrylonitrile microfluidic chip. Finally, the feasibility of producing monodisperse droplets by analyzing the polydispersity index of the prepared droplets is demonstrated.

  1. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  2. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  3. Accurate and rapid micromixer for integrated microfluidic devices

    Science.gov (United States)

    Van Dam, R. Michael; Liu, Kan; Shen, Kwang -Fu Clifton; Tseng, Hsian -Rong

    2015-09-22

    The invention may provide a microfluidic mixer having a droplet generator and a droplet mixer in selective fluid connection with the droplet generator. The droplet generator comprises first and second fluid chambers that are structured to be filled with respective first and second fluids that can each be held in isolation for a selectable period of time. The first and second fluid chambers are further structured to be reconfigured into a single combined chamber to allow the first and second fluids in the first and second fluid chambers to come into fluid contact with each other in the combined chamber for a selectable period of time prior to being brought into the droplet mixer.

  4. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  5. The thermal-hydraulic for the new technologies: the micro-fluidics; La thermohydraulique au service des nouvelles technologies: la microfluidique

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J

    2000-07-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  6. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-11-04

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  7. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-01

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  8. A Microfluidics-HPLC/Differential Mobility Spectrometer Macromolecular Detection System for Human and Robotic Missions

    Science.gov (United States)

    Coy, S. L.; Killeen, K.; Han, J.; Eiceman, G. A.; Kanik, I.; Kidd, R. D.

    2011-01-01

    Our goal is to develop a unique, miniaturized, solute analyzer based on microfluidics technology. The analyzer consists of an integrated microfluidics High Performance Liquid Chromatographic chip / Differential Mobility Spectrometer (?HPLCchip/ DMS) detection system

  9. In-line characterization and identification of micro-droplets on-chip

    Directory of Open Access Journals (Sweden)

    Weber Emanuel

    2014-01-01

    Full Text Available We present an integrated optofluidic sensor system for in-line characterization of micro-droplets. The device provides information about the droplet generation frequency, the droplet volume, and the content of the droplet. Due to its simplicity this principle can easily be implemented with other microfluidic components on one and the same device. The sensor is based on total internal reflection phenomena. Droplets are pushed through a microfluidic channel which is hit by slightly diverging monochromatic light. At the solid-liquid interface parts of the rays experience total internal reflection while another part is transmitted. The ratio of reflected to transmitted light depends on the refractive index of the solution. Both signals are recorded simultaneously and provide a very stable output signal for the droplet characterization. With the proposed system passing droplets were counted up to 320 droplets per second and droplets with different volumes could be discriminated. In a final experiment droplets with different amounts of dissolved CaCl2 were distinguished based on their reflected and transmitted light pattern. This principle can be applied for the detection of any molecules in microdroplets which significantly influence the refractive index of the buffer solution.

  10. Design and characterization of a microreactor for monodisperse catalytic droplet generation at both elevated temperatures and pressures

    NARCIS (Netherlands)

    Vollenbroek, J. C.; Bomer, Johan G.; Van Den Berg, A.; Odijk, M.; Nieuwelink, A. E.; Weckhuysen, Bert M.; Geitenbeek, R. G.; Tiggelaar, R. M.

    2017-01-01

    We report the fabrication and characterization of a microfluidic droplet microreactor with potential use for single catalyst particle diagnostics. The aim is to capture Fluid Catalytic Cracking (FCC) particles in droplets and perform a probe reaction that results in a fluorescent output signal. The

  11. Microfluidic production of polymeric functional microparticles

    Science.gov (United States)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  12. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  13. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  14. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    Science.gov (United States)

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  15. 3-Dimensional Microorifice Fabricated Utilizing Single Undercut Etching Process for Producing Ultrasmall Water and Chitosan Droplets

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lin

    2013-01-01

    Full Text Available This research reports a microfluidic device for producing small droplets via a microorifice and a T-junction structure. The orifice is fabricated using an isotropic undercut etching process of amorphous glass materials. Since the equivalent hydraulic diameter of the produced microorifice can be as small as 1.1 μm, the microdevice can easily produce droplets of the size smaller than 10 μm in diameter. In addition, a permanent hydrophobic coating technique is also applied to modify the main channel to be hydrophobic to enhance the formation of water-based droplets. Experimental results show that the developed microfluidic chip with the ultrasmall orifice can steadily produce water-in-oil droplets with different sizes. Uniform water-in-oil droplets with the size from 60 μm to 6.5 μm in diameter can be formed by adjusting the flow rate ratio of the continuous phase and the disperse phases from 1 to 7. Moreover, curable linear polymer of chitosan droplets with the size smaller than 100 μm can also be successfully produced using the developed microchip device. The microfluidic T-junction with a micro-orifice developed in the present study provides a simple yet efficient way to produce various droplets of different sizes.

  16. "Connecting worlds - a view on microfluidics for a wider application".

    Science.gov (United States)

    Fernandes, Ana C; Gernaey, Krist V; Krühne, Ulrich

    From its birth, microfluidics has been referenced as a revolutionary technology and the solution to long standing technological and sociological issues, such as detection of dilute compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) being capable of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient's skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, although technologically advanced, has so far failed to reach the originally promised widespread use. In this paper, some of the aspects are identified and discussed that have prevented microfluidics from reaching its full potential, especially in the chemical engineering and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, "plug and play" approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates, reactions and operation conditions, and other microfluidic systems is indeed of surmount importance and current academic and industrial approaches to modular microfluidics are presented. Furthermore, two views on the commercialization of plug-and-play microfluidics systems, leading towards improved acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors in microfluidics. The proposed guidelines are then applied for the development of two different example platforms, and to three examples taken from literature. With this work, we

  17. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  18. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  19. Connecting and disconnecting nematic disclination lines in microfluidic channels.

    Science.gov (United States)

    Agha, Hakam; Bahr, Christian

    2016-05-14

    Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We show that the application of an electric field establishes a continuous disclination that spans across a channel region in which a disclination usually would not exist (because of different anchoring conditions), demonstrating an interruptible and reconnectable soft rail for colloidal transport.

  20. Microfluidic Devices for Blood Fractionation

    OpenAIRE

    Hou, Han Wei; Bhagat, Ali Asgar S.; Lee, Wong Cheng J.; Huang, Sha; Han, Jongyoon; Lim, Chwee Teck

    2011-01-01

    Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. ...

  1. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    Science.gov (United States)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  2. Motion behavior of water droplets driven by triboelectric nanogenerator

    Science.gov (United States)

    Nie, Jinhui; Jiang, Tao; Shao, Jiajia; Ren, Zewei; Bai, Yu; Iwamoto, Mitsumasa; Chen, Xiangyu; Wang, Zhong Lin

    2018-04-01

    By integrating a triboelectric nanogenerator (TENG) and a simple circuit board, the motion of water droplets can be controlled by the output of the TENG, which demonstrates a self-powered microfluidic system toward various practical applications in the fields of microfluidic system and soft robotics. This paper describes a method to construct a physical model for this self-powered system on the basis of electrostatic induction theory. The model can precisely simulate the detailed motion behavior of the droplet under driving of TENG, and it can also reveal the influences of surface hydrophobicity on the motion of the droplet, which can help us to better understand the key parameters that decide the performance of the system. The experimental observation of the dynamic performance of the droplet has also been done with a high speed camera system. A comparison between simulation results and real measurements confirms that the proposed model can predict the velocity and position of the water droplet driven by high voltage source as well as TENG. Hence, the proposed model in this work could serve as a guidance for optimizing the self-powered systems in future studies.

  3. 3D Ceramic Microfluidic Device Manufacturing

    International Nuclear Information System (INIS)

    Natarajan, Govindarajan; Humenik, James N

    2006-01-01

    Today, semiconductor processing serves as the backbone for the bulk of micromachined devices. Precision lithography and etching technology used in the semiconductor industry are also leveraged by alternate techniques like electroforming and molding. The nature of such processing is complex, limited and expensive for any manufacturing foundry. This paper details the technology elements developed to manufacture cost effective and versatile microfluidic devices for applications ranging from medical diagnostics to characterization of bioassays. Two applications using multilayer ceramic technology to manufacture complex 3D microfluidic devices are discussed

  4. Nanostructured surfaces for microfluidics and sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel Thomas (Arizona State University); Piech, Marcin (United Technologies Corp.); Schneider, John F.; Vail, Sean (Arizona State University); Hayes, Mark A. (Arizona State University); Garcia, Anthony A.; Bell, Nelson Simmons; Gust, D (Arizona State University); Yang, Dongqing (Arizona State University)

    2007-01-01

    The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.

  5. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  6. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing

    Science.gov (United States)

    Kantak, Chaitanya; Zhu, Qingdi; Beyer, Sebastian; Bansal, Tushar; Trau, Dieter

    2012-01-01

    Here, we utilize microfluidic droplet technology to generate photopolymerizeable polyethylene glycol (PEG) hydrogel microbeads incorporating a fluorescence-based glucose bioassay. A microfluidic T-junction and multiphase flow of fluorescein isothiocyanate dextran, tetramethyl rhodamine isothiocyanate concanavalin A, and PEG in water were used to generate microdroplets in a continuous stream of hexadecane. The microdroplets were photopolymerized mid-stream with ultraviolet light exposure to form PEG microbeads and were collected at the outlet for further analysis. Devices were prototyped in PDMS and generated highly monodisperse 72 ± 2 μm sized microbeads (measured after transfer into aqueous phase) at a continuous flow rate between 0.04 ml/h—0.06 ml/h. Scanning electron microscopy analysis was conducted to analyze and confirm microbead integrity and surface morphology. Glucose sensing was carried out using a Förster resonance energy transfer (FRET) based assay. A proportional fluorescence intensity increase was measured within a 1–10 mM glucose concentration range. Microfluidically synthesized microbeads encapsulating sensing biomolecules offer a quick and low cost method to generate monodisperse biosensors for a variety of applications including cell cultures systems, tissue engineering, etc. PMID:22655010

  7. Digital Microfluidics for Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Beatriz Coelho

    2017-06-01

    Full Text Available Digital Microfluidics (DMF has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

  8. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    Science.gov (United States)

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  9. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.

    Science.gov (United States)

    Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum

    2014-03-07

    Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.

  10. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  11. Materials for Microfluidic Immunoassays: A Review.

    Science.gov (United States)

    Mou, Lei; Jiang, Xingyu

    2017-08-01

    Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    Science.gov (United States)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  13. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  14. Microdroplet evaporation in closed digital microfluidic biochips

    International Nuclear Information System (INIS)

    Ahmadi, Ali; Buat, Matthew D; Hoorfar, Mina

    2013-01-01

    In this paper, microdroplet evaporation in the closed digital microfluidic systems is studied for hydrophobic and hydrophilic surfaces. The contact angle and contact radius are measured by an enhanced automated polynomial fitting approach. It is observed that the contact angle for both hydrophobic and hydrophilic surfaces remains constant during the evaporation process. However, a higher evaporation rate is observed for hydrophilic droplets compared to the hydrophobic droplets. Since no contact line pinning is observed, first, an analytical model based on the uniform vapor mass flux along the liquid–vapor interface is proposed. Interestingly, it is observed that in the hydrophobic case, the analytical model gives a higher evaporation rate, whereas for the hydrophilic case, the analytical model gives a lower evaporation rate. The discrepancy between the results of the analytical modeling and the experimental values is hypothesized to be due the constant flux assumption. To verify the hypothesis, a finite volume-based numerical model is developed to find the local flux along the liquid–vapor interface. The numerical modeling results confirm that for hydrophilic droplets, the evaporation flux increases very close to the three-phase contact line. In the case of the hydrophobic droplets, on the other hand, the flux decreases close to the contact line due to vapor saturation; as a result the uniform flux assumption overestimates the mass loss. (paper)

  15. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  16. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    Science.gov (United States)

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  17. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation

    Directory of Open Access Journals (Sweden)

    Huei-Wen Wu

    2016-07-01

    Full Text Available The conventional hanging drop technique is the most widely used method for embryoid body (EB formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  18. Microfluidic hubs, systems, and methods for interface fluidic modules

    Science.gov (United States)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  19. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  20. Parallel imaging microfluidic cytometer.

    Science.gov (United States)

    Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Soft tubular microfluidics for 2D and 3D applications

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  2. Competition between Local Collisions and Collective Hydrodynamic Feedback Controls Traffic Flows in Microfluidic Networks

    Science.gov (United States)

    Belloul, M.; Engl, W.; Colin, A.; Panizza, P.; Ajdari, A.

    2009-05-01

    By studying the repartition of monodisperse droplets at a simple T junction, we show that the traffic of discrete fluid systems in microfluidic networks results from two competing mechanisms, whose significance is driven by confinement. Traffic is dominated by collisions occurring at the junction for small droplets and by collective hydrodynamic feedback for large ones. For each mechanism, we present simple models in terms of the pertinent dimensionless parameters of the problem.

  3. Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

    DEFF Research Database (Denmark)

    Maftei, Elena

    several real-life case studies and synthetic benchmarks. The experiments show that by considering the dynamically reconfigurable nature of microfluidic operations, significant improvements can be obtained, decreasing the biochemical application completion times, reducing thus the biochip area...... of electrodes. The main objective of this thesis is to develop top-down synthesis techniques for digital microfluidic biochips. So far, researchers have assumed that operations are executing on virtual modules of rectangular shape, formed by grouping adjacent electrodes, and which have a fixed placement...... on the microfluidic array. However, operations can actually execute by routing the droplets on any sequence of electrodes on the biochip. Thus, we have proposed a routing-based model of operation execution, and we have developed several associated synthesis approaches, which progressively relax the assumption...

  4. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    Science.gov (United States)

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microfluidics as a functional tool for cell mechanics.

    Science.gov (United States)

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical

  6. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  7. CMOS Enabled Microfluidic Systems for Healthcare Based Applications.

    Science.gov (United States)

    Khan, Sherjeel M; Gumus, Abdurrahman; Nassar, Joanna M; Hussain, Muhammad M

    2018-04-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.; Gumus, Abdurrahman; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2018-01-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  9. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.

    2018-02-27

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  10. Control of the droplet generation by an infrared laser

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2018-01-01

    by the laser, which is beneficial to promote the application of this optical method in the droplet based microfluidics.

  11. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  12. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    Science.gov (United States)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  13. A microfluidic DNA library preparation platform for next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Hanyoup Kim

    Full Text Available Next-generation sequencing (NGS is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM. The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  14. A microfluidic DNA library preparation platform for next-generation sequencing.

    Science.gov (United States)

    Kim, Hanyoup; Jebrail, Mais J; Sinha, Anupama; Bent, Zachary W; Solberg, Owen D; Williams, Kelly P; Langevin, Stanley A; Renzi, Ronald F; Van De Vreugde, James L; Meagher, Robert J; Schoeniger, Joseph S; Lane, Todd W; Branda, Steven S; Bartsch, Michael S; Patel, Kamlesh D

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  15. Building bio-assays with magnetic particles on a digital microfluidic platform.

    Science.gov (United States)

    Kokalj, Tadej; Pérez-Ruiz, Elena; Lammertyn, Jeroen

    2015-09-25

    Digital microfluidics (DMF) has emerged as a promising liquid handling technology for a variety of applications, demonstrating great potential both in terms of miniaturization and automation. DMF is based on the manipulation of discrete, independently controllable liquid droplets, which makes it highly reconfigurable and reprogrammable. One of its most exclusive advantages, compared to microchannel-based microfluidics, is its ability to precisely handle solid nano- and microsized objects, such as magnetic particles. Magnetic particles have become very popular in the last decade, since their high surface-to-volume ratio and the possibility to magnetically separate them from the matrix make them perfect suitable as a solid support for bio-assay development. The potential of magnetic particles in DMF-based bio-assays has been demonstrated for various applications. In this review we discuss the latest developments of magnetic particle-based DMF bio-assays with the aim to present, identify and analyze the trends in the field. We also discuss the state-of-the art of device integration, current status of commercialization and issues that still need to be addressed. With this paper we intend to stimulate researchers to exploit and unveil the potential of these exciting tools, which will shape the future of modern biochemistry, microbiology and biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    Science.gov (United States)

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  17. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.

    Science.gov (United States)

    Dong, Tao; Barbosa, Cátia

    2015-01-26

    Microfluidic two-phase flow detection has attracted plenty of interest in various areas of biology, medicine and chemistry. This work presents a capacitive sensor using insulated interdigital electrodes (IDEs) to detect the presence of droplets in a microchannel. This droplet sensor is composed of a glass substrate, patterned gold electrodes and an insulation layer. A polydimethylsiloxane (PDMS) cover bonded to the multilayered structure forms a microchannel. Capacitance variation induced by the droplet passage was thoroughly investigated with both simulation and experimental work. Olive oil and deionized water were employed as the working fluids in the experiments to demonstrate the droplet sensor. The results show a good sensitivity of the droplet with the appropriate measurement connection. This capacitive droplet sensor is promising to be integrated into a lab-on-chip device for in situ monitoring/counting of droplets or bubbles.

  18. Single-enzyme analysis in a droplet-based micro- and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai; Shui, Lingling; Kengen, Servé W.M.; van den Berg, Albert; Eijkel, Jan C.T.

    2013-01-01

    The kinetic activity of individual enzyme molecules was determined in aqueous droplets generated in a nano- and microfluidic device. To avoid high background noise, the enzyme and substrate solution was confined into femtoliter carriers, achieving high product concentrations from single-molecule

  19. Quantification of protein interaction kinetics in a micro droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L. L. [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, S. T. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  20. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    Science.gov (United States)

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics

  1. Microfluidic step-emulsification in axisymmetric geometry.

    Science.gov (United States)

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M

    2017-10-25

    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric

  2. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  3. Patterning of PMMA microfluidic parts using screen printing process

    Science.gov (United States)

    Ahari Kaleibar, Aminreza; Rahbar, Mona; Haiducu, Marius; Parameswaran, Ash M.

    2010-02-01

    An inexpensive and rapid micro-fabrication process for producing PMMA microfluidic components has been presented. Our proposed technique takes advantages of commercially available economical technologies such as the silk screen printing and UV patterning of PMMA substrates to produce the microfluidic components. As a demonstration of our proposed technique, we had utilized a homemade deep-UV source, λ=254nm, a silk screen mask made using a local screen-printing shop and Isopropyl alcohol - water mixture (IPA-water) as developer to quickly define the microfluidic patterns. The prototyped devices were successfully bonded, sealed, and the device functionality tested and demonstrated. The screen printing based technique can produce microfluidic channels as small as 50 micrometers quite easily, making this technique the most cost-effective, fairly high precision and at the same time an ultra economical plastic microfluidic components fabrication process reported to date.

  4. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  5. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  6. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  7. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  8. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  10. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  11. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.

    Science.gov (United States)

    Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru

    2013-01-15

    We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.

  12. Quantifying the role of noise on droplet decisions in bifurcating microchannels

    Science.gov (United States)

    Norouzi Darabad, Masoud; Vaughn, Mark; Vanapalli, Siva

    2017-11-01

    While many aspects of path selection of droplets flowing through a bifurcating microchannel have been studied, there are still unaddressed issues in predicting and controlling droplet traffic. One of the more important is understanding origin of aperiodic patterns. As a new tool to investigate this phenomena we propose monitoring the continuous time response of pressure fluctuations at different locations. Then we use time-series analysis to investigate the dynamics of the system. We suggest that natural system noise is the cause of irregularity in the traffic patterns. Using a mathematical model, we investigate the effect of noise on droplet decisions at the junction. Noise can be derived from different sources including droplet size variation, droplet spacing, and pump induced velocity fluctuation. By analyzing different situations we explain system behavior. We also investigate the ``memory'' of a microfluidic system in terms of the resistance to perturbations that quantify the allowable deviation in operating condition before the system changes state.

  13. High-resolution liquid patterns via three-dimensional droplet shape control.

    Science.gov (United States)

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  14. Fabrication of polymeric Janus particles by droplet microfluidics

    KAUST Repository

    Lone, Saifullah; Cheong, Inwoo

    2014-01-01

    Janus particles (JPs), with their fascinating property of asymmetry, have received considerable attention in recent years in the fields of colloidal and particulate chemistry. The particles offer a range of exciting potential applications

  15. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  16. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    International Nuclear Information System (INIS)

    Myong, Hyon Kook

    2014-01-01

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems

  17. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  18. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  19. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  20. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  1. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  2. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly

    Directory of Open Access Journals (Sweden)

    Mohamed Yafia

    2015-09-01

    Full Text Available Portable sensors and biomedical devices are influenced by the recent advances in microfluidics technologies, compact fabrication techniques, improved detection limits and enhanced analysis capabilities. This paper reports the development of an integrated ultraportable, low-cost, and modular digital microfluidic (DMF system and its successful integration with a smartphone used as a high-level controller and post processing station. Low power and cost effective electronic circuits are designed to generate the high voltages required for DMF operations in both open and closed configurations (from 100 to 800 V. The smartphone in turn commands a microcontroller that manipulate the voltage signals required for droplet actuation in the DMF chip and communicates wirelessly with the microcontroller via Bluetooth module. Moreover, the smartphone acts as a detection and image analysis station with an attached microscopic lens. The holder assembly is fabricated using three-dimensional (3D printing technology to facilitate rapid prototyping. The holder features a modular design that enables convenient attachment/detachment of a variety of DMF chips to/from an electrical busbar. The electrical circuits, controller and communication system are designed to minimize the power consumption in order to run the device on small lithium ion batteries. Successful controlled DMF operations and a basic colorimetric assay using the smartphone are demonstrated.

  3. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    International Nuclear Information System (INIS)

    Xiang Xia; Luo Ming; Shi Liyang; Ji Xinghu; He Zhike

    2012-01-01

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10 −8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  4. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  5. A Numerical Analysis of Droplet Breakup in Asymmetric T-Junctions with Different Outlet Pressure Gradients

    Science.gov (United States)

    Cheng, Way Lee; Han, Arum; Sadr, Reza

    2016-11-01

    Droplet splitting is the breakup of a parent droplet into two or more daughter droplets of desired sizes. It is done to improve production efficiency and investigational capacity in microfluidic devices. Passive splitting is the breakup of droplets into precise volume ratios at predetermined locations without external power sources. In this study, a 3-D simulation was conducted using the Volume-of-Fluid method to analysis the breakup process of a droplet in asymmetric T-junctions with different outlet arm lengths. The arrangement allows a droplet to be split into two smaller droplets of different sizes, where the volumetric ratio of the daughter droplets depends on the length ratios of the outlet arms. The study identified different breakup regimes such as primary, transition, bubble and non-breakup under different flow conditions and channel configurations. Furthermore, a close analysis to the primary breakup regimes were done to determine the breakup mechanisms at various flow conditions. The analysis show that the breakup mechanisms in asymmetric T-junctions is different than a regular split. A pseudo-phenomenological model for the breakup criteria was presented at the end. The model was an expanded version to a theoretically derived model for the symmetric droplet breakup. The Qatar National Research Fund (a member of the Qatar Founda- tion), under Grant NPRP 5-671-2-278, supported this work.

  6. Variable focus microscopy using a suspended water droplet

    International Nuclear Information System (INIS)

    Chowdhury, F A; Chau, K J

    2012-01-01

    We explore a low-technology methodology to dispense and shape water droplets for application as the magnifying element in a microscope using either reflection-mode or transmission-mode illumination. A water droplet is created at the end of a syringe and then coated with a thin layer of silicone oil to mitigate evaporation. By applying mechanical pressure to the water droplet using a metal tip, the shape of the droplet is tuned to yield focusing properties amenable for microscopy. Images captured using the microscope demonstrate micron-scale resolution, variable magnification and imaging quality comparable to that obtained by a conventional, laboratory-grade microscope. (paper)

  7. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  8. Bioprinting: Functional droplet networks

    Science.gov (United States)

    Durmus, Naside Gozde; Tasoglu, Savas; Demirci, Utkan

    2013-06-01

    Tissue-mimicking printed networks of droplets separated by lipid bilayers that can be functionalized with membrane proteins are able to spontaneously fold and transmit electrical currents along predefined paths.

  9. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    Science.gov (United States)

    Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  10. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  11. Droplet formation in Hele-Shaw T-junction.

    Science.gov (United States)

    Ricouvier, Joshua; Yazhgur, Pavel; Leshansky, Alexander; Tabeling, Patrick; Microflusa Team

    The development of digital microfluidics has attracted considerable interest towards generation of highly monodisperse microdroplets. T-junction has become an essential element of most of microfluidic chips. Despite its importance, theoretical analysis of droplet formation at T-junction is still incomplete due to complexity of physics involved. We focused on droplet generation at the Hele-Shaw T-junction. The effect of various experimental parameters, such as channel geometry, flow rates, surface tension and fluid viscosities, was thoroughly investigated. Our results show that the experimental system exhibits three distinct regimes (squeezing, dripping and jetting regimes) and point out the effect of confinement on the transitions. We demonstrate that the size of the ''plug'' droplet depends not only on the flow rate ratio (as described in the literature), but also on the capillary number and the channel cross-section aspect ratio. Quasi-2D flow equations allow us to perform numerical simulations and to compare them with experimental results. The Microflusa project receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 664823.

  12. OCS in He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Grebenev, V.

    2000-06-01

    Phenomenon of superfluidity of para-hydrogen (pH{sub 2}){sub 1-17} and helium {sup 4}He{sub 1-7000} systems doped with an OCS chromophore molecule was investigated in this work. The study of such systems became possible after the development of the depletion spectroscopy technique in helium droplets. The droplets can be easily created and doped with up to 100 particles such as OCS, para-hydrogen or ortho-hydrogen molecules and {sup 4}He atoms. The measured infrared depletion spectra give the information about the temperature of the droplets and their aggregate state. The depletion spectrum of OCS in pure {sup 4}He droplets was comprehensively studied. The rovibrational OCS spectrum shows well resolved narrow lines. The spectrum is shifted to the red relative to the corresponding gas phase spectrum and the rotational constant of OCS in {sup 4}He droplet is three times smaller than that for free molecule. Different models of OCS rotation in the helium environment were discussed. It was shown that the shapes of the rovibrational lines are defined mainly by inhomogeneous broadening due to the droplet size distribution. The sub-rotational structure of the OCS rovibrational lines was revealed in microwave-infrared double resonance experiments. This structure arises due to the interaction of the OCS with the He environment. However, the information obtained in the experiments was not enough to understand the nature of this interaction. (orig.)

  13. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  14. A random-access microarray for programmable droplet storage, retrieval and manipulation

    International Nuclear Information System (INIS)

    Tseng, Yi-Ming; Wang, Jhih-Jhe; Su, Yu-Chuan

    2012-01-01

    This article presents an integrated microfluidic system that is capable of programmably metering, entrapping, coalescing, addressably storing, retrieving and manipulating emulsion droplets. A multilayer, flexible PDMS chip with specially designed fluidic channels dynamically reconfigured by pneumatically actuated diaphragms is utilized to integrate a variety of droplet manipulation schemes. Once droplets are formed, their motions are coordinated by a 2D multiplexing scheme, which exploits the bidirectional movement of diaphragms to implement a random-access microarray. In the prototype demonstration, a PDMS molding and bonding process is used to fabricate the proposed microfluidic system. Emulsion droplets with desired volumes and compositions are produced, addressably stored, manipulated and retrieved from a 4 × 4 array, which employs just 4 (= 2 × log 2 4) control inputs for the operation. It has been demonstrated that (1) the integration of droplet manipulation and 2D multiplexing schemes can be achieved readily using bidirectional diaphragm valves, (2) multiplexing of an N × N array could be realized utilizing only 2 × log 2 N control inputs and (3) a multifunctional, random-access microarray can be accomplished employing a multilayer PDMS chip. As such, the demonstrated random-access microarray could potentially serve as a platform for continuous tracking and multistep processing of emulsion droplets, which is desired for various biological and chemical applications. (paper)

  15. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.

    Science.gov (United States)

    Karuwan, Chanpen; Sukthang, Kreeta; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Patthanasettakul, Viyapol; Wechsatol, Wishsanuruk; Tuantranont, Adisorn

    2011-06-15

    In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.

    Science.gov (United States)

    Tang, Siah Ying; Shridharan, Parthasarathy; Sivakumar, Manickam

    2013-01-01

    In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Microfluidic Flame Barrier

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  18. Review of Recent Metamaterial Microfluidic Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  19. Review of Recent Metamaterial Microfluidic Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2018-01-01

    Full Text Available Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter–nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  20. Digital microfluidics for automated hanging drop cell spheroid culture.

    Science.gov (United States)

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  1. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  2. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  3. Variation in polydispersity in pump- and pressure-driven micro-droplet generators

    Science.gov (United States)

    Zeng, Wen; Jacobi, Ian; Li, Songjing; Stone, Howard A.

    2015-11-01

    The polydispersity of droplets produced in a typical T-junction microfluidic channel under both syringe-pump-driven and pressure-driven flow configurations is measured quantitatively. Both flow systems exhibit high-frequency flow fluctuations that result in an intrinsic polydispersity due to the mechanism of droplet generation. In addition to this intrinsic polydispersity, the syringe-pump-driven device also exhibits low-frequency fluctuations due to mechanical oscillations of the pump, which overwhelm the high-frequency flow fluctuations and produce a signficantly heightened level of polydispersity. The quantitative difference in polydispersity between the two configurations and time-resolved measurements of individual droplet sizes are presented in order to enable the design of better flow control systems for droplet production.

  4. Experimental and Computational Analysis of Water-Droplet Formation and Ejection Process Using Hollow Microneedle

    Science.gov (United States)

    Kato, Norihisa; Oka, Ryotaro; Sakai, Takahiro; Shibata, Takayuki; Kawashima, Takahiro; Nagai, Moeto; Mineta, Takashi; Makino, Eiji

    2011-06-01

    In this paper, we present the possibility of liquid delivery using fabricated hollow silicon dioxide microneedles of approximately 2 µm in diameter. As a fundamental study, the water-droplet formation and ejection process was examined via dynamic observations during water ejection tests and computational fluid dynamics (CFD) analysis. The experimental results indicated that fluid flow in a microneedle follows the Hagen-Poiseuille law, i.e., the flow rate is approximately directly proportional to the fourth power of the inner diameter. Moreover, the ejection pressure and maximum droplet curvature obtained using the proposed microfluid ejection model were in good agreement with the experimental results. The resulting ejection pressure is equal to the theoretical pressure difference of a spherical droplet, which is determined using the Young-Laplace equation. The maximum curvature of a droplet formed at the tip of a microneedle can be estimated on the basis of the contact angle theory expressed by the Young equation.

  5. Droplet-fused microreactors for room temperature synthesis of nanoscale needle-like hydroxyapatite

    International Nuclear Information System (INIS)

    Liu Kaiying; Qin Jianhua

    2013-01-01

    A microfluidic device using droplet-fused microreactors is introduced for room temperature synthesis of nanoscale needle-shaped hydroxyapatite (HAp, Ca 10 (PO 4 ) 6 (OH) 2 ). The device is integrated with multifunctional units, e.g., T-junctions for droplet generation and fusion, winding channels for rapid mixing, and a delay line for simple visualization of the HAp formation process. The necessary conditions such as surfactant and fluid flow rate for an aqueous stream to merge with water-in-oil droplets are investigated. The nanoscale morphologies of the HAp produced by this method are also compared with HAp prepared by conventional bulk mixing. This paper shows that further reaction could be initiated by flowing additional reagent streams directly into the droplets of the initial reaction mixture, which is a novel approach for synthesizing a needle-like morphology of the HAp with a high aspect ratio under room temperature. (paper)

  6. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  7. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    Science.gov (United States)

    Refatul Haq, Muhammad; Kim, Youngkyu; Kim, Jun; Oh, Pyoung-hwa; Ju, Jonghyun; Kim, Seok-Min; Lim, Jiseok

    2017-01-01

    This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC) stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated. PMID:29286341

  8. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    Directory of Open Access Journals (Sweden)

    Hyungjun Jang

    2017-12-01

    Full Text Available This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated.

  9. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types.

    Science.gov (United States)

    Plessy, Charles; Desbois, Linda; Fujii, Teruo; Carninci, Piero

    2013-02-01

    Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells. Copyright © 2013 WILEY Periodicals, Inc.

  10. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    Science.gov (United States)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  11. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  12. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  13. Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; van den Berg, A.; Segerink, L.I.; Segerink, Loes Irene; Unknown, [Unknown

    2015-01-01

    Lab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the

  14. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  15. Microfluidic isotachophoresis: A review

    Czech Academy of Sciences Publication Activity Database

    Smejkal, P.; Bottenus, D.; Breadmore, M. C.; Guijt, R. M.; Ivory, C. F.; Foret, František; Macka, M.

    2013-01-01

    Roč. 34, č. 11 (2013), s. 1493-1509 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : chip * isotachophoresis * microfluidics * miniaturization Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  16. Enzyme Kinetics By Directly Imaging A Porous Silicon Microfluidic Reactor Using Desorption/Ionization on Silicon Mass Spectrometry

    NARCIS (Netherlands)

    Nichols, K.P.F.; Azoz, Seyla; Gardeniers, Johannes G.E.

    2008-01-01

    Enzyme kinetics were obtained in a porous silicon microfluidic channel by combining an enzyme and substrate droplet, allowing them to react and deposit a small amount of residue on the channel walls, and then analyzing this residue by directly ionizing the channel walls using a matrix assisted laser

  17. Design of Microfluidic Biochips (Dagstuhl Seminar 15352)

    OpenAIRE

    Chakrabarty, Krishnendu; Ho, Tsung-Yi; Wille, Robert

    2016-01-01

    Advances in microfluidic technologies have led to the emergence of biochip devices for automating laboratory procedures in biochemistry and molecular biology. Corresponding systems are revolutionizing a diverse range of applications, e.g.~air quality studies, point-of-care clinical diagnostics, drug discovery, and DNA sequencing -- with an increasing market. However, this continued growth depends on advances in chip integration and design-automation tools. Thus, there is a need to deliver the...

  18. Self-Assembly Kinetics of Colloidal Particles inside Monodispersed Micro-Droplet and Fabrication of Anisotropic Photonic Crystal Micro-Particles

    Directory of Open Access Journals (Sweden)

    Ming-Yu Zhang

    2016-09-01

    Full Text Available A new microfluidic approach to preparing anisotropic colloidal photonic crystal microparticles is developed and the self-assembly kinetics of colloidal nanoparticles is discussed. Based on the “coffee ring” effect in the self-assembly process of colloidal silica particle in strong solvent extraction environment, we successfully prepared anisotropic photonic crystal microparticles with different shapes and improved optical properties. The shapes and optical properties of photonic crystal microparticles can be controlled by adjusting the droplet size and extraction rate. We studied the self-assembly mechanism of colloidal silica particles in strong solvent extraction environment, which has potential applications in a variety of fields including optical communication technology, environmental response, photo-catalysis and chromic material.

  19. A centrifugal microfluidic platform for point-of-care diagnostic applications

    Directory of Open Access Journals (Sweden)

    Suzanne Hugo

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred to as lab-on-a-disc or lab-on-a-CD systems, provide a particularly attractive solution for the implementation of microfluidic point-of-care diagnostic solutions as a result of their simple and compact instrumentation, as well as their functional diversity. Here we detail the implementation of a centrifugal microfluidic platform the first of its kind in South Africa as a foundation for the development of point-of-care diagnostic applications for which both the need and impact is great. The centrifugal microfluidic platform consists of three main components: a microfluidic disc device similar in size and shape to a CD, a system for controlling fluid flow on the device, and a system for recording the results obtained. These components have been successfully implemented and tested. Preliminary test results show that microfluidic functions such as pumping and valving of fluids can be successfully achieved, as well as the generation of monodisperse microfluidic droplets, providing a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of applications, including point-of-care diagnostics. The lab-on-a-disc platform has the potential to provide new diagnostic solutions at the point-of-need in health- and industry-related areas. This paves the way for providing resource limited areas with services such as improved, decentralised health-care access or water-quality monitoring, and reduced diagnosis times at a low cost.

  20. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  1. Selfbound quantum droplets

    Science.gov (United States)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  2. Point-of-care, portable microfluidic blood analyzer system

    Science.gov (United States)

    Maleki, Teimour; Fricke, Todd; Quesenberry, J. T.; Todd, Paul W.; Leary, James F.

    2012-03-01

    Recent advances in MEMS technology have provided an opportunity to develop microfluidic devices with enormous potential for portable, point-of-care, low-cost medical diagnostic tools. Hand-held flow cytometers will soon be used in disease diagnosis and monitoring. Despite much interest in miniaturizing commercially available cytometers, they remain costly, bulky, and require expert operation. In this article, we report progress on the development of a battery-powered handheld blood analyzer that will quickly and automatically process a drop of whole human blood by real-time, on-chip magnetic separation of white blood cells (WBCs), fluorescence analysis of labeled WBC subsets, and counting a reproducible fraction of the red blood cells (RBCs) by light scattering. The whole blood (WB) analyzer is composed of a micro-mixer, a special branching/separation system, an optical detection system, and electronic readout circuitry. A droplet of un-processed blood is mixed with the reagents, i.e. magnetic beads and fluorescent stain in the micro-mixer. Valve-less sorting is achieved by magnetic deflection of magnetic microparticle-labeled WBC. LED excitation in combination with an avalanche photodiode (APD) detection system is used for counting fluorescent WBC subsets using several colors of immune-Qdots, while counting a reproducible fraction of red blood cells (RBC) is performed using a laser light scatting measurement with a photodiode. Optimized branching/channel width is achieved using Comsol Multi-Physics™ simulation. To accommodate full portability, all required power supplies (40v, +/-10V, and +3V) are provided via step-up voltage converters from one battery. A simple onboard lock-in amplifier is used to increase the sensitivity/resolution of the pulse counting circuitry.

  3. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo

    2014-06-10

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  4. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo; Di Fabrizio, Enzo M.; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-01-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  5. Mapping three-dimensional temperature in microfluidic chip.

    KAUST Repository

    Wu, Jinbo

    2013-11-25

    Three-dimensional (3D) temperature mapping method with high spatial resolution and acquisition rate is of vital importance in evaluating thermal processes in micro-environment. We have synthesized a new temperature-sensitive functional material (Rhodamine B functionalized Polydimethylsiloxane). By performing optical sectioning of this material, we established an advanced method for visualizing the micro-scale 3D thermal distribution inside microfluidic chip with down to 10 ms temporal resolution and 2 ~ 6 °C temperature resolution depending the capture parameters. This method is successfully applied to monitor the local temperature variation throughout micro-droplet heat transfer process and further reveal exothermic nanoliter droplet reactions to be unique and milder than bench-top experiment.

  6. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Michael Heymann

    2014-09-01

    Full Text Available An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

  7. Standardized and modular microfluidic platform for fast lab on chip system development

    NARCIS (Netherlands)

    Dekker, Stefan; van den Berg, Albert; Odijk, Mathieu; Lee, Abraham; DeVoe, Don

    2017-01-01

    This paper reports a modular microfluidic system with standardized parts, enabling rapid prototyping of lab on chip systems. Herewith contributing to the technology transfer from academy to industry. The use of standardized parts also makes it possible to design a microfluidic systems in a top down

  8. Microfluidic device, and related methods

    Science.gov (United States)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  9. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    Science.gov (United States)

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  10. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    Science.gov (United States)

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  11. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2017-06-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided to allow, for example, research groups to have access to microfluidic fabrication. Unlike most fabrication methods, a method is provided to fabricate a microfluidic device in one step. In an embodiment, a resolution of 50 micrometers was achieved by using maskless high-resolution digital light projection (MDLP). Bonding and channel fabrication of complex or simple structures can be rapidly incorporated to fabricate the microfluidic devices.

  12. Droplet Breakup in Asymmetric T-Junctions at Intermediate to Large Capillary Numbers

    Science.gov (United States)

    Sadr, Reza; Cheng, Way Lee

    2017-11-01

    Splitting of a parent droplet into multiple daughter droplets of desired sizes is usually desired to enhance production and investigational efficiency in microfluidic devices. This can be done in an active or passive mode depending on whether an external power sources is used or not. In this study, three-dimensional simulations were done using the Volume-of-Fluid (VOF) method to analyze droplet splitting in asymmetric T-junctions with different outlet lengths. The parent droplet is divided into two uneven portions the volumetric ratio of the daughter droplets, in theory, depends on the length ratios of the outlet branches. The study identified various breakup modes such as primary, transition, bubble and non-breakup under various flow conditions and the configuration of the T-junctions. In addition, an analysis with the primary breakup regimes were conducted to study the breakup mechanisms. The results show that the way the droplet splits in an asymmetric T-junction is different than the process in a symmetric T-junction. A model for the asymmetric breakup criteria at intermediate or large Capillary number is presented. The proposed model is an expanded version to a theoretically derived model for the symmetric droplet breakup under similar flow conditions.

  13. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.

    Directory of Open Access Journals (Sweden)

    Alex J L Morgan

    Full Text Available The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.

  14. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.

    Science.gov (United States)

    Morgan, Alex J L; Hidalgo San Jose, Lorena; Jamieson, William D; Wymant, Jennifer M; Song, Bing; Stephens, Phil; Barrow, David A; Castell, Oliver K

    2016-01-01

    The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.

  15. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  16. Microfluidics expanding the frontiers of microbial ecology.

    Science.gov (United States)

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  17. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  18. A Microfluidic Cell Concentrator

    Science.gov (United States)

    Warrick, Jay; Casavant, Ben; Frisk, Megan; Beebe, David

    2010-01-01

    Cell concentration via centrifugation is a ubiquitous step in many cell culture procedures. At the macroscale, centrifugation suffers from a number of limitations particularly when dealing with small numbers of cells (e.g., less than 50,000). On the other hand, typical microscale methods for cell concentration can affect cell physiology and bias readouts of cell behavior and function. In this paper, we present a microfluidic concentrator device that utilizes the effects of gravity to allow cells to gently settle out of a suspension into a collection region without the use of specific adhesion ligands. Dimensional analysis was performed to compare different device designs and was verified with flow modeling to optimize operational parameters. We are able to concentrate low-density cell suspensions in a microfluidic chamber, achieving a cell loss of only 1.1 ± 0.6% (SD, n=7) with no observed loss during a subsequent cell staining protocol which incorporates ~36 complete device volume replacements. This method provides a much needed interface between rare cell samples and microfluidic culture assays. PMID:20843010

  19. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  20. Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity

    Science.gov (United States)

    Totani, T.; Itami, M.; Nagata, H.; Kudo, I.; Iwasaki, A.; Hosokawa, S.

    2002-06-01

    The Liquid Droplet Radiator (LDR) has an advantage over comparable conventional radiators in terms of the rejected heat power-weight ratio. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems that will be prerequisite for large space structures. The performance of the LDR under microgravity condition has been studied from the viewpoint of operational space use of the LDR in the future. In this study, the performances of a droplet generator and a droplet collector in the LDR are investigated using drop shafts in Japan: MGLAB and JAMIC. As a result, it is considered that (1) the droplet generator can produce uniform droplet streams in the droplet diameter range from 200 to 280 [µm] and the spacing range from 400 to 950 [µm] under microgravity condition, (2) the droplet collector with the incidence angle of 35 degrees can prevent a uniform droplet stream, in which droplet diameter is 250 [µm] and the velocity is 16 [m/s], from splashing under microgravity condition, whereas splashes may occur at the surface of the droplet collector in the event that a nonuniform droplet stream collides against it.

  1. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang; Zhang, Mengying; Chen, Shuyu; Wang, Limu; Chang, Donald Choy; Wen, Weijia

    2010-01-01

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  4. Engineering plant membranes using droplet interface bilayers.

    Science.gov (United States)

    Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C

    2017-03-01

    Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

  5. New droplet model developments

    International Nuclear Information System (INIS)

    Dorso, C.O.; Myers, W.D.; Swiatecki, W.J.; Moeller, P.; Treiner, J.; Weiss, M.S.

    1985-09-01

    A brief summary is given of three recent contributions to the development of the Droplet Model. The first concerns the electric dipole moment induced in octupole deformed nuclei by the Coulomb redistribution. The second concerns a study of squeezing in nuclei and the third is a study of the improved predictive power of the model when an empirical ''exponential'' term is included. 25 refs., 3 figs

  6. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  7. Ignition of a Droplet of Composite Liquid Fuel in a Vortex Combustion Chamber

    Science.gov (United States)

    Valiullin, T. R.; Vershinina, K. Yu; Glushkov, D. O.; Strizhak, P. A.

    2017-11-01

    Experimental study results of a droplet ignition and combustion were obtained for coal-water slurry containing petrochemicals (CWSP) prepared from coal processing waste, low-grade coal and waste petroleum products. A comparative analysis of process characteristics were carried out in different conditions of fuel droplet interaction with heated air flow: droplet soars in air flow in a vortex combustion chamber, droplet soars in ascending air flow in a cone-shaped combustion chamber, and droplet is placed in a thermocouple junction and motionless in air flow. The size (initial radii) of CWSP droplet was varied in the range of 0.5-1.5 mm. The ignition delay time of fuel was determined by the intensity of the visible glow in the vicinity of the droplet during CWSP combustion. It was established (under similar conditions) that ignition delay time of CWSP droplets in the combustion chamber is lower in 2-3.5 times than similar characteristic in conditions of motionless droplet placed in a thermocouple junction. The average value of ignition delay time of CWSP droplet is 3-12 s in conditions of oxidizer temperature is 600-850 K. Obtained experimental results were explained by the influence of heat and mass transfer processes in the droplet vicinity on ignition characteristics in different conditions of CWSP droplet interaction with heated air flow. Experimental results are of interest for the development of combustion technology of promising fuel for thermal power engineering.

  8. A recursive microfluidic platform to explore the emergence of chemical evolution

    Directory of Open Access Journals (Sweden)

    David Doran

    2017-08-01

    Full Text Available We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on droplet microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propagation. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reservoir, and injectors, all run together via a LabVIEWTM program integration system. Together we aim for the system to be used to drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and unbiased nature of automation with our ability to select droplets as functional units based on simple criteria.

  9. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  10. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    Science.gov (United States)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  11. Numerical simulation of microdroplet dynamics in microfluidics using finite element and level set methods

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available the dispersed phase (droplets). Miniaturised flow systems are predominately dominated by surface forces due to the Scaling Law (Figure 1). Figure 1: Surface forces dominate over volume forces in microsystems (image credit: DreamWorks[3]) Table 1: Important...?1065. 3. Antz Movie. 1998. DreamWorks Animation SKG Inc. 4. Bruus, H. 2008. Theoretical microfluidics. Oxford University Press, Oxford. K-10032 [www.kashan.co.za] Alongside experimental work, numerical tools, such as computational fl uid dynamics...

  12. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  13. Transient sensing of liquid films in microfluidic channels with optofluidic microresonators

    International Nuclear Information System (INIS)

    Grad, M; Attinger, D; Tsai, C C; Wong, C W; Yu, M; Kwong, D-L

    2010-01-01

    We demonstrate that optical ring resonators can be used as time-resolved refractive index sensors embedded in microfluidic channels. The nanophotonic structures are integrated into soft silicone microchannels interfaced with a transparent hard polymer manifold and standard microfluidic connections. The steady-state sensitivity, resolution and detection limit of the sensors are characterized using aqueous saline solutions at various concentrations. Time-resolved measurements are performed by sensing thin liquid films (0–400 nm) associated with oil/water segmented flow in microfluidic channels. The influence of the interrogation wavelength is investigated, and the optimal wavelength is determined. Millisecond resolution is demonstrated by sensing the shape of a single drop as it flows past the sensor. Finally, the film thickness between the droplet and the resonator is measured for different capillary numbers and channel diameters, and compared with existing theoretical and experimental results

  14. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  15. Macromolecular Crystallization in Microfluidics for the International Space Station

    Science.gov (United States)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  16. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Nichols, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility. In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.

  17. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  18. Microfluidic Devices for Forensic DNA Analysis: A Review.

    Science.gov (United States)

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-08-05

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.

  19. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    Science.gov (United States)

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

  20. MICROFLUIDIC COMPONENT CAPABLE OF SELF-SEALING

    DEFF Research Database (Denmark)

    2009-01-01

    A microfluidic component (100) for building a microfluidic system is provided. The microfluidic component (100) can be mounted on a microf luidic breadboard (202) in a manner that allows it to be connected to other microfluidic components (204, 206) without the requirement of additional devices....... The microfluidic component (100) comprises at least one flexible tube piece (102) for transporting a fluid. The microfluidic component (100) also comprises means for applying and maintaining pressure (104) between the flexible tube piece (102) and a tube piece (208, 210) housed in another microfluidic component...

  1. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  2. Droplet generation during core reflood

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; De Jarlais, G.; Ishii, M.

    1983-01-01

    The process of entrainment and disintegration of liquid droplets by a flow of steam has considerable practical importance in calculating the effectivenes of the emergency core cooling system. Liquid entrainment is also important in determination of the critical heat flux point in general. Thus the analysis of the reflooding phase of a LOCA requires detailed knowledge of droplet size. Droplet size is mainly determined by the droplet generation mechanisms involved. To study these mechanisms, data generated in the PWR FLECHT SEASET series of experiments was analyzed. In addition, an experiment was performed in which the hydrodynamics of low quality post-CHF flow (inverted annular flow) were simulated in an adiabatic test section

  3. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.

    Science.gov (United States)

    Liu, Yu; Jung, Seung-Yong; Collier, C Patrick

    2009-06-15

    We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 microm in diameter. Initial rates for enzyme catalysis in the mother plugs and the largest daughter drops were close to the average bulk rate, while the rates in smaller droplets decreased linearly with increasing surface to volume ratio. Rates in the smallest droplets decreased by a factor of 4 compared to the bulk rate. Traditional methods for detecting nonspecific adsorption at the water-oil interface were unable to detect evidence of enzyme adsorption, including pendant drop tensiometry, laser scanning confocal microscopy of drops containing labeled proteins in microemulsions, and epifluorescence microscopy of plugs and drops generated on-chip. We propose the slowing of enzyme reaction kinetics in the smaller droplets was the result of increased adsorption and inactivation of enzymes at the water-oil interface arising from transient interfacial shear stresses imparted on the daughter droplets as they split from the mother plugs and passed through the constricted opening of the T-junction. Such stresses are known to modulate the interfacial area and density of surfactant molecules that can passivate the interface. Bright field images of the splitting processes at the junction indicate that these stresses scaled with increasing surface to volume ratios of the droplets but were relatively insensitive to the average flow rate of plugs upstream of the junction.

  4. Microfluidics without channels: highly-flexible synthesis on a digital-microfluidic chip for production of diverse PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Robert Michael [Univ. of California, Los Angeles, CA (United States)

    2010-09-01

    Positron emission tomography (PET) imaging is used for fundamental studies of living biological organisms and microbial ecosystems in applications ranging from biofuel production to environmental remediation to the study, diagnosis, and treatment monitoring of human disease. Routine access to PET imaging, to monitor biochemical reactions in living organisms in real time, could accelerate a broad range of research programs of interest to DOE. Using PET requires access to short-lived radioactive-labeled compounds that specifically probe the desired living processes. The overall aims of this project were to develop a miniature liquid-handling technology platform (called “microfluidics”) that increases the availability of diverse PET probes by reducing the cost and complexity of their production. Based on preliminary experiments showing that microfluidic chips can synthesis such compounds, we aimed to advance this technology to improve its robustness, increase its flexibility for a broad range of probes, and increase its user-friendliness. Through the research activities of this project, numerous advances were made; Tools were developed to enable the visualization of radioactive materials within microfluidic chips; Fundamental advances were made in the microfluidic chip architecture and fabrication process to increase its robustness and reliability; The microfluidic chip technology was shown to produce useful quantities of an example PET probes, and methods to further increase the output were successfully pursued; A “universal” chip was developed that could produce multiple types of PET probes, enabling the possibility of “on demand” synthesis of different probes; and Operation of the chip was automated to ensure minimal radiation exposure to the operator Based on the demonstrations of promising technical feasibility and performance, the microfluidic chip technology is currently being commercialized. It is anticipated that costs of microfluidic chips can be

  5. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  6. Monodisperse Water-in-Oil-in-Water (W/O/W Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jing Yan

    2013-12-01

    Full Text Available Here we report the application of monodisperse double emulsion droplets, produced in a single step within partially hydrophilic/partially hydrophobic microfluidic devices, as defined containers for quantitative flow cytometric analysis. Samples with varying fluorophore concentrations were generated, and a clear correlation between dye concentration and fluorescence signals was observed.

  7. Tutorial: Digital microfluidic biochips: Towards hardware/software co-design and cyber-physical system integration

    DEFF Research Database (Denmark)

    Ho, Tsung-Yi; Huang, Juinn-Dar; Pop, Paul

    2013-01-01

    This tutorial will first provide an overview of typical bio-molecular applications (market drivers) such as immunoassays, DNA sequencing, clinical chemistry, etc. Next, microarrays and various microfluidic platforms will be discussed. The next part of the tutorial will focus on electro-wetting-ba......This tutorial will first provide an overview of typical bio-molecular applications (market drivers) such as immunoassays, DNA sequencing, clinical chemistry, etc. Next, microarrays and various microfluidic platforms will be discussed. The next part of the tutorial will focus on electro......-wetting-based digital micro-fluidic biochips. The key idea here is to manipulate liquids as discrete droplets. A number of case studies based on representative assays and laboratory procedures will be interspersed in appropriate places throughout the tutorial. Basic concepts in micro-fabrication techniques will also...... be discussed. Attendees will next learn about CAD and reconfiguration aspects of digital microfluidic biochips. Synthesis tools will be described to map assay protocols from the lab bench to a droplet-based microfluidic platform and generate an optimized schedule of bioassay operations, the binding of assay...

  8. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    International Nuclear Information System (INIS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-01-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning. (paper)

  9. Macromolecular Crystal Growth by Means of Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  10. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  11. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  12. Assembly of silver nanowire ring induced by liquid droplet

    Science.gov (United States)

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-11-01

    Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).

  13. A Sensitive Chemotaxis Assay Using a Novel Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2013-01-01

    Full Text Available Existing chemotaxis assays do not generate stable chemotactic gradients and thus—over time—functionally measure only nonspecific random motion (chemokinesis. In comparison, microfluidic technology has the capacity to generate a tightly controlled microenvironment that can be stably maintained for extended periods of time and is, therefore, amenable to adaptation for assaying chemotaxis. We describe here a novel microfluidic device for sensitive assay of cellular migration and show its application for evaluating the chemotaxis of smooth muscle cells in a chemokine gradient.

  14. Millifluidic droplet analyser for microbiology

    NARCIS (Netherlands)

    Baraban, L.; Bertholle, F.; Salverda, M.L.M.; Bremond, N.; Panizza, P.; Baudry, J.; Visser, de J.A.G.M.; Bibette, J.

    2011-01-01

    We present a novel millifluidic droplet analyser (MDA) for precisely monitoring the dynamics of microbial populations over multiple generations in numerous (=103) aqueous emulsion droplets (100 nL). As a first application, we measure the growth rate of a bacterial strain and determine the minimal

  15. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  16. Towards rapid prototyped convective microfluidic DNA amplification platform

    Science.gov (United States)

    Ajit, Smrithi; Praveen, Hemanth Mithun; Puneeth, S. B.; Dave, Abhishek; Sesham, Bharat; Mohan, K. N.; Goel, Sanket

    2017-02-01

    Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.

  17. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  18. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    Science.gov (United States)

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Leidenfrost boiling of water droplet

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  20. Leidenfrost boiling of water droplet

    Science.gov (United States)

    Orzechowski, Tadeusz

    The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  1. Microfluidics to Mimic Blood Flow in Health and Disease

    Science.gov (United States)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  2. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.

    Science.gov (United States)

    Josephides, Dimitris N; Sajjadi, Shahriar

    2015-01-27

    Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.

  3. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich; Mashraei, Yousof; Agambayev, Sumeyra; Salama, Khaled N.

    2017-01-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided

  4. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  5. Reconfigurable microfluidic platform in ice

    OpenAIRE

    Varejka, M.

    2008-01-01

    Microfluidic devices are popular tools in the biotechnology industry where they provide smaller reagent requirements, high speed of analysis and the possibility for automation. The aim of the project is to make a flexible biocompatible microfluidic platform adapted to different specific applications, mainly analytical and separations which parameters and configuration can be changed multiple times by changing corresponding computer programme. The current project has been sup...

  6. Computational investigations of the mixing performance inside liquid slugs generated by a microfluidic T-junction.

    Science.gov (United States)

    Li, Yuehao; Reddy, Rupesh K; Kumar, Challa S S R; Nandakumar, Krishnaswamy

    2014-09-01

    Droplet-based microfluidics has gained extensive research interest as it overcomes several challenges confronted by conventional single-phase microfluidics. The mixing performance inside droplets/slugs is critical in many applications such as advanced material syntheses and in situ kinetic measurements. In order to understand the effects of operating conditions on the mixing performance inside liquid slugs generated by a microfluidic T-junction, we have adopted the volume of fluid method coupled with the species transport model to study and quantify the mixing efficiencies inside slugs. Our simulation results demonstrate that an efficient mixing process is achieved by the intimate collaboration of the twirling effect and the recirculating flow. Only if the reagents are distributed transversely by the twirling effect, the recirculating flow can bring in convection mechanism thus facilitating mixing. By comparing the mixing performance inside slugs at various operating conditions, we find that slug size plays the key role in influencing the mixing performance as it determines the amount of fluid to be distributed by the twirling effect. For the cases where short slugs are generated, the mixing process is governed by the fast convection mechanism because the twirling effect can distribute the fluid to the flow path of the recirculating flow effectively. For cases with long slugs, the mixing process is dominated by the slow diffusion mechanism since the twirling effect is insufficient to distribute the large amount of fluid. In addition, our results show that increasing the operating velocity has limited effects on improving the mixing performance. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics.

  7. Fabrication of a Paper-Based Microfluidic Device to Readily Determine Nitrite Ion Concentration by Simple Colorimetric Assay

    Science.gov (United States)

    Wang, Bo; Lin, Zhiqiang; Wang, Min

    2015-01-01

    Paper-based microfluidic devices (µPAD) are a burgeoning platform of microfluidic analysis technology. The method described herein is for use in undergraduate and high school chemistry laboratories. A simple and convenient µPAD was fabricated by easy patterning of filter paper using a permanent marker pen. The usefulness of the device was…

  8. Light-induced immobilisation of biomolecules as an attractive alternative to micro-droplet dispensing-based arraying technologies (vol 7, pg 3491, 2007)

    DEFF Research Database (Denmark)

    Duroux, Meg; Skovsen, Esben; Neves Petersen, Teresa

    2008-01-01

    The present work shows how UV ‘light-induced molecular immobilisation' (LIMI) of biomolecules onto thiol reactive surfaces can be used to make biosensors, without the need for traditional microdispensing technologies. Using ‘LIMI,' arrays of biomolecules can be created with a high degree of repro...

  9. Enhanced Microfluidic Electromagnetic Measurements

    Science.gov (United States)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  10. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  11. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    Science.gov (United States)

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.

  12. Droplet-based chemistry on a programmable micro-chip

    Science.gov (United States)

    Schwartz, Jon A.; Vykoukal, Jody V.; Gascoyne, Peter R. C.

    2009-01-01

    We describe the manipulation of aqueous droplets in an immiscible, low-permittivity suspending medium. Such droplets may serve as carriers for not only air- and water-borne samples, contaminants, chemical reagents, viral and gene products, and cells, but also the reagents to process and characterise these samples. We present proofs-of-concept for droplet manipulation through dielectrophoresis by: (1) moving droplets on a two-dimensional array of electrodes, (2) achieving dielectrically-activated droplet injection, (3) fusing and reacting droplets, and (4) conducting a basic biological assay through a combination of these steps. A long-term goal of this research is to provide a platform fluidic processor technology that can form the core of versatile, automated, micro-scale devices to perform chemical and biological assays at or near the point of care, which will increase the availability of modern medicine to people who do not have ready access to modern medical institutions, and decrease the cost and delays associated with that lack of access. PMID:15007434

  13. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Emory Ming-Yue [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  14. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  15. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  16. On-Chip generation of polymer microcapsules through droplet coalescence

    Science.gov (United States)

    Eqbal, Md Danish; Gundabala, Venkat; Gundabala lab Team

    Alginate microbeads and microcapsules have numerous applications in drug delivery, tissue engineering and other biomedical areas due to their unique properties. Microcapsules with liquid core are of particular interest in the area of cell encapsulation. Various methods such as coacervation, emulsification, micro-nozzle, etc. exist for the generation of microbeads and microcapsules. However, these methods have several drawbacks like coagulation, non-uniformity, and polydispersity. In this work we present a method for complete on chip generation of alginate microcapsules (single core as well as double core) through the use of droplet merging technique. For this purpose, a combined Coflow and T-junction configuration is implemented in a hybrid glass-PDMS (Polydimethylsiloxane) microfluidic device. Efficient generation is achieved through precise matching of the generation rates of the coalescing drops. Through this approach, microcapsules with intact single and double (liquid) cores surrounded by alginate shell have been successfully generated and characterized.

  17. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.

    Science.gov (United States)

    Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C

    2017-11-01

    Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were

  19. Microfluidic standardization: Past, present and future

    NARCIS (Netherlands)

    Heeren, H. van; Atkins, T.; Blom, M.; Bullema, J.E.; Tantra, R.; Verhoeven, D.; Verplanck, N.

    2016-01-01

    This paper addresses the issue of standardization in microfluidics. It contains the main points of an industry wide agreement about microfluidic port pitches and port nomenclature. It also addresses device classification and future steps.

  20. Impact-driven ejection of micro metal droplets on-demand

    NARCIS (Netherlands)

    Luo, Jun; Qi, Lehua; Tao, Yuan; Ma, Qian; Visser, C.W.

    2016-01-01

    On-demand metal droplet deposition will be a cornerstone technology in 3D metal printing. However, suitable small nozzles are hardly available, limiting the resolution and surface finish of final products. Here, the ejection of record-small metal droplets with a diameter of only 0.55±0.07 times the

  1. Multi-depth valved microfluidics for biofilm segmentation

    International Nuclear Information System (INIS)

    Meyer, M T; Bentley, W E; Ghodssi, R; Subramanian, S; Kim, Y W; Ben-Yoav, H; Gnerlich, M; Gerasopoulos, K

    2015-01-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information. (paper)

  2. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  3. Multi-depth valved microfluidics for biofilm segmentation

    Science.gov (United States)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  4. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  5. Droplet Translation Actuated by Photoelectrowetting.

    Science.gov (United States)

    Palma, Cesar; Deegan, Robert D

    2018-03-13

    In traditional electrowetting-on-dielectric (EWOD) devices, droplets are moved about a substrate using electric fields produced by an array of discrete electrodes. In this study, we show that a drop can be driven across a substrate with a localized light beam by exploiting the photoelectrowetting (PEW) effect, a light-activated variant of EWOD. Droplet transport actuated by PEW eliminates the need for electrode arrays and the complexities entailed in their fabrication and control, and offers a new approach for designing lab-on-a-chip applications. We report measurements of the maximum droplet speed as a function of frequency and magnitude of the applied bias, intensity of illumination, volume of the droplet, and viscosity and also introduce a model that reproduces these data.

  6. Lithium droplet divertor collector for ions and heat

    International Nuclear Information System (INIS)

    Wells, W.M.

    1979-01-01

    Coping with the ion and energy fluxes which must be collected with a tokamak divertor is one of the more difficult technological challenges for a power producing reactor. Use of stationary solid surfaces to collect ions and the attendant heat flux faces technology feasibility questions. Calculations indicate that gravity-driven flow of liquid metals having a free surface will not move adequately fast. It is proposed to circumvent these problems by having high velocity lithium droplets perform the collection functions. Droplets which are not in contact with a wall encounter only very small retardation effects in a magnetic field, and these droplets can be formed by nozzles outside of the magnetic field. If they travel at about 150 m/s, they can absorb in excess of 1 kW/cm 2 of projected area. The hydrogen isotope ion fluence is well below the saturation dose which has been achieved with lithium

  7. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets.

    Science.gov (United States)

    Zang, Emerson; Brandes, Susanne; Tovar, Miguel; Martin, Karin; Mech, Franziska; Horbert, Peter; Henkel, Thomas; Figge, Marc Thilo; Roth, Martin

    2013-09-21

    The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600,000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.

  8. Review of Commercially Available Microfluidic Materials and Fabricating Techniques for Point of Care Testing

    Directory of Open Access Journals (Sweden)

    Luck EREKU

    2016-07-01

    Full Text Available During the last two decades silicon and MEMs technology had been the mainstay of early microfluidic devices. However, recent times have brought into focus the need for low cost and readily available materials capable of achieving the expected microfluidics physical and chemical requirements. Also what mentioning is the rapid improvement in microfabrication technology over the years, which has significantly aided new and cheaper ways to produce microfluidic Point-Of-Care-Testing devices commercially or for research purposes. This review article discusses the usefulness of a wide range of available materials and their unique properties suitability in microfluidic applications. Likewise, advantages and drawbacks of manufacturing procedures and outputs of different fabrication methods are also brought into focus.

  9. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  10. Low temperature co-fired ceramic (LTCC) technology: general processing aspects and fabrication of 3-D structures for micro-fluidic devices

    OpenAIRE

    Birol, Hansu; Maeder, Thomas; Ryser, Peter

    2005-01-01

    LTCC technology is based on sintering of multi-layered thick-film sheets (50-250 µm) or so-called green tapes, which are screen-printed with thick-film pastes such as conductors, resistors, etc. The terms low temperature and co-fired originate from the relatively low sintering temperatures (

  11. The liquid droplet radiator: Status of development

    Science.gov (United States)

    Persson, J.

    1991-12-01

    The ever greater amounts of power to be dissipated onboard future spacecraft, together with their limited external dimensions, will make it increasingly difficult to use conventional radiator technology without imposing a severe mass penalty. Hunting for lightweight alternatives to current heat rejection systems has become a matter of growing urgency, which explains the great interest that the Liquid Droplet Radiator (LDR) has attracted. Tradeoff analyses indicate that an LDR may be as much as an order of magnitude lighter than a comparable conventional radiator. A literature study examining the progress of the LDR research and some of its possible applications is reviewed. An investigation of the LDR heat rejection capability is presented.

  12. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    Science.gov (United States)

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  13. Magnetic Tools for Lab-on-a-chip Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pekas, Nikola Slobodan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This study establishes a set of magnetics-based tools that have been integrated with microfluidic systems. The overall impact of the work begins to enable the rapid and efficient manipulation and detection of magnetic entities such as particles, picoliter-sized droplets, or bacterial cells. Details of design, fabrication, and theoretical and experimental assessments are presented. The manipulation strategy has been demonstrated in the format of a particle diverter, whereby micron-sized particles are actively directed into desired flow channels at a split-flow junction by means of integrated microelectromagnets. Magnetic detection has been realized by deploying Giant Magnetoresistance (GMR) sensors--microfabricated structures originally developed for use as readout elements in computer hard-drives. We successfully transferred the GMR technology to the lab-on-a-chip arena, and demonstrated the versatility of the concept in several important areas: real-time, integrated monitoring of the properties of multiphase droplet flows; rapid quantitative determination of the concentration of magnetic nanoparticles in droplets of ferrofluids; and high-speed detection of individual magnetic microparticles and magnetotactic bacteria. The study also includes novel schemes for hydrodynamic flow focusing that work in conjunction with GMR-based detection to ensure precise navigation of the sample stream through the GMR detection volume, therefore effectively establishing a novel concept of a microfabricated magnetic flow cytometer.

  14. Droplet-Assisted Laser Direct Nanoscale Writing on Silicon

    Directory of Open Access Journals (Sweden)

    Yuan-Jen Chang

    2016-03-01

    Full Text Available Nano-structuring using laser direct writing technology has shown great potential for industrial applications. A novel application of water droplets to this technology is proposed in this paper. With a hydrophobic layer and a controlled substrate temperature, a layer of randomly distributed water droplets with a high contact angle is formed on the substrate. These liquid droplets can be used as lenses to enhance the laser intensity at the bottom of the droplets. As a result, nanoscale holes can be fabricated on the substrate by controlling the laser energy density. We successfully fabricated holes with a diameter of 600 nm at a substrate temperature of 12 ∘C and a power density of 1.2 × 108 W/cm2 in our experiments. We also found that the hole diameter was around a ninth of the water droplet diameter. Meanwhile, the machined holes are not affected much by the focal length of the lens, but a hole with less than 100 nm in diameter at the center was observed.

  15. Continuous flow synthesis of nanoparticles using ceramic microfluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-de Pedro, S; Puyol, M; Alonso-Chamarro, J, E-mail: julian.alonso@uab.es [Grup de Sensors i Biosensors, Departament de Quimica, Facultat de Ciencies, Edifici Cn, Universitat Autonoma de Barcelona, Bellaterra 08193 (Spain)

    2010-10-15

    A microfluidic system based on the low-temperature co-fired ceramics technology (LTCC) is proposed to reproducibly carry out a simple one-phase synthesis and functionalization of monodispersed gold nanoparticles. It takes advantage of the LTCC technology, offering a fast prototyping without the need to use sophisticated facilities, reducing significantly the cost and production time of microfluidic systems. Some other interesting advantages of the ceramic materials compared to glass, silicon or polymers are their versatility and chemical resistivity. The technology enables the construction of multilayered systems, which can integrate other mechanical, electronic and fluidic components in a single substrate. This approach allows rapid, easy, low cost and automated synthesis of the gold colloidal, thus it becomes a useful approach in the progression from laboratory scale to pilot-line scale processes, which is currently demanded.

  16. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.

    Science.gov (United States)

    Sanjay, Sharma T; Fu, Guanglei; Dou, Maowei; Xu, Feng; Liu, Rutao; Qi, Hao; Li, XiuJun

    2015-11-07

    Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.

  17. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    Science.gov (United States)

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require

  18. Microsystems for pharmatechnology manipulation of fluids, particles, droplets, and cells

    CERN Document Server

    2016-01-01

    This book provides a comprehensive, state-of-the-art review of microfluidic approaches and applications in pharmatechnology. It is appropriate for students with an interdisciplinary interest in both the pharmaceutical and engineering fields, as well as process developers and scientists in the pharmaceutical industry. The authors cover new and advanced technologies for screening, production by micro reaction technology and micro bioreactors, small-scale processing of drug formulations, and drug delivery that will meet the need for fast and effective screening methods for drugs in different formulations, as well as the production of drugs in very small volumes. Readers will find detailed chapters on the materials and techniques for fabrication of microfluidic devices, microbioreactors, microsystems for emulsification, on-chip fabrication of drug delivery systems, respiratory drug delivery and delivery through microneedles, organs-on-chip, and more.

  19. Microplasma fabrication: from semiconductor technology for 2D-chips and microfluidic channels to rapid prototyping and 3D-printing of microplasma devices

    Science.gov (United States)

    Shatford, R.; Karanassios, Vassili

    2014-05-01

    Microplasmas are receiving attention in recent conferences and current scientific literature. In our laboratory, microplasmas-on-chips proved to be particularly attractive. The 2D- and 3D-chips we developed became hybrid because they were fitted with a quartz plate (quartz was used due to its transparency to UV). Fabrication of 2D- and 3D-chips for microplasma research is described. The fabrication methods described ranged from semiconductor fabrication technology, to Computer Numerical Control (CNC) machining, to 3D-printing. These methods may prove to be useful for those contemplating in entering microplasma research but have no access to expensive semiconductor fabrication equipment.

  20. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  1. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  3. Microfluidic device for drug delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  4. Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping.

    Science.gov (United States)

    Selva, Bertrand; Miralles, Vincent; Cantat, Isabelle; Jullien, Marie-Caroline

    2010-07-21

    We report a novel method for bubble or droplet displacement, capture and switching within a bifurcation channel for applications in digital microfluidics based on the Marangoni effect, i.e. the appearance of thermocapillary tangential interface stresses stemming from local surface tension variations. The specificity of the reported actuation is that heating is provided by an optimized resistor pattern (B. Selva, J. Marchalot and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, J. Micromech. Microeng., 2009, 19, 065002) leading to a constant temperature gradient along a microfluidic cavity. In this context, bubbles or droplets to be actuated entail a surface force originating from the thermal Marangoni effect. This actuator has been characterized (B. Selva, I. Cantat, and M.-C. Jullien, Migration of a bubble towards a higher surface tension under the effect of thermocapillary stress, preprint, 2009) and it was found that the bubble/droplet (called further element) is driven toward a high surface tension region, i.e. toward cold region, and the element velocity increases while decreasing the cavity thickness. Taking advantage of these properties three applications are presented: (1) element displacement, (2) element switching, detailed in a given range of working, in which elements are redirected towards a specific evacuation, (3) a system able to trap, and consequently stop on demand, the elements on an alveolus structure while the continuous phase is still flowing. The strength of this method lies in its simplicity: single layer system, in situ heating leading to a high level of integration, low power consumption (P < 0.4 W), low applied voltage (about 10 V), and finally this system is able to manipulate elements within a flow velocity up to 1 cm s(-1).

  5. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  6. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system

    International Nuclear Information System (INIS)

    Weng, Chen-Hsun; Lee, Gwo-Bin; Huang, Chih-Chia; Yeh, Chen-Sheng; Lei, Huan-Yao

    2008-01-01

    A new microfluidic reaction system capable of mixing, transporting and reacting is developed for the synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is made from micro-electro-mechanical-system technologies which integrate a micro-mixer, micro-pumps, a micro-valve, micro-heaters and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for the synthesis of functional nanoparticles for future biomedical applications

  7. A single microfluidic chip with dual surface properties for protein drug delivery.

    Science.gov (United States)

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    Science.gov (United States)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  9. Modelling of heating and evaporation of n-Heptane droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    This study is a part of a project that is targeted to optimize the pyrolysis process of biomass pellets for bio-oil production and to develop new technology to upgrade the bio-oil for use in transportation. Among others, study of pyrolysis of the biomass pellets and evaporation of the pyrolysis bio...... and azimuthal directions, respectively, on each of which the flow, heat and mass transfer are numerically solved using the finite volume method. During the transient heating and evaporation process, the interaction between the moving droplets and free-stream flow are properly considered. Droplet dynamics...

  10. Integrated microfluidic probe station.

    Science.gov (United States)

    Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  11. An end-to-end microfluidic platform for engineering life supporting microbes in space exploration missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology proposes a programmable, low-cost, and compact microfluidic platform capable of running automated end-to-end processes and optimization...

  12. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow.

    Science.gov (United States)

    Rambach, Richard W; Linder, Kevin; Heymann, Michael; Franke, Thomas

    2017-10-11

    We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO 3 ) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.

  13. The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM and application for ambient dust

    Directory of Open Access Journals (Sweden)

    N. Reicher

    2018-01-01

    Full Text Available The WeIzmann Supercooled Droplets Observation on Microarray (WISDOM is a new setup for studying ice nucleation in an array of monodisperse droplets for atmospheric implications. WISDOM combines microfluidics techniques for droplets production and a cryo-optic stage for observation and characterization of freezing events of individual droplets. This setup is designed to explore heterogeneous ice nucleation in the immersion freezing mode, down to the homogeneous freezing of water (235 K in various cooling rates (typically 0.1–10 K min−1. It can also be used for studying homogeneous freezing of aqueous solutions in colder temperatures. Frozen fraction, ice nucleation active surface site densities and freezing kinetics can be obtained from WISDOM measurements for hundreds of individual droplets in a single freezing experiment. Calibration experiments using eutectic solutions and previously studied materials are described. WISDOM also allows repeatable cycles of cooling and heating for the same array of droplets. This paper describes the WISDOM setup, its temperature calibration, validation experiments and measurement uncertainties. Finally, application of WISDOM to study the ice nucleating particle (INP properties of size-selected ambient Saharan dust particles is presented.

  14. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  15. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  16. IFSA: a microfluidic chip-platform for frit-based immunoassay protocols

    Science.gov (United States)

    Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia

    2013-03-01

    Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.

  17. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.

    Science.gov (United States)

    Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee

    2007-05-08

    A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.

  18. Instability of expanding bacterial droplets.

    Science.gov (United States)

    Sokolov, Andrey; Rubio, Leonardo Dominguez; Brady, John F; Aranson, Igor S

    2018-04-03

    Suspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a remarkable propensity for self-organization, and formation of large-scale coherent structures. Most active matter research deals with almost homogeneous in space systems and little is known about the dynamics of strongly heterogeneous active matter. Here we report on experimental and theoretical studies on the expansion of highly concentrated bacterial droplets into an ambient bacteria-free fluid. The droplet is formed beneath a rapidly rotating solid macroscopic particle inserted in the suspension. We observe vigorous instability of the droplet reminiscent of a violent explosion. The phenomenon is explained in terms of continuum first-principle theory based on the swim pressure concept. Our findings provide insights into the dynamics of active matter with strong density gradients and significantly expand the scope of experimental and analytic tools for control and manipulation of active systems.

  19. Oxygen sensor nanoparticles for monitoring bacterial growth and characterization of dose–response functions in microfluidic screenings

    International Nuclear Information System (INIS)

    Cao, Jialan; Köhler, J. Michael; Nagl, Stefan; Kothe, Erika

    2015-01-01

    We are presenting a microfluidic droplet-based system for non-invasive, simultaneous optical monitoring of oxygen during bacterial cultivation in nL-sized droplets using ∼350 nm nanobeads made from polystyrene and doped with the NIR-emitting oxygen probe platinum (II) 5, 10, 15, 20-meso-tetraphenyltetrabenzoporphyrin (PtTPTBP). Data were readout by a two-channel micro flow-through fluorimeter and a two-channel micro flow-through photometer. The time-resolved miniaturized optical multi endpoint detection was applied to simultaneously sense dissolved oxygen, cellular autofluorescence, and cell density in nL-sized segments. Two bacterial strains were studied that are resistant to heavy metal ions, viz. Streptomyces acidiscabies E13 and Psychrobacillus psychrodurans UrPLO1. The study has two main features in that it demonstrates (a) the possibility to monitor the changes in oxygen partial pressure during metabolic activity of different bacterial cultures inside droplets, and (b) the efficiency of droplet-based microfluidic techniques along with multi-parameter optical sensing for highly resolved microtoxicological screenings in aquatic systems. (author)

  20. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.

    Science.gov (United States)

    Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard

    2010-02-21

    Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.