WorldWideScience

Sample records for droplet impingement accelerated

  1. Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement accelerated corrosion

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Naitoh, Masanori; Koshizuka, Seiichi; Lister, Derek H.; Svoboda, Robert

    2009-01-01

    Overlapping effects of flow dynamics and corrosion are important issues in determining the reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) accelerated corrosion (LDI (corrosion)) are typical phenomena resulting from both interactions. In order to evaluate local wall thinning due to FAC and LDI (corrosion), a 6-step evaluation procedure for each has been proposed. 1. Obtain the flow pattern along the flow path with a 1D computational flow dynamics (CFD) code. 2. Calculate corrosive conditions, e.g., oxygen concentration along the flow path, with a oxygen-hydrazine reaction code for the FAC evaluation. Calculate the flow pattern of liquid droplets in high velocity steam and determine the possibility of their collision with the pipe inner surface for the LDI (corrosion) evaluation. 3. Calculate the mass transfer coefficients at the structure surface with a 3D CFD code for the FAC evaluation. Calculate the frequency of oxide film rupture due to droplet collision for the LDI (corrosion) evaluation. 4. Evaluate high risk zones for FAC and LDI (corrosion) occurrence by coupling major parameters. 5. Calculate wall thinning rates with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC and LDI (corrosion) risk zones. 6. Make a final evaluation of residual life and the effectiveness of countermeasures. It was demonstrated that the calculated FAC rates had good agreement with the measured rates. Further investigation of the accuracy of the LDI (corrosion) evaluation procedures is currently in progress. (orig.)

  2. Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi; Lister, Derek H.

    2009-01-01

    Overlapping effects of flow dynamics and corrosion are important issues to determine reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) are typical phenomena due to both interactions. In order to evaluation local wall thinning due to FAC and LDI, 6 step evaluation procedures have been proposed. (1) Flow pattern along the flow path was obtained with 1D computational flow dynamics (CFD) codes, (2) Corrosive conditions, e.g., oxygen concentration along the flow path were calculated with a hydrazine oxygen reaction code for FAC evaluation, while flow pattern of liquid droplets in high velocity steam and possibility of their collision to pipe inner surface were evaluated for LDI evaluation. (3) Mass transfer coefficient at the structure surface was calculated with 3D CFD codes for FAC evaluation, while frequency of oxide film rupture due to droplet collision was calculated for LDI evaluation. (4) High risk zones for FAC/LDI occurrence were evaluated by coupling major parameters, and then, (5) Wall thinning rates were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC/LDI risk zone. (author)

  3. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  4. Droplet Impingement Boiling on Heated Superhydrophobic Surfaces

    Science.gov (United States)

    Crockett, Julie; Clavijo, Cristian; Maynes, Daniel

    2015-11-01

    When a droplet impinges on a solid surface at a temperature well above the saturation temperature, vaporization of the liquid begins immediately after contact. Different boiling regimes may result depending on the surface temperature and volatility of the liquid. The nucleate boiling regime is characterized by explosive atomization, which occurs when vapor bubbles burst causing an extravagant shower of small micro droplets as well as the well-known ``sizzling'' sound. In this work, we show that the vapor is surprisingly re-directed during impingement on a superhydrophobic surface such that atomization is completely suppressed. We hypothesize that this occurs because vapor escapes through the superhydrophobic interface such that the top of the droplet remains free of bursting vapor bubbles. We explore a wide range of surface patterning with feature spacing of 8 to 32 microns and solid area fractions of 10 to 50 percent; surface temperatures from 100 C to 400 C; and Weber numbers of 1 to 100. Atomization is found to decrease with increasing feature spacing and decreasing solid fraction, and vanishes completely for large spacing. It may be that large feature spacing promotes early transition to the Leidenfrost regime.

  5. Study on pipe wastage mechanism by liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Higashi, Yuma; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi; Ohmori, Shuichi; Mori, Michitsugu; Tezuka, Kenichi

    2009-01-01

    Evaluation of wastage speed for nuclear power plant maintains plant reliability and power up rating is important. There are two main cause of wastage flow accelerated corrosion (FAC) and mechanical erosion. This study is to develop evaluating the wastage speed by liquid droplet impingement erosion (LDIE). LDIE often occurs at downstream of corner of pipe or orifice. In this study, the liquid drop impinging tests were conducted with the test pieces mounted on a high speed rotating disk that cross thin water down jet and produced LDIE phenomena. The amount of the wastage by LDIE was evaluated by changing the rotational speed, the impingement frequency, and test piece materials. In addition, the generation mechanism of erosion was investigated by observing the surface of the test piece with a microscope. There is a method of evaluating by the mass difference before and after experiments. But this method is not correct because error becomes larger for mass measurement in the experiment, for the lost mass by LDIE is very little amount. Therefore, the method was developed to measure the volume in the erosion part. In this method, depth of LDIE was measured by the accuracy of ±0.01μm; therefore accurate measurement of the wastage can be improved. (author)

  6. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    Science.gov (United States)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  7. The effect of liquid film on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Saito, Kengo; Hayashi, Kanto

    2013-01-01

    Highlights: • Liquid droplet impingement erosion is studied experimentally using high-speed conical spray. • Erosion rate is increased with decreasing the liquid film thickness. • Erosion model is proposed considering the influence of liquid film thickness. -- Abstract: In the present paper, the pipe-wall thinning due to liquid droplet impingement erosion is studied experimentally by using a high-speed conical spray under the influences of liquid film on the target specimen. The size of the droplets considered is an order of tens of micrometers in diameter, which is the same order as those expected in the pipeline of nuclear/fossil power plants. In order to evaluate the erosion rate by the liquid droplet impingement under the influence of liquid film, the experiments are conducted by various combinations of the specimen diameters and the standoff distances of the spray from the nozzle. The experimental results show that the erosion depth increases linearly with the local flow volume, indicating the presence of terminal stage of erosion. The present results indicate that the erosion rate increases with decreasing the specimen diameter and increases slightly with increasing the standoff distance. This result combined with the theoretical consideration of the liquid film on the specimen leads to the conclusion that the erosion rate increases with decreasing the liquid film thickness, which supports the numerical result of liquid droplet impingement erosion in literature. Then, the erosion model for predicting the erosion rate by the liquid droplet impingement is proposed considering the influence of the liquid film

  8. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  9. A calculation methodology proposed for liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: rui.l.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-5, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Mori, Michitsugu [Research and Development Centre, Tokyo Electric Power Company, 4-1, Egasaki-cho, Tsurumi-ku, Kanagawa 230-8510 (Japan); School of Science and Technology, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571 (Japan); Ninokata, Hisashi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-5, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We proposed a two phase flow methodology to liquid droplet impingement erosion. Black-Right-Pointing-Pointer An innovative impact angle function was implemented into erosion rate calculation. Black-Right-Pointing-Pointer A comparison with an accident erosion data was made to validate our methodology. - Abstract: Bent pipe wall thinning has been often found at the elbow of the drain line and the high-pressure secondary feed-water bent pipe in nuclear reactors. Liquid droplet impingement (LDI) erosion could be regarded as one of the major causes and is a significant issue of the thermal hydraulics and structural integrity in aging and life extension for nuclear power plant safety. In this paper a computational methodology is established for simulation of LDI erosion using computational fluid dynamics (CFD) simulation and theoretical calculation. Two-phase flow numerical simulations are conducted for standard elbow geometry, typically with the pipe diameter of 170 mm. This computational fluid model is built up by incompressible Reynolds Averaged Navier-Stoke equations using standard k-{epsilon} turbulence model and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach. The turbulence damping in vapor-droplets flow is theoretically analyzed by a damping function on the energy spectrum basis of single phase flow. Locally, a droplet impact angle function is employed to determine the overall erosion rate. Finally, the overall and local investigations are combined to purpose a general methodology of LDI erosion prediction procedure, which has been complemented into CFD code. Based on our more physical computational results, comparison with an available accident data was made to prove that our methodology could be an appropriate way to simulate and predict the bent pipe wall thinning phenomena.

  10. Deformation and breakup behavior of a small droplet impinging upon a hot surface

    International Nuclear Information System (INIS)

    Senda, Jiro; Takeuchi, Kiichiro; Miki, Hideo; Yamada, Koji.

    1986-01-01

    The phenomenon of a small droplet impinging upon a hot surface is applied in various industries. Such applications are divided into those employing atomization by the impingement of the droplet and those employing the heat transfer from surface to the droplet. The purpose of this paper is to obtain fundamental information concerning the heat transfer process and breakup behavior characteristics of individual small droplets impinging upon a hot surface. A uniform sized water droplets array at room temperature under atmospheric pressure was produced by the vibratory method to impinge upon a heated flat copper surface. And then, the deformation and the breakup behavior owing to the impingement of the droplet in observed by means of a drum camera recording highspeed microscopic photographs. The transient change in the diameter of the radial film which is formed after the droplet impinges on a surface is adjusted with the Weber number, and it is revealed that contact resistance in solid-liquid interface varies with surface temperature. The breakup form of the impinged droplet is classified into 7 types : R, RB, B, N, H, V, and F. The changes in the Sauter mean diameter of breakup droplets and the volume distribution of breakup droplets are examined. (author)

  11. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia

    2005-12-15

    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  12. Hydrodynamics and PIV study in the impingement zone formed by a droplet train

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza; Zhang, Taolue; Muthusamy, Jayaveera; Alvarado, Jorge; Texas A; M University at Qatar Collaboration; Texas A; M University College Station Collaboration

    2016-11-01

    Droplet impingement is encountered in numerous technical applications, such as ink jet printing, spray cooling, and fuel injection in internal combustion engines. Even though many studies in droplet impingement were conducted in past, not many have measured the near-wall velocities in the droplet impingement zone. With the goal of gaining a better understanding of the hydrodynamics in the impingement zone, well-controlled experiments are performed in combination with micro-PIV measurements and numerical simulations. Hydrodynamics of HFE-7100 droplets generated using a piezoelectric droplet generator, impinging on a pre-wetted surface is investigated. Micro-PIV studies in the high-velocity impingement zone are performed using one-micron meter fluorescent particles dispersed in HFE-7100 along with the double exposed images. Three-dimensional and 2D-axisymmetric numerical modeling for a transient droplet crown development is performed. The interface between the gas and the liquid is modeled using a Volume of Fluid (VOF) method. Numerical simulation results obtained are observed to be in good agreement with that of the experimental observations. Supported by National Priority Research Program (NPRP) of Qatar National Research Fund (QNRF), Grant No.: NPRP 6-1304-2-525.

  13. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  14. Ice growth and interface oscillation of water droplets impinged on a cooling surface

    Science.gov (United States)

    Hagiwara, Yoshimichi; Ishikawa, Shoji; Kimura, Ryota; Toyohara, Kazumasa

    2017-06-01

    We focused on the attenuation of air-water interface oscillation for impinged water droplets freezing on a cooling surface. We carried out not only experiments but also two-dimensional numerical simulation on the droplets using a Phase-field method and an immersed boundary method. The Reynolds number and Weber number were in the range of 35-129 and 1.6-22, respectively. The experimental and computational results showed that the height of the impinged droplets on the symmetrical axis started to oscillate as a result of the impact of the collision of droplets with the surfaces in all the cases that we investigated. The measured frequency of the oscillations in the case of the adiabatic droplets was equal to the frequency estimated from the equation for the capillary-gravity waves on sessile droplets (Temperton, 2013) [30]. The oscillations converged rapidly in all impinged water droplets that froze on the cooling surface. This is due partly to the growth of ice shells along the air-water interface and partly to decreases in water volume as a result of the ice growth mainly on the cooling surface. In addition, the thermal field was disturbed not only by the latent heat transfer but also by the upward component of recirculating flow induced by the droplet impingement.

  15. An Experimental Method for Measuring Water Droplet Impingement Efficiency on Two- and Three-dimensional Bodies

    Science.gov (United States)

    Papadakis, M.; Zumwalt, G. W.; Elangonan, R.; Freund, G. A., Jr.; Breer, M.; Whitmer, L.

    1989-01-01

    An experimental method was developed to determine the droplet impingement characteristics on 2-D and 3-D bodies. The experimental results provide the essential droplet impingement data required to validate water droplet trajectory codes, which are used in the analysis of aircraft icing. A body, whose water droplet impingement characteristics are required, is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and is exposed to an air stream containing a water dye solution spray cloud. Water droplet impingement data are extracted from the dyed blotter strips by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Models tested include a 4-inch diameter cylinder, a NACA 652015 airfoil section, a MS(1)-0317 supercritical airfoil section, three simulated ice shapes, an axisymmetric inlet and a Boeing 737-300 inlet model. Detailed descriptions of the dye tracer technique, instrumentation, data reduction method and the results obtained are presented. Analytical predictions of collection efficiency characteristics for most test configurations are included for comparison.

  16. Computations of droplet impingement on airfoils in two-phase flow

    International Nuclear Information System (INIS)

    Kim, Sang Dug; Song, Dong Joo

    2005-01-01

    The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and continuous random walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data

  17. Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature

    Science.gov (United States)

    Dunand, Pierre; Castanet, Guillaume; Gradeck, Michel; Lemoine, Fabrice; Maillet, Denis

    2013-01-01

    In aero-engines, droplet/wall interaction phenomena have a considerable influence on the mixture formation process and on wall heat fluxes. Impinging droplets may rebound, splash into secondary droplets or form a liquid film onto the solid surface. Droplet rebound and splashing is also a mechanism for the back penetration of the fuel vapor in the central region of the combustion chamber where the gas temperature is high enough for ignition. This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80-180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence Thermometry which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the liquid sensible heat. Measurements are performed at surface conditions well above the Leidenfrost temperature. A wide range of Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparison between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number.

  18. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  19. A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nikolopoulos, N.; Bergeles, G. [National Technical University of Athens (Greece). Department Mechanical Engineering; Theodorakakos, A. [Fluid Research, Co (Greece)

    2007-01-15

    A numerical investigation of the evaporation process of n-heptane and water liquid droplets impinging onto a hot substrate is presented. Three different temperatures are investigated, covering flow regimes below and above Leidenfrost temperature. The Navier-Stokes equations expressing the flow distribution of the liquid and gas phases, coupled with the Volume of Fluid Method (VOF) for tracking the liquid-gas interface, are solved numerically using the finite volume methodology. Both two-dimensional axisymmetric and fully three-dimensional domains are utilized. An evaporation model coupled with the VOF methodology predicts the vapor blanket height between the evaporating droplet and the substrate, for cases with substrate temperature above the Leidenfrost point, and the formation of vapor bubbles in the region of nucleate boiling regime. The results are compared with available experimental data indicating the outcome of the impingement and the droplet shape during the impingement process, while additional information for the droplet evaporation rate and the temperature and vapor concentration fields is provided by the computational model. (author)

  20. Spatially and temporally resolved measurements of the temperature inside droplets impinging on a hot solid surface

    Science.gov (United States)

    Chaze, William; Caballina, Ophélie; Castanet, Guillaume; Lemoine, Fabrice

    2017-08-01

    Heat transfers at the impact of a droplet on a hot solid surface are investigated experimentally. Millimeter-sized water droplets impinge a flat sapphire window heated at 600 °C. The time evolution of the droplet temperature is characterized using the two-color laser-induced fluorescence technique. For that, a Q-switched Nd:YAG laser is used for the excitation of the fluorescence to obtain instantaneous images of the droplet temperature. Water is seeded with two fluorescent dyes, one sensitive to temperature (fluorescein disodium) and the other not (sulforhodamine 640). Owing to a wavelength shift between the dyes' emissions, the fluorescence signal of the dyes can be detected separately by two cameras. The liquid temperature is determined with a good accuracy by doing the ratio of the images of the dyes' fluorescence. A critical feature of the method is that the image ratio is not disturbed by the deformation of the impacting droplet, which affects the signals of the dyes almost identically. Experiments are performed in the conditions of film boiling. A thin vapor film at the interface between the droplet and the solid surface prevents the deposition of liquid on the hot solid surface. Measurements highlight some differences in the rate of heat transfers and in the temperature distribution within the droplet between the bouncing and splashing regimes of impact.

  1. Long-term investigation of erosion behaviors on metal surfaces by impingement of liquid droplet with high-speed

    International Nuclear Information System (INIS)

    Choi, Duk Hyun; Kim, Kyung Hoon; Kim, Hyung Joon

    2015-01-01

    Understanding wall-thinning erosion of pipelines in nuclear or steam power plants is critically important for predicting and preventing human and material accidents. Wall thinning of pipelines in power plants occurs mainly by flow acceleration corrosion (FAC), cavitation erosion (C/E), and liquid droplet impingement erosion (LIE). Wall thinning by FAC and C/E has been well-investigated; however, LIE in plant industries has rarely been studied due to the experimental difficulty of setting up a long injection of highly pressurized air. We designed a long-term experimental system for LIE and investigated the behavior of LIE for three kinds of materials (A106B, SS400, A6061). The main control parameter was the air-water ratio (α), which was defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). To clearly understand LIE, the spraying velocity (v) of liquid droplets was controlled larger than 160 m/s and the experiments were performed for 15 days. The surface morphology and hardness of the materials were examined every five days. Since the spraying velocity of liquid droplets and their contact area (A c ) on specimens were changed according to the air-water ratio, we analyzed the behavior of LIE for the materials using the impulse (I), which was defined as I = (α × v) / A c . Finally, the prediction equations (the erosion rate) for the LIE of the materials were determined for the air-water ratios.

  2. Hydrodynamics and heat transfer characteristics of oil-in-water emulsion droplets impinging on hot stainless steel foil

    OpenAIRE

    Fujimoto, Hitoshi; Obana, Wataru; Ashida, Masayoshi; Hama, Takayuki; Takuda, Hirohiko

    2017-01-01

    The hydrodynamics and heat transfer characteristics of oil-in-water (O/W) emulsion droplets impinging on a hot stainless steel foil were investigated experimentally. A two-directional flash-photography technique was adopted to track the time evolution of the droplet shapes. The temperature history of the foil during the collision with the droplets was also measured using a high-speed infrared thermometer. The main objective was to investigate the effects of varying the solid temperature and o...

  3. Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, John T.; Maynes, Daniel; Webb, Brent W. [Brigham Young University, Department of Mechanical Engineering, Provo, UT (United States)

    2012-09-15

    Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93 % using droplets of water and a 50 %/50 % water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We>100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5{<=}We{<=} 15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115{<=}We{<=}265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction. (orig.)

  4. Attenuation of wall-thinning rate in deep erosion by liquid droplet impingement

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Wada, Keitaro

    2016-01-01

    Highlights: • Liquid droplet impingement erosion is studied in deep erosion. • Wall-thinning rate is attenuated with increasing erosion depth. • SEM observation shows change of macro structure in deep erosion. • Erosion model with an attenuation factor is proposed. - Abstract: This paper describes an experimental study on the wall-thinning rate in deep erosion by liquid droplet impingement (LDI) in a pipeline for application to nuclear/fossil power plant. The experiment is carried out in a spray jet apparatus, which allows the evaluation of local wall-thinning rate by the LDI erosion. The surface contour of erosion and the wall-thinning rate are measured and the observation by scanning electron microscope (SEM) is carried out in this experiment. The experimental result indicates that the wall-thinning rate is highly attenuated and the macro structure on the erosion surface grows with an increase in the erosion depth, which is due to the influence of the liquid film over the erosion surface. The erosion model for predicting the wall-thinning rate in deep erosion is proposed by introducing the attenuation factor with a function of erosion depth. The introduction of attenuation factor with liquid-film effect shows a better correlation with the experimental data, and the accuracy of correlation is improved by a factor of 2.

  5. Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes

    Science.gov (United States)

    Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.

  6. Experimental Water Droplet Impingement Data on Airfoils, Simulated Ice Shapes, an Engine Inlet and a Finite Wing

    Science.gov (United States)

    Papadakis, M.; Breer, M.; Craig, N.; Liu, X.

    1994-01-01

    An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Experimental impingement efficiency data represented for a NLF (1)-0414 airfoil, a swept MS (1)-0317 airfoil, a Boeing 737-300 engine inlet model, two simulated ice shapes and a swept NACA 0012 wingtip. Analytical impingement efficiency data are also presented for the NLF (1)-0414 airfoil and the Boeing 737-300 engine inlet model.

  7. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets.

    Science.gov (United States)

    Bain, Ryan M; Pulliam, Christopher J; Thery, Fabien; Cooks, R Graham

    2016-08-22

    Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base-catalyzed Claisen-Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2-50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Experimental Investigation on the Impingement of Water Droplets onto Superhydrophobic Surfaces Pertinent to Aircraft Icing Phenomena

    Science.gov (United States)

    Li, Haixing; Waldman, Rye; Hu, Hui

    2015-11-01

    Superhydrophobic surfaces have self-cleaning properties that make them promising candidates as anti-icing solutions for various engineering applications, including aircraft anti-/de-icing. However, under sufficient external pressure, the liquid water on the surface can transition to a wetted state, defeating the self-cleaning properties of superhydrpphobic surfaces. In the present study, an experimental investigation was conducted to quantify the transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties under different environmental icing conditions. The experiments were performed in the Icing Research Tunnel of Iowa State University (IRT-ISU) with a NACA0012 airfoil. In addition to using a high-speed imaging system to reveal transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties, an IR thermometry was also used to quantify the unsteady heat transfer and dynamic phase changing process within the water droplets after impingement onto the test plates with different frozen cold temperatures. The high-speed imaging results were correlated with the quantitatively temperature measurements to elucidate underlying physics in order to gain further insight into the underlying physics pertinent to aircraft icing phenomena. The research work is partially supported by NASA with grant number NNX12AC21A and National Science Foundation under award numbers of CBET-1064196 and CBET-1435590.

  9. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.

    Science.gov (United States)

    Chen, Jian-Nan; Zhang, Zhen; Xu, Rui-Na; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-09-13

    Numerical investigations of the dynamics and evaporative cooling of water droplets impinging onto heated surfaces can be used to identify spray cooling mechanisms. Droplet impingement dynamics and evaporation are simulated using the presented numerical model. Volume-of-fluid method is used in the model to track the free surface. The contact line dynamics was predicted from a dynamic contact angle model with the evaporation rate predicted by a kinetic theory model. A species transport equation was solved in the gas phase to describe the vapor convection and diffusion. The numerical model was validated by experimental data. The physical effects including the contact angle hysteresis and the thermocapillary effect are analyzed to offer guidance for future numerical models of droplet impingement cooling. The effects of various parameters including surface wettability, surface temperature, droplet velocity, droplet size, and droplet temperature were numerically studied from the standpoint of spray cooling. The numerical simulations offer profound analysis and deep insight into the spray cooling heat transfer mechanisms.

  10. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks

    Science.gov (United States)

    Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.

    2017-10-01

    This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.

  11. Improvement of a wall thinning rate model for liquid droplet impingement erosion. Implementation of liquid film thickness model with consideration of film behavior

    International Nuclear Information System (INIS)

    Morita, Ryo

    2014-01-01

    Liquid droplet impingement erosion (LDI) is defined as an erosion phenomenon caused by high-speed droplet attack in a steam flow. Pipe wall thinning by LDI is sometimes observed in a steam piping system of a power plant. As LDI usually occurs very locally and is difficult to detect, predicting LDI location is required for safe operation of power plant systems. Therefore, we have involved in the research program to develop prediction tools that will be used easily in actual power plants. Our previous researches developed a thinning rate evaluation model due to LDI (LDI model) and the evaluation system of the thinning rate and the thinning shape within a practically acceptable time (LDI evaluation system). Though the LDI model can include a cushioning effect of liquid film which is generated on the material surface by droplet impingement as an empirical equation with fluid parameter, the liquid film thickness is not clarified due to complex flow condition. In this study, to improve the LDI model and the LDI evaluation system, an analytical model of the liquid film thickness was proposed with consideration of the liquid film flow behavior on the material surface. The mass balance of the liquid film was considered, and the results of CFD calculations and existing researches were applied to obtain the liquid film thickness in this model. As a result of the LDI evaluation of the new LDI model with liquid film model, improvement of the LDI model was achieved. (author)

  12. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Science.gov (United States)

    Ko, Saebom; Kim, Eun Song; Park, Siman; Daigle, Hugh; Milner, Thomas E.; Huh, Chun; Bennetzen, Martin V.; Geremia, Giuliano A.

    2017-04-01

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36˜72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  13. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  14. Femoroacetabular impingement

    International Nuclear Information System (INIS)

    Kassarjian, Ara; Brisson, Melanie; Palmer, William E.

    2007-01-01

    Femoroacetabular impingement is a relatively recently appreciated 'idiopathic' cause of hip pain and degenerative change. Two types of impingement have been described. The first, cam impingement, is the result of an abnormal morphology of the proximal femur, typically at the femoral head-neck junction. Cam impingement is most common in young athletic males. The second, pincer impingement, is the result of an abnormal morphology or orientation of the acetabulum. Pincer impingement is most common in middle-aged women. This article reviews the imaging findings of cam and pincer type femoroacetabular impingement. Recognition of these entities will help in the selection of the appropriate treatment with the goal of decreasing the likelihood of early degenerative change of the hip

  15. Femoroacetabular impingement

    International Nuclear Information System (INIS)

    Anderson, Suzanne E.; Siebenrock, Klaus Arno; Tannast, Moritz

    2012-01-01

    Femoroacetabular impingement (FAI) is a pathomechanical concept describing the early and painful contact of morphological changes of the hip joint, both on the acetabular, and femoral head sides. These can lead clinically to symptoms of hip and groin pain, and a limited range of motion with labral, chondral and bony lesions. Pincer impingement generally involves the acetabular side of the joint where there is excessive coverage of the acetabulum, which may be focal or more diffuse. There is linear contact of the acetabulum with the head/neck junction. Cam impingement involves the femoral head side of the joint where the head is associated with bony excrescences and is aspheric. The aspheric femoral head jams into the acetabulum. Imaging appearances are reviewed below. This type is evident in young males in the second and third decades. The main features of FAI are described.

  16. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis

    Science.gov (United States)

    Hansman, R. J., Jr.

    1982-01-01

    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  17. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  18. Study on the behavior of moisture droplets in low pressure steam turbines

    International Nuclear Information System (INIS)

    Kimura, Y.; Kuramoto, Y.; Yoshida, K.; Etsu, M.

    1978-01-01

    Low pressure stages of fossil turbines and almost all stages of nuclear and geothermal turbines operate on wet steam. Turbine operating on wet steam have the following two disadvantages: decrease of efficiency and erosion of blades. Decrease of efficiency results from an increase in profile loss caused by water films on the blade surface; loss of steam energy in breaking up the films and accelerating moisture droplets; undercooling and condensation shocks associated with it; velocity difference between water and steam phases and consequent decelerating action of moisture droplets in the rotating blades, etc. Impingement of moisture droplets on the rotating blades also causes quick erosion of the blades. In this paper, the behavior of moisture droplets in wet steam flow is described and the correlation between their behavior and the abovementioned two disadvantages of turbines operating on wet steam is clarified. (author)

  19. Shoulder Impingement Treatment

    Science.gov (United States)

    ... Find a Pediatrician Health Issues Conditions Injuries & Emergencies Sports Injuries Vaccine Preventable Diseases Healthy Children > Health Issues > Injuries & Emergencies > Sports Injuries > Shoulder Impingement ...

  20. Impingement: an annotated bibliography

    International Nuclear Information System (INIS)

    Uziel, M.S.; Hannon, E.H.

    1979-04-01

    This bibliography of 655 annotated references on impingement of aquatic organisms at intake structures of thermal-power-plant cooling systems was compiled from the published and unpublished literature. The bibliography includes references from 1928 to 1978 on impingement monitoring programs; impingement impact assessment; applicable law; location and design of intake structures, screens, louvers, and other barriers; fish behavior and swim speed as related to impingement susceptibility; and the effects of light, sound, bubbles, currents, and temperature on fish behavior. References are arranged alphabetically by author or corporate author. Indexes are provided for author, keywords, subject category, geographic location, taxon, and title

  1. Subacromial impingement syndrome

    NARCIS (Netherlands)

    Umer, M.; Qadir, I.; Azam, M.

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a

  2. Anterior ankle impingement

    NARCIS (Netherlands)

    Tol, Johannes L.; van Dijk, C. Niek

    2006-01-01

    The anterior ankle impingement syndrome is a clinical pain syndrome that is characterized by anterior ankle pain on (hyper) dorsiflexion. The plain radiographs often are negative in patients who have anteromedial impingement. An oblique view is recommended in these patients. Arthroscopic excision of

  3. Perspectives on fish impingement

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1977-01-01

    Data on fish impingement and related parameters are being gathered at a large number of power stations throughout the country at substantial monetary and manpower costs. A national survey of fish impingement at power plants was conducted and much of the information compiled in a standardized format--an effort that we think will aid in planning improvements in the design, siting, and operation of the cooling-water intakes. This paper examines the objectives of the fish impingement studies, monitoring programs, variables affecting fish impingement, siting and design criteria, state-of-the-art of screening systems, and suggestions for meeting 316(b) requirements. It also discusses where the emphasis should be placed in future fish-impingement related activities

  4. Ischiofemoral impingement syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Tamam

    2015-06-01

    Full Text Available Ischiofemoral impingement is newly recognized extracapsular cause of atypical hip and groin pain. Ischiofemoral impingement was first defined by Johnson in 1977. It is characterized by a narrowed space between the ischial tuberosity and the lesser trochanter, associated with changes in ischiofemoral space . The diagnosis of the ischiofemoral impingement is complex. Normal radiological and ultrasound appearances may be seen in ischiofemoral impingement patients with atypical hip pain. It is important to have a focus on the symptoms , through the history taking, physi and not;cal examination, and appropriate imaging studies of the hip.In this study, we aimed to review the etiology, clinical presentation, imaging modalities, differential diagnosis and treatment options of ischiofemoral impingement. [Archives Medical Review Journal 2015; 24(2.000: 271-281

  5. Subacromial impingement syndrome

    OpenAIRE

    Umer, Masood; Qadir, Irfan; Azam, Mohsin

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matter of debate. However, the etiology is multi-factorial, and it has been attributed to both extrinsic and intrinsic mechanisms. Management includes physical therapy, injections, and, for some patient...

  6. Radiotherapy for shoulder impingement

    International Nuclear Information System (INIS)

    Adamietz, B.; Sauer, R.; Keilholz, L.

    2008-01-01

    Background and Purpose: Up to now, degenerative shoulder diseases were summarized by the term ''periarthritis humeroscapularis''. Actual shoulder diseases can be differentiated etiopathologically according to a primary and secondary impingement syndrome. Narrowing of the subacromial space, which is caused by an osseous shape variant, leads to primary impingement. Secondary impingement develops, when the subacromial space is reduced by swelling tissue below the osseous shoulder roof. This study aimed for the exact diagnosis to indicate therapy and to classify the results according to the Constant score. Patients and Methods: From August 1999 to September 2002, 102 patients with 115 shoulder joint conditions underwent radiation therapy (RT). All joints received two RT series (6 x 0.5 Gy/series) applied in two to three weekly fractions, totaling a dosage of 6.0 Gy (250 kV, 15 mAs, 1-mm Cu filter). The second RT course started 6 weeks after the end of the first. 115 shoulders were examined before RT, 6 weeks after the second RT course and, finally, during the follow-up from January to May 2003. Results: Pain relief was achieved in 94/115 shoulder joints (82%) after 18-month follow-up (median). A significant difference existed between secondary impingement and primary/non-impingement according to response. Tendinosis calcarea, bursitis subdeltoidea, tendovaginitis of the long biceps tendon, and capsulitis adhaesiva responded well to therapy. Conclusion: Shoulder diseases of secondary impingement demonstrate a good response to RT. Less or no benefit was found in primary impingement syndrome or complete rotator cuff disruption and acute shoulder injuries, respectively. (orig.)

  7. Imaging shoulder impingement

    Energy Technology Data Exchange (ETDEWEB)

    Gold, R.H. (Dept. of Radiological Sciences, UCLA School of Medicine, Los Angeles, CA (United States)); Seeger, L.L. (Dept. of Radiological Sciences, UCLA School of Medicine, Los Angeles, CA (United States)); Yao, L. (Dept. of Radiological Sciences, UCLA School of Medicine, Los Angeles, CA (United States))

    1993-11-01

    Appropriate imaging and clinical examinations may lead to early diagnosis and treatment of the shoulder impingement syndrome, thus preventing progression to a complete tear of the rotator cuff. In this article, we discuss the anatomic and pathophysiologic bases of the syndrome, and the rationale for certain imaging tests to evaluate it. Special radiographic projections to show the supraspinatus outlet and inferior surface of the anterior third of the acromion, combined with magnetic resonance images, usually provide the most useful information regarding the causes of impingement. (orig.)

  8. Subacromial impingement syndrome

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2012-05-01

    Full Text Available Subacromial impingement syndrome (SAIS represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matter of debate. However the etiology is multi-factorial, and has been attributed to both extrinsic and intrinsic mechanisms. Management includes physical therapy, injections, and, for some patients, surgery. No high-quality RCTs are available so far to provide possible evidence for differences in outcome of different treatment strategies. There remains a need for high-quality clinical research on the diagnosis and treatment of SAIS.

  9. Acute ischiofemoral impingement?

    Science.gov (United States)

    García, X G; Turmo, A; Cos, M A; Puigdellívol, J; Til, Ll

    2018-03-31

    We report a case of rare clinical entity, which comes within the spectrum of hip impingements. The case deals with a 36 year old female, Olympic athlete, who developed ischiofemoral impingement 14 months after a surgical hamstring reattachment. She was treated conservatively and fully recovered. When looking into literature on this matter, we found that it is probably an under-diagnosed problem, particularly in patients with no history of prior surgery. To our knowledge, this is the first case reported after a hamstrings tendon reattachment. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Subacromial impingement syndrome.

    Science.gov (United States)

    Umer, Masood; Qadir, Irfan; Azam, Mohsin

    2012-05-09

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matter of debate. However, the etiology is multi-factorial, and it has been attributed to both extrinsic and intrinsic mechanisms. Management includes physical therapy, injections, and, for some patients, surgery. No high-quality randomized controlled trials are available so far to provide possible evidence for differences in outcome of different treatment strategies. There remains a need for high-quality clinical research on the diagnosis and treatment of SAIS.

  11. Imaging shoulder impingement

    International Nuclear Information System (INIS)

    Gold, R.H.; Seeger, L.L.; Yao, L.

    1993-01-01

    Appropriate imaging and clinical examinations may lead to early diagnosis and treatment of the shoulder impingement syndrome, thus preventing progression to a complete tear of the rotator cuff. In this article, we discuss the anatomic and pathophysiologic bases of the syndrome, and the rationale for certain imaging tests to evaluate it. Special radiographic projections to show the supraspinatus outlet and inferior surface of the anterior third of the acromion, combined with magnetic resonance images, usually provide the most useful information regarding the causes of impingement. (orig.)

  12. Anterosuperior Glenoid Impingement Syndrome

    Directory of Open Access Journals (Sweden)

    Shelley S. Bath

    2012-01-01

    Full Text Available Anterosuperior glenoid impingement is a well documented cause of shoulder pain. It occurs when there is deep tearing of the subscapularis, with fibers becoming embedded between the anterosuperior glenoid and humeral head. To our knowledge, this has not been described in radiologic literature and we present MRI findings depicting this entity

  13. Femoroacetabular impingement surgery

    DEFF Research Database (Denmark)

    Reiman, Michael P; Thorborg, Kristian

    2015-01-01

    both the examination and treatment of FAI does not appear to accommodate this exponential growth. In fact, the direction currently taken for FAI is similar to previously described paths of other orthopaedic and sports medicine pathologies (eg, shoulder impingement, knee meniscus tear) for which we have...

  14. Ankle impingement syndromes; Impingement-Syndrome am Sprunggelenk

    Energy Technology Data Exchange (ETDEWEB)

    Eiber, Matthias; Woertler, Klaus [Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Roentgendiagnostik

    2010-06-15

    Soft-tissue and osseous impingement syndromes can be an important cause of chronic ankle pain, particularly in the professional athlete. The classification of ankle impingement syndromes is based to their anatomical location around the tibiotalar joint. The most important impingement syndromes are anterolateral, anterior and posterior impingement with more recent studies describing posteromedial and anteromedial impingement. Usually conventional radiography is the first imaging technique to be performed as it allows assessment of potential bone abnormalities, particularly in anterior and posterior joint compartments. Computed tomography (CT) only plays a role in the assessment of the posterior impingement. Magnetic resonance (MR) imaging is regarded as the modality of choice as it is able to demonstrate both osseous and soft tissue changes, such as bone marrow edema, capsular and ligametous thickening, and localized synovitis. (orig.)

  15. Windswept droplets

    Science.gov (United States)

    Bico, Jose

    2005-11-01

    A small droplet impacting a glass window usually remains stuck on the pane. How can we expel it? One possible solution consists in coating the glass surface with a hydrophobic layer. Another solution is to blow it off. We explore this last solution (partly combined with the first one). The droplet starts moving when the wind exceeds a threshold velocity, depending essentially on the surface wettability and the drop size. Above this threshold, the drift speed of the droplet results from a balance between aerodynamic drag and viscous dissipation near the contact lines. The results for different experimental conditions collapse on a master curve, once the wind speed is rescaled as a Weber number and the droplet velocity as a capillary number. While small droplets remain almost spherical caps, larger ones are strongly deformed and take the shape of a sausage, perpendicular to the wind direction. We finally determine the conditions in which satellite droplets are left at the rear of the moving drop, an issue crucial for blow drying processes.

  16. Studies of hip impingement diagnosis

    OpenAIRE

    Yazdi Far, Mahshid

    2014-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Hip impingement is a hip associated abnormality which develops among young and middle-aged individuals. It reduces the activity of those affected and if it is not detected at early stage, it can result in osteoarthritis. In this thesis a reliable framework for studying impingement detection is developed. Current clinical methods in detecting hip impingement involve measuring three angles, fir...

  17. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  18. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  19. Contemporary impingements on mothering.

    Science.gov (United States)

    Tummala-Narra, Pratyusha

    2009-03-01

    Mothering in contemporary Western society needs to be understood in the context of a rapidly changing social context. Increased geographic mobility, improved access to child-related information through the media, and scientific and technological progress have contributed to significant shifts in cultural views on mothering. Several contextual impingements on mothering, including changing family structure, economic pressures, decreased social support, cultural ideals of the perfect mother, and increased awareness of interpersonal and global trauma impact mothers' internal worlds. These societal changes often reinforce mothers' fear of losing their children and an idealization of intensive mothering, and evoke challenges in reorganizing their sense of personal identity. Implications for psychoanalytic theory and practice, and specifically the need to integrate individual and contextual forces related to experiences of mothers will be explored.

  20. Fingering patterns during droplet impact on heated surfaces

    NARCIS (Netherlands)

    Khavari, M.; Sun, Chao; Lohse, Detlef; Tran, Tuan

    2015-01-01

    A droplet impinging on a sufficiently heated surfacemay be cushioned by its own vapor and never touch the surface. In previous work, the transition to this so-called Leidenfrost regime was only qualitatively described as an abrupt change between the “contact-boiling” regime, which is characterized

  1. Numerical simulations of an impinging liquid spray in a cross-flow

    Science.gov (United States)

    Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.

    2017-11-01

    The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.

  2. Impingement syndrome of the shoulder

    International Nuclear Information System (INIS)

    Mayerhoefer, M.E.; Breitenseher, M.J.

    2004-01-01

    The impingement syndrome is a clinical entity characterized by shoulder pain due to primary or secondary mechanical irritation of the rotator cuff. The primary factors for the development of impingement are a curved or hook-shaped anterior acromion as well as subacromial osteophytes, which may lead to tearing of the supraspinatus tendon. Secondary impingement is mainly caused by calcific tendinopathy, glenohumeral instability, os acromiale and degenerative changes of the acromioclavicular joint. Conventional radiographs are initially obtained, mainly for evaluation of the bony structures of the shoulder. If available, sonography can be used for detection of lesions and tears of the rotator cuff. Finally, MR-imaging provides detailed information about the relationship of the acromion and the acromioclavicular joint to the rotator cuff itself. In many cases however, no morphologic cause for impingement syndrome can be found. While patients are initially treated conservatively, chronic disease usually requires surgical intervention. (orig.) [de

  3. [Impingement syndromes of the shoulder].

    Science.gov (United States)

    Beirer, M; Imhoff, A B; Braun, S

    2017-04-01

    In addition to tears of the rotator cuff, isolated impingement syndrome of the shoulder is the most common diagnosis in shoulder disorders. This is of high relevance in orthopedic sports medicine. In fact, impingement of the shoulder is not the diagnosis but rather a symptom of a functional or even a structural pathology. Detailed knowledge about the different types of impingement and the underlying causes is essential to provide adequate treatment. Primarily, impingement of the shoulder should be treated nonoperatively. However, if there is no clinical improve despite adequate conservative treatment, there is usually a structural pathology which cannot be adequately compensated for and surgical treatment may be necessary. In the case of severe structural pathologies, such as a full-thickness tear of the rotator cuff, a subsequent surgical treatment may be indicated.

  4. Computational Study of Droplet Trains Impacting a Smooth Solid Surface

    Science.gov (United States)

    Markt, David, Jr.; Pathak, Ashish; Raessi, Mehdi; Lee, Seong-Young; Zhao, Emma

    2017-11-01

    The study of droplet impingement is vital to understanding the fluid dynamics of fuel injection in modern internal combustion engines. One widely accepted model was proposed by Yarin and Weiss (JFM, 1995), developed from experiments of single trains of ethanol droplets impacting a substrate. The model predicts the onset of splashing and the mass ejected upon splashing. In this study, using an in-house 3D multiphase flow solver, the experiments of Yarin and Weiss were computationally simulated. The experimentally observed splashing threshold was captured by the simulations, thus validating the solver's ability to accurately simulate the splashing dynamics. Then, we performed simulations of cases with multiple droplet trains, which have high relevance to dense fuel sprays, where droplets impact within the spreading diameters of their neighboring droplets, leading to changes in splashing dynamics due to interactions of spreading films. For both single and multi-train simulations the amount of splashed mass was calculated as a function of time, allowing a quantitative comparison between the two cases. Furthermore, using a passive scalar the amount of splashed mass per impinging droplet was also calculated. This work is supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center (TARDEC), under Award Number DE-EE0007292.

  5. MRI of impingement syndromes of the shoulder

    International Nuclear Information System (INIS)

    Mulyadi, E.; Harish, S.; O'Neill, J.; Rebello, R.

    2009-01-01

    The diagnosis of shoulder impingement is primarily a clinical one. Imaging has a role in assisting clinicians in developing a treatment strategy by identifying and characterizing the cause of shoulder impingement. In this review, the relevant anatomy, cause/pathomechanics, clinical features, and magnetic resonance imaging (MRI) findings of the different types of impingement syndromes are presented

  6. Diagnosis of shoulder impingement syndrome

    International Nuclear Information System (INIS)

    Hodler, J.

    1996-01-01

    This article reviews the pathogenesis and clinical and imaging findings in shoulder impingement syndrome. Different stages of impingement syndrome are described. Stage I relates to edema and hemorrhage of the supraspinatus tendon. Stage II is characterized by bursal inflammation and fibrosis, as well as tendinopathy. In stage III there is a tear of the rotator cuff. Clinical signs many overlap. Moreover, calcifying tendinitis, fractures and pain originating from the cervical spine may mimic shoulder impingement syndrome. Imaging is important for the exact diagnosis. Standard radiographs are the basis of imaging in shoulder impingement syndrome. They may demonstrate subchondral sclerosis of the major tuberosity, subacromial spurs, and form anomalies of the acromion. They are also important in the differential diagnosis of shoulder impingement syndrome and demonstrate calcifying tendinitis, fractures and neoplasm. Ultrasonography has found acceptance as a screening tool and even as a final diagnostic method by many authors. However, there is a high interobserver variability in the demonstration of rotator cuff tears. Its usefulness has therefore been questioned. MR imaging is probably the method of choice in the evaluation of the rotator cuff and surrounding structures. Several investigations have demonstrated that differentiation of early findings, such as tendinopathy versus partial tears, may be difficult with MR imaging. However, reproducibility for fullthickness tears appears to be higher than for sonography. Moreover, specificity appears to be superior to sonography. MR arthrography is not universally accepted. However, it allows for more exact differentiation of discrete findings and may be indicated in preoperative planning. Standard arthrography and CT have a limited role in the current assessment of the rotator cuff. (orig.) [de

  7. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms...... a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  8. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  9. [Arthroscopic treatment of psoas impingement].

    Science.gov (United States)

    Möckel, G; Miehlke, W

    2018-03-14

    Tenotomy of the psoas tendon in symptomatic internal coxa saltans or psoas impingement should relieve pain. Indicated in conservative treatment-resistant internal coxa saltans and in psoas impingement. Contraindications are symptomatic psoas pathologies in hip dysplasia patients. Three different procedures exist with the arthroscopic technique, in which the psoas tenotomy can be performed at one of three different levels. These are the arthroscopic transcapsular, the endoscopic extra-articular, and the arthroscopic central techniques. Forearm crutches are recommended for approximately 2-4 weeks as well as physiotherapy to strengthen the hip flexors. A literature-based comparison could reveal no difference between the extra-articular and transcapsular techniques. Particularly in the long term was no loss of strength evident. Various different authors describe the techniques as good, finding neither complications nor recurrence of internal snapping hip.

  10. [Athletic pubalgia and hip impingement].

    Science.gov (United States)

    Berthaudin, A; Schindler, M; Ziltener, J-L; Menetrey, J

    2014-07-16

    Athletic pubalgia is a painful and complex syndrom encountered by athletes involved in pivoting and cutting sports such as hockey and soccer. To date, there is no real consensus on the criteria for a reliable diagnostic, the different investigations, and the appropriate therapy. Current literature underlines intrinsic and extrinsic factors contributing to athletic pubalgia. This review article reports upon two novelties related to the issue: the importance and efficience of prevention program and the association of femoro-acetabular impingement with the pubalgia.

  11. Droplets bouncing on a standing wave field

    Science.gov (United States)

    Pucci, Giuseppe; Tambasco, Lucas; Harris, Daniel; Bush, John

    2017-11-01

    A liquid bath subject to a vertical vibration becomes unstable to standing surface waves at a critical vibrational acceleration known as the Faraday threshold. We examine the behavior of a millimetric droplet bouncing on the surface of a quasi-one-dimensional fluid channel above the Faraday threshold. We identify a sequence of bifurcations that occurs as the vibrational acceleration is increased progressively, ultimately leading to the erratic, diffusive motion of the droplet along the length of the channel. A simple theoretical model is presented. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  12. Experimental investigation on effects of liquid subcooling on droplet collision heat transfer above Leidenfrost temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junseok; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    In this study, the droplet-wall collision heat transfer experiments above the Leidenfrost point temperature were conducted to experimentally investigate the effects of droplet subcooling. Dynamic behavior of a droplet impinging on the heated wall and the temperature distribution were simultaneously measured using synchronized HSV camera (Phantom v7.3) and infrared camera (FLIR SC6000, 3-5 μm). Heat transfer experiments during collision of a subcooled droplet with a heated surface above the Leidenfrost temperature were conducted by varying temperature of droplet from 40 to 100 °C under the conditions that the collision velocity and wall temperature were maintained constant at 0.7 m/s at 500 °C, respectively. When increasing subcooling of a liquid droplet colliding on a surface heated above Leidenfrost temperature, vapor film thickness decreases while residence time increases. Those effects significantly increase heat transfer amount beyond values predicted by existing correlations.

  13. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  14. Free-Running Droplets

    Science.gov (United States)

    Dos Santos, Fabrice Domingues; Ondarçuhu, Thierry

    1995-10-01

    We present a detailed study of an original spreading behavior observed with nonvolatile droplets containing surface-active agents: The droplet moves spontaneously on the surface with velocities on the order of a few centimeters per second. For small droplets, this self-supported motion may be interpreted in terms of capillary models, which gives precise information about the reaction mechanism that occurs at the surface. For large droplets, gravity intervenes and we observed an important change in the profile of the droplets and different spreading regimes.

  15. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  16. Impingement Syndrome of the Shoulder.

    Science.gov (United States)

    Garving, Christina; Jakob, Sascha; Bauer, Isabel; Nadjar, Rudolph; Brunner, Ulrich H

    2017-11-10

    Shoulder pain is the third most common musculoskeletal complaint in orthopedic practice. It is usually due to a defect of the rotator cuff and/or an impingement syndrome. This review is based on pertinent literature retrieved by a selective search of the Medline database. Patients with shoulder impingement syndrome suffer from painful entrapment of soft tissue whenever they elevate the arm. The pathological mechanism is a structural narrowing in the subacromial space. A multiplicity of potential etiologies makes the diagnosis more difficult; it is established by the history and physical examination and can be confirmed with x-ray, ultra - sonography, and magnetic resonance imaging. The initial treatment is conservative, e.g., with nonsteroidal antiinflammatory drugs, infiltrations, and patient exercises. Conservative treatment yields satisfactory results within 2 years in 60% of cases. If symptoms persist, decompressive surgery is performed as long as the continuity of the rotator cuff is preserved and there is a pathological abnormality of the bursa. The correct etiologic diagnosis and choice of treatment are essential for a good outcome. The formal evidence level regarding the best treatment strategy is low, and it has not yet been determined whether surgical or conservative treatment is better. Randomized controlled therapeutic trials are needed so that a standardized treatment regimen can be established.

  17. Multimodality imaging of subacromial impingement syndrome.

    Science.gov (United States)

    Pesquer, Lionel; Borghol, Sophie; Meyer, Philippe; Ropars, Mickael; Dallaudière, Benjamin; Abadie, Pierre

    2018-02-14

    Subacromial impingement syndrome results from irritation of the tendons of the rotator cuff muscles in the subacromial space and may manifest as a range of pathologies. However, subacromial impingement is a dynamic condition for which imaging reveals predisposing factors but no pathognomonic indicators. Also, the usual imaging features of subacromial impingement may be seen in symptomatic and asymptomatic patients. Therefore, imaging is able to detect tears and describe the risk factors of impingement but cannot confirm subacromial impingement. Radiographs allow assessment of the morphology of the acromion and its lateral extension by means of the acromial index and the critical shoulder angle, which may increase in cases of subacromial impingement. Ultrasound is necessary to evaluate a tendon tear and is the only tool that provides dynamic information, which is essential to assessing dynamic conditions. Magnetic resonance imaging (MRI) allows the assessment of associated intraarticular abnormalities, joint effusion, and bone marrow edema. The objective of this article is to provide an overview of the pathophysiology and clinical manifestations of subacromial impingement and discuss recent advances in the imaging of subacromial impingement and the role of radiography, ultrasound, and MRI in differentiating normal from pathologic findings.

  18. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  19. The effect of surface temperature on dynamics of water droplet in minichannel with gas flow

    Science.gov (United States)

    Isachenko, Ekaterina; Orlik, Evgeniy

    2017-10-01

    The experiments have been carried out to study dynamics of liquid droplets, blown by the gas flow in a mini-channel. The mean velocity at which the droplet motion over the substrate starts was determined depending on the surface temperature at different droplet volumes. The shadow method was the main method of measurement. The advancing and receding contact angles were measured depending on the gas flow rate. The friction force was determined using the advancing and receding contact angles and droplet size. A motion of a droplet was also observed from the top. The local velocity and acceleration of droplet were calculated.

  20. Clinical or radiological diagnosis of impingement

    International Nuclear Information System (INIS)

    Kloth, J.K.; Weber, M.A.; Zeifang, F.

    2015-01-01

    Shoulder impingement syndrome is a clinically common entity involving trapping of tendons or bursa with typical clinical findings. Important radiological procedures are ultrasound, magnetic resonance imaging (MRI) and MR arthrography. Projection radiography and computed tomography (CT) are ideal to identify bony changes and CT arthrography also serves as an alternative method in cases of contraindications for MRI. These modalities support the clinically suspected diagnosis of impingement syndrome and may identify its cause in primary diagnosis. In addition, effects of impingement are determined by imaging. Therapy decisions are based on a synopsis of radiological and clinical findings. The sensitivity and specificity of these imaging modalities with regard to the diagnostics of a clinically evident impingement syndrome are given in this review article. Orthopedic and trauma surgeons express the suspicion of an impingement syndrome based on patient history and physical examination and radiologists confirm structural changes and damage of intra-articular structures using dedicated imaging techniques. (orig.) [de

  1. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  2. Turbulence and cloud droplets in cumulus clouds

    Science.gov (United States)

    Saito, Izumi; Gotoh, Toshiyuki

    2018-02-01

    In this paper, we report on the successful and seamless simulation of turbulence and the evolution of cloud droplets to raindrops over 10 minutes from microscopic viewpoints by using direct numerical simulation. Included processes are condensation-evaporation, collision-coalescence of droplets with hydrodynamic interaction, Reynolds number dependent drag, and turbulent flow within a parcel that is ascending within a self-consistently determined updraft inside a cumulus cloud. We found that the altitude and the updraft velocity of the parcel, the mean supersaturation, and the liquid water content are insensitive to the turbulence intensity, and that when the turbulence intensity increases, the droplet number density swiftly decreases while the spectral width of droplets rapidly increases. This study marks the first time the evolution of the mass density distribution function has been successfully calculated from microscopic computations. The turbulence accelerated to form a second peak in the mass density distribution function, leading to the raindrop formation, and the radius of the largest drop was over 300 μm at the end of the simulation. We also found that cloud droplets modify the turbulence in a way that is unlike the Kolmogorov-Obukhov-Corrsin theory. For example, the temperature and water vapor spectra at low wavenumbers become shallower than {k}-5/3 in the inertial-convective range, and decrease slower than exponentially in the diffusive range. This spectra modification is explained by nonlinear interactions between turbulent mixing and the evaporation-condensation process associated with large numbers of droplets.

  3. A quasi-stationary numerical model of atomized metal droplets, I: Model formulation

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini H; Thorborg, Jesper

    1999-01-01

    A mathematical model for accelerating powder particles by a gas and for their thermal behavior during flight has been developed. Usually, dealing with the solidification of metal droplets, the interaction between an array of droplets and the surrounding gas is not integrated into the modeling of ......, the model predicts the effect of process parameters on the size distribution, temperature, velocity histories, fraction-solid and cooling rate for all droplet sizes characterizing the complete droplet size distribution....

  4. Droplet ejection and sliding on a flapping film

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-03-01

    Full Text Available Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz. Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films, compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2 were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input.

  5. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  6. Superpropulsion of Droplets and Soft Elastic Solids

    Science.gov (United States)

    Raufaste, Christophe; Chagas, Gabriela Ramos; Darmanin, Thierry; Claudet, Cyrille; Guittard, Frédéric; Celestini, Franck

    2017-09-01

    We investigate the behavior of droplets and soft elastic objects propelled with a catapult. Experiments show that the ejection velocity depends on both the projectile deformation and the catapult acceleration dynamics. With a subtle matching given by a peculiar value of the projectile/catapult frequency ratio, a 250% kinetic energy gain is obtained as compared to the propulsion of a rigid projectile with the same engine. This superpropulsion has strong potentialities: actuation of droplets, sorting of objects according to their elastic properties, and energy saving for propulsion engines.

  7. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    Science.gov (United States)

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  8. Flow characteristics in free impinging jet reactor by particle image velocimetry (PIV) investigation

    Science.gov (United States)

    Zhang, Jun; Liu, Youzhi; Qi, Guisheng; Jiao, Weizhou; Yuan, Zhiguo

    2016-08-01

    The flow characteristics in free impinging jet reactors (FIJRs) were investigated using particle image velocimetry (PIV). The effects of the Reynolds number (Re) and the ratio of jet distance to jet diameter (w/d) on flow behavior were discussed for equal volumetric flow rates of the two jets. The impingement plane, instantaneous velocity, mean velocity, and turbulent kinetic energy (TKE) distribution of FIJRs are measured from captured images using the PIV technique. As Re increases, the average diameter of the impingement plane linearly increases. The instability of the liquid is closely related to the jet velocity or the Re. However, the stagnation point is insensitive to the variation of the Re. The droplets break up from the turbulent liquid in the ‘wall-free’ environment of FIJRs, so that the liquid back-flow found in confined impinging jet reactors (CIJRs) is not observed. Increasing the Re from 1800-4100 or decreasing the w/d from 20-6 plays a similar role in increasing the TKE values and intensifying turbulence, which promotes the momentum transfer and mixing efficiency in FIJRs.

  9. Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method

    Science.gov (United States)

    Sakugawa, H.; Kaplan, I. R.

    1987-01-01

    Collection of atmospheric H2O2 was performed by a cold trap method using dry ice-acetone as the refrigerant. The air was drawn by a pump into a glass gas trap immersed in the dry ice-acetone slush in a dewar flask at a flow rate of 2.5 l min-1 for approximately 2 h. Collection efficiency was > 99% and negligible interferences by O3, SO2 or organic matter with the collected H2O2 in the trap were observed. This method was compared with the air impinger bubbling method which has been previously described (Kok et al., 1978a, b, Envir. Sci. Technol. 12, 1072-1080). The measured total peroxide (H2O2 + organic peroxide) values in a series of aim samples collected by the impinger bubbling method (0.06-3.7 ppb) were always higher than those obtained by the cold trap method (0.02-1.2 ppb). Laboratory experiments suggest that the difference in values between the two methods probably results from the aqueous phase generation of H2O2 and organic peroxide in the impinger solution by a reaction of atmospheric O3 with olefinic and aromatic compounds. If these O3-organic compound reactions which occur in the impinger also occur in aqueous droplets in the atmosphere, the process could be very important for aqueous phase generation of H2O2 in clouds and rainwater.

  10. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development ...

  11. Internal Impingement of the Shoulder: A Risk of False Positive Test Outcomes in External Impingement Tests?

    Directory of Open Access Journals (Sweden)

    Tim Leschinger

    2017-01-01

    Full Text Available Background. External impingement tests are considered as being particularly reliable for identifying subacromial and coracoid shoulder impingement mechanisms. The purpose of the present study was to evaluate if these tests are likely to provoke an internal shoulder impingement mechanism which, in cases of a pathologic condition, can lead to a positive test result. Method. In 37 subjects, the mechanical contact between the glenoid rim and the rotator cuff (RC was measured quantitatively and qualitatively in external impingement test positions using an open MRI system. Results. Mechanical contact of the supraspinatus with the posterosuperior glenoid was present in 30 subjects in the Neer test. In the Hawkins test, the subscapularis was in contact with the anterosuperior glenoid in 33 subjects and the supraspinatus in 18. In the horizontal impingement test, anterosuperior contact of the supraspinatus with the glenoid was identified in 35 subjects. Conclusion. The Neer, Hawkins, and horizontal impingement tests are likely to provoke the mechanism of an internal shoulder impingement. A posterosuperior internal impingement mechanism is being provoked predominately in the Neer test. The Hawkins test narrows the distance between the insertions of the subscapularis and supraspinatus and the anterosuperior labrum, which leads to an anterosuperior impingement mechanism.

  12. Posterior ankle impingement in the dancer.

    Science.gov (United States)

    Moser, Brad R

    2011-01-01

    Dancers spend a lot of time in the relevé position in demi-pointe and en pointe in their training and their careers. Pain from both osseous and soft tissue causes may start to occur in the posterior aspect of their ankle. This article reviews the potential causes of posterior ankle impingement in dancers. It will discuss the clinical evaluation of a dancer and the appropriate workup and radiographic studies needed to further evaluate a dancer with suspected posterior ankle impingement.

  13. Study of airborne particles generated by the impact of droplets

    International Nuclear Information System (INIS)

    Motzkus, Ch.

    2007-12-01

    A liquid droplet impinging onto surfaces occurs in many industrial and natural processes. The study of this phenomenon is fundamental in order to determine the potential sources of contamination in the case of scenarios of liquid falls such as dripping. There are very few data in the literature in the case of the impact of millimeter-size droplets. The purpose of our work is to study experimentally the particle emission during the impact of droplets onto a liquid film. Experiments were conducted to study the influence of the velocity and the diameter of the droplets, the height of the liquid film, the surface tension and viscosity of the liquid on the airborne particles. Our results, original, have made it possible to examine the relevance of existing relations, describing the transition between deposition and splash regimes, in order to determine the presence or not of airborne particles. The micro droplets produced, with diameters less than fifty micrometers, are characterised in terms of total mass and size distribution. Our results also show the influence of a combination of several factors on the production of airborne particles. For this reason, it is interesting to use dimensionless numbers, to describe the relationship between the inertial, viscosity and surface tension forces, in order to understand physically the emission of airborne particles. (author)

  14. Effect of viscosity on droplet-droplet collisional interaction

    NARCIS (Netherlands)

    Finotello, Giulia; Padding, J.T.; Deen, Niels G.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J.A.M.

    2017-01-01

    A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magnitude, which

  15. Reactive Leidenfrost droplets

    Science.gov (United States)

    Raufaste, C.; Bouret, Y.; Celestini, F.

    2016-05-01

    We experimentally investigate the reactivity of Leidenfrost droplets with their supporting substrates. Several organic liquids are put into contact with a copper substrate heated above their Leidenfrost temperature. As the liquid evaporates, the gaseous flow cleans the superficial copper oxide formed at the substrate surface and the reaction maintains a native copper spot below the evaporating droplet. The copper spot can reach several times the droplet size for the most reactive organic compounds. This study shows an interesting coupling between the physics of the Leidenfrost effect and the mechanics of reactive flows. Different applications are proposed such as drop motion tracking and vapor flow monitoring.

  16. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  17. Pelvic morphology in ischiofemoral impingement

    Energy Technology Data Exchange (ETDEWEB)

    Bredella, Miriam A.; Azevedo, Debora C.; Oliveira, Adriana L.; Simeone, Frank J.; Chang, Connie Y.; Torriani, Martin [Massachusetts General Hospital, Department of Radiology, Musculoskeletal Imaging and Intervention, Boston, MA (United States); Stubbs, Allston J. [Wake Forest University School of Medicine, Department of Orthopedic Surgery, Division of Sports Medicine, Winston-Salem, NC (United States)

    2014-11-06

    To assess MRI measures to quantify pelvic morphology that may predispose to ischiofemoral impingement (IFI). We hypothesized that patients with IFI have a wider interischial distance and an increased femoral neck angle compared with normal controls. The study was IRB-approved and complied with HIPAA guidelines. IFI was diagnosed based on clinical findings (hip or buttock pain) and ipsilateral edema of the quadratus femoris muscle on MRI. Control subjects did not report isolated hip/buttock pain and underwent MRI for surveillance of neoplasms or to exclude pelvic fractures. Two MSK radiologists measured the ischiofemoral (IF) and quadratus femoris (QF) distance, the ischial angle as a measure of inter-ischial distance, and the femoral neck angle. The quadratus femoris muscle was evaluated for edema. Groups were compared using ANOVA. Multivariate standard least-squares regression modeling was used to control for age and gender. The study group comprised 84 patients with IFI (53 ± 16 years, 73 female, 11 male) and 51 controls (52 ± 16 years, 33 female, 18 male). Thirteen out of 84 patients (15 %) had bilateral IFI. Patients with IFI had decreased IF and QF distance (p < 0.0001), increased ischial angle (p = 0.004), and increased femoral neck angle (p = 0.02) compared with controls, independent of age and gender. Patients with IFI have increased ischial and femoral neck angles compared with controls. These anatomical variations in pelvic morphology may predispose to IFI. MRI is a useful method of not only assessing the osseous and soft-tissue abnormalities associated with IFI, but also of quantifying anatomical variations in pelvic morphology that can predispose to IFI. (orig.)

  18. Pelvic morphology in ischiofemoral impingement

    International Nuclear Information System (INIS)

    Bredella, Miriam A.; Azevedo, Debora C.; Oliveira, Adriana L.; Simeone, Frank J.; Chang, Connie Y.; Torriani, Martin; Stubbs, Allston J.

    2015-01-01

    To assess MRI measures to quantify pelvic morphology that may predispose to ischiofemoral impingement (IFI). We hypothesized that patients with IFI have a wider interischial distance and an increased femoral neck angle compared with normal controls. The study was IRB-approved and complied with HIPAA guidelines. IFI was diagnosed based on clinical findings (hip or buttock pain) and ipsilateral edema of the quadratus femoris muscle on MRI. Control subjects did not report isolated hip/buttock pain and underwent MRI for surveillance of neoplasms or to exclude pelvic fractures. Two MSK radiologists measured the ischiofemoral (IF) and quadratus femoris (QF) distance, the ischial angle as a measure of inter-ischial distance, and the femoral neck angle. The quadratus femoris muscle was evaluated for edema. Groups were compared using ANOVA. Multivariate standard least-squares regression modeling was used to control for age and gender. The study group comprised 84 patients with IFI (53 ± 16 years, 73 female, 11 male) and 51 controls (52 ± 16 years, 33 female, 18 male). Thirteen out of 84 patients (15 %) had bilateral IFI. Patients with IFI had decreased IF and QF distance (p < 0.0001), increased ischial angle (p = 0.004), and increased femoral neck angle (p = 0.02) compared with controls, independent of age and gender. Patients with IFI have increased ischial and femoral neck angles compared with controls. These anatomical variations in pelvic morphology may predispose to IFI. MRI is a useful method of not only assessing the osseous and soft-tissue abnormalities associated with IFI, but also of quantifying anatomical variations in pelvic morphology that can predispose to IFI. (orig.)

  19. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    Science.gov (United States)

    Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  20. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    International Nuclear Information System (INIS)

    Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko

    2008-01-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  1. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  2. OCS in He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Grebenev, V.

    2000-06-01

    Phenomenon of superfluidity of para-hydrogen (pH{sub 2}){sub 1-17} and helium {sup 4}He{sub 1-7000} systems doped with an OCS chromophore molecule was investigated in this work. The study of such systems became possible after the development of the depletion spectroscopy technique in helium droplets. The droplets can be easily created and doped with up to 100 particles such as OCS, para-hydrogen or ortho-hydrogen molecules and {sup 4}He atoms. The measured infrared depletion spectra give the information about the temperature of the droplets and their aggregate state. The depletion spectrum of OCS in pure {sup 4}He droplets was comprehensively studied. The rovibrational OCS spectrum shows well resolved narrow lines. The spectrum is shifted to the red relative to the corresponding gas phase spectrum and the rotational constant of OCS in {sup 4}He droplet is three times smaller than that for free molecule. Different models of OCS rotation in the helium environment were discussed. It was shown that the shapes of the rovibrational lines are defined mainly by inhomogeneous broadening due to the droplet size distribution. The sub-rotational structure of the OCS rovibrational lines was revealed in microwave-infrared double resonance experiments. This structure arises due to the interaction of the OCS with the He environment. However, the information obtained in the experiments was not enough to understand the nature of this interaction. (orig.)

  3. Effect of isokinetic training on shoulder impingement.

    Science.gov (United States)

    Wang, T L; Fu, B M; Ngai, G; Yung, P

    2014-01-31

    The aim of this study was to review the literature evaluating the effect of isokinetic training in patients suffering from shoulder impingement syndrome (SIS). Studies published up to March 2011 were located from the Pubmed, Scopus, Lilacs, Physiotherapy Evidence Database, and Cochrane Library databases using "isokinetic", "shoulder", and "impingement" as key words. Referenced studies were also checked. Studies were included if isokinetic training was employed as at least one of the treatments in the therapeutic program to treat shoulder impingement or other shoulder pathologies leading to impingement-related pain. All eligible studies described the level of evidence, patient characteristics, interventions, outcome evaluation, results, complications, and return to work. There were 2 randomized control trials (RCTs) and 4 studies with level 4 evidence that met the inclusion criteria. All of the studies included showed a statistically or clinically significant outcome after isokinetic training. However, most of the studies could not identify the isolated effect of isokinetic training. There was not enough evidence to support or refute the effectiveness of isokinetic training for SIS. This result does not reflect a true lack of effect, but rather a lack of RCTs. A consensus definition of the different types and stages of SIS is urgently needed. More RCTs are also essential to clarify the value of this technique. The homogeneity of treatment interventions, study populations, and outcome measures should be prioritized. Further studies are also needed to clarify the differences in isokinetic data across different types and stages of shoulder impingement.

  4. Imaging findings of femoroacetabular impingement syndrome

    International Nuclear Information System (INIS)

    Beall, Douglas P.; Sweet, Clifford F.; Martin, Hal D.; Lastine, Craig L.; Grayson, David E.; Ly, Justin Q.; Fish, Jon R.

    2005-01-01

    Femoroacetabular impingement syndrome (FAI) is a pathologic entity which can lead to chronic symptoms of pain, reduced range of motion in flexion and internal rotation, and has been shown to correlate with degenerative arthritis of the hip. History, physical examination, and supportive radiographic findings such as evidence of articular cartilage damage, acetabular labral tearing, and early-onset degenerative changes can help physicians diagnose this entity. Several pathologic changes of the femur and acetabulum are known to predispose patients to develop FAI and recognition of these findings can ultimately lead to therapeutic interventions. The two basic mechanisms of impingement - cam impingement and pincer impingement - are based on the type of anatomic anomaly contributing to the impingement process. These changes can be found on conventional radiography, MR imaging, and CT examinations. However, the radiographic findings of this entity are not widely discussed and recognized by physicians. In this paper, we will introduce these risk factors, the proposed supportive imaging criteria, and the ultimate interventions that can help alleviate patients' symptoms. (orig.)

  5. Imaging findings of femoroacetabular impingement syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Beall, Douglas P.; Sweet, Clifford F.; Martin, Hal D.; Lastine, Craig L.; Grayson, David E.; Ly, Justin Q.; Fish, Jon R. [University of Oklahoma Health Sciences Center, Department of Radiologal Sciences, Oklahoma City (United States)

    2005-11-01

    Femoroacetabular impingement syndrome (FAI) is a pathologic entity which can lead to chronic symptoms of pain, reduced range of motion in flexion and internal rotation, and has been shown to correlate with degenerative arthritis of the hip. History, physical examination, and supportive radiographic findings such as evidence of articular cartilage damage, acetabular labral tearing, and early-onset degenerative changes can help physicians diagnose this entity. Several pathologic changes of the femur and acetabulum are known to predispose patients to develop FAI and recognition of these findings can ultimately lead to therapeutic interventions. The two basic mechanisms of impingement - cam impingement and pincer impingement - are based on the type of anatomic anomaly contributing to the impingement process. These changes can be found on conventional radiography, MR imaging, and CT examinations. However, the radiographic findings of this entity are not widely discussed and recognized by physicians. In this paper, we will introduce these risk factors, the proposed supportive imaging criteria, and the ultimate interventions that can help alleviate patients' symptoms. (orig.)

  6. Treatments for Shoulder Impingement Syndrome

    Science.gov (United States)

    Dong, Wei; Goost, Hans; Lin, Xiang-Bo; Burger, Christof; Paul, Christian; Wang, Zeng-Li; Zhang, Tian-Yi; Jiang, Zhi-Chao; Welle, Kristian; Kabir, Koroush

    2015-01-01

    Abstract Many treatments for shoulder impingement syndrome (SIS) are available in clinical practice; some of which have already been compared with other treatments by various investigators. However, a comprehensive treatment comparison is lacking. Several widely used electronic databases were searched for eligible studies. The outcome measurements were the pain score and the Constant–Murley score (CMS). Direct comparisons were performed using the conventional pair-wise meta-analysis method, while a network meta-analysis based on the Bayesian model was used to calculate the results of all potentially possible comparisons and rank probabilities. Included in the meta-analysis procedure were 33 randomized controlled trials involving 2300 patients. Good agreement was demonstrated between the results of the pair-wise meta-analyses and the network meta-analyses. Regarding nonoperative treatments, with respect to the pain score, combined treatments composed of exercise and other therapies tended to yield better effects than single-intervention therapies. Localized drug injections that were combined with exercise showed better treatment effects than any other treatments, whereas worse effects were observed when such injections were used alone. Regarding the CMS, most combined treatments based on exercise also demonstrated better effects than exercise alone. Regarding surgical treatments, according to the pain score and the CMS, arthroscopic subacromial decompression (ASD) together with treatments derived from it, such as ASD combined with radiofrequency and arthroscopic bursectomy, showed better effects than open subacromial decompression (OSD) and OSD combined with the injection of platelet-leukocyte gel. Exercise therapy also demonstrated good performance. Results for inconsistency, sensitivity analysis, and meta-regression all supported the robustness and reliability of these network meta-analyses. Exercise and other exercise-based therapies, such as kinesio taping

  7. Study on the effect of Weber Number to heat transfer of multiple droplets on hot stainless steel surface

    Directory of Open Access Journals (Sweden)

    Riswanda Aria

    2018-01-01

    Full Text Available Multiple droplets are drops of water that continuously dropped onto a surface. Spray cooling is an application of the use of droplet on a cooling system. Spray cooling is usually used in a cooling system of electronic devices, and material quenching. In this study, correlations between Weber number and surface temperature decrease rate during multiple droplets impingement are investigated and analyzed. Visualization process is used to help determine the evaporation time of droplets impingement by using high speed camera. Induction stove is used to maintain a stainless steel surface temperature at 120°C, 140°C, and 160°C. The Weber number was varied at 15, and 52.5 to simulate low and medium Weber number. The result of this study shows that increase in Weber number does not increase the temperature decrease rate noticeably. Whereas the Weber number decrease the time required for surface temperature to reach its lowest surface temperature. It was also found that for low and medium Weber number, Weber number affect the evaporation time of multiple droplets after impingement.

  8. Aeroacoustic Characteristics of Supersonic Impinging Jets

    Science.gov (United States)

    Worden, Theodore James

    High-speed impinging jets are often generated by the propulsive systems of aerospace launch vehicles and tactical aircraft. In many instances, the presence of these impinging jets creates a hazard for flight operations personnel due to the extremely high noise levels and unsteady loads produced by fluid-surface interaction. In order to effectively combat these issues, a fundamental understanding of the flow physics and dominant acoustic behavior is essential. There are inherent challenges in performing such investigations, especially with the need to simulate the flowfield under realistic operational conditions (temperature, Mach number, etc.) and in configurations that are relevant to full-scale application. A state-of-the-art high-temperature flow facility at Florida State University has provided a unique opportunity to experimentally investigate the high-speed impinging jet flowfield at application-relevant conditions. Accordingly, this manuscript reports the findings of several experimental studies on high-temperature supersonic impinging jets in multiple configurations. The overall objective of these studies is to characterize the complex relationship between the hydrodynamic and acoustic fields. A fundamental parametric investigation has been performed to document the flowfield and acoustic characteristics of an ideally-expanded supersonic air jet impinging onto a semi-infinite flat plate at ambient and heated jet conditions. The experimental program has been designed to span a widely-applicable geometric parameter space, and as such, an extensive database of the flow and acoustic fields has been developed for impingement distances in the range 1d to 12d, impingement angles in the range 45 degrees to 90 degrees, and jet stagnation temperatures from 289K to 811K (TTR = 1.0 to 2.8). Measurements include point-wise mean and unsteady pressure on the impingement surface, time-resolved shadowgraphy of the flowfield, and fully three-dimensional near field acoustics

  9. Achilles Impingement Tendinopathy on Magnetic Resonance Imaging.

    Science.gov (United States)

    Bullock, Mark J; Mourelatos, Jan; Mar, Alice

    Haglund's syndrome is impingement of the retrocalcaneal bursa and Achilles tendon caused by a prominence of the posterosuperior calcaneus. Radiographic measurements are not sensitive or specific for diagnosing Haglund's deformity. Localization of a bone deformity and tendinopathy in the same sagittal section of a magnetic resonance imaging scan can assist with the diagnosis in equivocal cases. The aim of the present cross-sectional study was to determine the prevalence of Haglund's syndrome in patients presenting with Achilles tendinopathy and note any associated findings to determine the criteria for a diagnosis of Haglund's syndrome. We reviewed 40 magnetic resonance imaging scans with Achilles tendinopathy and 19 magnetic resonance imaging scans with Achilles high-grade tears and/or ruptures. Achilles tendinopathy was often in close proximity to the superior aspect of the calcaneal tuberosity, consistent with impingement (67.5%). Patients with Achilles impingement tendinopathy were more often female (p tendinopathy (p = .014) or Achilles tendon rupture (p = .010). Impingement tendinopathy occurred medially (8 of 20) and centrally (10 of 20) more often than laterally (2 of 20) and was associated with a posterior prominence or hyperconvexity with a loss of calcaneal recess more often than a superior projection (22 of 27 versus 8 of 27; p tendinopathy might be more appropriate terminology for Haglund's syndrome, because the bone deformity is often subtle. Of the 27 images with Achilles impingement tendinopathy, 10 (37.0%) extended to a location prone to Achilles tendon rupture. Given these findings, insertional and noninsertional Achilles tendinopathy are not mutually exclusive and impingement might be a subtle, unrecognized cause of Achilles tendinopathy and subsequent rupture. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Optimal management of shoulder impingement syndrome

    Science.gov (United States)

    Escamilla, Rafael F; Hooks, Todd R; Wilk, Kevin E

    2014-01-01

    Shoulder impingement is a progressive orthopedic condition that occurs as a result of altered biomechanics and/or structural abnormalities. An effective nonoperative treatment for impingement syndrome is aimed at addressing the underlying causative factor or factors that are identified after a complete and thorough evaluation. The clinician devises an effective rehabilitation program to regain full glenohumeral range of motion, reestablish dynamic rotator cuff stability, and implement a progression of resistive exercises to fully restore strength and local muscular endurance in the rotator cuff and scapular stabilizers. The clinician can introduce stresses and forces via sport-specific drills and functional activities to allow a return to activity. PMID:24648778

  11. Rotator cuff impingement syndrome: MR imaging

    International Nuclear Information System (INIS)

    Kieft, G.J.; Obermann, W.R.; Rozing, P.M.; Bloem, J.L.

    1987-01-01

    This paper summarizes the authors' experience using MR as a diagnostic tool in evaluating the rotator cuff empingement syndrome. Twenty patients with clinically suspected rotator cuff impingement syndrome were prospectively evaluated using standard radiography, double-contrast arthrography and MR imaging. MR is capable of demonstrating cuff abnormalities due to impingement. The most important findings is an area of abnormal signal intensity on both relatively T1- and T2-weighted spin-echo images. Surgery confirmed that these areas corresponded with inflamed degenerative supraspinatus tendon. Cuff changes can be depicted with MR in patients with arthrographically and radiographically normal shoulders

  12. Design and construction of experimental device to study cryogen droplet deposition and heat transfer

    Science.gov (United States)

    Keller, Matthew; Aguilar, Guillermo; Nelson, J. Stuart

    2003-06-01

    Cryogen spray cooling (CSC) is used to pre-cool the epidermis during laser dermatological procedures such as treatment of port wine stain (PWS) birthmarks. It is known that PWS patients with medium to high epidermal melanin concentrations are at a high risk of epidermal thermal damage after laser irradiation. To avoid this complication, it is necessary to maximize CSC efficiency and, thus, essential to understand the mechanical and thermal interactions of cryogen droplets with the sprayed surface. It has been observed that cryogen sprays exhibit droplet rebound as droplets impinge on the skin surface. Studies of water droplet impact on hard surfaces have shown that droplet rebound may be suppressed by dissolving small amounts (a few percent) of diverse polymer or surfactant solutions prior to atomization. To investigate the possibility of suppressing the rebound of cryogen droplets in a similar way, we have constructed a device that allows observation of the impact, spreading, and rebound of individual water and cryogen droplets with and without these solutions, and their influence on cryogen/surface dynamics and heat transfer. Our preliminary studies show that dissolving a 4% non-ionic surfactant in water reduces droplet rebound and thickness of the residual liquid layer. The maximum spread of water droplets after impact can be described within 20% accuracy by a previously developed theoretical model. The same model provides an even more accurate prediction of the maximum spread of cryogen droplets. This study will aid the analysis of future results and design conditions of new studies, which will recreate conditions to determine if added surfactant solutions suppress droplet rebound and lead to improved CSC efficiency.

  13. Analyses of possible risk factors for subacromial impingement syndrome

    OpenAIRE

    Tangtrakulwanich, Boonsin; Kapkird, Anucha

    2012-01-01

    AIM: To evaluate the association between various risk factors, including sleeping position, and impingement syndrome. Impingement syndrome is the most common cause of shoulder problems. The pathogenesis of this problem is still debated these days.

  14. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  15. Modelling of soft impingement during solidification

    Indian Academy of Sciences (India)

    TECS

    soft impingement problem and related to shape instability by constitutional supercooling theory. This analysis correctly predicts the spheroidal grain formation during stir casting or rheocasting. This model can also be used to explain the grain refinement of magnesium alloys by zirconium addition wherein spheroidal grains ...

  16. Optimal management of shoulder impingement syndrome

    Directory of Open Access Journals (Sweden)

    Escamilla RF

    2014-02-01

    Full Text Available Rafael F Escamilla,1,2 Todd R Hooks,3 Kevin E Wilk4 1Department of Physical Therapy, California State University, Sacramento, CA, USA; 2Andrews Research and Education Institute, Gulf Breeze, FL, USA; 3Drayer Physical Therapy Institute, Columbus, MS, USA; 4Champion Sports Medicine, Birmingham, AL, USA Abstract: Shoulder impingement is a progressive orthopedic condition that occurs as a result of altered biomechanics and/or structural abnormalities. An effective nonoperative treatment for impingement syndrome is aimed at addressing the underlying causative factor or factors that are identified after a complete and thorough evaluation. The clinician devises an effective rehabilitation program to regain full glenohumeral range of motion, reestablish dynamic rotator cuff stability, and implement a progression of resistive exercises to fully restore strength and local muscular endurance in the rotator cuff and scapular stabilizers. The clinician can introduce stresses and forces via sport-specific drills and functional activities to allow a return to activity. Keywords: rotator cuff impingement, internal impingement, overhead athlete, shoulder, rehabilitation

  17. Simple radiographic finding of subacromial impingement syndrome

    International Nuclear Information System (INIS)

    Joo, Sang Shin; Song, In Sub; Lee, Kyung Hyo; Kim, Yang Soo; Kim, Kun Sang; Lee, Yong Chul; Chun, Jae Myung

    1995-01-01

    We evaluated both the patients and the normal volunteers to determine the diagnostic criteria of subacromial impingement syndrome. We analyzed the radiologic finding of Thirty degree of caudal tilt view (TCTV) and Supraspinatus outlet view (SOV) of 100 shoulders from 85 patients with clinically proved subacromial impingement syndrome and normal 100 shoulders from 60 volunteers. In TCTV, the protrusion of acromion below the line of extension from inferior surface of clavicle was shown in 94% of the patient group and 48% in normal group. Sharp tip of acromial protrusion was detectable in 55.3% of the patient group and 10.4% in normal group. In SOV, curved type of acromion was seen in 53% of the normal and 50% in patient group. Hooked type of acromion was detected in 3% and 31% of the normal and patient group, respectively. Protrusion of acromion at TCTV itself was not a criteria of subacromial impingement syndrome, but more than 7 mm below the line of extension from inferior surface of clavicle was meanigful. In SOV, hooked type of acromion was a criteria of subacromial impingement syndrome but curved type is was not a finding of diagnostic significance

  18. Chip-based droplet sorting

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2017-11-21

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  19. Chip-based droplet sorting

    Science.gov (United States)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  20. Chip-based droplet sorting

    Science.gov (United States)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2017-11-21

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  1. Dynamic Impacts of Water Droplets onto Icephobic Soft Surfaces at High Weber Numbers

    Science.gov (United States)

    Ma, Liqun; Liu, Yang; Hu, Hui; Wang, Wei; Kota, Arun

    2017-11-01

    An experimental investigation was performed to examine the effects of the stiffness of icephobic soft PDMS materials on the impact dynamics of water drops at high weber numbers pertinent to aircraft icing phenomena. The experimental study was performed in the Icing Research Tunnel available at Iowa State University (ISU-IRT). During the experiments, both the shear modulus of the soft PDMS surface and the Weber numbers of the impinging water droplets are controlled for the comparative study. While the shear modulus of the soft PDMS surface was changed by tuning the recipes to make the PDMS materials, the Weber number of the impinging water droplets was altered by adjusting the airflow speed in the wind tunnel. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were used to quantify the transient behavior of water droplet impingement, unsteady heat transfer and dynamic ice accreting process over the icephobic soft airfoil surfaces. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather.

  2. Enhanced Jumping-Droplet Departure.

    Science.gov (United States)

    Kim, Moon-Kyung; Cha, Hyeongyun; Birbarah, Patrick; Chavan, Shreyas; Zhong, Chen; Xu, Yuehan; Miljkovic, Nenad

    2015-12-15

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years because of its ability to shed water droplets at length scales 3 decades smaller than the capillary length (∼1 mm) via coalescence-induced droplet jumping. Jumping-droplet condensation has been demonstrated to enhance heat transfer, anti-icing, and self-cleaning efficiency and is governed by the theoretical inertial-capillary scaled jumping speed (U). When two droplets coalesce, the experimentally measured jumping speed (Uexp) is fundamentally limited by the internal fluid dynamics during the coalescence process (Uexp 2) coalescence as an avenue to break the two-droplet speed limit. Using side-view and top-view high-speed imaging to study more than 1000 jumping events on a copper oxide nanostructured superhydrophobic surface, we verify that droplet jumping occurs as a result of three fundamentally different mechanisms: (1) coalescence between two droplets, (2) coalescence among more than two droplets (multidroplet), and (3) coalescence between one or more droplets on the surface and a returning droplet that has already departed (multihop). We measured droplet-jumping speeds for a wide range of droplet radii (5-50 μm) and demonstrated that while the two-droplet capillary-to-inertial energy conversion mechanism is not identical to that of multidroplet jumping, speeds above the theoretical two-droplet limit (>0.23U) can be achieved. However, we discovered that multihop coalescence resulted in drastically reduced jumping speeds (≪0.23U) due to adverse momentum contributions from returning droplets. To quantify the impact of enhanced jumping speed on heat-transfer performance, we developed a condensation critical heat flux model to show that modest jumping speed enhancements of 50% using multidroplet jumping can enhance performance by up to 40%. Our results provide a starting point for the design of enhanced-performance jumping-droplet surfaces for industrial

  3. Impingement syndrome of the shoulder; Schulterimpingement

    Energy Technology Data Exchange (ETDEWEB)

    Mayerhoefer, M.E. [Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Klinische Abteilung Radiodiagnostik fuer chirurgische Faecher, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet, Waehringer Guertel 18-20, 1090, Wien (Austria); Breitenseher, M.J. [Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Waldviertelklinikum Horn (Austria)

    2004-06-01

    The impingement syndrome is a clinical entity characterized by shoulder pain due to primary or secondary mechanical irritation of the rotator cuff. The primary factors for the development of impingement are a curved or hook-shaped anterior acromion as well as subacromial osteophytes, which may lead to tearing of the supraspinatus tendon. Secondary impingement is mainly caused by calcific tendinopathy, glenohumeral instability, os acromiale and degenerative changes of the acromioclavicular joint. Conventional radiographs are initially obtained, mainly for evaluation of the bony structures of the shoulder. If available, sonography can be used for detection of lesions and tears of the rotator cuff. Finally, MR-imaging provides detailed information about the relationship of the acromion and the acromioclavicular joint to the rotator cuff itself. In many cases however, no morphologic cause for impingement syndrome can be found. While patients are initially treated conservatively, chronic disease usually requires surgical intervention. (orig.) [German] Das Impingementsyndrom ist ein klinisches Krankheitsbild multifaktorieller Genese, bei dem es primaer oder sekundaer zu einer schmerzhaften mechanischen Beeintraechtigung der Rotatorenmanschette kommt. Als primaere Faktoren gelten ein gebogener oder hakenfoermiger Vorderrand des Akromions oder von diesem entspringende Osteophyten, was zu Laesionen der Supraspinatussehne fuehren kann. Zu den sekundaeren Faktoren zaehlt man v. a. eine Tendinitis calcarea, eine glenohumerale Instabilitaet, ein Os acromiale sowie degenerative Veraenderungen im Bereich des Akromioklavikulargelenks. Bildgebend steht an erster Stelle ein Nativroentgen, mit dem sich die knoechernen Strukturen gut darstellen lassen. Falls vorhanden, kann in weiterer Folge die Sonographie Auskunft ueber den Zustand der Rotatorenmanschette geben. Mit der MRT schliesslich laesst sich die Beziehung von Akromion und gelenkassoziierten Strukturen zur Rotatorenmanschette

  4. Some Physics Inside Drying Droplets

    Indian Academy of Sciences (India)

    IAS Admin

    not only with coffee droplets but also with all droplets containing non-volatile solutes. There are a number of interesting physical processes going on within the droplets during evaporation to form the 'coffee stains'. In this article, we will see what they are. Introduction. Studying wetting phenomena is important in many cases.

  5. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  6. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.

    Science.gov (United States)

    Yang, Qiang; Li, Huizeng; Li, Mingzhu; Li, Yanan; Chen, Shuoran; Bao, Bin; Song, Yanlin

    2017-11-29

    Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to control ink properties, such as viscosity or surface tension, to assist ink filaments in retracting into one drop. However, this strategy brings new restrictions to the ink, such as ink viscosity, surface tension, and concentration. Here, we report an alternative strategy that the satellite droplets are eliminated by enhancing Rayleigh instability of filament at the break point to accelerate pinch-off of the droplet from the nozzle. A superhydrophobic and ultralow adhesive nozzle with cone morphology exhibits the capability to eliminate satellite droplets by cutting the ink filament at breakup point effectively. As a result, the nozzles with different sizes (10-80 μm) are able to print more inks (1 satellite droplets. The finding presents a new way to remove satellite droplets via designing nozzles with super-ink-phobicity and ultralow adhesion rather than restricting the ink, which has promising applications in printing electronics and biotechnologies.

  7. Synthesis of superhydrophobic alumina membrane: Effects of sol-gel coating, steam impingement and water treatment

    Science.gov (United States)

    Ahmad, N. A.; Leo, C. P.; Ahmad, A. L.

    2013-11-01

    Ceramic membranes possess natural hydrophilicity thus tending to absorb water droplets. The absorption of water molecules on membrane surface reduces their application in filtration, membrane distillation, osmotic evaporation and membrane gas absorption. Fluoroalkylsilane (FAS) grafting allows the conversion of hydrophilic ceramic membranes into superhydrophobic thin layer, but it usually introduces a great increment of mass transfer resistance. In this study, superhydrophobic alumina membranes were synthesized by dip coating alumina support into sol-gel and grafted with the fluoroalkylsilane (FAS) named (heptadecafluoro-1,1,2,2-tetra hydrodecyl) triethoxysilane. Steam impingement and water treatment acted as additional steps to generate surface roughness on sol-gel and most importantly to reduce mass transfer resistance. Superhydrophobic alumina membrane with high water contact angle (158.4°) and low resistance (139.5 ± 24.9 G m-1) was successfully formed when the alumina membrane was dip coated into sol-gel for 7 s, treated with steam impingement for 1 min and immersed in hot water at 100 °C. However, the mass transfer resistance was greatly induced to 535.6 ± 23.5 G m-1 when the dip coating time was increased to 60 s. Long dip coating time contributes more on the blockage of porous structure rather than creates a thin film on the top of membrane surface. Reducing the pore size and porosity significantly due to increase of coating molecules deposited on the membrane. Steam impingement for 1 min promoted the formation of cones and valleys on the sol-gel, but the macro-roughness was destroyed when the steam impingement duration was extended to more than 3 min. The immersions of membranes into hot water at temperatures higher than 60 °C encouraged the formation of boehmite which enhances the formation of additional roughness and enlarges pore size greatly. Thus, this work showed that the formation of superhydrophobic alumina membrane with low resistance is

  8. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  9. Droplet shape analysis and permeability studies in droplet lipid bilayers.

    Science.gov (United States)

    Dixit, Sanhita S; Pincus, Alexandra; Guo, Bin; Faris, Gregory W

    2012-05-15

    We apply optical manipulation to prepare lipid bilayers between pairs of water droplets immersed in an oil matrix. These droplet pairs have a well-defined geometry allowing the use of droplet shape analysis to perform quantitative studies of the dynamics during bilayer formation and to determine time-dependent values for the droplet volumes, bilayer radius, bilayer contact angle, and droplet center-line approach velocity. During bilayer formation, the contact angle rises steadily to an equilibrium value determined by the bilayer adhesion energy. When there is a salt concentration imbalance between droplets, there is a measurable change in the droplet volume. We present an analytical expression for this volume change and use this expression to calculate the bilayer permeability to water.

  10. SHOULDER MUSCLE IMBALANCE AND SUBACROMIAL IMPINGEMENT SYNDROME IN OVERHEAD ATHLETES

    Science.gov (United States)

    2011-01-01

    Subacromial impingement is a frequent and painful condition among athletes, particularly those involved in overhead sports such as baseball and swimming. There are generally two types of subacromial impingement: structural and functional. While structural impingement is caused by a physical loss of area in the subacromial space due to bony growth or inflammation, functional impingement is a relative loss of subacromial space secondary to altered scapulohumeral mechanics resulting from glenohumeral instability and muscle imbalance. The purpose of this review is to describe the role of muscle imbalance in subacromial impingement in order to guide sports physical therapy evaluation and interventions. PMID:21655457

  11. Impingement of juvenile and adult fishes during cooling water withdrawal

    International Nuclear Information System (INIS)

    McFarlane, R.W.

    1978-01-01

    Juvenile and adult fishes are impinged upon trash removal screens as Savannah River water is withdrawn for use on the Savannah River Plant (SRP). Thirty-six species of fish, representing half of all riverine species known from the area, were impinged on the screens at three SRP pumping stations during 1977. Based on the average of 11.2 fish impinged per day, annual impingement is estimated to be 4088 fish. SRP thus ranks third lowest for impingement recently reported for 33 electric power plants

  12. Spreading and atomization of droplets on a vibrating surface in a standing pressure field

    Science.gov (United States)

    Deepu, P.; Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-10-01

    We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up.

  13. Impinging jets controlled by fluidic input signal

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk; Peszyński, K.

    2016-01-01

    Roč. 249, October (2016), s. 85-92 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * jets * impinging jets * coanda effect Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303880

  14. Optimal management of shoulder impingement syndrome

    OpenAIRE

    Escamilla, Rafael; Hooks,Todd; Wilk,Kevin

    2014-01-01

    Rafael F Escamilla,1,2 Todd R Hooks,3 Kevin E Wilk4 1Department of Physical Therapy, California State University, Sacramento, CA, USA; 2Andrews Research and Education Institute, Gulf Breeze, FL, USA; 3Drayer Physical Therapy Institute, Columbus, MS, USA; 4Champion Sports Medicine, Birmingham, AL, USA Abstract: Shoulder impingement is a progressive orthopedic condition that occurs as a result of altered biomechanics and/or structural abnormalities. An effective nonoperative treatment for impi...

  15. Micromachined droplet ejector arrays

    Science.gov (United States)

    Perçin, Gökhan; Yaralioglu, Göksenin G.; Khuri-Yakub, Butrus T.

    2002-12-01

    In this article we present a micromachined flextensional droplet ejector array used to eject liquids. By placing a fluid behind one face of a vibrating circular plate that has an orifice at its center, we achieve continuous ejection of the fluid. We present results of ejection of water and isopropanol. The ejector is harmless to sensitive fluids and can be used to eject fuels, organic polymers, photoresists, low-k dielectrics, adhesives, and chemical and biological samples. Micromachined two-dimensional array flextensional droplet ejectors were realized using planar silicon micromachining techniques. Typical resonant frequency of the micromachined device ranges from 400 kHz to 4.5 MHz. The ejections of water through a 4 μm diameter orifice at 3.45 MHz and a 10 μm diameter orifice at 2.15 MHz were demonstrated by using the developed micromachined two-dimensional array ejectors.

  16. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  17. Muscle shortening manoeuvre reduces pain and functional impairment in shoulder impingement syndrome: clinical and ultrasonographic evidence.

    Science.gov (United States)

    Melchiorre, Daniela; Maresca, Marco; Bracci, Riccardo; Ravaschio, Andrea; Valiensi, Bruno; Casale, Roberto; Bandinelli, Francesca; Candelieri, Antonio; Maddali Bongi, Susanna; Porta, Francesco; Innocenti, Massimo; Carulli, Christian; Matucci Cerinic, Marco

    2014-01-01

    To evaluate the short-term efficacy of muscle shortening manoeuvre (MSM), by inducing an increase in strength of the shoulder muscles, for the treatment of shoulder impingement syndrome (SIS). Sixty subjects (mean age: 58.6 years) with SIS were assigned to one of 3 different treatment interventions: 1) MSM: a series of fast accelerations in the upward direction was applied to the upper limb that was also submitted to forces acting in the opposite direction (added mass); 2) traditional physiotherapeutic technique: scapulothoracic gliding; 3) simple traction: the added mass was applied to the limb without the series of fast accelerations. Pain intensity, Neer's impingement sign, range of motion and muscle strength were assessed. Ultrasound (US) examination was performed before, immediately after and 30 days after each treatment to study the width of the subacromial-subdeltoid bursa, long biceps tendon sheath and acromioclavicular joint. Impingement was evaluated by dynamic examination. After treatment with MSM, pain was significantly reduced (pimpingement sign was negative, range of motion and muscle strength were increased. US examination showed that the widths of the subacromial-subdeltoid bursa (pimpingement was no more detected. After 30 days, improvement in clinical and US findings was maintained. In the two control groups, no significant changes were observed after treatment. Clinical and US findings demonstrate that MSM, by inducing an increase in muscle strength, is effective in the short-term treatment of SIS.

  18. New droplet model developments

    International Nuclear Information System (INIS)

    Dorso, C.O.; Myers, W.D.; Swiatecki, W.J.; Moeller, P.; Treiner, J.; Weiss, M.S.

    1985-09-01

    A brief summary is given of three recent contributions to the development of the Droplet Model. The first concerns the electric dipole moment induced in octupole deformed nuclei by the Coulomb redistribution. The second concerns a study of squeezing in nuclei and the third is a study of the improved predictive power of the model when an empirical ''exponential'' term is included. 25 refs., 3 figs

  19. High-Voltage Droplet Dispenser

    Science.gov (United States)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  20. In-situ characterization of droplets during free fall in the drop tube-impulse system

    International Nuclear Information System (INIS)

    Khatibi, P Delshad; Ilbagi, A; Henein, H; Beinker, D

    2011-01-01

    Powders of copper were produced using a drop tube-impulse atomization technique. In this system, molten metal is pushed through orifices, forming ligaments, which eventually break down and spherodize into droplets. A 3-D translation stage was designed, constructed and installed in the drop tube to allow for measurements of velocity and droplet size in flight using a Shadowgraph and radiant energy using DPV-2000. A mathematical model of the evolution of droplet velocity and temperature for different sized copper droplets at various heights was developed. The experimental results from the Shadowgraph and the DPV-2000 are compared to the model's results. In addition, the extent to which microgravity prevails during flight and droplet solidification was investigated by using the model and the Shadowgraph results. It was found that the acceleration of falling droplets near the melting point is close to gravitational acceleration and as a result the falling droplets do not reach their terminal velocity at their melting point. The results of in-situ measurements during the atomization of copper showed that the larger droplets have higher radiant energy than that of the smaller ones. Correlation between experimentally measured radiant energy and predicted temperature of falling droplets will be investigated. The current work is part of the NEQUISOL project supported by ESA within contract number 15236/02/NL/SH and CSA within contract number 9F007-08-0154 and SSEP Grant 2008.

  1. Ischiofemoral impingement syndrome: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Adam D.; Subhawong, Ty K.; Jose, Jean; Tresley, Jonathan; Clifford, Paul D. [Jackson Memorial Hospital, Department of Diagnostic Radiology, Section of Musculoskeletal Imaging, Miami, FL (United States)

    2015-06-01

    The aims of this article are to review the imaging characteristics of ischiofemoral impingement (IFI), summarize measurement thresholds for radiologic diagnosis based on a meta-analysis of the literature and raise awareness among radiologists and clinicians of this entity. A PubMed search restricted to the English language containing the keywords ''ischiofemoral impingement'' and ''quadratus femoris MRI'' was performed, and citations in these articles were also used to identify a total of 27 studies discussing ischiofemoral impingement. After excluding case reports and non-representative studies, there were five remaining articles including 193 hip MRIs of IFI in 154 subjects (133 female, 21 male) and 135 asymptomatic control hip MRIs from 74 subjects (55 female, 19 male). Additionally, we performed a retrospective database search of pelvic and hip MRI reports from our institution including the terms ''quadratus femoris'' or ''ischiofemoral impingement'' from a 9-year period and 24 hip MRIs from 21 patients (18 female, 3 male) with IFI with 5 asymptomatic contralateral control hip MRIs identified. In all, 217 hip MRIs of IFI and 140 control cases were included. A meta-analysis of these hip MRIs was conducted to determine optimal thresholds of the ischiofemoral space (IFS) and quadratus femoris space (QFS) for identifying IFI. Cases of IFI showed significantly smaller IFS and QFS compared to controls (14.91 ± 4.8 versus 26.01 ± 7.98 and 9.57 ± 3.7 versus 15.97 ± 6.07, measured in mm, respectively, p < 0.0001 for both). Pooled analysis revealed that for IFS, using a cutoff of ≤15 mm yielded a sensitivity of 76.9 %, specificity of 81.0 % and overall accuracy of 78.3 %. For QFS, a cutoff of ≤ 10.0 mm resulted in 78.7 % sensitivity, 74.1 % specificity and 77.1 % overall accuracy. IFI is a potential cause of hip pain that can be accurately diagnosed with MRI in conjunction with

  2. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    Science.gov (United States)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  3. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang

    2012-03-12

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  4. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  5. Extra-articular hip impingement: a review of the literature.

    Science.gov (United States)

    Arévalo Galeano, N; Santamaría Guinea, N; Gredilla Molinero, J; Grande Bárez, M

    Hip and groin pain is a common clinical problem. Multiple causes can generate hip or groin pain, often sharing clinical and demographic characteristics. Diagnostic imaging tests play an important role in the etiological diagnosis. New forms of extra-articular hip impingement have recently been recognized as a cause of hip pain and limited function especially in young active patients. These conditions include ischiofemoral impingement, anterior inferior iliac spine and subspine impingement, iliopsoas impingement and greater trochanteric-pelvic impingement. In general, they are caused by a mechanical conflict with an abnormal or excessive contact between the proximal femur and pelvis and/or soft tissue between them. In this manuscript we review the physiopathology, clinical presentation, the most common radiologic findings and treatment of these forms of extra-articular hip impingement. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Subacromial lipoma causing shoulder impingement syndrome.

    Science.gov (United States)

    Sucuoglu, Hamza; Akgun, Kenan

    2017-01-01

    Subacromial lipoma represents a rare cause of subacromial impingement syndrome (SIS). A 49-year-old male patient presented to clinic with progressive right shoulder pain and limited movement, ongoing for approximately 1 month. Magnetic resonance imaging (MRI) revealed a lesion, compatible with lipoma, extending through subacromial space and pressing on supraspinatus muscle. After histopathological verification of lipoma, mass was excised. Postoperatively, patient completed 1 month physical therapy and rehabilitation program. Patient was free of pain at 4-month follow-up. Subacromial lipoma should be included in differential diagnosis of SIS for patients unresponsive to conservative treatment; MRI is very useful to determine precise etiology and inform surgical treatment.

  7. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  8. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  9. Clinical or radiological diagnosis of impingement; Klinische oder radiologische Diagnose des Impingements

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, J.K.; Weber, M.A. [Universitaetsklinikum Heidelberg, Klinik fuer diagnostische und interventionelle Radiologie, Heidelberg (Germany); Zeifang, F. [Universitaetsklinikum Heidelberg, Zentrum fuer Orthopaedie, Unfallchirurgie und Paraplegiologie, Heidelberg (Germany)

    2015-03-01

    Shoulder impingement syndrome is a clinically common entity involving trapping of tendons or bursa with typical clinical findings. Important radiological procedures are ultrasound, magnetic resonance imaging (MRI) and MR arthrography. Projection radiography and computed tomography (CT) are ideal to identify bony changes and CT arthrography also serves as an alternative method in cases of contraindications for MRI. These modalities support the clinically suspected diagnosis of impingement syndrome and may identify its cause in primary diagnosis. In addition, effects of impingement are determined by imaging. Therapy decisions are based on a synopsis of radiological and clinical findings. The sensitivity and specificity of these imaging modalities with regard to the diagnostics of a clinically evident impingement syndrome are given in this review article. Orthopedic and trauma surgeons express the suspicion of an impingement syndrome based on patient history and physical examination and radiologists confirm structural changes and damage of intra-articular structures using dedicated imaging techniques. (orig.) [German] Das Impingementsyndrom der Schulter ist ein haeufiges Einklemmungsphaenomen von Sehnen oder Bursen mit typischem klinischem Befund. Wichtige radiologische Verfahren sind Sonographie, MRT und MR-Arthrographie. Projektionsradiographie und CT sind ideal, um knoecherne Veraenderungen aufzuzeigen. Die CT-Arthrographie dient zudem als Ersatzverfahren bei Kontraindikationen fuer die MRT. Diese genannten Modalitaeten koennen in der Primaerdiagnostik die Diagnose eines Impingementsyndroms stuetzen und dessen Ursache aufzeigen. Zudem werden bildgebend Folgen der Einklemmung festgestellt und in Zusammenschau von klinischer Symptomatik und radiologischem Befund Therapieentscheidungen getroffen. Die Sensitivitaet und Spezifitaet der zuvor genannten bildgebenden Verfahren in Bezug auf die diagnostische Aufarbeitung einer klinisch evidenten Impingementsymptomatik

  10. Millifluidic droplet analyser for microbiology

    NARCIS (Netherlands)

    Baraban, L.; Bertholle, F.; Salverda, M.L.M.; Bremond, N.; Panizza, P.; Baudry, J.; Visser, de J.A.G.M.; Bibette, J.

    2011-01-01

    We present a novel millifluidic droplet analyser (MDA) for precisely monitoring the dynamics of microbial populations over multiple generations in numerous (=103) aqueous emulsion droplets (100 nL). As a first application, we measure the growth rate of a bacterial strain and determine the minimal

  11. Some Physics Inside Drying Droplets

    Indian Academy of Sciences (India)

    IAS Admin

    Such surfaces are called super-hydrophobic sur- faces (see Box 2) on which the droplet sits partially on air as illustrated in Figure 2. The lotus leaf is an example of a naturally existing super-hydrophobic surface. This non-wetting property acts as a cleaning mechanism for these leaves because water droplets roll off easily ...

  12. Numerical and experimental studies of droplet-gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Joesang, Aage Ingebret

    2002-07-01

    This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational

  13. Leidenfrost boiling of water droplet

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  14. Leidenfrost boiling of water droplet

    Science.gov (United States)

    Orzechowski, Tadeusz

    The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  15. Out of the frying pan: Explosive droplet dynamics

    Science.gov (United States)

    Marston, Jeremy; Li, Chao; Truscott, Tadd; Mansoor, Mohammad

    2017-11-01

    Regardless of culinary skills, most people who have used a stove top have encountered the result of water interacting with hot oil. The phenomenon is particularly memorable if the result is impingement of hot fluid on one's skin. Whilst ubiquitous, a deeper probing of this phenomenon reveals a vastly rich dynamical process. We use high-speed imaging to investigate the idealized case of a single water droplet impacting onto a hot oil film. At a qualitative level, we have observed three regimes of fluid ejection - jets, cones and explosive vaporization. The latter of these results in the spectacular creation of aerosol with sizes down to the sub-micrometer range. We present our experimental findings based upon control parameters such as temperature, film thickness and oil type.

  16. Fingering patterns during droplet impact on heated surfaces.

    Science.gov (United States)

    Khavari, Mohammad; Sun, Chao; Lohse, Detlef; Tran, Tuan

    2015-05-07

    A droplet impinging on a sufficiently heated surface may be cushioned by its own vapor and never touch the surface. In previous work, the transition to this so-called Leidenfrost regime was only qualitatively described as an abrupt change between the "contact-boiling" regime, which is characterized by violent boiling behaviors, and the Leidenfrost state. We reveal that the wetted area can be used as a quantity that quantitatively characterizes this transition and it is a continuous function of surface temperature up to the Leidenfrost regime. The wetted area exhibits fingering patterns caused by vapor flow under the liquid. This underlines the crucial role of vapor transport in the Leidenfrost transition and unveils the physical mechanism of the transition to the Leidenfrost regime.

  17. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    Science.gov (United States)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  18. Shouldering the blame for impingement: the rotator cuff continuum ...

    African Journals Online (AJOL)

    The aim of this article was to summarise recent research on shoulder impingement and rotator cuff pathology. A continuum model of rotator cuff pathology is described, and the challenges of accurate clinical diagnosis, imaging and best management discussed. Keywords: shoulder impingement syndrome, subacromial ...

  19. Leidenfrost levitation: beyond droplets.

    Science.gov (United States)

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A; Spafford, Jonathon; Michael, Grant E; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect - a droplet can be levitated by its own vapor layer on a sufficiently hot surface - we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces.

  20. Rehabilitation for Subacromial Impingement Starts at the Scapula

    Directory of Open Access Journals (Sweden)

    Peggy A. Houglum

    2013-12-01

    Full Text Available Subacromial impingement, especially secondary subacromial impingement, is a common malady of athletes and non-athletes alike. Although several pathologies may lead to impingement, they all relate back to poor posture. Over time, postural changes increase stress to soft tissue structures to change both alignment and performance. Injury results as low-level stresses impact weakening tissues to the point of overload. Crucial to effective treatment of secondary subacromial impingement is the identification and correction of all causes. Basic to successful treatment is correction of posture, including scapular posture and muscles which control, stabilize, and move the scapula. An evidence-based approach to not only identifying the causes but also creating a treatment regimen to effectively resolve secondary subacromial impingement is presented.

  1. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chen [School of Aeronautics and Astronautics, Shanghai Jiaotong University, Shanghai 200240 (China); Liu, Hong, E-mail: hongliu@sjtu.edu.cn [J. C. Wu Center of Aerodynamics, Shanghai Jiaotong University, Shanghai 200240 (China)

    2016-06-15

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.

  2. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  3. Asymmetric Wettability Directs Leidenfrost Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Rebecca L [ORNL; Boreyko, Jonathan B [ORNL; Briggs, Dayrl P [ORNL; Srijanto, Bernadeta R [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL; Lavrik, Nickolay V [ORNL

    2014-01-01

    Leidenfrost phenomena on nano- and microstructured surfaces are of great importance for increasing control over heat transfer in high power density systems utilizing boiling phenomena. They also provide an elegant means to direct droplet motion in a variety of recently emerging fluidic systems. Here, we report the fabrication and characterization of tilted nanopillar arrays (TNPAs) that exhibit directional Leidenfrost water droplets under dynamic conditions, namely on impact with Weber numbers 40 at T 325 C. The batch fabrication of the TNPAs was achieved by glancing-angle anisotropic reactive ion etching of a thermally dewet platinum mask, with mean pillar diameters of 100 nm and heights of 200-500 nm. In contrast to previously implemented macro- and microscopic Leidenfrost ratchets, our TNPAs induce no preferential directional movement of Leidenfrost droplets under conditions approaching steady-state film boiling, suggesting that the observed droplet directionality is not a result of asymmetric vapor flow. Using high-speed imaging, phase diagrams were constructed for the boiling behavior upon impact for droplets falling onto TNPAs, straight nanopillar arrays, and smooth silicon surfaces. The asymmetric impact and directional trajectory of droplets was exclusive to the TNPAs for impacts corresponding to the transition boiling regime, revealing that asymmetric wettability upon impact is the mechanism for the droplet directionality.

  4. Numerical Simulation on Head-On Binary Collision of Gel Propellant Droplets

    Directory of Open Access Journals (Sweden)

    Zejun Liu

    2013-01-01

    Full Text Available Binary collision of droplets is a fundamental form of droplet interaction in the spraying flow field. In order to reveal the central collision mechanism of two gel droplets with equal diameters, an axi-symmetric form of the Navier-Stokes equations are firstly solved and the method of VOF (volume of fluid is utilized to track the evolution of the gas-liquid free interface. Then, the numerical computation model is validated with Qian’s experimental results on Newtonian liquids. Phenomena of rebound, coalescence and reflexive separation of droplets after collision are investigated, and structures of the complicated flow fields during the collision process are also analyzed in detail. Results show that the maximum shear rate will appear at the point where the flow is redirected and accelerated. Rebound of droplets is determined by the Weber number and viscosity of the fluid together. It can be concluded that the gel droplets are easier to rebound in comparison with the base fluid droplets. The results also show that the alternant appearance along with the deformation of droplets in the radial and axial direction is the main characteristic of the droplet coalescence process, and the deformation amplitude attenuates gradually. Moreover, the reflexive separation process of droplets can be divided into three distinctive stages including the radial expansion, the recovery of the spherical shape, and the axial extension and reflexive separation. The variation trend of the kinetic energy is opposite to that of the surface energy. The maximum deformation of droplets appears in the radial expansion stage; in the case of a low Weber number, the minimum central thickness of a droplet appears later than its maximum deformation, however, this result is on the contrary in the case of a high Weber number.

  5. The Natural History of Femoroacetabular Impingement

    Directory of Open Access Journals (Sweden)

    Benjamin D. Kuhns

    2015-11-01

    Full Text Available Femoroacetabular impingement (FAI is a clinical syndrome resulting from abnormal hip joint morphology and is a common cause of hip pain in young adults. FAI has been posited as a precursor to hip osteoarthritis, however, conflicting evidence exists and the true natural history of the disease is unclear. The purpose of this article is to review the current understanding of how FAI damages the hip joint by highlighting its pathomechanics and etiology. We then review the current evidence relating FAI to osteoarthritis. Lastly, we will discuss the potential of hip preservation surgery to alter the natural history of FAI, reduce the risk of developing osteoarthritis and the need for future arthroplasty.

  6. Surgical criteria for femoroacetabular impingement syndrome

    DEFF Research Database (Denmark)

    Peters, Scott; Laing, Alisha; Emerson, Courtney

    2017-01-01

    BACKGROUND: The purpose of this review was to analyse and report criteria used for open and arthroscopic surgical treatment of femoroacetabular impingement syndrome (FAIS). METHODS: A librarian-assisted computer search of Medline, CINAHL and Embase for studies related to criterion for FAIS surgery......% of studies described previously failed treatment (non-surgical or physiotherapist-led rehabilitation) as a criterion for surgery. Only 56% of included studies utilised the combination of symptoms, clinical signs and diagnostic imaging combined for diagnosis of FAIS as suggested by the Warwick Agreement...... on FAIS meeting. CONCLUSION: Diagnostic imaging evidence of FAIS was the most commonly reported criterion for surgery. Only 56% of included studies utilised the combination of symptoms, clinical signs and diagnostic imaging for diagnosis of FAIS as suggested by the Warwick Agreement on FAIS meeting...

  7. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  8. Characteristics of steam jet impingement on annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    The steam jet impingement occurs when the steam through the cold leg from the steam generator strikes the inner reactor barrel during the reflood phase of a loss-of-coolant accident (LOCA), which is a characteristic behavior for the APR1400 (Advanced Power Reactor 1400 MWe). In the cold leg break LOCA, the steam and water flows in the downcomer are truly multidimensional. The azimuthal velocity distribution of the steam flow has an important bearing on the thermal hydraulic phenomena such as the emergency coolant water direct bypass, sweepout, steam condensation, and so forth. The investigation of jet flow is required to determine the steam path and momentum reduction rate after the impingement. For the observation of the steam behavior near the break, the computational fluid dynamic (CFD) analysis has been carried out using CFX5.6. The flow visualization and analysis demonstrate the velocity profiles of the steam flow in the annulus region for the same boundary conditions. Pursuant to the CFD results, the micro-Pitot tubes were positioned at varying angles, and corrected for their sensitivity. The experiments were carried out to directly measure the pressure differential and to visualize the flow utilizing a smoke injection method. Results from this study are slated to be applied to MARS, which is a thermal hydraulic system code for the best-estimate analysis. The current one- or two-dimensional analysis in MARS was known to distort the local flow behavior. To enhance prediction capability of MARS, it is necessary to inspect the steam path in the break flow and mechanically simulate the momentum variation. The present experimental and analytical results can locally be applied to developing the engineering models of specific and essential phenomena. (author)

  9. Flowfield Behavior of Supersonic Impinging Jets

    Science.gov (United States)

    Iyer, K. G.; Alvi, F. S.

    1998-11-01

    A detailed study is being conducted which examines the behavior of normally impinging, supersonic jets, issuing from axisymmetric a Mach 1.5 C-D and a sonic nozzle. Our goal is to understand the physics of this flowfield (commonly observed in STOVL aircraft) and its influence on the acoustic and aerodynamic loading on the ground plane and the airframe. The airframe is simulated by a circular disc ('lift' plate) with an annular hole from which the jet is issued. Tests are carried out for a wide range of pressure ratios and the ground plane distance is varied from 1.5 to 60 nozzle diameters. Flowfield measurements include Particle Image Velocimetry (PIV) and schlieren/shadowgraph visualization. Surface measurements on the ground and lift plates include mean and unsteady surface pressure distributions and the surface streamline visualization. Near-field acoustic measurements using a microphone are also obtained. For certain cases, the PIV measurements -- first of their kind, to our knowledge -- clearly show the presence of large-scale coherent turbulent structures which, upon jet impingement, propagate into the resulting wall jet. These structures are believed to generate very high unsteady pressure loads on the ground plane thus leading to ground erosion. They are also suspected to be the source of acoustic waves which lead to a feedback loop causing violent oscillations of the primary jet and can result in increased acoustic loading and subsequent damage to the aircraft. As a result of this detailed study over a wide parametric space, we hope to gain a much better understanding of the physical mechanisms governing this complex flow.

  10. Shoulder impingement syndrome in relation to shoulder intensive work.

    Science.gov (United States)

    Frost, P; Andersen, J H

    1999-07-01

    To analyse the risk of shoulder impingement syndrome relative to shoulder intensive work. A cross sectional study of a historical cohort of 1591 workers employed between 1986 and 1993 at a slaughterhouse or a chemical factory. Workers not doing tasks in slaughtering or meat processing constituted the reference group. Intensity of shoulder work in meat processing tasks was assessed by video based observations. Information on shoulder disorders was collected by questionnaire and by physical examinations. Impingement syndrome was diagnosed when shoulder symptoms had been present for at least 3 months during the past year and there were signs of subacromial impingement in the corresponding shoulder at physical examination. Shoulder function was assessed at the same occasion with the Constant scoring technique. Prevalence of shoulder impingement syndrome was analysed according to job title and cumulative exposure. Prevalence ratio for shoulder impingement syndrome was 5.27 (95% confidence interval (95% CI), 2.09 to 12.26) among currently working and 7.90 (95% CI, 2.94 to 21.18) among former slaughterhouse workers. Transformed model based prevalence ratios according to years in slaughterhouse work showed an overall association between cumulative exposure and risk for shoulder impingement syndrome. This study supports the hypothesis that shoulder intensive work is a risk factor for impingement syndrome of the shoulder. Despite the historical cohort design healthy worker selection may have influenced the exposure-response relation found.

  11. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  12. Subacromial osteochondroma: A rare cause of impingement syndrome.

    Science.gov (United States)

    Çıtlak, Atilla; Akgün, Ulaş; Bulut, Tugrul; Aslan, Cihan; Mete, Berna Dirim; Şener, Muhittin

    2015-01-01

    Subacromial impingement syndrome is one of the most common disorders of shoulder. Scapula is a very rare site for osteochondromas, and osteochondromas arising under the acromion cause impingement syndrome. We presented 34-year old female patient with subacromial impingement syndrome secondary to osteochondroma. She had received conservative treatment several times in other clinics. The osteochondroma causing impingement was not diagnosed. Physical examination of the right shoulder revealed 90° flexion, 70° abduction, 20° external rotation and internal rotation to sacrum. X-ray, CT and MRI of the shoulder was obtained. Osteochondroma of the acromion (35×33×25mm) causing impingement was detected. The osteochondroma of acromion compressed, displaced and ruptured the supraspinatus tendon. Also an osseous prominence of glenoid was detected during shoulder arthroscopy, and it was removed arthroscopically. The giant osteochondroma of acromion could not remove arthroscopically due to the size of the lesion, and it was removed totally through a mini open approach. Histopathological examination confirmed the diagnosis of osteochondroma. Scapular, clavicular and humeral osteochondromas cause impingement syndrome. Osteochondroma should be treated with total excision. Recurrences can be seen due to insufficient removal of osteochondromas. We think that, total excision is important to prevent recurrence. Subacromial osteochondroma is a very rare cause of impingement syndrome, and if it isn't diagnosed early it limits shoulder movements, causes severe shoulder impingement and rotator cuff tear. The diagnosis of subacromial osteochondroma should be considered in any patient with shoulder impingement syndrome and good functional results can be expected following total excision. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Water droplet erosion of stainless steel steam turbine blades

    Science.gov (United States)

    Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.

    2017-08-01

    Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.

  14. Post-Tanner spreading of nematic droplets

    Energy Technology Data Exchange (ETDEWEB)

    Mechkov, S; Oshanin, G [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 5 (France); Cazabat, A M, E-mail: mechkov@lptmc.jussieu.f, E-mail: anne-marie.cazabat@lps.ens.f, E-mail: oshanin@lptmc.jussieu.f [Laboratoire de Physique Statistique, Ecole Normale Superieure, 75252 Paris Cedex 5 (France)

    2009-11-18

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as Rapproxt{sup 1/10}-an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that Rapproxt{sup a}lpha with alpha significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  15. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  16. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  17. MR imaging of nerve root impingement in the lumbar spine

    International Nuclear Information System (INIS)

    Teresi, L.M.; Bradley, W.G. Jr.; Bloze, A.E.; Davis, S.J.; Amster, J.; Berger, P.E.

    1990-01-01

    This paper determines the relationship between MR imaging findings of nerve root impingement, presenting symptoms, and physical examination findings, and physiologic data (DSEP and EMG) in a population of patients presented with classic radicular symptoms. Fifty-eight patients presenting with classic radicular pain were studied with MR imaging, DSER, and EMG, MR imaging was performed with a GE Signa imaging system with use of T1- and T2-weighted sequences and 5-mm-thick sections. Nerve root impingement in the subarticular recess (the root exiting the next lowest level) was distinguished from nerve root impingement in the superior intervertebral foramen (the root exiting the same level)

  18. On the Feedback Phenomenon of an Impinging Jet

    Science.gov (United States)

    1979-09-01

    2-1a) Photograph of the Impinging Water Jet Facility (2-1b) Schematic of the Impinging Water Jet Facility (2-2) Jet Noise Research Facilities at VSC ...Naudascher, E., "Self-Sustained Oscillations of Impinging Free Shear Layer," Ann . Rev. Fluid Mech., 11:67-94(1979). i 11. Powell, A., "On the Edgetone," J...Turbulent Mixing Layer," AGARD CP 93, pp. 23.1-23.12 (1971). 18. Laufer, J., "New Trends in Experimental Turbulence Research," Ann . Rev. Fluid Mech., 7:307

  19. FEM simulation of Cu{sub 97}Si{sub 3} filler metal droplets spreading under arc brazing

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.Y.; Li, R.F.; Zhou, Y.Y.; Qi, K.; Zhou, F.M.; Wu, M.F.

    2005-08-15

    The spreading behaviour of Cu{sub 97}Si{sub 3} filler metal droplets under arc brazing is studied by finite element method (FEM) simulation using Surface Evolver software. The mathematical model of arc pressure force acceleration added to the droplet microelement as the form of gravity acceleration is used in numerical simulation. The 3D filler metal droplet profile for different welding currents is then simulated. Finally, the simulation results were compared with experimental results, showing good correspondence. It was seen that the spreading height decreases and the diameter increases with increase of the welding current in an approximate linear relation. (author)

  20. High energy particle acceleration by relativistic plasma waves

    International Nuclear Information System (INIS)

    Amiranoff, F.; Jacquet, F.; Mora, P.; Matthieussent, G.

    1991-01-01

    Accelerating schemes using plasmas, lasers or electron beams are proposed and compared to electron bunches in dielectric media or laser propagation through a slow wave structure made of liquid droplets. (L.C.J.A.). 33 refs, 20 figs

  1. The effect of impact velocity on droplet-wall collision heat transfer above the leidenfrost point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Seok; Kim, Hyung Dae [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of); Bae, Sung Won; Kim, Kyung Doo [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.

  2. Shoulder Impingement Syndromes: Implications on Physical Therapy Examination and Intervention

    Science.gov (United States)

    2005-01-01

    A painful shoulder presents challenges in examination, diagnosis and intervention for the physical therapist because of the complexity of the structures involved. A common cause of shoulder pain is shoulder impingement syndrome. This was first described as a condition in which the soft tissues of the subacromial space were chronically entrapped and compressed between the humeral head and the subacromial arch. This definition does not account for the myriad potential causes of shoulder impingement conditions, as forms of impingement other than subacromial soft tissue compression may explain different symptomatic shoulder injuries. This paper describes shoulder impingement syndromes that have been hypothesized, identified and analyzed in the literature. Physical Therapy examination and intervention for these syndromes are also discussed. PMID:25792938

  3. Impact of impingement on the Hudson River white perch population

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Van Winkle, W.

    1980-01-01

    The impact of power plant impingement on the 1974 and 1975 year classes of the Hudson River white perch population is assessed using a simple model derived from Ricker's theory of fisheries dynamics. The impact of impingement is expressed in the model as the conditional mortality rate, rather than as the more commonly used exploitation rate. Since the calculated impact is sensitive to errors in the estimation of population size and total mortality, ranges of probable values of these quantities are used to compute upper and lower bounds on the fractional reduction in abundance of each year class. Best estimates of abundance and mortality are used to compute the conditional impingement mortality rate separately for each plant and month. The results are used to assess the relative impacts of white perch impingement at six Hudson River power plants and to identify the seasons during which the impact is highest

  4. Surgical hip dislocation for treatment of cam femoroacetabular impingement

    Directory of Open Access Journals (Sweden)

    Milind M Chaudhary

    2015-01-01

    Conclusion: Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term.

  5. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  6. Diagnostic imaging of shoulder impingement; Bildgebende Diagnostik des Schultergelenkes bei Impingement

    Energy Technology Data Exchange (ETDEWEB)

    Merl, T. [Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik; Weinhardt, H. [Klinikum Rechts der Isar, Muenchen (Germany). Klinik und Poliklinik fuer Orthopaedie; Oettl, G. [Klinikum Rechts der Isar, Muenchen (Germany). Klinik und Poliklinik fuer Orthopaedie; Lenz, M. [Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik; Riel, K.A. [Klinikum Rechts der Isar, Muenchen (Germany). Klinik und Poliklinik fuer Orthopaedie

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage. [Deutsch] Die Magnetresonanztomographie hat sich in den letzten Jahren zur Methode der Wahl in der Diagnostik der Gelenke entwickelt, sie erlaubt neben der Abbildung aller knoechernen auch die Abbildung aller Weichteilelemente eines Gelenkes. Auch in der Diagnostik der Schultergelenkserkrankungen besitzt die Magnetresonanztomographie einen festen Stellenwert mit hoher diagnostischer Treffsicherheit in der Beurteilung der Rotatorenmanschette, als MR-Arthrographie auch in der Beurteilung der Instabilitaet bzw von Laesionen des labrokapsulaeren Komplexes. In der Bewertung frueher Stadien des Impingement ist die klassische Magnetresonanztomographie als statische Methode auf indirekte Zeichen angewiesen, die in vielen Faellen nicht ausreichende Sicherheit bieten und dem funktionellen Charakter des Krankheitsbildes nicht ausreichend Rechnung tragen. Hier koennte die funktionelle Magnetresonanztomographie unter Abbildung des Arms in Abduktion und Rotation eine

  7. The Shoulder Gradient in Patients with Unilateral Shoulder Impingement Syndrome

    OpenAIRE

    Kim, Hee-Sang; Lee, Jong Ha; Yun, Dong Hwan; Yun, Jee-Sang; Shin, Yong Won; Chon, Jinmann; Hwang, Dae Gyu

    2011-01-01

    Objective To investigate the relationship between the shoulder gradient and acromiohumeral interval of both shoulders in patients with unilateral shoulder impingement syndrome. Method Using the angulometer, we measured the shoulder gradient in patients with unilateral shoulder impingement syndrome in a standing position. Using the radiography, we measured the acromiohumeral interval and the angle between a vertical line and a line connecting a superior angle with an inferior angle of the scap...

  8. Plume Impingement Analysis for the European Service Module Propulsion System

    Science.gov (United States)

    Yim, John; Sibe, Fabien; Lerardo, Nicola

    2014-01-01

    Plume impingement analyses were performed for the European Service Module (ESM) propulsion system Orbital Maneuvering System engine (OMS-E), auxiliary engines, and reaction control system (RCS) engines. The heat flux from plume impingement on the solar arrays and other surfaces are evaluated. This information is used to provide inputs for the ESM thermal analyses and help determine the optimal configuration for the RCS engines.

  9. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets

    Science.gov (United States)

    Ren, Zhaoxin; Wang, Bing; Zheng, Longxi

    2018-03-01

    The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.

  10. Unusual Bilateral Rim Fracture in Femoroacetabular Impingement

    Directory of Open Access Journals (Sweden)

    Claudio Rafols

    2015-01-01

    Full Text Available This is a report of one case of bilateral acetabular rim fracture in association with femoroacetabular impingement (FAI, which was treated with a hip arthroscopic procedure, performing a partial resection, a labral reinsertion, and a subsequential internal fixation with cannulated screws. Up to date, there are in the literature only two reports of rim fracture and “os acetabuli” in association with FAI. In the case we present, the pincer and cam resection were performed without complications; the technique used was published previously. With this technique the head of the screw lays hidden by the reattached labrum. We removed partially the fractured rim fragment and the internal fixation of the remaining portion was achieved with a screw. In the event of a complete resection of the fragment, it would have ended with a LCE angle of 18° and a high probability of hip instability. We believe that this bilateral case helps establish the efficacy and reproducibility of the technique described by Larson.

  11. Statistical Shape Modeling of Cam Femoroacetabular Impingement

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Michael D.; Dater, Manasi; Whitaker, Ross; Jurrus, Elizabeth R.; Peters, Christopher L.; Anderson, Andrew E.

    2013-10-01

    In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in both groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.

  12. Investigation of impingement attack mechanism of copper alloy condenser tubes

    International Nuclear Information System (INIS)

    Fukumura, Takuya; Nakajima, Nobuo; Arioka, Koji; Totsuka, Nobuo; Nakagawa, Tomokazu

    2001-01-01

    In order to investigate generation and growth mechanisms of impingement attacks of sea water against copper alloy condenser tubes used in condensers of nuclear power plants, we took out condenser tubes from actual condensers, cut them into several pieces and carried out several material tests mainly for impinged spots. In addition water flow inside of a pit was analyzed. From the results of the investigation, it was found that all of impingement attacks were found in the marks left by sessile organisms and none were found in downstream of the marks as frequently proposed so far. At the pits generated inside the marks, iron coating was striped and zinc content was deficient in some cases. Combining these data and the result of flow analysis, we considered the following mechanism of the impingement attacks: sessile organisms clinging to the surface of the condenser tube and growth, occlusion of the tube, extinction and decomposition of sessile organisms, pollution corrosion under the organisms and cavity formation, occlusion removal by the cleaning, generation of impingement attacks by flow collision inside the cavity, growth of the impingement attacks. (author)

  13. The Shoulder Gradient in Patients with Unilateral Shoulder Impingement Syndrome

    Science.gov (United States)

    Kim, Hee-Sang; Lee, Jong Ha; Yun, Dong Hwan; Yun, Jee-Sang; Shin, Yong Won; Chon, Jinmann

    2011-01-01

    Objective To investigate the relationship between the shoulder gradient and acromiohumeral interval of both shoulders in patients with unilateral shoulder impingement syndrome. Method Using the angulometer, we measured the shoulder gradient in patients with unilateral shoulder impingement syndrome in a standing position. Using the radiography, we measured the acromiohumeral interval and the angle between a vertical line and a line connecting a superior angle with an inferior angle of the scapula. Results In patients with unilateral shoulder impingement syndrome, the frequency of shoulder impingement syndrome was 76.2% (16 of 21) on the side of the relatively lower shoulder. The mean acromiohumeral interval on the side of the lower shoulder was 10.03±1.28 mm, compared with 10.46±1.50 mm for the higher shoulder. The angle between a vertical line and a line connecting a superior angle with an inferior angle of the scapular of the side of the lower shoulder was -0.31±3.73 degrees, compared with 3.85±4.42 degrees for the higher shoulder. Conclusion The frequency of shoulder impingement syndrome was significantly higher on the side of the relatively lower shoulder, and there is no significant difference in the acromiohumeral interval between the side of the lower shoulder and that of the higher shoulder. In patients with unilateral shoulder impingement syndrome, the scapular on the side of lower shoulder was more rotated downward than on the side of the higher shoulder. PMID:22506196

  14. The shoulder gradient in patients with unilateral shoulder impingement syndrome.

    Science.gov (United States)

    Kim, Hee-Sang; Lee, Jong Ha; Yun, Dong Hwan; Yun, Jee-Sang; Shin, Yong Won; Chon, Jinmann; Hwang, Dae Gyu

    2011-10-01

    To investigate the relationship between the shoulder gradient and acromiohumeral interval of both shoulders in patients with unilateral shoulder impingement syndrome. Using the angulometer, we measured the shoulder gradient in patients with unilateral shoulder impingement syndrome in a standing position. Using the radiography, we measured the acromiohumeral interval and the angle between a vertical line and a line connecting a superior angle with an inferior angle of the scapula. In patients with unilateral shoulder impingement syndrome, the frequency of shoulder impingement syndrome was 76.2% (16 of 21) on the side of the relatively lower shoulder. The mean acromiohumeral interval on the side of the lower shoulder was 10.03±1.28 mm, compared with 10.46±1.50 mm for the higher shoulder. The angle between a vertical line and a line connecting a superior angle with an inferior angle of the scapular of the side of the lower shoulder was -0.31±3.73 degrees, compared with 3.85±4.42 degrees for the higher shoulder. The frequency of shoulder impingement syndrome was significantly higher on the side of the relatively lower shoulder, and there is no significant difference in the acromiohumeral interval between the side of the lower shoulder and that of the higher shoulder. In patients with unilateral shoulder impingement syndrome, the scapular on the side of lower shoulder was more rotated downward than on the side of the higher shoulder.

  15. Snell's law and walking droplets

    Science.gov (United States)

    Bush, John; Pucci, Giuseppe; Aubin, Benjamin; Brun, Pierre-Thomas; Faria, Luiz

    2016-11-01

    Droplets walking on the surface of a vibrating bath have been shown to exhibit a number of quantum-like features. We here present the results of a combined experimental and theoretical investigation of such droplets crossing a linear step corresponding to a reduction in bath depth. When the step is sufficiently large, the walker reflects off the step; otherwise, it is refracted as it crosses the step. Particular attention is given to an examination of the regime in which the droplet obeys a form of Snell's Law, a behavior captured in accompanying simulations. Attempts to provide theoretical rationale for the dependence of the effective refractive index on the system parameters are described. Supported by NSF through CMMI-1333242.

  16. Instability of expanding bacterial droplets.

    Science.gov (United States)

    Sokolov, Andrey; Rubio, Leonardo Dominguez; Brady, John F; Aranson, Igor S

    2018-04-03

    Suspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a remarkable propensity for self-organization, and formation of large-scale coherent structures. Most active matter research deals with almost homogeneous in space systems and little is known about the dynamics of strongly heterogeneous active matter. Here we report on experimental and theoretical studies on the expansion of highly concentrated bacterial droplets into an ambient bacteria-free fluid. The droplet is formed beneath a rapidly rotating solid macroscopic particle inserted in the suspension. We observe vigorous instability of the droplet reminiscent of a violent explosion. The phenomenon is explained in terms of continuum first-principle theory based on the swim pressure concept. Our findings provide insights into the dynamics of active matter with strong density gradients and significantly expand the scope of experimental and analytic tools for control and manipulation of active systems.

  17. Room temperature water Leidenfrost droplets.

    Science.gov (United States)

    Celestini, Franck; Frisch, Thomas; Pomeau, Yves

    2013-10-28

    We experimentally investigate the Leidenfrost effect at pressures ranging from 1 to 0.05 atmospheric pressure. As a direct consequence of the Clausius–Clapeyron phase diagram of water, the droplet temperature can be at ambient temperature in a non-sophisticated lab environment. Furthermore, the lifetime of the Leidenfrost droplet is significantly increased in this low pressure environment. The temperature and pressure dependence of the evaporation rate is successfully tested against a recently proposed model. These results may pave the way for reaching efficient Leidenfrost micro-fluidic and milli-fluidic applications.

  18. Radiotherapy for shoulder impingement; Bestrahlung beim Impingementsyndrom des Schultergelenks

    Energy Technology Data Exchange (ETDEWEB)

    Adamietz, B. [Universitaetsklinikum Erlangen (Germany). Inst. fuer Radiologie; Sauer, R.; Keilholz, L. [Universitaetsklinikum Erlangen (Germany). Strahlentherapeutische Klinik

    2008-05-15

    Background and Purpose: Up to now, degenerative shoulder diseases were summarized by the term 'periarthritis humeroscapularis'. Actual shoulder diseases can be differentiated etiopathologically according to a primary and secondary impingement syndrome. Narrowing of the subacromial space, which is caused by an osseous shape variant, leads to primary impingement. Secondary impingement develops, when the subacromial space is reduced by swelling tissue below the osseous shoulder roof. This study aimed for the exact diagnosis to indicate therapy and to classify the results according to the Constant score. Patients and Methods: From August 1999 to September 2002, 102 patients with 115 shoulder joint conditions underwent radiation therapy (RT). All joints received two RT series (6 x 0.5 Gy/series) applied in two to three weekly fractions, totaling a dosage of 6.0 Gy (250 kV, 15 mAs, 1-mm Cu filter). The second RT course started 6 weeks after the end of the first. 115 shoulders were examined before RT, 6 weeks after the second RT course and, finally, during the follow-up from January to May 2003. Results: Pain relief was achieved in 94/115 shoulder joints (82%) after 18-month follow-up (median). A significant difference existed between secondary impingement and primary/non-impingement according to response. Tendinosis calcarea, bursitis subdeltoidea, tendovaginitis of the long biceps tendon, and capsulitis adhaesiva responded well to therapy. Conclusion: Shoulder diseases of secondary impingement demonstrate a good response to RT. Less or no benefit was found in primary impingement syndrome or complete rotator cuff disruption and acute shoulder injuries, respectively. (orig.)

  19. Experimental Investigation of Lagrangian Statistics of Motion of Diesel Oil Droplets and Fluid Particles in Isotropic Turbulence

    Science.gov (United States)

    Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph

    2007-11-01

    Lagrangian motion in isotropic turbulence of slightly buoyant diesel oil droplets (specific gravity 0.85 and size 0.6-1.1 mm) and almost neutrally buoyant, 50 μm tracer particles are studied using high speed, in-line digital holographic cinematography. Droplets and particles are injected into a 50x50x70 mm^3 sample volume located at the center of a nearly isotropic turbulence facility, and data are obtained for Reλ of 190, 195 and 214. The turbulence is characterized by 2D PIV measurements at different planes. An automated tracking program has been used for measuring velocity time history of more than 22000 droplet tracks and 15000 particle tracks. Analysis compares probability density functions (PDF) of Lagrangian velocity and acceleration, spectra, as well as velocity and acceleration autocorrelation functions of droplets with those of particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. PDFs of droplet velocity have nearly Gaussian distributions, justifying use of Taylor's (1921) model to calculate diffusion parameters. The fluid particle diffusion coefficient exceeds that of the droplet primarily because the fluid diffusion timescale is higher than that of the droplet. For all droplet sizes and Reynolds numbers, the diffusion coefficient, calculated using Taylor's model, scaled by quiescent rise velocity and turbulence integral length scale, is a monotonically increasing function of the turbulence level normalized by droplet quiescent rise velocity.

  20. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation

    DEFF Research Database (Denmark)

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N.; Svahn, Helene Andersson

    2017-01-01

    in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped...

  1. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations.

    Science.gov (United States)

    You, David J; Yoon, Jeong-Yeol

    2012-09-04

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using "wire-guided" method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of

  2. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations

    Directory of Open Access Journals (Sweden)

    You David J

    2012-09-01

    Full Text Available Abstract A computer numerical control (CNC apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study. This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate. Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction. The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability, in rapid succession (using droplets

  3. Experimental Investigation on Acoustic Control Droplet Transfer in Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Weifeng, Xie; Chenglei, Fan; Chunli, Yang; Sanbao, Lin

    2018-02-01

    Ultrasonic-wave-assisted gas metal arc welding (U-GMAW) is a new, advanced arc welding method that uses an ultrasonic wave emitted from an ultrasonic radiator above the arc. However, it remains unclear how the ultrasonic wave affects the metal droplet, hindering further application of U-GMAW. In this paper, an improved U-GMAW system was used and its superiority was experimentally demonstrated. Then a series of experiments were designed and performed to study how the ultrasonic wave affects droplet transfer, including droplet size, velocity, and motion trajectory. The behavior of droplet transfer was observed in high-speed images. The droplet transfer is closely related to the distribution of the acoustic field, determined by the ultrasonic current. Moreover, by analyzing the variably accelerated motion of the droplet, the acoustic control of the droplet transfer was intuitively demonstrated. Finally, U-GMAW was successfully used in vertical-up and overhead welding experiments, showing that U-GMAW is promising for use in welding in all positions.

  4. Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis

    Science.gov (United States)

    Bradshaw, J.; Billingham, J.

    2016-01-01

    Recent experiments [P. Brunet, J. Eggers, and R. D. Deegan, Phys. Rev. Lett. 99, 144501 (2007), 10.1103/PhysRevLett.99.144501] have shown that a liquid droplet on an inclined plane can be made to move uphill by sufficiently strong, vertical oscillations. In order to investigate this counterintuitive phenomenon we use a model in which liquid inertia and viscosity are assumed negligible so that the motion of the droplet is dominated by the applied acceleration due to the oscillation of the plate, gravity, and surface tension. We explain how the leading order motion of the droplet can be separated into a spreading mode and a swaying mode. For a linear contact line law, the maximum rise velocity occurs when these modes are in phase. We show that, both with and without contact angle hysteresis, the droplet can climb uphill and also that, for certain contact line laws, the motion of the droplet can produce footprints similar to experimental results. We show that if the two modes are out of phase when there is no contact angle hysteresis, the inclusion of hysteresis can force them into phase. This in turn increases the rise velocity of the droplet and can, in some cases, cause a sliding droplet to climb.

  5. Droplets, Bubbles and Ultrasound Interactions

    NARCIS (Netherlands)

    Shpak, O.; Verweij, M.; de Jong, N.; Versluis, Michel; Escoffre, J.M.; Bouakaz, A.

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to

  6. Salt stains from evaporating droplets

    NARCIS (Netherlands)

    Shahidzadeh, N.; Schut, M.F.L.; Desarnaud, J.; Prat, M.; Bonn, D.

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls, but also very important in many applications such as purification of pharmaceuticals, deicing of

  7. Spin lattices of walking droplets

    Science.gov (United States)

    Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John

    2017-11-01

    We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  8. Some Physics Inside Drying Droplets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Some Physics Inside Drying Droplets. Dileep Mampallil. General Article Volume 19 Issue 2 February 2014 pp 123-134. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/02/0123-0134 ...

  9. Acromion Types and Role of Corticosteroid with Shoulder Impingement Syndrome.

    Science.gov (United States)

    Akram, Muhammad; Shah Gillani, Syed Faraz Ul Hassan; Farooqi, Faheem Mubashir; Awais, Syed Muhammad

    2016-12-01

    To determine the association between shoulder impingement and morphological characteristics of acromion and the role of sub-acromial injection of methylprednisolone in the short-term treatment for relieving pain and improve functional disability of these patients. A descriptive study. Department of Orthopedic Surgery and Traumatology Unit-I (DOST-I), Mayo Hospital, Lahore, between November 2013 to June 2014. All patients presented in OPD with shoulder pain were included as subjects and evaluated by clinical test and categorised using X-ray scapula Y-view. Patients with impingement syndrome were correlated with Bigliani types and offered intra-lesional injection into sub-acromial space with 2ml of xylocaine 2% and 40 mg of methylprednisolone using 22 gauge needle. The effectiveness was assessed in terms of relieving pain and good functional outcomes; and rotator cuff tear was clinically assessed among impingement positive patient. The pain was assessed using visual analogue score before and after the administration of the injection. Demographic variables for frequencies and their associations were analysed using SPSS version 20.0. Significance level was p shoulder impingement. Most had moderate pain. Thirty-four patients required intralesional steroid, which relieved the pain in 31 of them. Shoulder impingement syndrome without tear of rotator cuff tendon was found in younger age group between 40 to 45 years, which was relieved by intralesional corticosteroid administration. These patients had type II (curved) acromion, according to Bigliani classification.

  10. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Feo, Alex

    2011-01-01

    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  11. A quasi-stationary numerical model of atomized metal droplets, I: Model formulation

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini H; Thorborg, Jesper

    1999-01-01

    A mathematical model for accelerating powder particles by a gas and for their thermal behavior during flight has been developed. Usually, dealing with the solidification of metal droplets, the interaction between an array of droplets and the surrounding gas is not integrated into the modeling...... of such a process, e.g. in the literature the gas temperature is often modeled by an empirical expression. In the present model, however, the interaction between the enveloping gas and an array of droplets has been coupled and calculated numerically. The applicability of the empirical relation of the gas...... temperature proposed in the literature has been discussed in relation to the present model. One of the major advantages of the present modeling is that it provides a tool to predict the thermal behavior of droplets during flight without the need of experimental parameters, i.e. gas temperature. Furthermore...

  12. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    Science.gov (United States)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  13. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  14. ARTHROSCOPIC TREATMENT OF ANTERIOR IMPINGEMENT IN THE ANKLE

    Directory of Open Access Journals (Sweden)

    Martin Mikek

    2004-12-01

    Full Text Available Background. Anterior soft tissue impingement is a common cause of chronic pain in the ankle. The preferred method of operative treatment is an arthroscopic excision of hypertrophic fibrous and synovial tissue in the anterior part of the ankle joint.Methods. We present the results of arthroscopic treatment of anterior ankle impingement in group of 14 patients.Results. Subjective improvement after the procedure was observed in all patients and 13 of them (93% were without any symptoms after the operation. One patient reported of intermittent pain, especially when walking on uneven grounds.Conclusions. We conclude that arthroscopic excision of hypertrophic synovial tissue in the anterior part of the ankle which causes the symptoms of impingement is a minimally invasive procedure that is both safe and reliable. When used for appropriate indications, an improvement can be expected in over 90% of patients.

  15. Clinical radiation diagnostics of shoulder joint impingement syndrome

    International Nuclear Information System (INIS)

    Litvin, Yu.P.; Logvinenko, V.V.

    2014-01-01

    46 patients about an impingement are investigated by a syndrome of a humeral joint. Among them men was 28 (60,9 %) the person, women 18 (39,1 %). Middle age of the surveyed has made 52,6 ± 2,0 year. The traditional roentgenography is executed to all patients, a spiral computer tomography - 5 (10,9 %), an ultrasonography - 44 (95,7 %), a magnetic resonance imaging - 11 (23,9 %). Operative treatment is spent 16 (34,8 %) by the patient. Direct radial symptoms are what specify an impingement of a syndrome of a humeral joint in the reasons, indirect - symptoms of an inflammation both degenerate and dystrophic changes of structures of area of a humeral joint which are involved in pathological process. The best results are given by complex radial research at which it is possible to find out direct and indirect symptoms a syndrome impingement

  16. Take off of small Leidenfrost droplets.

    Science.gov (United States)

    Celestini, Franck; Frisch, Thomas; Pomeau, Yves

    2012-07-20

    We put in evidence the unexpected behavior of Leidenfrost droplets at the later stage of their evaporation. We predict and observe that, below a critical size Rl, the droplets spontaneously take off due to the breakdown of the lubrication regime. We establish the theoretical relation between the droplet radius and its elevation. We predict that the vapor layer thickness increases when the droplets become smaller. A satisfactory agreement is found between the model and the experimental results performed on droplets of water and of ethanol.

  17. Analysis of impingement impacts on Hudson River fish populations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; van Winkle, W.

    1988-01-01

    Impacts of impingement, expressed as reductions in year-class abundance, were calculated for six Hudson River fish populations. Estimates were made for the 1974 and 1975 year classes of white perch, striped bass, Atlantic tomcod, and American shad, and the 1974 year classes of alewife and blueback herring. The maximum estimated reductions in year-class abundance were less than 5% for all year classes except the 1974 and 1975 white perch year classes and the 1974 striped bass year class. Only for white perch were the estimates greater than 10% per year. For striped bass, the 146,000 fish from the 1974 year class that were killed by impingement could have produced 12,000-16,000 5-year-old fish or 270-300 10-year-olds. Also estimated were the reductions in mortality that could have been achieved had closed-cycle cooling systems been installed at one or more of three power plants (Bowline point, Indian Point, and Roseton) and had the screen-wash systems at Bowline Point and Indian Point been modified to improve the survival of impinged fish. Closed-cycle cooling at all three plants would have reduced impingement impacts on white perch, striped bass, and Atlantic tomcod by 75% or more; installation of closed-cycle cooling at Indian Point alone would have reduced impingement impacts on white perch and Atlantic tomcod by 50%-80%. Modified traveling screens would have been less effective than closed-cycle cooling, but still would have reduced impingement impacts on white perch by roughly 20%. 23 refs., 1 fig., 3 tabs

  18. Accelerating physical rainbow model with CUDA

    Science.gov (United States)

    Zhang, Jinsen; Zheng, Changwen

    2017-07-01

    Currently Lorenz-Mie theory is the most accurate technique to simulate rainbows. However, it is still very attractive to use a model based on geometric optics to simulate rainbows, even methods based on geometric optics are not accurate enough. Since the droplets in the nature are non-spherical due to gravity and surface tension, Lorenz-Mie theory has difficult in handling non-spherical droplets, but they are easy for ray tracers. Sadeghi et al. develop a model based on geometric optics and do some extra work to match the prediction of Lorenz-Mie theory. However, the model takes much time on calculating to get sufficiently accurate phase function of droplets. In this paper, we firstly implement the model on PBRT, and then accelerate it with CUDA. The experiment results demonstrate that our acceleration algorithm greatly improves the speed of the model.

  19. Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet

    International Nuclear Information System (INIS)

    Li Hungyi; Chen Kuanying; Chiang Minghung

    2009-01-01

    This work experimentally and numerically studies the thermal-fluid characteristics of plate-fin heat sinks under impingement cooling by adjusting the impinging Reynolds number, the impingement distance, and the fin dimensions. The parameters and the ranges under consideration are the impinging Reynolds number (Re = 5000-25,000), the impingement distance (Y/D = 4-28), the fin width (W/L = 0.08125-0.15625) and the fin height (H/L = 0.375-0.625). The results show that the heat transferred by the heat sink increases with the impinging Reynolds number. The thermal performance can be improved significantly even at low impinging Reynolds number. However, the improvement becomes indistinct as the impinging Reynolds number increases. The thermal resistance declines as the impingement distance increases, and is minimal at Y/D = 20 for various impinging Reynolds numbers. Additionally, the thermal resistance increases as the impingement distance increases further. Increasing the fin width can effectively reduce the thermal resistance. However, as the fin width increases beyond a particular value, the thermal resistance increases dramatically. Reducing the thermal resistance by increasing the fin height depends on a suitable impinging Reynolds number and fin width. Therefore, the effect of the fin height is weaker than that of the impinging Reynolds number or the fin width.

  20. Enhanced droplet control by transition boiling.

    Science.gov (United States)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  1. Droplet lasers: a review of current progress

    Science.gov (United States)

    McGloin, D.

    2017-05-01

    It is perhaps surprising that something as fragile as a microscopic droplet could possibly form a laser. In this article we will review some of the underpinning physics as to how this might be possible, and then examine the state of the art in the field. The technology to create and manipulate droplets will be examined, as will the different classes of droplet lasers. We discuss the rapidly developing fields of droplet biolasers, liquid crystal laser droplets and explore how droplet lasers could give rise to new bio and chemical sensing and analysis. The challenges that droplet lasers face in becoming robust devices, either as sensors or as photonic components in the lab on chip devices, is assessed.

  2. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor

    International Nuclear Information System (INIS)

    Liu Dayu; Liang Guangtie; Lei Xiuxia; Chen Bin; Wang Wei; Zhou Xiaomian

    2012-01-01

    Graphical abstract: An oscillation-flow approach using a droplet reactor was developed to fully explore the potential of continuous-flow PCR. By fully utilizing interfacial chemistry, a water-in-oil (w/o) droplet was automatically generated by allowing an oil–water plug to flow through a polytetrafluoroethylene (PTFE) capillary. Due to the movement of aqueous phase relative to the oil phase, the droplet moves further into the middle of the oil plug with increase in migration distance. The resulting droplet was transported spanning the two heating zones and was employed as the reactor of oscillating-flow PCR. Highlights: ► Droplet formation in a capillary. ► Transport the droplet using oscillation-flow. ► Oscillation droplet PCR. ► Improved reaction efficiency. - Abstract: The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil–water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 μL) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to 89.5% and a detection limit of 10 DNA copies. The miniature PCR protocol developed in the current

  3. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dayu, E-mail: ruark@126.com [Laboratory of Clinical Chemical Technology, Department of Laboratory Medicine, Guangzhou First Municipal People' s Hospital, Affiliated to Guangzhou Medical College, 510180 Guangzhou (China); Liang Guangtie; Lei Xiuxia; Chen Bin; Wang Wei [Laboratory of Clinical Chemical Technology, Department of Laboratory Medicine, Guangzhou First Municipal People' s Hospital, Affiliated to Guangzhou Medical College, 510180 Guangzhou (China); Zhou Xiaomian, E-mail: zhouximi@yahoo.com [Laboratory of Clinical Chemical Technology, Department of Laboratory Medicine, Guangzhou First Municipal People' s Hospital, Affiliated to Guangzhou Medical College, 510180 Guangzhou (China)

    2012-03-09

    Graphical abstract: An oscillation-flow approach using a droplet reactor was developed to fully explore the potential of continuous-flow PCR. By fully utilizing interfacial chemistry, a water-in-oil (w/o) droplet was automatically generated by allowing an oil-water plug to flow through a polytetrafluoroethylene (PTFE) capillary. Due to the movement of aqueous phase relative to the oil phase, the droplet moves further into the middle of the oil plug with increase in migration distance. The resulting droplet was transported spanning the two heating zones and was employed as the reactor of oscillating-flow PCR. Highlights: Black-Right-Pointing-Pointer Droplet formation in a capillary. Black-Right-Pointing-Pointer Transport the droplet using oscillation-flow. Black-Right-Pointing-Pointer Oscillation droplet PCR. Black-Right-Pointing-Pointer Improved reaction efficiency. - Abstract: The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil-water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 {mu}L) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to

  4. Bone scintigraphy in costo-iliac impingement syndrome

    DEFF Research Database (Denmark)

    Madsen, Jan L

    2008-01-01

    Abstract: A syndrome of back pain caused by impingement of the lowest ribs against the iliac crest has been described in patients with osteoporotic vertebral fractures and loss of height of the patient. A case is presented of an 81-year-old woman with a long history of osteoporosis with compressi...... fractures of several thoracic and lumbar vertebrae. She presented with progressive lower back pain and weight loss. Bone scintigraphy revealed increased uptake in the lower ribs on both sides compatible with the costo-iliac impingement syndrome. There were no signs of bone metastases....

  5. Numerical study on morphology and solidification characteristics of successive droplet depositions on a substrate

    Science.gov (United States)

    Adaikalanathan, Vimalan

    Successive droplet impingement finds extensive applications in additive manufacturing technologies such as 3D printing, Liquid Metal Jetting and Net Form Manufacturing. Deposition, deformation and solidification of droplets are the constitutive stages in the process which determine the final outcome. Detailed knowledge about the flow behaviour, phase transformation and free surface deformation is required to have a complete understanding and optimization of the process parameters. Experimental research in this field is only limited to imaging techniques and post solidification analysis which only provide superficial information while overlooking most of the governing phenomenon. Knowledge of the physics governing the fluid and thermal behaviours can be applied to study the process with real time data pertaining to flow field, temperature profiles and solidification. However, free surface tracking, surface tension modelling, non-isothermal solidification and convection dominant heat transfer pose mathematical challenges in the solution of the governing equations. Moreover, deposition of droplets on pre-solidified splats or non-flat surfaces requires accurate special attention. The objective of the present work is to model the successive droplet impacts and simultaneous solidification and deformation. The highly non-linear flow field governed by the Navier Stokes equation is solved using a Two Step Projection method. The surface tension effects are accounted for through a Continuum Surface Force technique. One of the crucial elements in the study is the interface tracking algorithm. A Coupled Level Set Volume of Fluid (CLSVOF) method is formulated to give an accurate orientation of the drastically deforming interface and also facilitates generation of multiple droplets in a fixed domain at a user defined frequency, thereby conserving computational resources. The phase change is modelled using an enthalpy formulation of the energy equation with an implicit source term

  6. Numerical Study of Impingement Location of Liquid Jet Poured from a Tilting Ladle with Lip Spout

    Science.gov (United States)

    Castilla, R.; Gamez-Montero, P. J.; Raush, G.; Khamashta, M.; Codina, E.

    2017-04-01

    A new approach for simulating liquid poured from a tilting lip spout is presented, using neither a dynamic mesh nor the moving solid solution method. In this case only the tilting ladle is moving, so we propose to rotate the gravitational acceleration at an angular velocity prescribed by a geometrical and dynamical calculation to keep the poured flow rate constant. This angular velocity is applied to modify the orientation of the gravity vector in computational fluid dynamics (CFD) simulations using the OpenFOAM® toolbox. Also, fictitious forces are considered. The modified solver is used to calculate the impingement location for six spout geometries and compare the jet dispersion there. This method could offer an inexpensive tool to calculate optimal spout geometries to reduce sprue size in the metal casting industry.

  7. Effect of droplet size on the droplet behavior on the heterogeneous surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Yeon; Son, Sung Wan; Ha, ManYeong [Pusan National University, Busan (Korea, Republic of); Park, Yong Gap [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The characteristics of a three-dimensional hemispherical droplet on a heterogeneous surface were studied using the Lattice Boltzmann method (LBM). The hydrophilic surface has a hydrophobic part at the center. The hemispherical droplets are located at the center of the heterogeneous surface. According to the contact angles of hydrophilic and hydrophobic bottom surfaces, the droplet either separates or reaches a new equilibrium state. The separation time varies according to the change in droplet size, and it affects the status of droplet separation. The droplet separation behavior was investigated by analyzing the velocity vector around the phase boundary line. The shape and separation time of a droplet are determined by the contact angle of each surface. The speed of droplet separation increases as the difference in contact angle increases between the hydrophobic surface and hydrophilic surface. The separation status and the separation time of a droplet are also determined by the change of the droplet size. As the size of the droplet decreases, the effect of surface tension decreases, and the separation time of the droplet also decreases. On the other hand, as the droplet becomes larger, the effect of surface tension increases and the time required for the droplet to separate also increases.

  8. Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Storgaard, Filip Holst; Pedersen, Christina Gravgaard; Jensen, Majbritt Lykke

    Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome.......Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome....

  9. Conservative or surgical treatment for subacromial impingement syndrome? A systematic review

    NARCIS (Netherlands)

    Dorrestijn, Oscar; Stevens, Martin; Winters, Jan C.; van der Meer, Klaas; Diercks, Ron L.

    2009-01-01

    Background: Patients with subacromial impingement syndrome are often operated on when conservative treatments fail. But does surgery really lead to better results than nonoperative measures? This systematic review compared effects of conservative and surgical treatment for subacromial impingement

  10. Anterior internal impingement of the shoulder in rugby players and other overhead athletes

    Directory of Open Access Journals (Sweden)

    Siddharth R. Shah, MBBS, MSc Sports Medicine (UK, MRCS-Ed

    2017-04-01

    Conclusion: This series of anterior internal impingement, which we believe is the largest in the literature to date, demonstrates the value of an to assess and successfully treat overhead athletes with anterior impingement syndrome.

  11. Experimental and Numerical Study of Nozzle Plume Impingement on Spacecraft Surfaces

    National Research Council Canada - National Science Library

    Ketsdever, A. D; Lilly, T. C; Gimelshein, S. F; Alexeenko, A. A

    2005-01-01

    ...) nozzle plume impinging on a simulated spacecraft surface. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC...

  12. Nozzle Plume Impingement on Spacecraft Surfaces: Effects of Surface Roughness (POSTPRINT)

    National Research Council Canada - National Science Library

    Ngalande, C; Killingsworth, M; Lilly, T; Gimelshein, S; Ketsdever, A

    2005-01-01

    ...) nozzle plume impinging on simulated spacecraft surfaces. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC...

  13. Shape-Shifting Droplet Networks.

    Science.gov (United States)

    Zhang, T; Wan, Duanduan; Schwarz, J M; Bowick, M J

    2016-03-11

    We consider a three-dimensional network of aqueous droplets joined by single lipid bilayers to form a cohesive, tissuelike material. The droplets in these networks can be programed to have distinct osmolarities so that osmotic gradients generate internal stresses via local fluid flows to cause the network to change shape. We discover, using molecular dynamics simulations, a reversible folding-unfolding process by adding an osmotic interaction with the surrounding environment which necessarily evolves dynamically as the shape of the network changes. This discovery is the next important step towards osmotic robotics in this system. We also explore analytically and numerically how the networks become faceted via buckling and how quasi-one-dimensional networks become three dimensional.

  14. Triplet pairing in fermionic droplets

    OpenAIRE

    Hernández, E. Susana; Barranco Gómez, Manuel

    1993-01-01

    We have investigated, in the L-S coupling scheme, the appearance of triplet pairing in fermionic droplets in which a single nl shell is active. The method is applied to a constant-strength model, for which we discuss the different phase transitions that take place as the number of particles in the shell is varied. Drops of 3He atoms can be plausible physical scenarios for the realization of the model.

  15. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also...... described, and their implications for microdroplet resonator technology are discussed. Optofluidic implementations of microdroplet resonators are reviewed with emphasis on the basic optomechanical properties....

  16. Vortices catapult droplets in atomization

    Energy Technology Data Exchange (ETDEWEB)

    Jerome, J. John Soundar, E-mail: soundar@dalembert.upmc.fr; Zaleski, Stéphane; Hoepffner, Jérôme [Institut Jean Le Rond d' Alembert, UPMC Univ. Paris 06 and CNRS-UMR 7190, F-75005 Paris (France); Marty, Sylvain; Matas, Jean-Philippe [Laboratoire des Écoulements Géophysiques et Industriels (LEGI), Univ. Grenoble Alpes and CNRS - UMR 5519, F-38000 Grenoble (France)

    2013-11-15

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave—just where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex.

  17. Vortices catapult droplets in atomization

    Science.gov (United States)

    Jerome, J. John Soundar; Marty, Sylvain; Matas, Jean-Philippe; Zaleski, Stéphane; Hoepffner, Jérôme

    2013-11-01

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave—just where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex.

  18. Vortices catapult droplets in atomization

    International Nuclear Information System (INIS)

    Jerome, J. John Soundar; Zaleski, Stéphane; Hoepffner, Jérôme; Marty, Sylvain; Matas, Jean-Philippe

    2013-01-01

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wave—just where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex

  19. Physical simulation of dry microburst using impinging jet model with ...

    African Journals Online (AJOL)

    In this work, an attempt has been made to simulate the dry microburst (microburst not accompanied by rain) experimentally using the impinging jet model for investigating the macroflow dynamics and scale (Reynolds number) dependency of the downburst flow. Flow visualization is done using a smoke generator for ...

  20. Gaskinetic Modeling on Dilute Gaseous Plume Impingement Flows

    Directory of Open Access Journals (Sweden)

    Chunpei Cai

    2016-12-01

    Full Text Available This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include impingement surface properties such as pressure, shear stress, and heat flux. From these surface properties, averaged coefficients of pressure, friction, heat flux, moment over the entire flat plate, and the distance from the moment center to the flat plate center are obtained. The final results include accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. The gaskinetic method and processes are heuristic and can be used to investigate other external high Knudsen (Kn number impingement flow problems, including the flow field and surface properties for a high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications, especially in aerospace and space engineering.

  1. Open versus arthroscopic treatment of chronic rotator cuff impingement

    NARCIS (Netherlands)

    Schröder, J.; van Dijk, C. N.; Wielinga, A.; Kerkhoffs, G. M.; Marti, R. K.

    2001-01-01

    We report the results of 238 consecutive patients who underwent in total 261 acromioplasties because of chronic rotator cuff impingement. The procedure was performed either in conventional open technique (80) or arthroscopically (181). Two years (1-10) after the operation 68% of the patients treated

  2. Radiographic findings of femoroacetabular impingement in capoeira players.

    Science.gov (United States)

    Mariconda, Massimo; Cozzolino, Andrea; Di Pietto, Francesco; Ribas, Manuel; Bellotti, Vittorio; Soldati, Alessandra

    2014-04-01

    Capoeira is a Brazilian martial art that requires extreme movements of the hip to perform jumps and kicks. This study evaluated a group of capoeira players to assess the prevalence of femoroacetabular impingement (FAI) in athletes practicing this martial art. Twenty-four experienced capoeira players (14 men, 10 women) underwent a diagnostic assessment, including clinical examination and standard radiographs of the pelvis and hips. The α-angle, head-neck offset, crossover sign, acetabular index, lateral centre-edge angle, and the Tönnis grade were assessed using the radiographs. Clinical relationships for any radiographic abnormalities indicating FAI were also evaluated. Four subjects (17 %) reported pain in their hips. Forty-four hips (91.7 %) had at least one radiographic sign of CAM impingement, and 22 (45.8 %) had an α-angle of more than 60°. Eighteen hips (37.5 %) had at least one sign of pincer impingement and 16 (33.3 %) a positive crossover sign. Sixteen hips (33.3 %) had mixed impingement. There was a significant positive association between having an α-angle of more than 60° and the presence of groin pain (P = 0.002). A reduced femoral head-neck offset (P capoeira players was found. In these subjects, a negative clinical correlation for an increased α-angle was also detected. Additional caution should be exercised whenever subjects with past or present hip pain engage in capoeira.

  3. Anterior Inferior Iliac Spine (AIIS) and Subspine Hip Impingement

    Science.gov (United States)

    Carton, Patrick; Filan, David

    2016-01-01

    Summary Background Abnormal morphology of the anterior inferior iliac spine (AIIS) and the subspine region of the acetabular rim are increasingly being recognised as a source of symptomatic extra-articular hip impingement. This review article aims to highlight important differences in the pathogenesis, clinical presentation and management of extra-articular hip impingement from both the AIIS and subspine bony regions, and the outcome following surgical intervention. Methods A literature review was undertaken to examine the supporting evidence for AIIS and subspine hip impingement. A narrative account of the Author’s professional experience in this area, including operative technique for arthroscopic correction, is also presented. Results Abnormal morphology of the AIIS and subspine region has been classified using cadaveric, radiological and arthroscopic means; the clinical presentation and operative treatment has been documented in several case series studies. Dual pathology is often present - recognition and treatment of both intra- and extra-articular components are necessary for good postoperative outcome. Conclusions AIIS and sub-spine hip impingement should be considered as distinct pathological entities, which may also co-exist. Symptom relief can be expected following arthroscopic deformity correction with the treatment of concomitant intra-articular pathology. Failure to recognise and treat the extra-articular component may affect postoperative outcome. Level of evidence V. PMID:28066737

  4. The 1991 version of the plume impingement computer program. Volume 1: Description

    Science.gov (United States)

    Bender, Robert L.; Somers, Richard E.; Prendergast, Maurice J.; Clayton, Joseph P.; Smith, Sheldon D.

    1991-01-01

    The objective of this contract was to continue development of a vacuum plume impingement evaluator to provide an analyst with a capability for rapid assessment of thruster plume impingement scenarios. The research was divided into three areas: Plume Impingement Computer Program (PLIMP) modification/validation; graphics development; and documentation in the form of a Plume Handbook and PLIMP Input Guide.

  5. Posterior Ankle Impingement in Two Athletic Twin Brothers, Could Genetics Play a Role?

    NARCIS (Netherlands)

    Bech, Niels H.; de Leeuw, Peter A. J.; Haverkamp, Daniel

    2016-01-01

    Pain posteriorly in the ankle can be caused by bony impingement of the posterolateral process of the talus. This process impinges between the tibia and calcaneus during deep forced plantar flexion. If this occurs it is called posterior ankle impingement syndrome. We report the case of 2 athletic

  6. Acceleration Mechanisms

    OpenAIRE

    Melrose, D. B.

    2009-01-01

    Glossary I. Background and context of the subject II. Stochastic acceleration III. Resonant scattering IV. Diffusive shock acceleration V. DSA at multiple shocks VI. Applications of DSA VII. Acceleration by parallel electric fields VIII. Other acceleration mechanisms IX. Future directions X. Appendix: Quasilinear equations XI. Bibliography

  7. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  8. Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests

    Science.gov (United States)

    Attari, B.; Weislogel, M.; Wollman, A.; Chen, Y.; Snyder, T.

    2016-10-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such "drop shooters" as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04-400 ml at ejection speeds of -0.007-0.12 m/s are demonstrated herein. A sample application of the drop jump method is made to the classic problem of low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified by the reader.

  9. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    Science.gov (United States)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  10. HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application

    Science.gov (United States)

    Tarasi, F.; Mahdipoor, M. S.; Dolatabadi, A.; Medraj, M.; Moreau, C.

    2016-12-01

    Water droplet erosion (WDE) is a phenomenon caused by impingement of water droplets of several hundred microns to a few millimeters diameter at velocities of hundreds of meters per second on the edges and surfaces of the parts used in such services. The solution to this problem is sought especially for the moving compressor blades in gas turbines and those operating at the low-pressure end of steam turbines. Thermal-sprayed tungsten carbide-based coatings have been the focus of many studies and are industrially accepted for a multitude of wear and erosion resistance applications. In the present work, the microstructure, phase analysis and mechanical properties (micro-hardness and fracture toughness) of WC-Co coatings are studied in relation with their influence on the WDE resistance of such coatings. The coatings are deposited by high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes. The agglomerated tungsten carbide-cobalt powders were in either sintered or non-sintered conditions. The WDE tests were performed using 0.4 mm water droplets at 300 m/s impact velocity. The study shows promising results for this cermet as WDE-resistant coating when the coating can reach its optimum quality using the right thermal spray process and parameters.

  11. Acromion types and role of corticosteroid with shoulder impingement syndrome

    International Nuclear Information System (INIS)

    Akram, M.; Gillani, S.F.U.S.; Awais, S.M.

    2016-01-01

    To determine the association between shoulder impingement and morphological characteristics of acromion and the role of sub-acromial injection of methylprednisolone in the short-term treatment for relieving pain and improve functional disability of these patients. Study Design: A descriptive study. Place and Duration of Study: Department of Orthopedic Surgery and Traumatology Unit-I (DOST-I), Mayo Hospital, Lahore, between November 2013 to June 2014. Methodology: All patients presented in OPD with shoulder pain were included as subjects and evaluated by clinical test and categorised using X-ray scapula Y-view. Patients with impingement syndrome were correlated with Bigliani types and offered intra-lesional injection into sub-acromial space with 2ml of xylocaine 2% and 40 mg of methylprednisolone using 22 gauge needle. The effectiveness was assessed in terms of relieving pain and good functional outcomes; and rotator cuff tear was clinically assessed among impingement positive patient. The pain was assessed using visual analogue score before and after the administration of the injection. Demographic variables for frequencies and their associations were analysed using SPSS version 20.0. Significance level was p<0.05. Among the 101 cases, there was no case of tear of rotator cuff tendon on clinical assessment. Majority of the patients (58.4%) were females with mean age of 31.38 +-1.13 years. Majority 57 (56.4%) of the patients had acromion type II (curved), which was the most common cause of shoulder impingement. Most had moderate pain. Thirty-four patients required intralesional steroid, which relieved the pain in 31 of them. Conclusion: Shoulder impingement syndrome without tear of rotator cuff tendon was found in younger age group between 40 to 45 years, which was relieved by intralesional corticosteroid administration. These patients had type II (curved) acromion, according to Bigliani classification. (author)

  12. The Role of Acromioplasty in the Treatment of Shoulder Impingement Syndrome Acromioplasty in the Treatment of Shoulder Impingement

    Directory of Open Access Journals (Sweden)

    Rüştü Nuran

    2011-12-01

    Full Text Available Aim: The results of open acromioplasty procedures were investigated for shoulder impingement syndrome in patients who did not respond to conservative treatment. Methods: Twenty cases of shoulder impingement syndrome who did not respond to conservative treatment were investigated prospectively. The shoulder abduction and flexion range of motion and muscle power were measured preoperatively and postoperatively. Anteroposterior, neutral, axillary and impingement radiographs were taken. Shoulder magnetic resonance imaging (MRI was performed. Clinical assessment was performed by the Constant shoulder score. Results: Results of MRI revealed that 20 cases had type 1, 2 and 3 acromion in 3, 9 and 8 patients, respectively. The mean followup time was 16 months. Compared to preoperative conditions, the results in 80% of cases were rated as perfect (p<0.000, since all cases had gained both significantly more range of motion (p<0.000 and muscle power (p<0.000, in addition to decreased pain in all cases (p<0.000. Four cases who had been rated as good had common features as advance age, traumatic etiology and inadequate rehabilitation. Conclusion: Open acromioplasty surgery reduces pain, increases range of motion and is an effective treatment option in cases of shoulder impingement syndrome not responding to conservative treatment. (The Me di cal Bul le tin of Ha se ki 2011; 49: 141-4

  13. Droplet Deformation Prediction with the Droplet Deormation and Break Up Model (DDB)

    Science.gov (United States)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  14. Coloured oil droplets enhance colour discrimination.

    OpenAIRE

    Vorobyev, Misha

    2003-01-01

    The eyes of most diurnal reptiles and birds contain coloured retinal filters-oil droplets. Although these filters are widespread, their adaptive advantage remains uncertain. To understand why coloured oil droplets appeared and were retained during evolution, I consider both the benefits and the costs of light filtering in the retina. Oil droplets decrease cone quantum catch and reduce the overlap in sensitivity between spectrally adjacent cones. The reduction of spectral overlap increases the...

  15. Stimulated Brillouin Cavity Optomechanics in Liquid Droplets

    Science.gov (United States)

    Giorgini, A.; Avino, S.; Malara, P.; De Natale, P.; Yannai, M.; Carmon, T.; Gagliardi, G.

    2018-02-01

    Liquid droplets are ubiquitous in nature wherein surface tension shapes them into perfect spheres with atomic-scale smooth surfaces. Here, we use stable droplets that cohost equatorial acoustical and optical resonances phase matched to enable the exchange of energy and momentum between sound and light. Relying on free-space laser excitation of multiple whispering-gallery modes, we harness a triple-resonant forward Brillouin scattering to stimulate optomechanical surface waves. Nonlinear amplification of droplet vibrations in the 60-70 MHz range is realized with spectral narrowing beyond the limit of material loss, thereby activating the droplet as hypersound-laser emitter.

  16. The collaborative work of droplet assembly.

    Science.gov (United States)

    Chen, Xiao; Goodman, Joel M

    2017-10-01

    Three proteins have been implicated in the assembly of cytoplasmic lipid droplets: seipin, FIT2, and perilipin. This review examines the current theories of seipin function as well as the evidence for the involvement of all three proteins in droplet biogenesis, and ends with a proposal of how they collaborate to regulate the formation of droplets. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Droplets passing through a soap film

    Science.gov (United States)

    Zou, Jun; Wang, Wei; Ji, Chen; Pan, Min

    2017-06-01

    Here, we report an experimental study of droplets colliding with a soap film. The behavior of the droplet is found to be dependent on the impact velocity. The threshold for a droplet to pass through the soap film is influenced by the droplet diameter. The contact time decreases with increasing impact velocity. Emphasis is placed on whether the outer shell remains intact. When the dimensionless contact time approaches 1, collapse of the shell begins. However, the shell does not collapse with further increasing impact velocity.

  18. Controlling droplet spreading with topography

    Science.gov (United States)

    Kant, P.; Hazel, A. L.; Dowling, M.; Thompson, A. B.; Juel, A.

    2017-09-01

    We present an experimental system that can be used to study the dynamics of a picoliter droplet (in-flight radius of 12.2 μ m ) as it spreads over substrates with topographic variations. We concentrate on the spreading of a droplet within a recessed stadium-shaped pixel, with applications to the manufacture of polymer organic light-emitting-diode displays, and find that the sloping sidewall of the pixel can either locally enhance or hinder spreading depending on whether the topography gradient ahead of the contact line is positive or negative, respectively. Locally enhanced spreading occurs via the formation of thin pointed rivulets along the sidewalls of the pixel through a mechanism similar to capillary rise in sharp corners. We demonstrate that a simplified model involving quasistatic surface-tension effects within the framework of a thin-film approximation combined with an experimentally measured dynamic spreading law, relating the speed of the contact line to the contact angle, provides excellent predictions of the evolving liquid morphologies. A key feature of the liquid-substrate interaction studied here is the presence of significant contact angle hysteresis, which enables the persistence of noncircular fluid morphologies. We also show that the spreading law for an advancing contact line can be adequately approximated by a Cox-Voinov law for the majority of the evolution. The model does not include viscous effects in the bulk of the droplet and hence the time scales for the propagation of the thin pointed rivulets are not captured. Nonetheless, this simple model can be used very effectively to predict the areas covered by the liquid and may serve as a useful design tool for systems that require precise control of liquid on substrates.

  19. Effect of droplet interaction on droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Kuerten, Johannes G.M.; Vreman, A.W.

    2015-01-01

    We present results of direct numerical simulation of heat transfer and droplet concentration in turbulent flow of a mixture of dry air, water vapor, and water droplets in a differentially heated channel. In particular, we study the effects of droplet collisions by comparing results of simulations

  20. Effect of droplet interaction on droplet-laden turbulent channel flow

    Science.gov (United States)

    Kuerten, J. G. M.; Vreman, A. W.

    2015-05-01

    We present results of direct numerical simulation of heat transfer and droplet concentration in turbulent flow of a mixture of dry air, water vapor, and water droplets in a differentially heated channel. In particular, we study the effects of droplet collisions by comparing results of simulations with and without droplet collision model for several overall droplet volume fractions. The results show that droplet collisions have a large influence on droplet concentration. Maximum local concentrations, which occur close to the walls of the channel, are reduced by almost an order of magnitude for the case with the highest overall volume fraction. In addition, the positive skewness of the local volume fraction is reduced by a factor of two near the walls. These findings show the importance of including four-way coupling, even in cases where the overall droplet volume fraction is only on the order of 10-4 and the Stokes number in wall units is only about 10. In spite of this large effect of droplet collisions on droplet concentration, the effect on the overall heat transfer between the walls of the channel is not more than approximately 17%. That the effect on the overall heat transfer is relatively small can be explained by the lower heat exchange area between droplets and gas in the near-wall areas, which results in a higher temperature difference between droplets and surrounding gas.

  1. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V.

    Science.gov (United States)

    Mahdipoor, M S; Kirols, H S; Kevorkov, D; Jedrzejowski, P; Medraj, M

    2015-09-22

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ V(n), where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl.

  2. Laser accelerators

    International Nuclear Information System (INIS)

    Willis, W.J.

    1977-01-01

    A brief discussion is given on the feasibility of using lasers to accelerate particle beams. A rough theory of operation is developed, and numerical results are obtained for an example equivalent to the Fermilab Accelerator

  3. Slip of Spreading Viscoplastic Droplets.

    Science.gov (United States)

    Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris

    2015-11-10

    The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.

  4. Heat transfer characteristics of impinging jet with pulsating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.I. [Chonbuk National University Graduate School, Chonju (Korea); Park, B.C.; Baek, B.J. [Chonbuk National University, Chonju (Korea)

    2000-11-01

    The method of impinging jet was applied lots of part in industrial field as a cooling of as gas turbine blade, a annealing of metal and plastic sheets, drying of textile, veneer paper, X-ray medical devices, laser weapons and electronic components. This study's main factor is reciprocating Jet impingement perpendicular to the heated Surface. We researched the effect of heat transfer and enhancement with pulsating air jet. The pulsating air jet has an improvement in pulsating Frequencies(f= 0.5, 1, 1.5, 3 Hz) and nozzle-to-plate distances(1/d= 2 {approx} 4, 6 {approx} 8, 4 {approx} 6, 8 {approx} 10). (author). 9 refs., 13 figs.

  5. The relationship between shoulder impingement syndrome and sleep quality.

    Science.gov (United States)

    Tekeoglu, I; Ediz, L; Hiz, O; Toprak, M; Yazmalar, L; Karaaslan, G

    2013-02-01

    The aim of this study was to examine potential relationship between subjective sleep quality and degree of pain in patients with shoulder impingement syndrome (SIS). Fourty patients with shoulder impingement syndrome were evaluated using the Pittsburgh Sleep Quality Index (PSQI) and the Shoulder Disability Questionnaire (SDQ). Forty three of age and sex matched healthy subjects were included in the control group. There was a significant difference between the patient and control groups in terms of all PSQI global scores and subdivisions (p shoulder pain was found obviously in patients with SIS. For this reason, patients with shoulder pain due to SIS may benefit from the pain killers and cognitive-behavioral interventions that specifically target sleep disturbances. Further studies which contain polysomnographic assessments, as well as determine psychologic status are still needed to put forth sleep quality in patients with SIS.  

  6. Stability of a charged, conducting, spheroidal droplet

    Science.gov (United States)

    Krappe, H. J.

    2018-02-01

    The stability of spheroidal, charged, conducting droplets is investigated. The effect of rotation and of external homogeneous electric fields on the equilibrium shape and on the limit of stability is also studied in close analogy to the behavior of volume-charged droplets considered in nuclear physics.

  7. Capillary droplets on Leidenfrost micro-ratchets

    NARCIS (Netherlands)

    Gomez Marin, Alvaro; Arnaldo del Cerro, D.; Römer, Gerardus Richardus, Bernardus, Engelina; Pathiraj, B.; Huis in 't Veld, Bert; Lohse, Detlef

    2012-01-01

    Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities

  8. Binary droplet collision at high Weber number.

    Science.gov (United States)

    Pan, Kuo-Long; Chou, Ping-Chung; Tseng, Yu-Jen

    2009-09-01

    By using the techniques developed for generating high-speed droplets, we have systematically investigated binary droplet collision when the Weber number (We) was increased from the range usually tested in previous studies on the order of 10 to a much larger value of about 5100 for water (a droplet at 23 m/s with a diameter of 0.7 mm). Various liquids were also used to explore the effects of viscosity and surface tension. Specifically, beyond the well-known regimes at moderate We's, which exhibited coalescence, separation, and separation followed by satellite droplets, we found different behaviors showing a fingering lamella, separation after fingering, breakup of outer fingers, and prompt splattering into multiple secondary droplets as We was increased. The critical Weber numbers that mark the boundaries between these impact regimes are identified. The specific impact behaviors, such as fingering and prompt splattering or splashing, share essential similarity with those also observed in droplet-surface impacts, whereas substantial variations in the transition boundaries may result from the disparity of the boundary conditions at impacts. To compare the outcomes of both types of collisions, a simple model based on energy conservation was carried out to predict the maximum diameter of an expanding liquid disk for a binary droplet collision. The results oppose the dominance of viscous drag, as proposed by previous studies, as the main deceleration force to effect a Rayleigh-Taylor instability and ensuing periphery fingers, which may further lead to the formations of satellite droplets.

  9. Droplet impact dynamics on flexible superhydrophobic surfaces

    Science.gov (United States)

    Kim, Jeong-Hyun; Gorman, William; Shang, Jessica

    2017-11-01

    In this talk, we will present a series of droplet impact experiments performed on elastic superhydrophobic surfaces. A commercial superhydrophobic paint, WX2100, was sprayed on smooth PDMS surfaces that were prepared by a standard soft lithography technique. The droplet spreading and retraction dynamics, trajectory, and substrate response will be presented for different surface lengths and Weber numbers. The elasticity of the superhydrophobic surfaces was found to affect dynamics of the droplets and the substrate. The contact time of the droplet on an elastic superhydrophobic surface was reduced by as much as 22% compared to the rigid superhydrophobic surface. The reduction in the contact time was even observed at low Weber number, We 20, which was much lower than the critical Weber number reported in literature. A variety of surface deflection behavior was observed after the second impact of the rebounding droplet. When the droplet motion was in phase with the surface motion, the deflection of the surface was found to deviate and increase from the original decay of the surface deflection. However, when the droplet motion was out of phase with the surface, the displacement of the surface was reduced and dampened quickly by the droplet body force.

  10. Maximum Diameter of Impacting Liquid Droplets

    NARCIS (Netherlands)

    Laan, N.; de Bruin, K.G.; Bartolo, D.; Josserand, C.; Bonn, D.

    2014-01-01

    The maximum diameter a droplet that impacts on a surface will attain is the subject of controversy, notably for high-velocity impacts of low-viscosity liquids such as water or blood. We study the impact of droplets of simple liquids of different viscosities, and a shear-thinning complex fluid

  11. Asymmetric wettability of nanostructures directs leidenfrost droplets.

    Science.gov (United States)

    Agapov, Rebecca L; Boreyko, Jonathan B; Briggs, Dayrl P; Srijanto, Bernadeta R; Retterer, Scott T; Collier, C Patrick; Lavrik, Nickolay V

    2014-01-28

    Leidenfrost phenomena on nano- and microstructured surfaces are of great importance for increasing control over heat transfer in high power density systems utilizing boiling phenomena. They also provide an elegant means to direct droplet motion in a variety of recently emerging fluidic systems. Here, we report the fabrication and characterization of tilted nanopillar arrays (TNPAs) that exhibit directional Leidenfrost water droplets under dynamic conditions, namely on impact with Weber numbers ≥40 at T ≥ 325 °C. The directionality for these droplets is opposite to the direction previously exhibited by macro- and microscale Leidenfrost ratchets where movement against the tilt of the ratchet was observed. The batch fabrication of the TNPAs was achieved by glancing-angle anisotropic reactive ion etching of a thermally dewet platinum mask, with mean pillar diameters of 100 nm and heights of 200-500 nm. In contrast to previously implemented macro- and microscopic Leidenfrost ratchets, our TNPAs induce no preferential directional movement of Leidenfrost droplets under conditions approaching steady-state film boiling, suggesting that the observed droplet directionality is not a result of the widely accepted mechanism of asymmetric vapor flow. Using high-speed imaging, phase diagrams were constructed for the boiling behavior upon impact for droplets falling onto TNPAs, straight nanopillar arrays, and smooth silicon surfaces. The asymmetric impact and directional trajectory of droplets was exclusive to the TNPAs for impacts corresponding to the transition boiling regime, linking asymmetric surface wettability to preferential directionality of dynamic Leidenfrost droplets on nanostructured surfaces.

  12. On-demand Droplet Manipulation via Triboelectrification

    Science.gov (United States)

    Wang, Wei; Vahabi, Hamed; Cackovic, Matthew; Jiang, Rui; Kota, Arun

    2017-11-01

    Controlled manipulation of liquid droplets has attracted tremendous interest across different scientific fields over the past two decades. To date, a variety of external stimuli-mediated methods such as magnetic field, electric field, and light have been developed for manipulating droplets on surfaces. However, these methods usually have drawbacks such as complex fabrication of manipulation platform, low droplet motility, expensive actuation system and lack of precise control. In this work, we demonstrate the controlled manipulation of liquid droplet with both high (e.g., water) and low (e.g., n-hexadecane) dielectric strengths on a smooth, slippery surface via triboelectric effect. Our highly simple, facile and portable methodology enables on-demand, precise manipulation of droplets using solely the electrostatic attraction or repulsion force, which is exerted on the droplet by a simple charged actuator (e.g., Teflon film). We envision that our triboelectric effect enabled droplet manipulation methodology will open a new avenue for droplet based lab-on-a-chip systems, energy harvesting devices and biomedical applications.

  13. A Novel Association between Femoroacetabular Impingement and Anterior Knee Pain

    OpenAIRE

    Sanchis-Alfonso, Vicente; Tey, Marc; Monllau, Joan Carles

    2015-01-01

    Background. For a long time it has been accepted that the main problem in the anterior knee pain (AKP) patient is in the patella. Currently, literature supports the link between abnormal hip function and AKP. Objective. Our objective is to investigate if Cam femoroacetabular impingement (FAI) resolution is related to the outcome in pain and disability in patients with chronic AKP recalcitrant to conservative treatment associated with Cam FAI. Material and Methods. A retrospective study on 7 p...

  14. Reduction of glycine particle size by impinging jet crystallization.

    Science.gov (United States)

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Subacromial Tenoxicam Injection in the Treatment of Impingement Syndrome

    OpenAIRE

    ?ift, Hakan; ?zkan, Feyza ?nl?; ?eker, Ali; ??yar, Mehmet; Ceyhan, Erman; Mahiro?ullar?, Mahir

    2014-01-01

    Objectives: As subacromial bursa injection is widely used for pain relief and functional improvements in patients with periarticular shoulder disorder, we aimed to present our results of subacromial tenoxicam injection in the treatment of impingement syndrome. Methods: Patients presented to the Department of Orthopaedics and Traumatology, Istanbul Medipol University with the primary complaints of shoulder pain from January 2012 to June 2013 were selected. Those who met the following inclusion...

  16. Shoulder impingement syndrome in relation to shoulder intensive work

    OpenAIRE

    Frost, P.; Andersen, J. H.

    1999-01-01

    OBJECTIVES: To analyse the risk of shoulder impingement syndrome relative to shoulder intensive work. METHODS: A cross sectional study of a historical cohort of 1591 workers employed between 1986 and 1993 at a slaughterhouse or a chemical factory. Workers not doing tasks in slaughtering or meat processing constituted the reference group. Intensity of shoulder work in meat processing tasks was assessed by video based observations. Information on shoulder disorders was collected by quest...

  17. Radiographic Evidence of Femoroacetabular Impingement in Athletes With Athletic Pubalgia

    OpenAIRE

    Economopoulos, Kostas J.; Milewski, Matthew D.; Hanks, John B.; Hart, Joseph M.; Diduch, David R.

    2014-01-01

    Background: Two of the most common causes of groin pain in athletes are femoroacetabular impingement (FAI) and athletic pubalgia. An association between the 2 is apparent, but the prevalence of radiographic signs of FAI in patients undergoing athletic pubalgia surgery remains unknown. The purpose of this study was to determine the prevalence of radiologic signs of FAI in patients with athletic pubalgia. Hypothesis: We hypothesized that patients with athletic pubalgia would have a high prevale...

  18. Annular synthetic jet used for impinging flow mass-transfer

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Tesař, V.

    2003-01-01

    Roč. 46, č. 17 (2003), s. 3291-3297 ISSN 0017-9310 R&D Projects: GA ČR GA101/99/0059; GA ČR GA101/99/0060; GA AV ČR IAA1057001 Institutional research plan: CEZ:AV0Z2076919 Keywords : impinging jet * visualization * mass transfer Subject RIV: BK - Fluid Dynamics Impact factor: 1.293, year: 2003

  19. Aerothermal Analysis of a Turbine Casing Impingement Cooling System

    Directory of Open Access Journals (Sweden)

    Riccardo Da Soghe

    2012-01-01

    Full Text Available Heat transfer and pressure drop for a representative part of a turbine active cooling system were numerically investigated by means of an in-house code. This code has been developed in the framework of an internal research program and has been validated by experiments and CFD. The analysed system represents the classical open bird cage arrangement that consists of an air supply pipe with a control valve and the present system with a collector box and pipes, which distribute cooling air in circumferential direction of the casing. The cooling air leaves the ACC system through small holes at the bottom of the tubes. These tubes extend at about 180° around the casing and may involve a huge number of impinging holes; as a consequence, the impinging jets mass flow rate may vary considerably along the feeding manifold with a direct impact on the achievable heat transfer levels. This study focuses on the performance, in terms of heat transfer coefficient and pressure drop, of several impinging tube geometries. As a result of this analysis, several design solutions have been compared and discussed.

  20. Shoulder impingement syndrome : evaluation of the causes with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Song, In Sup; Chung, Hun Young; Yoon, Sang Jin; Kim, Yang Soo; Shim, Hyung Jin; Choi, Young Hee; Lee, Jong Beum; Lee, Yong Chul; Kim, Kun Sang [Chungang Univ. College of Medicine, Seoul (Korea, Republic of); Choi, Yun Sun [Eulji Hospital, College of Medicine, Seoul (Korea, Republic of)

    1999-12-01

    Various mechanical causes which induce shoulder impingement syndrome have been identified with the help of MRI. The aim of this study is to evaluate the incidence of such causes. A total of 54 patients with clinically confirmed shoulder impingement syndrome and a normal control group(n=20) without symptoms were included. We evaluated the incidence of hook shaped acromion, low lying acromion, downward slope of the acromion, subacromial spur, acromioclavicular joint hypertrophy, coracoacromial ligament hypertrophy, high cuff muscle bulk, and os acromiale. Among the 54 patients, the following conditions were present: acromioclavicular joint hypertrophy(n=36), coracoacromial ligament hypertrophy(n=20), subacromial spur(n=18), downward sloping of the acromion(n=16), hook shaped acromion(n=11), relatively high cuff muscle bulk(n=6), low lying acromion relative to the clavicle(n=3), and os acromiale(n=1). In the normal control group there were nine cases of acromioclavicular joint hypertrophy, nine of coracoacromial ligament hypertrophy, nine of downward sloping acromion, and three of low lying acromion, but hook shaped acromion, high cuff muscle bulk, and os acromiale were not found. Among 54 patients, the syndrome was due to five simultancous causes in one patient, four causes in two, three causes in 12, two causes in 22, and one cause in 17. Hook shaped acromion and subacromial spur are the statistically significant causes of shoulder impingement syndrome. In 69% of patients, the condition was due to more than one cause.

  1. Subacromial Impingement Syndrome Caused by a Voluminous Subdeltoid Lipoma

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Murray

    2014-01-01

    Full Text Available Subacromial impingement syndrome is a clinical diagnosis encompassing a spectrum of possible etiologies, including subacromial bursitis, rotator cuff tendinopathy, and partial- to full-thickness rotator cuff tears. This report presents an unusual case of subdeltoid lipoma causing extrinsic compression and subacromial impingement syndrome. The patient, a 60-year-old man, presented to our institution with a few years' history of nontraumatic, posteriorly localized throbbing pain in his right shoulder. Despite a well-followed 6-months physiotherapy program, the patient was still suffering from his right shoulder. The MRI scan revealed a well-circumscribed 6 cm × 2 cm × 5 cm homogenous lesion compatible with a subdeltoid intermuscular lipoma. The mass was excised en bloc, and subsequent histopathologic examination confirmed a benign lipoma. At 6-months follow-up, the patient was asymptomatic with a complete return to his activities. Based on this case and a review of the literature, a subacromial lipoma has to be included in the differential diagnosis of a subacromial impingement syndrome refractory to nonoperative treatment. Complementary imaging modalities are required only after a failed conservative management to assess the exact etiology and successfully direct the surgical treatment.

  2. Spray Formation of Herschel-Bulkley Fluids using Impinging Jets

    Science.gov (United States)

    Rodrigues, Neil; Gao, Jian; Chen, Jun; Sojka, Paul E.

    2015-11-01

    The impinging jet spray formation of two non-Newtonian, shear-thinning, Herschel-Bulkley fluids was investigated in this work. The water-based gelled solutions used were 1.0 wt.-% agar and 1.0 wt.-% kappa carrageenan. A rotational rheometer and a capillary viscometer were used to measure the strain-rate dependency of viscosity and the Herschel-Bulkley Extended (HBE) rheological model was used to characterize the shear-thinning behavior. A generalized HBE jet Reynolds number Rej , gen - HBE was used as the primary parameter to characterize the spray formation. A like-on-like impinging jet doublet was used to produce atomization. Shadowgraphs were captured in the plane of the sheet formed by the two jets using a CCD camera with an Nd:YAG laser beam providing the back-illumination. Typical behavior for impinging jet atomization using Newtonian liquids was not generally observed due to the non-Newtonian, viscous properties of the agar and kappa carrageenan gels. Instead various spray patterns were observed depending on Rej , gen - HBE. Spray characteristics of maximum instability wavelength and sheet breakup length were extracted from the shadowgraphs. Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  3. Shoulder impingement syndrome : evaluation of the causes with MRI

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Song, In Sup; Chung, Hun Young; Yoon, Sang Jin; Kim, Yang Soo; Shim, Hyung Jin; Choi, Young Hee; Lee, Jong Beum; Lee, Yong Chul; Kim, Kun Sang; Choi, Yun Sun

    1999-01-01

    Various mechanical causes which induce shoulder impingement syndrome have been identified with the help of MRI. The aim of this study is to evaluate the incidence of such causes. A total of 54 patients with clinically confirmed shoulder impingement syndrome and a normal control group(n=20) without symptoms were included. We evaluated the incidence of hook shaped acromion, low lying acromion, downward slope of the acromion, subacromial spur, acromioclavicular joint hypertrophy, coracoacromial ligament hypertrophy, high cuff muscle bulk, and os acromiale. Among the 54 patients, the following conditions were present: acromioclavicular joint hypertrophy(n=36), coracoacromial ligament hypertrophy(n=20), subacromial spur(n=18), downward sloping of the acromion(n=16), hook shaped acromion(n=11), relatively high cuff muscle bulk(n=6), low lying acromion relative to the clavicle(n=3), and os acromiale(n=1). In the normal control group there were nine cases of acromioclavicular joint hypertrophy, nine of coracoacromial ligament hypertrophy, nine of downward sloping acromion, and three of low lying acromion, but hook shaped acromion, high cuff muscle bulk, and os acromiale were not found. Among 54 patients, the syndrome was due to five simultancous causes in one patient, four causes in two, three causes in 12, two causes in 22, and one cause in 17. Hook shaped acromion and subacromial spur are the statistically significant causes of shoulder impingement syndrome. In 69% of patients, the condition was due to more than one cause

  4. Methods on simple radiogaphy of impingement syndrome in shoulder joint

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Kim, Moon Sun; Kim, Yong Seob; Chung, Kyung Mo

    2000-01-01

    To evaluation of patients who have shoulder impingement syndrome is by diagnostic radiography. Shoulder impingement is a problem which occurs in young, active individuals as well as older individuals. In fact, the pain is probably caused by repetitive stress placed on the shoulder joint either through recreational activities of your occupation. Impingement series approach to radiographic examination of the shoulder is take five projections. First anteroposterior oblique projection. Second standard anteroposterior projection. Third superoinferior axial projection. Fourth supraspinatus outlet projection offers a view of the outlet of the supraspinatus tendon unit as it passes under the coraacromial arch. Fifth anteroposterior 30 deg caudal projection will adequately demonstrate the anterior acromial spur or ossification in the coraacromial ligament and more reliable to demonstrate spurring of the anterior acromion than supraspinatus outlet projection. This decreased the need for additional radiographic veiws, reduces the patient's exposure to x-ray radiation and decreases use of film. This can lower the cost of the evaluation and improve patient satisfaction.=20

  5. Methods on simple radiogaphy of impingement syndrome in shoulder joint

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Kim, Moon Sun; Kim, Yong Seob; Chung, Kyung Mo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To evaluation of patients who have shoulder impingement syndrome is by diagnostic radiography. Shoulder impingement is a problem which occurs in young, active individuals as well as older individuals. In fact, the pain is probably caused by repetitive stress placed on the shoulder joint either through recreational activities of your occupation. Impingement series approach to radiographic examination of the shoulder is take five projections. First anteroposterior oblique projection. Second standard anteroposterior projection. Third superoinferior axial projection. Fourth supraspinatus outlet projection offers a view of the outlet of the supraspinatus tendon unit as it passes under the coraacromial arch. Fifth anteroposterior 30 deg caudal projection will adequately demonstrate the anterior acromial spur or ossification in the coraacromial ligament and more reliable to demonstrate spurring of the anterior acromion than supraspinatus outlet projection. This decreased the need for additional radiographic veiws, reduces the patient's exposure to x-ray radiation and decreases use of film. This can lower the cost of the evaluation and improve patient satisfaction.=20.

  6. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  7. Settling of fixed erythrocyte suspension droplets

    Science.gov (United States)

    Omenyi, S. N.; Snyder, R. S.

    1983-01-01

    It is pointed out that when particles behave collectively rather than individually, the fractionation of micron-size particles on the basis of size, density, and surface characteristics by centrifugation and electrophoresis is hindered. The formation and sedimentation of droplets containing particles represent an extreme example of collective behavior and pose a major problem for these separation methods when large quantities of particles need to be fractionated. Experiments are described that measure droplet sizes and settling rates for a variety of particles and droplets. Expressions relating the particle concentration in a drop to measurable quantities of the fluids and particles are developed. The number of particles in each droplet is then estimated, together with the effective droplet density. Red blood cells from different animals fixed in glutaraldehyde provide model particle groups.

  8. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  9. The Lipid-Droplet Proteome Reveals that Droplets Are a Protein-Storage Depot

    Energy Technology Data Exchange (ETDEWEB)

    Cermelli, Silvia; Guo, Yi; Gross, Steven P.; Welte, Michael

    2006-09-19

    Lipid droplets are ubiquitous organelles that are among the basic building blocks of eukaryotic cells. Despite central roles for cholesterol homeostasis and lipid metabolism, their function and protein composition are poorly understood. Results: We purified lipid droplets from Drosophila embryos and analyzed the associated proteins by capillary LC-MS-MS. Important functional groups include enzymes involved in lipid metabolism, signaling molecules, and proteins related to membrane trafficking. Unexpectedly, histones H2A, H2Av, and H2B were present. Using biochemistry, genetics, real-time imaging, and cell biology, we confirm that roughly 50% of certain embryonic histones are physically attached to lipid droplets, a localization conserved in other fly species. Histone association with droplets starts during oogenesis and is prominent in early embryos, but it is undetectable in later stages or in cultured cells. Histones on droplets are not irreversibly trapped; quantitation of droplet histone levels and transplantation experiments suggest that histones are transferred from droplets to nuclei as development proceeds. When this maternal store of histones is unavailable because lipid droplets are mislocalized, zygotic histone production starts prematurely. Conclusions: Because we uncover a striking proteomic similarity of Drosophila droplets to mammalian lipid droplets, Drosophila likely provides a good model for understanding droplet function in general. Our analysis also reveals a new function for these organelles; the massive nature of histone association with droplets and its developmental time-course suggest that droplets sequester maternally provided proteins until they are needed. We propose that lipid droplets can serve as transient storage depots for proteins that lack appropriate binding partners in the cell. Such sequestration may provide a general cellular strategy for handling excess proteins.

  10. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.

    Science.gov (United States)

    Nishimura, Kazuya; Suzuki, Hiroaki; Toyota, Taro; Yomo, Tetsuya

    2012-06-15

    The production of giant lipid vesicles with controlled size and structure will be an important technology in the design of quantitative biological assays in cell-mimetic microcompartments. For establishing size control of giant vesicles, we investigated the vesicle formation process, in which inverted emulsion droplets are transformed into giant unilamellar vesicles (GUVs) when they pass through an oil/water interface. The relationship between the size of the template emulsion and the converted GUVs was studied using inverted emulsion droplets with a narrow size distribution, which were prepared by microfluidics. We successfully found an appropriate centrifugal acceleration condition to obtain GUVs that had a desired size and narrow-enough size distribution with an improved yield so that emulsion droplets can become the template for GUVs. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. Diagnosis of shoulder impingement syndrome; Diagnostik des Schulterimpingementsyndroms

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. [Orthopaedische Universitaetsklinik Balgrist, Zuerich (Switzerland)

    1996-12-01

    This article reviews the pathogenesis and clinical and imaging findings in shoulder impingement syndrome. Different stages of impingement syndrome are described. Stage I relates to edema and hemorrhage of the supraspinatus tendon. Stage II is characterized by bursal inflammation and fibrosis, as well as tendinopathy. In stage III there is a tear of the rotator cuff. Clinical signs many overlap. Moreover, calcifying tendinitis, fractures and pain originating from the cervical spine may mimic shoulder impingement syndrome. Imaging is important for the exact diagnosis. Standard radiographs are the basis of imaging in shoulder impingement syndrome. They may demonstrate subchondral sclerosis of the major tuberosity, subacromial spurs, and form anomalies of the acromion. They are also important in the differential diagnosis of shoulder impingement syndrome and demonstrate calcifying tendinitis, fractures and neoplasm. Ultrasonography has found acceptance as a screening tool and even as a final diagnostic method by many authors. However, there is a high interobserver variability in the demonstration of rotator cuff tears. Its usefulness has therefore been questioned. MR imaging is probably the method of choice in the evaluation of the rotator cuff and surrounding structures. Several investigations have demonstrated that differentiation of early findings, such as tendinopathy versus partial tears, may be difficult with MR imaging. However, reproducibility for fullthickness tears appears to be higher than for sonography. Moreover, specificity appears to be superior to sonography. MR arthrography is not universally accepted. However, it allows for more exact differentiation of discrete findings and may be indicated in preoperative planning. Standard arthrography and CT have a limited role in the current assessment of the rotator cuff. (orig.) [Deutsch] Grundlage des Impingementsyndroms ist eine Kompression des Supraspinatus am akromioklavikularen Bogen vor allem bei Flexion

  12. On angled bounce-off impact of a drop impinging on a flowing soap film

    Science.gov (United States)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, M. M.

    2017-12-01

    Small drops impinging obliquely on thin flowing soap films frequently demonstrate the rare emergence of bulk elastic effects working in-tandem with the more commonplace hydrodynamic interactions. Three collision regimes are observable: (a) drop piercing through the film, (b) it coalescing with the flow, and (c) it bouncing off the film surface. During impact, the drop deforms along with a bulk elastic deformation of the film. For impacts that are close-to-tangential, the bounce-off regime predominates. We outline a reduced order analytical framework assuming a deformable drop and a deformable three-dimensional film, and the idealization invokes a phase-based parametric study. Angular inclination of the film and the ratio of post and pre-impact drop sizes entail the phase parameters. We also perform experiments with vertically descending droplets (constituted from deionized water) impacting against an inclined soap film, flowing under constant pressure head. Model-predicted phase domain for bounce-off compares well to our experimental findings. Additionally, the experiments exhibit momentum transfer to the film in the form of shed vortex dipoles, along with propagation of free surface waves. On consulting prior published work, we note that for locomotion of water-walking insects using an impulsive action, the momentum distribution to the shed vortices and waves are both significant, taking up respectively 2/3 and 1/3 of the imparted streamwise momentum. Considering the visually similar impulse actions, this theory, despite its assumption of a quiescent liquid bath of infinite depth, is applied to the drop bounce-off experiments, and the resultant shed vortex dipole momenta are compared to the momenta of the coherent vortex structures computed from particle imaging velocimetry data. The magnitudes reveal identical order (10‑7 N s), suggesting that notwithstanding the disparities, the bounce-off regime may be tapped as a toy analog for impulse-based interfacial

  13. Internal flow inside droplets within a concentrated emulsion during droplet rearrangement

    Science.gov (United States)

    Leong, Chia Min; Gai, Ya; Tang, Sindy K. Y.

    2018-03-01

    Droplet microfluidics, in which each droplet serves as a micro-reactor, has found widespread use in high-throughput biochemical screening applications. These droplets are often concentrated at various steps to form a concentrated emulsion. As part of a serial interrogation and sorting process, such concentrated emulsions are typically injected into a tapered channel leading to a constriction that fits one drop at a time for the probing of droplet content in a serial manner. The flow physics inside the droplets under these flow conditions are not well understood but are critical for predicting and controlling the mixing of reagents inside the droplets as reactors. Here we investigate the flow field inside droplets of a concentrated emulsion flowing through a tapered microchannel using micro-particle image velocimetry. The confining geometry of the channel forces the number of rows of drops to reduce by one at specific and uniformly spaced streamwise locations, which are referred to as droplet rearrangement zones. Within each rearrangement zone, the phase-averaged velocity results show that the motion of the droplets involved in the rearrangement process, also known as a T1 event, creates vortical structures inside themselves and their adjacent droplets. These flow structures increase the circulation inside droplets up to 2.5 times the circulation in droplets at the constriction. The structures weaken outside of the rearrangement zones suggesting that the flow patterns created by the T1 process are transient. The time scale of circulation is approximately the same as the time scale of a T1 event. Outside of the rearrangement zones, flow patterns in the droplets are determined by the relative velocity between the continuous and disperse phases.

  14. Electrowetting Actuation of Polydisperse Nanofluid Droplets

    Directory of Open Access Journals (Sweden)

    Crismar Patacsil

    2017-01-01

    Full Text Available We present results of electrowetting experiments employing droplets formed from aqueous suspensions of Au nanoparticles. A planar electrowetting system, consisting of a Pt wire electrode and a bottom Cu electrode with an insulating silicone layer, is used to observe changes in droplet contact angle when an external electric field is applied. The equilibrium contact angle at 0 V decreases with increasing nanoparticle concentration, dropping from 100.4° for pure deionized water to 94.7° for a 0.5 μM nanofluid. Increasing the nanoparticle content also lowers the required voltage for effective actuation. With actuation at 15 V, contact angle decreases by 9% and 35% for droplets formed from pure water and a 0.5 μM nanoparticle suspension, respectively. Contact angle saturation is observed with nanofluid droplets, with the threshold voltage decreasing as nanoparticle concentration rises. Maximum droplet actuation before contact angle saturation is achieved at only 10 V for a concentration of 0.5 μM. A proposed mechanism for the enhanced electrowetting response of a nanofluid droplet involves a reduction in surface tension of the droplet as nanoparticles accumulate at the liquid-vapor interface.

  15. Mechanical vibration of viscoelastic liquid droplets

    Science.gov (United States)

    Sharp, James; Harrold, Victoria

    2014-03-01

    The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.

  16. Droplet-based interfacial capacitive sensing.

    Science.gov (United States)

    Nie, Baoqing; Xing, Siyuan; Brandt, James D; Pan, Tingrui

    2012-03-21

    This paper presented a novel droplet-based pressure sensor using elastic and capacitive electrode-electrolyte interfaces to achieve ultrahigh mechanical-to-electrical sensitivity (1.58 μF kPa(-1)) and resolution (1.8 Pa) with a simple device architecture. The miniature transparent droplet sensors, fabricated by one-step laser micromachining, consisted of two flexible polymer membranes with conductive coating and a separation layer hosting a sensing chamber for an electrolyte droplet. The sensing principle primarily relied on high elasticity of the sensing droplet and large capacitance presented at the electrode-electrolyte interface. A simple surface modification scheme was introduced to the conductive coating, which reduced hysteresis of the droplet deformation without substantially compromising the interfacial capacitance. Moreover, the major concern of liquid evaporation was addressed by a mixture of glycerol and electrolyte with long-term stability in a laboratory environment. Theoretical analyses and experimental investigations on several design parameters (i.e., the dimensions of the sensing chamber and the droplet size) were thoroughly conducted to characterize and optimize the overall sensitivity of the device. Moreover, the environmental influences (e.g., temperature and humidity) on the capacitive measurement were further investigated. Finally, the simply constructed and mechanically flexible droplet sensor was successfully applied to detect minute blood pressure variations on the skin surface (with the maximum value less than 100 Pa) throughout cardiovascular cycles.

  17. Towards microprocessor-based control of droplet parameters for endoscopic laryngeal adductor reflex triggering

    Directory of Open Access Journals (Sweden)

    Fast Jacob Friedemann

    2017-09-01

    Full Text Available The so-called Laryngeal Adductor Reflex (LAR protects the respiratory tract from particle intrusion by quickly approximating the vocal folds to close the free glottal space. An impaired LAR may be associated with an increased risk of aspiration and other adverse conditions. To evaluate the integrity of the LAR, we recently developed an endoscopic prototype for LAR triggering by shooting accelerated droplets onto a predefined laryngeal target region. We now modified the existing droplet-dispensing system to adapt the fluid system pressure as well as the valve opening time to user-chosen values autonomously. This has been accomplished using a microcontroller board connected to a pressure sensor and a mechatronic syringe pump. For performance validation, we designed a measurement setup capable of tracking the droplet along a vertical trajectory. In addition to the experimental setup, the influence of parameters such as system pressure and valve opening time on the micro-droplet formation is presented. Further development will enable the physician to adjust the droplet momentum by setting a single input value on the microcontroller-based setup, thus further increasing usability of the diagnostic device.

  18. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  19. Fog droplet distribution functions for lidar.

    Science.gov (United States)

    Mallow, J V

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  20. Heat exchanges between droplets and atmosphere

    International Nuclear Information System (INIS)

    Yadigaroglu, Georges.

    1975-01-01

    Data necessary for calculating the droplet cooling in wet cooling systems are surveyed. This cooling obeys the laws of simultaneous heat and mass transfer. Exchanges with a solid sphere moving inside a surrounding fluid medium are first examined. The corrections needed for taking into account various secondary effects (circulation in the droplet, lack of sphericity, oscillations, etc...) are then dealt with. Some data necessary for calculating the trajectories of the droplets and their behavior in a cooling system are included (diameter distribution, limit velocities, decay thresholds, etc...). Finally, calculation methods applying to spray systems, as well as wet towers broadly outlined [fr

  1. Diffusion and evaporation of a liquid droplet

    Science.gov (United States)

    Shukla, K. N.

    1980-06-01

    The process of evaporation and diffusion of a spherical liquid droplet in an atmosphere of noncondensable gas is studied theoretically. An equation for the shrinkage of the radius of the droplet is derived on the basis of continuity and momentum equations. Further, a conjugate problem consisting of the energy and mass balance for the gaseous environment is formulated. An approximation of thin thermal and diffusion boundary-layers is introduced to simplify the analysis. Results are presented for methanol-nitrogen, ammonia-nitrogen, and sodium-argon systems. It has been observed that the droplet of highly viscous fluid exhibits rapid contraction.

  2. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  3. Comparison of Endotoxin Exposure Assessment by Bioaerosol Impinger and Filter-Sampling Methods

    OpenAIRE

    Duchaine, Caroline; Thorne, Peter S.; Mériaux, Anne; Grimard, Yan; Whitten, Paul; Cormier, Yvon

    2001-01-01

    Environmental assessment data collected in two prior occupational hygiene studies of swine barns and sawmills allowed the comparison of concurrent, triplicate, side-by-side endotoxin measurements using air sampling filters and bioaerosol impingers. Endotoxin concentrations in impinger solutions and filter eluates were assayed using the Limulus amebocyte lysate assay. In sawmills, impinger sampling yielded significantly higher endotoxin concentration measurements and lower variances than filte...

  4. Biomass and number of fish impinged at a nuclear power plant by the Baltic Sea

    OpenAIRE

    Bryhn, Andreas; Bergenius, Mikaela; Dimberg, Peter H; Adill, Anders

    2013-01-01

    The main aim of this study was to investigate the number and biomass of impinged fish at Forsmark Nuclear Power Plant in Sweden, located on the coast of the Baltic Sea. Of particular interest was the number of impinged individuals of the critically endangered European eel (Anguilla anguilla) which is regularly caught in the cooling system. Another aim was to determine the comparability of the results from Forsmark and results from impingement studies in other types of waters. Cross-systems st...

  5. Evaluation and treatment of internal impingement of the shoulder in overhead athletes

    OpenAIRE

    Corpus, Keith T; Camp, Christopher L; Dines, David M; Altchek, David W; Dines, Joshua S

    2016-01-01

    One of the most common pathologic processes seen in overhead throwing athletes is posterior shoulder pain resulting from internal impingement. ?Internal impingement? is a term used to describe a constellation of symptoms which result from the greater tuberosity of the humerus and the articular surface of the rotator cuff abutting the posterosuperior glenoid when the shoulder is in an abducted and externally rotated position. The pathophysiology in symptomatic internal impingement is multifact...

  6. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  7. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  8. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    Science.gov (United States)

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-08-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  9. Impinging jets - a short review on strategies for heat transfer enhancement

    Science.gov (United States)

    Nastase, Ilinca; Bode, Florin

    2018-02-01

    In industrial applications, heat and mass transfer can be considerably increased using impinging jets. A large number of flow phenomena will be generated by the impinging flow, such as: large scale structures, large curvature involving strong shear and normal stresses, stagnation in the wall boundary layers, heat transfer with the impinged wall, small scale turbulent mixing. All these phenomena are highly unsteady and even if nowadays a substantial number of studies in the literature are dedicated, the impinging jets are still not fully understood due to the highly unsteady nature and more over due to great difficulty of performing detailed numerical and experimental investigations.

  10. Can femoroacetabular impingement and hip dysplasia be distinguished by clinical presentation and patient history?

    Science.gov (United States)

    Kappe, Thomas; Kocak, Tugrul; Reichel, Heiko; Fraitzl, Christian R

    2012-02-01

    Hip dysplasia and femoroacetabular impingement may both lead to disability and hip osteoarthritis. The purpose of the current study was to compare the two entities in order to define differences in their clinical presentation. The clinical presentation and WOMAC items, subscales and overall sum score were compared between 37 patients with femoroacetabular impingement and 37 patients with hip dysplasia. The average duration of symptoms was 33.3 ± 31.6 months in patients with femoroacetabular impingement and 34.5 ± 39.0 months in patients with dysplasia (p = 0.885). The anterosuperior impingement test was positive in all patients with femoroacetabular impingement and in 92% of hip dysplasia patients (p = 0.061). Mean internal rotation and abduction was significantly less in patients with femoroacetabular impingement (p = 0.001 and 0.007). The WOMAC subscales for pain, stiffness, and functionality as well as the overall sum score were not significantly different between patients with femoroacetabular impingement and patients with hip dysplasia. The qualitative analysis of WOMAC items revealed that symptoms related to sitting were significantly more often rated to be present in femoroacetabular impingement than in hip dysplasia patients. In the quantitative analysis, only the item 'getting in or out of a car' was rated significantly more severe in patients with femoroacetabular impingement. In addition to obtaining a detailed history and examination, radiographic studies are needed for differentiation of the two entities and for the decision on treatment strategy.

  11. Impinging jet spray formation using non-Newtonian liquids

    Science.gov (United States)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  12. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  13. Experimental study of micron size droplets in a two phase flow in a converging - diverging nozzle

    International Nuclear Information System (INIS)

    Jurski, Kristine

    1997-01-01

    The fluid present in a pressurized vessel in normal operation is generally a mono-phase one. In accidental regime (a breach for example), a two-phase (ring and/or dispersed) flow appears and the flow is submitted to large accelerations when passing through the breach, and is then dispersed in the atmosphere. This research thesis reports an experimental simulation of an accident by generating, through a discharge of an upstream vessel into a downstream vessel, a strongly accelerated gaseous-liquid two-phase flow, with an essentially dispersed configuration in a convergent-divergent nozzle. In order to characterize the speed and diameter evolution of the dispersed liquid phase, the author reports a comparative study of two different liquid aerosols: micron-size droplets of di-octyl phthalate (DOP) of known concentration and diameter, and water droplets obtained by heterogeneous spontaneous condensation [fr

  14. The effect of droplet sprinkling on the oxidation kinetics of zirconium cladding in steam

    International Nuclear Information System (INIS)

    Dzhusov, Y.P.; Efanov, A.D.; Kalyakin, S.G.; Khoruzhii, O.V.; Likhanskii, V.V.; Malynkin, V.G.; Matweev, L.V.; Shumsky, R.V.; Stein, Y.Y.; Volcheck, A.M.

    2000-01-01

    The influence of oxide layer cracking on the acceleration of Zr cladding oxidation in steam was investigated. Cracking occurs due to temperature gradients, which arise during cooling of the cladding surface by droplet jets. Experimental results on characteristics of heat removal and the temperature gradients induced are presented for different regimes of sprinkling. A model for the calculation of mechanical stresses under the experimental conditions was developed in frame of the theory of envelopes. It was shown that the stresses are sufficiently high to induce cracking of the outer oxide layer. Experimental investigations of oxidation kinetics of Zr-1%Nb cladding were carried out under the conditions of surface cooling by droplet jets. The results of these experiments confirmed that the reaction of oxidation can be strongly accelerated by sprinkling. (orig.)

  15. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  16. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  17. MAGNETIC RESONANCE IMAGING EVALUATION OF ROTATOR CUFF IMPINGEMENT

    Directory of Open Access Journals (Sweden)

    Chandrakanth K. S

    2017-06-01

    Full Text Available BACKGROUND Shoulder pain is a common clinical problem. Impingement syndrome of the shoulder is believed to be the most common cause of shoulder pain. The term ‘impingement syndrome’ was first used by Neer to describe a condition of shoulder pain associated with chronic bursitis and partial thickness tear of Rotator Cuff (RC. The incidence of Rotator Cuff (RC tear is estimated to be about 20.7% in the general population. This study is intended to analyse various extrinsic and intrinsic causes of shoulder impingement. MATERIALS AND METHODS 110 consecutive patients referred for MRI with clinical suspicion of shoulder impingement were prospectively studied. All the patients were evaluated for Rotator Cuff (RC degeneration and various extrinsic factors that lead to degeneration like acromial shape, down-sloping acromion, Acromioclavicular (AC joint degeneration and acromial enthesophyte. Intrinsic factors like degeneration and its correlation with age of the patients were evaluated. RESULTS Of the total 110 patients, 19 (17.3% patients had FT RC tear and 31 (28.2% had PT (both bursal and articular surface tears. There was no statistically significant correlation (p=0.76 between acromion types and RC tear. Down-sloping acromion and enthesophytes had statistically significant association with RC tear (p=0.008 and 0.008, respectively. Statistically significant (0.008 correlation between the severity of AC joint degeneration and RC tears was noted. AC joint degeneration and RC pathologies also showed a correlation with the age of the patients with p values of <0.001 and 0.001, respectively. CONCLUSION No statistically significant correlation between RC pathologies with hooked acromion was found, that makes the role played by hooked acromion in FT RC tear questionable. AC joint degeneration association with RC tear is due to the association of both RC tear and AC joint degeneration with age of the patient. Down-sloping acromion, AC joint degeneration

  18. Heat Transfer Effects on a Fully Premixed Methane Impinging Flame

    Science.gov (United States)

    2014-10-30

    efficiency of the system in situations where temperature peaks and gradients become important. This is the case of gas turbines, combustion engines or...dynamics of syngas impinging jet flames, Fuel, Vol. 103, pp. 646-662. Nicoud F., Ducros, F. (1999), Subgrid-scale stress mod- elling based on the square of the velocity gradient, Flow, Turb. Combust ., Vol. 62, pp. 183-200. ...plications is a fundamental aspect in the design of power and propulsive systems . The heat exchange be- tween fluid and solid parts may reduce the

  19. Jet impingement and primary atomization of non-Newtonian liquids

    Science.gov (United States)

    Mallory, Jennifer A.

    The effect of liquid rheology on the flowfield resulting from non-Newtonian impinging jets was investigated experimentally and analytically. Experimental data were acquired using a unique experimental apparatus developed to examine the jet impingement of non-Newtonian liquids. The analytical modeling was aimed at determining which physical mechanisms transform non-Newtonian impinging jets into a sheet with waves on its surface, how those waves influence sheet fragmentation and subsequent ligament formation, and how those ligaments break up to form drops (primary atomization). Prior to impinging jet measurements, the rheological properties of 0.5 wt.-% CMC-7HF, 1.4 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, 0.06 wt.-% CMC-7MF 75 wt.-% glycerin, 1 wt.-% Kappa carrageenan, and 1 wt.-% Agar were determined through the use of rotational and capillary rheometers. Two approaches were used to experimentally measure solid-like gel propellant simulant static surface tension. All liquids exhibited pseudoplastic rheological behavior. At various atomizer geometric and flow parameters sheet instability wavelength, sheet breakup length, ligament diameter, and drop sizes were measured from high-speed video images. Results showed that viscosity dependence on shear rate is not the sole factor that determines atomization likelihood. Instead, a key role is played by the interaction of the gelling agent with the solvent at the molecular level. For instance, despite high jet exit velocities and varying atomizer geometric parameters HPC gel propellant simulants did not atomize. The molecular nature of HPC results in physical entanglement of polymer chains when gelled, which resists liquid breakup and subsequent spray formation. However, atomization was achieved with Agar, which absorbs the water and forms a network around it rather than bonding to it. The measured liquid sheet instability wavelength, sheet breakup length, ligament diameter, and drop sizes were compared to predictions from a

  20. Femoroacetabular impingement mimicking avascular osteonecrosis on bone scintigraphy

    International Nuclear Information System (INIS)

    Suarez, Juan Pablo; Domínguez, María Luz; Nogareda, Zulema; Gómez, María Asunción; Muñoz, Jose

    2016-01-01

    Femoroacetabular impingement (FAI) is a structural abnormality of proximal femur and/or acetabulum. It has been recently described, and there are limited reports in nuclear medicine literature because bone scintigraphy is not listed in its diagnostic protocol, but it should be included on differential diagnosis when evaluating patients, with hip-related symptoms because it may be misinterpreted as degenerative changes or avascular necrosis, and its early treatment avoid progression to osteoarthritis. We describe the case of a male who suffered from hip pain. Bone planar scintigraphic appearance mimicked avascular necrosis, but single photon emission computed tomography (CT) imaging and CT examination confirmed the diagnosis of FAI

  1. Os acromiale causing shoulder impingement syndrome: a case report

    International Nuclear Information System (INIS)

    Romero, I.; Rodriguez, A.; Roca, M.; Garcia, Y.

    2001-01-01

    Shoulder impingement syndrome is caused by repeated mechanical trauma to the rotator cuff due to encroachment of the coracoacromial ligament; in most cases, it is a primary lesion. Os acromiale, an anatomic variant of the shoulder structures, is one of the predisposing factors for the development of this entity. We present a case of os acromiale complicated by complete rupture of the tendon of the supraspinatus muscle and luxation of the long head of the biceps tendon. We stress the importance of magnetic resonance in the study of this anatomic variant and in the detection of complications or associated lesions. (Author) 10 refs

  2. Energy storage by means of exciton droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.A.; Litovchenko, V.G.

    1980-01-01

    Certain characteristics of electron-hole droplets and ball lightning are investigated and compared with a view to evaluating energy storage and transfer processes. Models for plasma processes in the atmosphere and in semiconductors are briefly examined.

  3. Droplet Microfluidics for Chip-Based Diagnostics

    Directory of Open Access Journals (Sweden)

    Karan V. I. S. Kaler

    2014-12-01

    Full Text Available Droplet microfluidics (DMF is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays.

  4. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  6. Effects of droplet interactions on droplet transport at intermediate Reynolds numbers

    Science.gov (United States)

    Shuen, Jian-Shun

    1987-01-01

    Effects of droplet interactions on drag, evaporation, and combustion of a planar droplet array, oriented perpendicular to the approaching flow, are studied numerically. The three-dimensional Navier-Stokes equations, with variable thermophysical properties, are solved using finite-difference techniques. Parameters investigated include the droplet spacing, droplet Reynolds number, approaching stream oxygen concentration, and fuel type. Results are obtained for the Reynolds number range of 5 to 100, droplet spacings from 2 to 24 diameters, oxygen concentrations of 0.1 and 0.2, and methanol and n-butanol fuels. The calculations show that the gasification rates of interacting droplets decrease as the droplet spacings decrease. The reduction in gasification rates is significant only at small spacings and low Reynolds numbers. For the present array orientation, the effects of interactions on the gasification rates diminish rapidly for Reynolds numbers greater than 10 and spacings greater than 6 droplet diameters. The effects of adjacent droplets on drag are shown to be small.

  7. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  8. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  9. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...... have the same purpose as businesses: To create customers....

  10. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    Science.gov (United States)

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  11. Effects of Spray Mixtures on Droplet Size Under Aerial Application Conditions and Implications on Drift

    Science.gov (United States)

    2010-01-01

    Keywords. Aerial application, Glyphosate , Spray adjuvant, Droplet size, Spray drift, AGDISP. pray drift, which the Environmental Protection Agency (EPA... environmental and human health protection through drift reduction by accelerating the acceptance and use of improved and cost‐ effective application... Environ . Tox. Chem. 21(3): 648‐658. Hoffmann, W. C., J. R. Lingren, J. R. Coppedge, and I. W. Kirk. 1998. Application parameter effects on efficacy of a

  12. Spheroid droplets evaporation of water solutions

    Directory of Open Access Journals (Sweden)

    Misyura S.Y.

    2017-01-01

    Full Text Available Droplet film boiling on a horizontal heating surface was studied experimentally. The heat transfer coefficient of droplet water solution in the spheroidal state decreases with a rise of wall overheating and spheroid diameter. Evaporation of small spheroid (diameter d 20 mm. At the evaporation of large spheroids a spheroid shape changes in time that significantly affect coefficients of generalizing curves that use dimensionless numbers.

  13. Laser diagnostics for microgravity droplet studies

    Science.gov (United States)

    Winter, Michael

    1993-01-01

    Rapid advances have recently been made in numerical simulation of droplet combustion under microgravity conditions, while experimental capabilities remain relatively primitive. Calculations can now provide detailed information on mass and energy transport, complex gas-phase chemistry, multi-component molecular diffusion, surface evaporation and heterogeneous reaction, which provides a clearer picture of both quasi-steady as well as dynamic behavior of droplet combustion. Experiments concerning these phenomena typically result in pictures of the burning droplets, and the data therefrom describe droplet surface regression along with flame and soot shell position. With much more precise, detailed, experimental diagnostics, significant gains could be made on the dynamics and flame structural changes which occur during droplet combustion. Since microgravity experiments become increasingly more expensive as they progress from drop towers and flights to spaceborne experiments, there is a great need to maximize the information content from these experiments. Sophisticated measurements using laser diagnostics on individual droplets and combustion phenomena are now possible. These include measuring flow patterns and temperature fields within droplets, vaporization rates and vaporization enhancement, radical species profiling in flames and gas-phase flow-tagging velocimetry. Although these measurements are sophisticated, they have undergone maturation to the degree where with some development, they are applicable to studies of microgravity droplet combustion. This program beginning in September of 1992, will include a series of measurements in the NASA Learjet, KC-135 and Drop Tower facilities for investigating the range of applicability of these diagnostics while generating and providing fundamental data to ongoing NASA research programs in this area. This program is being conducted in collaboration with other microgravity investigators and is aimed toward supplementing

  14. Induction accelerators

    CERN Document Server

    Takayama, Ken

    2011-01-01

    A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.

  15. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  16. Dipolar droplets in bosonic erbium quantum fluids

    Science.gov (United States)

    Chomaz, Lauriane; Baier, Simon; Petter, Daniel; Faraoni, Giulia; Becher, Jan-Hendrik; van Bijnen, Rick; Mark, Manfred J.; Ferlaino, Francesca

    2017-04-01

    Due to their large magnetic moment and exotic electronic configuration, atoms of the lanthanide family, such as dysprosium (Dy) and erbium (Er), are an ideal platform for exploring the competition between inter-particle interactions of different origins and behaviors. Recently, a novel phase of dilute droplet has been observed in an ultracold gas of bosonic Dy when changing the ratio of the contact and dipole-dipole interactions and setting the mean-field interactions to slightly attractive. This has been attributed to the distinct, non-vanishing, beyond-mean-field effects in dipolar gases when the mean interaction cancels. Here we report on the investigation of droplet physics in fluids of bosonic Er. By precise control of the scattering length a, we quantitatively probe the Bose-Einstein condensate (BEC)-to-droplet phase diagram and the rich underlying dynamics. In a prolate geometry, we observe a crossover from a BEC to a single macro-droplet, prove the stabilizing role of quantum fluctuations and characterize the special dynamical properties of the droplet. In an oblate geometry, we observe the formation of assemblies of tinier droplets arranged in a chain and explore the special state dynamics following a quench of a, marked by successive merging and reformation events. L.C. is supported within the Marie Curie Individual Fellowship DIPPHASE No. 706809 of the European Commission.

  17. Numerical Simulations of Acoustically Driven, Burning Droplets

    Science.gov (United States)

    Kim, Heon-Chang; Karagozian, Ann R.; Smith, Owen I.

    1999-11-01

    The burning characteristics of fuel droplets exposed to external acoustical excitation within a microgravity environment are investigated numerically. The issue of acoustic excitation of flames in microgravity is especially pertinent to understanding the behavior of accidental fires which could occur in spacecraft crew quarters and which could be affected by pressure perturbations as result from ventilation fans or engine vibrations. Combustion of methanol fuel droplets is considered here using a full chemical reaction mechanism.(Marchese, A.J., et al., 26th Symp. (Int.) on Comb., p. 1209, 1997) The droplet and surrounding diffusion flame are situated within a cylindrical acoustic waveguide where standing waves are generated with varying frequency and amplitude. Applied sound pressure levels are limited at present to magnitudes for which the droplet shape remains spherical. A third order accurate, essentially-non-oscillatory (ENO) numerical scheme is employed to accurately resolve the spatial and temporal evolution of the flame front. Acoustically excited vs. non-excited external conditions for the burning droplet in microgravity are compared, and the effects of acoustic frequency, sound pressure level, and relative position of the droplet with respect to pressure and velocity nodes are explored.

  18. Empirical model of impingement impact. Environmental Sciences Division publication No. 1289

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; DeAngelis, D.L.; Christensen, S.W.

    1979-01-01

    A simple model, derived from Ricker's (1975) theory of fisheries dynamics, that can be used to estimate the impact of impingement of juvenile fish by power plants on year-class abundance in vulnerable species is described. The only data required are estimates of the initial number of impingeable juveniles, the number impinged, and the rate of total mortality during the period of vulnerability. The impact of impingement is expressed in the model as the conditional mortality rate, rather than the more commonly used exploitation rate. The conditional mortality rate is superior as a measure of impact for two reasons: it accounts for the differential impact of impinging fish of different ages, and it is numerically equivalent to the fractional reduction in year-class abundance due to impingement. We present an application of the model using the 1974 year-class of the Hudson River striped bass population as an example. We then show how the model can be modified to account for seasonal fluctuations in the rate of impingement, discuss the effect of these fluctuations on the calculated impact, and discuss the influence on model output of errors in the measurement of abundance, impingement, and total mortality. It is evident from this analysis that estimates of impingement impact are as sensitive to errors in estimates of population size and mortality as to estimates of the number of fish impinged. Thus, it is not possible to reliably estimate the impact of impingement on a vulnerable fish species unless a substantial effort is devoted to population studies

  19. Droplet generating device for droplet-based μTAS using electro-conjugate fluid

    Science.gov (United States)

    Iijima, Y.; Takemura, K.; Edamura, K.

    2017-05-01

    Droplet-based μTAS, which carries out biochemical inspection and synthesis by handling samples as droplets on a single chip, has been attracting attentions in recent years. Although miniaturization of a chip is progressed, there are some problems in miniaturization of a whole system because of the necessity to connect syringe pumps to the chip. Thus, this study aims to realize a novel droplets generating device for droplet-based μTAS using electro-conjugate fluid (ECF). The ECF is a dielectric liquid generating a powerful flow when subjected to high DC voltage. The ECF flow generation allows us to realize a tiny hydraulic power source. Using the ECF flow, we can develop a droplet generating device for droplet-based μTAS by placing minute electrode pairs in flow channels. The device contains two channels filled with the ECF, which are dispersed and continuous phases meeting at a T-junction. When a sample in the dispersed phase is injected by the ECF flow to the continuous phase at T-junction, droplets are generated by shearing force between the two phases. We conducted droplet generating experiment and confirmed that droplets are successfully generated when the flow rate of the continuous phase is between 90 and 360 mm3 s-1, and the flow rate of the dispersed phase is between 10 and 40 mm3 s-1. We also confirmed that the droplet diameter and the droplet production rate are controllable by tuning the applied voltage to the electrode pairs.

  20. Treating shoulder impingement using the supraspinatus synchronization exercise.

    Science.gov (United States)

    Shrode, L W

    1994-01-01

    More and more athletes are seeking care in the chiropractic office for athletic injuries. This article presents a case report of a young athletic patient suffering from bilateral shoulder pain-shoulder impingement and presents a review of the literature and a review of shoulder anatomy. This report introduces the supraspinatus synchronization exercise with discussion and illustrations. This patient was treated using the supraspinatus synchronization exercise. A 16-yr-old female was seen suffering from a 4-month history of shoulder pain. She was a competitive swimmer in high school athletics and the pain was made worse by swimming the backstroke. A clinical diagnosis of bilateral stage I impingement of the shoulder (Neer's classification) was made. The patient was given instructions on how to perform the supraspinatus synchronization exercise, conservative therapies including chiropractic manipulative therapy, ice, high-voltage electrical muscle stimulation and rehabilitation exercise band exercises were also used. The patient was treated for seven treatments over a 4-wk period with resolution of the condition. The shoulder is a very complex joint, and many authors discuss the necessity of smooth synchronous movement to keep it pain free without going into how one measures this synchronous movement. The case presented in this report responded quickly to conservative treatment using the supraspinatus synchronization exercise. A good well-designed clinical trial needs to be set up to check the efficacy of this exercise.

  1. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  2. Estimation of droplets/wall heat transfer under LOCA conditions in a PWR; Estimation du transfert de chaleur gouttes/paroi en situation d'APRP pour un REP

    Energy Technology Data Exchange (ETDEWEB)

    GrAdeck, M.; Maillet, D. [CNRS UMR 7563 2, 54 - Vandoeuvre les Nancy (France); Lelong, F.; Seiler, N.; Repetto, G. [IRSN Cadarache, 13 - Saint Paul lez Durance (France)

    2009-07-01

    During a LOCA (Loss Of Coolant Accident) in a PWR, the fuel assemblies could be locally severely ballooned. The transient is ended by the injection of water initiated the safety system. The cooling of theses partially blocked fuel assemblies depends on the coolant flow characteristics in the blockage region. Most models for heat transfers concentrate on cooling of the ballooned walls by vapor convection. Since a two-phase mist flow occurs when reflooding, the possibility of additional cooling by direct liquid droplet impingement on the blockage surfaces must be investigated. As the temperature of the fuel assemblies is higher than the Leidenfrost temperature, the impact regime should be only the bouncing one. Up to now, no model of heat transfer of droplet impacts has been developed for that regime. As the coolability from droplet impacts must be modeled, an experimental program was proposed with droplets and wall characteristics (velocity, diameter, temperature) close to the LOCA ones. As the interaction between the droplet and the wall is very short (a few of ms), the estimation of the heat flux during the resident time of the droplet at the wall must be accurately designed. The purpose of this work is to show how such heat flux can be experimentally estimated used an adapted inverse heat conduction model. The final goal of the present collaboration between LEMTA and IRSN is to introduce the cooling model within NEPTUNE-CFD code, a joint project of CEA, EDF, AREVA and IRSN. (authors)

  3. Neuromuscular control of scapula muscles during a voluntary task in subjects with Subacromial Impingement Syndrome

    DEFF Research Database (Denmark)

    Larsen, C M; Søgaard, Karen; Chreiteh, S S

    2013-01-01

    Imbalance of neuromuscular activity in the scapula stabilizers in subjects with Subacromial Impingement Syndrome (SIS) is described in restricted tasks and specific populations. Our aim was to compare the scapular muscle activity during a voluntary movement task in a general population...... to define the population of impingement patients, as well as the methodological procedure being used, and the shoulder movement investigated....

  4. Investigation of heat transfer processes involved liquid impingement jets: a review

    Directory of Open Access Journals (Sweden)

    M. Molana

    2013-09-01

    Full Text Available This review reports research on liquid impingement jets and the abilities, limitations and features of this method of heat transfer. Some available and important correlations for Nusselt number are collected here. Also we demonstrate the capability of nanofluids to be applied in heat transfer processes involved liquid impingement jets.

  5. Enhanced heat transfer characteristics of conjugated air jet impingement on a finned heat sink

    Directory of Open Access Journals (Sweden)

    Qiu Shuxia

    2017-01-01

    Full Text Available Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.

  6. Multiple impinging jet arrays. An experimental study on flow and heat transfer

    NARCIS (Netherlands)

    Geers, L.F.G.

    2004-01-01

    Because of their high efficiency and their ability to provide high heat transfer rates, impinging jets are applied for rapid cooling and heating in a wide variety of industrial processes. However, the physical phenomena controlling the heat transfer from impinging jets are to a large degree unknown.

  7. Single-Droplet Experimentation on Spray Drying: Evaporation of a Sessile Droplet

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Schutyser, M.A.I.; Boom, R.M.

    2011-01-01

    The basis for the development of a platform for high-throughput experimentation on spray drying is formed. To mimic the drying of single droplets during spray drying, individual droplets are dispensed and dried on a flat surface. A dispensing process is used that is able to dispense viscous liquids

  8. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  9. Immunohistological analysis of extracted anterior cruciate ligament graft impinged against posterior cruciate ligament

    Directory of Open Access Journals (Sweden)

    Kato So

    2011-11-01

    Full Text Available Abstract A young female athlete suffered from the residual instability of the knee after anterior cruciate ligament (ACL reconstruction with hamstring autograft. The 3-dimensional (3-D CT scan showed the "high noon" positioning of the primary femoral bone tunnel. The revision surgery with anatomic double-bundle technique was performed two years after the primary surgery and the femoral tunnels were created with the assistance of the 3-D fluoroscopy-based navigation. An arthroscopic examination confirmed the ACL graft impingement against posterior cruciate ligament (PCL when the knee was deeply flexed. The histological analysis of the resected primary ACL graft showed local inflammatory infiltration, enhanced synovial coverage and vascularization at the impinged site. The enhanced expression of vascular endothelial growth factor (VEGF at the impinged area when compared with non-impinged area was observed on immunohistochemical analysis. Abnormal mechanical stress by the impingement against PCL might have induced chronic inflammation and VEGF overexpression.

  10. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  11. Entrainment and impingement of aquatic fauna at cooling water system of Madras Atomic Power Station (MAPS)

    International Nuclear Information System (INIS)

    Barath Kumar, S.; Das, N.P.I.; Satpathy, K.K.

    2015-01-01

    Marine organisms get impinged to the intake screens of Madras Atomic Power Station (MAPS) due to the suction force of the cooling water system of the power plant. The present work has studied the loss of aquatic organism at MAPS due to impingement at cooling water screens. In total 67 species of marine faunas impinged on the water intake screens of MAPS during the study. The proportion of fish, shrimp, crab, jellyfish and others, with respect to the total biomass of impinged organisms are 1.59 % (33 species), 0.30% (9), 2.77 % (16), 95.10% (3) and 0.24% (4), respectively. Jellyfishes were observed to be the largest entrained group covering around 44.85% of individual and constituting almost 94.82 % of biomass recorded during the study period and sea nettle jelly (Chrysaora quinquecirrha) was impinged with highest frequency. The diel study shows higher impingement occurred during night time, on full moon day and at low tides in contrast to their counterparts. Fishes accounts for 14.84 % of individual count and mere 1.67 % of biomass. Totally 33 number of fish species were observed. The highest impinged species were pony fishes (Secutor ruconius, Secutor insidiator, Photopectoralis bindus, Alepes kleinii and Leiognathus equulus) (21% occurrence). These few entrained fishes are mostly very small in size and have less commercial value. The total loss of marine fauna by impingement during study period was estimated to be 4779 (or 463.46 kg). The present data when compared with the impingement data from other coastal power plants, shows that the impinged fish biomass at MAPS cooling water system is much less than the other temperate and tropical power plants. (author)

  12. Impingement syndrome of the ankle following supination external rotation trauma: MR imaging findings with arthroscopic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Schaffler, Gottfried J. [Department of Radiology, University of California San Francisco, 350 Parnassus Avenue, Suite 150, San Francisco, CA 94117 (United States); Department of Radiology, University Hospital Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Tirman, Phillip F.J.; Stoller, David W. [San Francisco Magnetic Resonance Center, 3333 California Street, Suite 105, San Francisco, CA 94118 (United States); Genant, Harry K. [Department of Radiology, University of California San Francisco, 350 Parnassus Avenue, Suite 150, San Francisco, CA 94117 (United States); Ceballos, Cecar; Dillingham, Michael F. [Sports Orthopedics and Rehabilitation, 2884 Sand Hill Rd., Suite 110, Menlo Park, CA 94025 (United States)

    2003-06-01

    Our objective was to identify MR imaging findings in patients with syndesmotic soft tissue impingement of the ankle and to investigate the reliability of these imaging characteristics to predict syndesmotic soft tissue impingement syndromes of the ankle. Twenty-one ankles with chronic pain ultimately proven to have anterior soft tissue impingement syndrome were examined by MR imaging during January 1996 to June 2001. The MR imaging protocol included sagittal and coronal short tau inversion recovery (STIR), sagittal T1-weighted spin echo, axial and coronal proton-density, and T2-weighted spin-echo sequences. Nineteen ankles that underwent MR imaging during the same period of time and that had arthroscopically proven diagnosis different than impingement syndrome served as a control group. Fibrovascular scar formations distinct from the syndesmotic ligaments possibly related to syndesmotic soft tissue impingement were recorded. Arthroscopy was performed subsequently in all patients and was considered the gold standard. The statistical analysis revealed an overall frequency of scarred syndesmotic ligaments of 70% in the group with ankle impingement. Fibrovascular scar formations distinct from the syndesmotic ligaments presented with low signal intensity on T1-weighted images and remained low to intermediate in signal intensity on T2-weighted MR imaging. Compared with arthroscopy, MR imaging revealed a sensitivity of 89%, a specificity of 100%, and a diagnostic accuracy of 93% for scarred syndesmotic ligaments. The frequency of scar formation distinct from the syndesmotic ligaments in patients with impingement syndrome of the ankle was not statistically significantly higher than in the control group. In contrast to that, anterior tibial osteophytes and talar osteophytes were statistically significantly higher in the group with anterior impingement than in the control group. Conventional MR imaging was found to be insensitive for the diagnosis of syndesmotic soft tissue

  13. An evaporation model of colloidal suspension droplets

    Science.gov (United States)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  14. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  15. Mathematical Modeling of an Oscillating Droplet

    Science.gov (United States)

    Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.

  16. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  17. Designed pneumatic valve actuators for controlled droplet breakup and generation.

    Science.gov (United States)

    Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

    2010-02-21

    The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

  18. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  19. The distal fascicle of the anterior inferior tibiofibular ligament as a cause of tibiotalar impingement syndrome: a current concepts review

    NARCIS (Netherlands)

    van den Bekerom, Michel P. J.; Raven, Eric E. J.

    2007-01-01

    Impingement syndromes of the ankle involve either osseous or soft tissue impingement and can be anterior, anterolateral, or posterior. Ankle impingement syndromes are painful conditions caused by the friction of joint tissues, which are both the cause and the effect of altered joint biomechanics.

  20. Experimental studies on transient water-steam impinging jet

    International Nuclear Information System (INIS)

    Kitade, Kozo; Nakatogawa, Tetsundo; Nishikawa, Hideo; Kawanishi, Kohei; Tsuruto, Chuichi.

    1980-01-01

    Blowdown experiments were carried out in order to clarify pipe reaction forces and jet forces at hypothetical pipe break accident in PWR. The experiments were carried out at the initial pressure of about 70 and 150 kg/cm 2 .G with subcooling temperature of 13 -- 41 0 C. The reaction force has a maximum value just after the rupture in such a manner to attain abruptly to a peak and gradually decreases after that time in proportion to the inner pressure of the pipe. A plane board was used as a target, on which two-phase flow jet impinged vertically. A distribution of pressure on the target is most wide just after break. On the other hand, the pressure has a maximum value after a short period of time from the rupture. (author)

  1. Muscle impingement: MR imaging of a painful complication of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Uri, D.S. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Dalinka, M.K. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Kneeland, J.B. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    1996-10-01

    The purpose of this study was to describe the magnetic resonance (MR) appearance of a newly recognized complication of osteochondromas. Two patients presented with pain and swelling over known osteochondromas. Plain radiographic studies were unrevealing. MR examinations were obtained to characterize the exostoses further and evaluate areas of palpable fullness. Increased signal was present in the muscles on T2-weighted images, which correlated with physical findings and was believed to represent muscle injury due to the osteochondroma. Pain and fullness may result from a number of osteochondroma-related complications, the most worrisome of which is malignant degeneration. Muscular impingement and injury should be considered in the differential diagnosis of pain and swelling in the region of an exostosis. MR imaging allows distinction of this entity, which may be radiographically occult and confused clinically with fracture, bursitis, or malignant degeneration. (orig.). With 2 figs.

  2. Current concepts in the diagnosis and treatment of shoulder impingement

    Directory of Open Access Journals (Sweden)

    Bijayendra Singh

    2017-01-01

    Full Text Available Subacromial impingement syndrome (SIS is a very common cause of shoulder pain in the young adults. It can cause debilitating pain, dysfunction, and affects the activities of daily living. It represents a spectrum of pathology ranging from bursitis to rotator cuff tendinopathy which can ultimately lead to degenerative tear of the rotator cuff. Various theories and concepts have been described and it is still a matter of debate. However, most published studies suggest that both extrinsic and intrinsic factors have a role in the development of SIS. The management is controversial as both nonoperative and operative treatments have shown to provide good results. This article aims to provide a comprehensive current concepts review of the pathogenesis, etiologies, clinical diagnosis, appropriate use of investigations, and discussion on the management of SIS.

  3. Muscle impingement: MR imaging of a painful complication of osteochondromas

    International Nuclear Information System (INIS)

    Uri, D.S.; Dalinka, M.K.; Kneeland, J.B.

    1996-01-01

    The purpose of this study was to describe the magnetic resonance (MR) appearance of a newly recognized complication of osteochondromas. Two patients presented with pain and swelling over known osteochondromas. Plain radiographic studies were unrevealing. MR examinations were obtained to characterize the exostoses further and evaluate areas of palpable fullness. Increased signal was present in the muscles on T2-weighted images, which correlated with physical findings and was believed to represent muscle injury due to the osteochondroma. Pain and fullness may result from a number of osteochondroma-related complications, the most worrisome of which is malignant degeneration. Muscular impingement and injury should be considered in the differential diagnosis of pain and swelling in the region of an exostosis. MR imaging allows distinction of this entity, which may be radiographically occult and confused clinically with fracture, bursitis, or malignant degeneration. (orig.). With 2 figs

  4. [Femoroacetabular impingement as a cause of inguinal pain].

    Science.gov (United States)

    Mardones R, Rodrigo; Barrientos C, Víctor; Nemtala U, Fernando; Tomic, Alexander; Salineros U, Matías

    2010-01-01

    Femoro-acetabular impingement is an anatomical disturbance of the hip, caused by a deformity of the acetabulum, femur or both that causes an abnormal contact between both structures during certain movements. Its prevalence is 10 to 15% and causes chronic inguinal pain. It can be confused with several other causes of inguinal pain such as hernias, facet syndromes, a renal colic, etc. Patients with this condition are usually young individuals with inguinal pain that may appear after a minor trauma. During examination, pain may be elicited by infernal rotation and abduction movements of hip, flexed in 90 degrees . Plain hip X ray is the most commonly used diagnostic method. Non-steroidal anti-inflammatory drugs and physical therapy can be used to alleviate pain, but the definitive treatment is surgical.

  5. Effectiveness of Rehabilitation for Patients with Subacromial Impingement Syndrome

    Science.gov (United States)

    Sauers, Eric L

    2005-01-01

    Reference: Michener LA, Walsworth MK, Burnet EN. Effectiveness of rehabilitation for patients with subacromial impingement syndrome: a systematic review. J Hand Ther. 2004;17: 152–164. Clinical Question: Which physical rehabilitation techniques are effective in reducing pain and functional loss for patients with subacromial impingement syndrome (SAIS)? Data Sources: Investigations were identified by MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Cochrane Central Register of Controlled Trials Register searches from 1966 through October 2003 and by hand searching the references of all retrieved articles and relevant conference proceedings. The search terms were shoulder, shoulder impingement syndrome, bursitis, and rotator cuff combined with rehabilitation, physical therapy, electrotherapy, ultrasound, exercise, and acupuncture and limited to clinical trial, random assignment, or placebo. Study Selection: Inclusion criteria involved randomized controlled trials or clinical trials comparing nonsurgical, nonpharmacologic physical interventions for patients with SAIS with another intervention, no treatment, or a placebo treatment. Included studies required clinically relevant and well-described outcome measures of pain, disability, or functional loss. The study was limited to adult patients who met specific inclusion criteria for the signs and symptoms of SAIS and exclusion criteria for systemic impairment, cervical involvement, degenerative joint changes, clinical findings of other shoulder injury, previous history of surgery or physical therapy treatment, and workers' compensation claim/litigation. Data Extraction: A 23-item checklist, with each item assigned 0, 1, or 2 quality points for a total of 46 possible points, was used independently by 2 examiners to assess each study. In their original report, Michener et al stated that the 23-item checklist was worth a possible 69 points. However, in a conversation with L. A. Michener, she

  6. Current Concepts in the Diagnosis and Treatment of Shoulder Impingement.

    Science.gov (United States)

    Singh, Bijayendra; Bakti, Nik; Gulihar, Abhinav

    2017-01-01

    Subacromial impingement syndrome (SIS) is a very common cause of shoulder pain in the young adults. It can cause debilitating pain, dysfunction, and affects the activities of daily living. It represents a spectrum of pathology ranging from bursitis to rotator cuff tendinopathy which can ultimately lead to degenerative tear of the rotator cuff. Various theories and concepts have been described and it is still a matter of debate. However, most published studies suggest that both extrinsic and intrinsic factors have a role in the development of SIS. The management is controversial as both nonoperative and operative treatments have shown to provide good results. This article aims to provide a comprehensive current concepts review of the pathogenesis, etiologies, clinical diagnosis, appropriate use of investigations, and discussion on the management of SIS.

  7. Current Concepts in the Diagnosis and Treatment of Shoulder Impingement

    Science.gov (United States)

    Singh, Bijayendra; Bakti, Nik; Gulihar, Abhinav

    2017-01-01

    Subacromial impingement syndrome (SIS) is a very common cause of shoulder pain in the young adults. It can cause debilitating pain, dysfunction, and affects the activities of daily living. It represents a spectrum of pathology ranging from bursitis to rotator cuff tendinopathy which can ultimately lead to degenerative tear of the rotator cuff. Various theories and concepts have been described and it is still a matter of debate. However, most published studies suggest that both extrinsic and intrinsic factors have a role in the development of SIS. The management is controversial as both nonoperative and operative treatments have shown to provide good results. This article aims to provide a comprehensive current concepts review of the pathogenesis, etiologies, clinical diagnosis, appropriate use of investigations, and discussion on the management of SIS. PMID:28966374

  8. Radiologic analysis of femoral acetabular impingement: from radiography to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Jerry R. [University of California at San Diego, Department of Radiology, Rady Children' s Hospital and Health Center, San Diego, CA (United States); San Diego Imaging, San Diego, CA (United States); Monazzam, Shafagh [Rady Children' s Hospital and Health Center, Department of Orthopedics, San Diego, CA (United States); Chung, Christine B. [University of California at San Diego, Department of Radiology, San Diego, CA (United States)

    2013-03-15

    Femoral acetabular impingement is a set of morphologic abnormalities that are considered to be a major cause of degenerative disease in the hip joint. Early changes are already present in adolescence when it is the pediatric radiologist who must assess current damage with the aim of averting progression to more severe and debilitating osteoarthritis. A multimodality approach is used for diagnosis, that includes conventional radiography and CT to assess the osseous structures. MR arthrography is the primary advanced imaging modality for assessment of morphologic changes as well as injuries of the labrum and articular cartilage. Details of radiologic imaging are offered to guide the radiologist and provide an avenue for the accurate description of the osseous and articular alterations and injury. (orig.)

  9. Sports hernia and femoroacetabular impingement in athletes: A systematic review.

    Science.gov (United States)

    Munegato, Daniele; Bigoni, Marco; Gridavilla, Giulia; Olmi, Stefano; Cesana, Giovanni; Zatti, Giovanni

    2015-09-16

    To investigate the association between sports hernias and femoroacetabular impingement (FAI) in athletes. PubMed, MEDLINE, CINAHL, Embase, Cochrane Controlled Trials Register, and Google Scholar databases were electronically searched for articles relating to sports hernia, athletic pubalgia, groin pain, long-standing adductor-related groin pain, Gilmore groin, adductor pain syndrome, and FAI. The initial search identified 196 studies, of which only articles reporting on the association of sports hernia and FAI or laparoscopic treatment of sports hernia were selected for systematic review. Finally, 24 studies were reviewed to evaluate the prevalence of FAI in cases of sports hernia and examine treatment outcomes and evidence for a common underlying pathogenic mechanism. FAI has been reported in as few as 12% to as high as 94% of patients with sports hernias, athletic pubalgia or adductor-related groin pain. Cam-type impingement is proposed to lead to increased symphyseal motion with overload on the surrounding extra-articular structures and muscle, which can result in the development of sports hernia and athletic pubalgia. Laparoscopic repair of sports hernias, via either the transabdominal preperitoneal or extraperitoneal approach, has a high success rate and earlier recovery of full sports activity compared to open surgery or conservative treatment. For patients with FAI and sports hernia, the surgical management of both pathologies is more effective than sports pubalgia treatment or hip arthroscopy alone (89% vs 33% of cases). As sports hernias and FAI are typically treated by general and orthopedic surgeons, respectively, a multidisciplinary approach for diagnosis and treatment is recommended for optimal treatment of patients with these injuries. The restriction in range of motion due to FAI likely contributes to sports hernias; therefore, surgical treatment of both pathologies represents an optimal therapy.

  10. Exotic states of bouncing and walking droplets

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein; Moláček, Jan; Harris, Daniel M.

    2013-01-01

    We present the results of an integrated experimental and theoretical investigation of droplets bouncing on a vibrating fluid bath. A comprehensive series of experiments provides the most detailed characterisation to date of the system's dependence on fluid properties, droplet size, and vibrational...... forcing. A number of new bouncing and walking states are reported, including complex periodic and aperiodic motions. Particular attention is given to the first characterisation of the different gaits arising within the walking regime. In addition to complex periodic walkers and limping droplets, we....... Molacek and J. W. M. Bush, J. Fluid Mech.727, 612-647 (2013)]10.1017/jfm.2013.280, which provide a basis for rationalising all observed bouncing and walking states....

  11. Combustion of emulsified fuel droplets under microgravity

    Science.gov (United States)

    Okajima, S.; Kanno, H.; Kumagai, S.

    Single-droplet experiments have been conducted under a zero-gravity condition in a freely falling chamber as a fundamental step of study on the spray combustion of hydrocarbon-water emulsified fuels. Such a behavior as the secondary micro-atomization was observed by taking schlieren photographs with a 35-mm movie camera installed on the falling assembly. Under zero gravity the emulsion droplet initiates steam discharge and puffing—that is, a mild atomization—at a time from ignition, but it does not lead to such a micro-explosion or disruption as is experienced under normal gravity. The apparent burning rate constant under zero gravity is about 30% smaller than that under normal gravity. These facts suggest that the internal convection in emulsion droplets plays an important role in causing the micro-explosion.

  12. Droplet Growth Kinetics in Various Environments

    Science.gov (United States)

    Raatikainen, T. E.; Lathem, T. L.; Moore, R.; Lin, J. J.; Cerully, K. M.; Padro, L.; Lance, S.; Cozic, J.; Anderson, B. E.; Nenes, A.

    2012-12-01

    The largest uncertainties in the effects of atmospherics aerosols on the global radiation budget are related to their indirect effects on cloud properties (IPCC, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007). Cloud formation is a kinetic process where the resulting cloud properties depend on aerosol properties and meteorological parameters such as updraft velocity (e.g. McFiggans et al., Atmos. Chem. Phys., 6, 2593-2649, 2006). Droplet growth rates are limited by the water vapor diffusion, but additional kinetic limitations, e.g., due to organic surface films, slow solute dissociation or highly viscous or glassy aerosol states have been hypothesized. Significant additional kinetic limitations can lead to increased cloud droplet number concentration, thus the effect is similar to those of increased aerosol number concentration or changes in vertical velocity (e.g. Nenes et al., Geophys. Res. Lett., 29, 1848, 2002). There are a few studies where slow droplet growth has been observed (e.g. Ruehl et al., Geophys. Res. Lett., 36, L15814, 2009), however, little is currently known about their global occurrence and magnitude. Cloud micro-physics models often describe kinetic limitations by an effective water vapor uptake coefficient or similar parameter. Typically, determining aerosol water vapor uptake coefficients requires experimental observations of droplet growth which are interpreted by a numerical droplet growth model where the uptake coefficient is an adjustable parameter (e.g. Kolb et al., Atmos. Chem. Phys., 10, 10561-10605, 2010). Such methods have not been practical for high time-resolution or long term field measurements, until a model was recently developed for analyzing Droplet Measurement Technologies (DMT) cloud condensation nuclei (CCN) counter data (Raatikainen et al., Atmos. Chem. Phys., 12, 4227-4243, 2012). Model verification experiments showed that the calibration aerosol droplet size can be predicted accurately

  13. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  14. Edge effects on water droplet condensation.

    Science.gov (United States)

    Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel

    2014-12-01

    In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.

  15. Physics of puffing and microexplosion of emulsion fuel droplets

    Science.gov (United States)

    Shinjo, J.; Xia, J.; Ganippa, L. C.; Megaritis, A.

    2014-10-01

    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.

  16. Amphiphilic nanoparticles suppress droplet break-up and increase serial droplet interrogation rate

    Science.gov (United States)

    Kim, Minkyu; Gai, Ya; Pan, Ming; Tang, Sindy K. Y.

    2017-11-01

    We describe the break-up behavior of a concentrated emulsion comprising drops stabilized by amphiphilic silica nanoparticles (`NPs') flowing in a tapered microchannel. Such channel geometry is commonly used in droplet serial interrogation and assay. We focus on concentrated emulsions as they often form after the droplet incubation. Unlike solid wells in their multi-well plate counterpart, drops are prone to interfacial instability. Droplet break-up ruins assay accuracy. The rate at which break-up occurs sets the limit for assay throughput. Previously, we have studied the break-up of surfactant-stabilized drops in a concentrated emulsion. The key motivation for replacing surfactants with NPs is that NPs can mitigate inter-drop transport of small molecules. Our results show replacing surfactant with NPs as droplet stabilizers has an additional advantage of reducing droplet break-up, thereby increasing the droplet interrogation rate. Such result can be attributed to the increased interfacial viscoelasticity. We examine the effect of channel confinement, viscosity ratio, and size of NPs on the break-up behavior of drops. We find the break-up is dependent on confinement and size of NPs, while insensitive to viscosity ratio within the tested range. Our results have immediate practical use in increasing the throughput limit of droplet-based applications such as serial assay and interrogation.

  17. Recent Advances in Applications of Droplet Microfluidics

    Directory of Open Access Journals (Sweden)

    Wei-Lung Chou

    2015-09-01

    Full Text Available Droplet-based microfluidics is a colloidal and interfacial system that has rapidly progressed in the past decade because of the advantages of low fabrication costs, small sample volumes, reduced analysis durations, high-throughput analysis with exceptional sensitivity, enhanced operational flexibility, and facile automation. This technology has emerged as a new tool for many recently used applications in molecular detection, imaging, drug delivery, diagnostics, cell biology and other fields. Herein, we review recent applications of droplet microfluidics proposed since 2013.

  18. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  19. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-09-01

    Full Text Available Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100: first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1 the

  20. Comparison of Three-Dimentional Scapular Position and Orientation Between Subjects with and without Shoulder Impingement

    Directory of Open Access Journals (Sweden)

    Afsoun Nodehi-Moghaddam

    2006-04-01

    Full Text Available Objective: Epidemiologic Investigations have revealed a high prevalence (16% - 44% of shoulder complaints consistent with "impingement" in certain occupations. Multiple theories exist in respect to the primary etiology of shoulder "impingement" such as anatomic abnormalities of the coracoacrominal arch or humeral head weakness or degeneration of the rotator cuff tendons shoulder kinematic postural abnormalities and improper scapular muscles control. comparison of kinematic parameters of shoulder complex in healthy and impingement persons. Materials & Methods: 17 patients with shoulder Impingement syndrome that were selected conveniently (age = 43.82 and 17 healthy persons that were matched with patients (age=44.5 participated in this case – control study. A three - dimentional electromechanical digitizer was used to measure scapular position and orientation. Measurments were taken while the arm placed at the side of the body and elevated 45˚, 90˚, 120˚ along with full range of motien in the scapular plane. Orientation was described by upward rotation angle, posterior tilting angle and internal rotation angle. Position was described by medio – lateral position and superio – inferior position.  Results: Comparing to non impaired subjects, those with impingement, demonstrated a significantly lower upward rotation angle (90˚ , 120˚ and posterior tilt angle of the scapla in respective scapular plane. (P<0/05 Conclusion: These results suggest that altered scapular kinematic maybe an Important aspect of the "impingement syndrome". Scapular upward Rotation and posterior tipping are important to consider in the rehabilitation of pateints with symptoms of shoulder Impingement.

  1. Biomass and number of fish impinged at a nuclear power plant by the Baltic Sea.

    Science.gov (United States)

    Bryhn, Andreas C; Bergenius, Mikaela A J; Dimberg, Peter H; Adill, Anders

    2013-12-01

    The main aim of this study was to investigate the number and biomass of impinged fish at Forsmark Nuclear Power Plant in Sweden, located on the coast of the Baltic Sea. Of particular interest was the number of impinged individuals of the critically endangered European eel (Anguilla anguilla) which is regularly caught in the cooling system. Another aim was to determine the comparability of the results from Forsmark and results from impingement studies in other types of waters. Cross-systems studies make it possible to (1) estimate fish loss at plants where fish is not counted, and (2) to predict changes in fish loss from changes in electricity production or cooling water use. In 2010, 31,300,000 fish with a total biomass of 62,600 kg were impinged at Forsmark. In 2011, 27,300,000 fish weighing 38,500 kg were impinged. The maximum peak in total fish number and biomass occurred in spring. The most critical period for herring was in late summer and early autumn. Regarding eel, the largest impingement losses were recorded in November. The number of fish agreed with earlier established quantities of impinged fish in both freshwater and marine ecosystems. The study also estimated that 1,300 critically endangered eels could survive at Forsmark each year if a fish return system would be constructed to allow the passage of fish from the plant back to the Baltic Sea.

  2. Shoulder Girdle Muscles Endurance in Subjects with and without Impingement Syndrome

    Directory of Open Access Journals (Sweden)

    Afsoun Nodehi-Moghadam

    2011-07-01

    Full Text Available Objective: Any minimal alteration in performance and coordination of scapular and glenohumeral muscles has the potential to lead to shoulder joint dysfunction. The impingement syndrome has been reported as is the most common diagnosis of shoulder pain. The purpose of this study was to determine whether endurance deficits could be detected in patients with shoulder impingement. Materials & Methods: By convenient sampling 15 patients with impingement syndrome at average of 45.3 years of age and 15 healthy persons (age 45.8 years through a case–control design participated in the study. Endurance of glenohumeral and scapulothoracic muscles were tested with a hand held dynamometer. Independent t–test was used to statistically analyze different groups. Results: Compared to non–impaired subjects, those with impingement syndrome demonstrated a significantly lower endurance of external rotation, scaption and scapular abduction and upward rotation movements (P<0.05. In impingement syndrome patients, the external–to–internal rotator muscles endurance ratio was significantly lower than the control group (P<0.05. Conclusion: The result of the study suggests that endurance deficit of rotator cuff and scapular upward rotator muscles may be an important aspect of the impingement syndrome. Shoulder girdle muscles endurance should be considered in evaluation and physical therapy of impingement syndrome patients.

  3. [Relation between shoulder impingement syndrome and club head velocity in high-performance amateur golfers].

    Science.gov (United States)

    Ostreicher, M; Schwarz, M

    2013-05-01

    Joint structure damages due to overstrain often occur even in commonly not injury-prone golfing. Triggered by the golf swing's repetitive movement pattern and technique deficits of the player these structural damages are most likely to affect the lumbar spine as well as shoulder and elbow joint. As a synonym for shoulder impingement symptoms in golfers the term golf shoulder has been established in medical terminology. Despite this fact, currently there exist no studies addressing the relation between shoulder impingement syndrome and club head velocity. The aim of this study was to highlight the relation between club head velocity deficits of high-performance amateur golfers and persisting shoulder impingement syndrome. All of the 31 high-performance amateur golfers included in this study were male, active tournament players and right hander. Each golfer was examined for shoulder impingement syndrome using the Neer test, the Hawkins-Kennedy test, the painful arc and the functional test of the M. infraspinatus. Based on the test results the participants were allocated to an impingement group or a non-impingement group. Additionally, each golfer's club head velocity was determined. Between the two groups a significant difference concerning the club head velocity has been reported. A persisting shoulder impingement syndrome can have a negative effect on club head velocity. In many shoulder studies predominantly the influence of pathological muscular balance alterations (myofascial dysfunction) is not taken into consideration. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Encapsulation of emulsion droplets by organo–silica shells

    NARCIS (Netherlands)

    Zoldesi, C.; Steegstra, Patrick; Imhof, Arnout

    2007-01-01

    Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic)

  5. Microfluidic droplet generator with controlled break-up mechanism

    KAUST Repository

    Gonzalez, David Conchouso

    2017-04-13

    Droplet generation devices and systems that parallelize droplet generation devices are provided. The droplet generation devices can include a symmetric block-and-break system and a tapered droplet generation zone. The symmetric block-and-break system can include a pair of break channels and a pair of bypass channels symmetrically arranged with respect to the dispersed-phase input channel and the output channel. The droplet generation devices can generate monodisperse droplets with a predefined volume over a range of flow rates, pressures, and fluid properties. The droplet generation devices are therefore capable of parallelization to achieve large-capacity droplet generation, e.g. greater than 1 L/hr, with small overall coefficients of variation.

  6. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  7. Light-driven formation and rupture of droplet bilayers.

    Science.gov (United States)

    Dixit, Sanhita S; Kim, Hanyoup; Vasilyev, Arseny; Eid, Aya; Faris, Gregory W

    2010-05-04

    We demonstrate the optical manipulation of nanoliter aqueous droplets containing surfactant or lipid molecules and immersed in an organic liquid using near-infrared light. The resulting emulsion droplets are manipulated using both the thermocapillary effect and convective fluid motion. Droplet-pair interactions induced in the emulsion upon optical initiation and control provide direct observations of the coalescence steps in intricate detail. Droplet-droplet adhesion (bilayer formation) is observed under several conditions. Selective bilayer rupture is also realized using the same infrared laser. The technique provides a novel approach to studying thin film drainage and interface stability in emulsion dynamics. The formation of stable lipid bilayers at the adhesion interface between interacting water droplets can provide an optical platform on which to build droplet-based lipid bilayer assays. The technique also has relevance to understanding and improving microfluidics applications by devising Petri dish-based droplet assays requiring no substrate fabrication.

  8. The Evaporation of Liquid Droplets in Highly Turbulent Gas Streams

    National Research Council Canada - National Science Library

    Gould, Richard

    1998-01-01

    Single acetone and heptane droplets were suspended from a hypodermic needle in turbulent airflow, and the Nusselt number was obtained from direct measurements of the droplet diameter and evaporation rate...

  9. Comparison of surgical outcome in impingement syndrome with and without stiff shoulder

    Directory of Open Access Journals (Sweden)

    Park Jin-Young

    2008-01-01

    Full Text Available Background: In impingment syndrome with associated stiff shoulder the general protocol of management is to conservatively treat the stiff shoulder followed by operative treatment of the impingement syndrome. This consecutive prospective study was carried out to evaluate the functional outcome of surgical management for impingement syndrome associated with stiff shoulder and to compare the results with surgical management of impingement syndrome alone. Materials and Methods: We evaluated a total of 100 patients with impingement syndrome, consisting of 76 patients with impingement syndrome alone (Group A and 24 patients of stiff shoulder associated with impingement syndrome (Group B. Group A patients were treated by subacromial decompression alone and Group B patients were treated by closed manipulation under anesthesia followed by subacromial decompression. Results: According to the American Shoulder and Elbow Surgeons (ASES evaluation score satisfactory results were obtained in 80% patients of Group A and 67% patients of Group B, while for patients with diabetes [( n = 18, Group A (n = 11, Group B (n = 7] satisfactory results were achieved in 82% of patients of Group A(9/11 and 43% of Group B(3/7. Overall, Group B patients had a lower range of motion for external rotation postoperatively, thus indicating that procedures to improve the external rotation, such as a release of the rotator interval or anterior capsule, might be considered in conjunction with other surgical procedures in patients with impingement syndrome with associated stiffness to further improve functional outcome. Conclusion: Acromioplasty can be performed in stiff shoulder associated with impingement syndrome without fears of further worsening of stiffness from adhesions with the exposed raw undersurface of acromian. Patients with diabetes mellitus and shoulder stiffness tend to have poor clinical outcomes and must receive appropriate counseling preoperatively.

  10. Does shoulder impingement syndrome affect the shoulder kinematics and associated muscle activity in archers?

    Science.gov (United States)

    Shinohara, H; Urabe, Y; Maeda, N; Xie, D; Sasadai, J; Fujii, E

    2014-12-01

    Archery related injuries, such as shoulder impingement syndrome are caused by repeated motion of the shoulder. The aim of this study was to analyze differences in the shoulder kinematics and the associated muscle activity between archers with shoulder impingement and uninjured archery players. Thirty male archers, who were divided into an impingement group and an uninjured group, were included in this study. The angle of scapular elevation, shoulder joint abduction, horizontal extension, and elbow joint flexion as well as the electromyographic activity of the upper trapezius, lower trapezius, deltoid middle, deltoid posterior, biceps brachii, and triceps brachii muscles at the point of stabilization during shooting were measured. Variables differing between impingement and uninjured groups were identified, and a stepwise regression analysis was performed to identify a combination of variables that effectively impingement syndrome. The results indicated that the angle of scapular elevation was significantly greater than that uninjured group (Pimpingement group was significantly smaller than that in the uninjured group (Pimpingement group was significantly smaller than that in the uninjured group (Pimpingement group, while the level of lower trapezius muscle activity was significantly lower (Pimpingement group had a greater angle of scapular elevation, smaller angle of horizontal extension, smaller angle of elbow flexion, higher the levels of upper trapezius, lower the levels of lower trapezius, higher deltoid middle muscle activity and higher UT/LT ratio (all differences were significant). A logistic model for predicting impingement syndrome showed that UT/LT ratio was significantly related impingement syndrome (Pshoulder impingement syndrome exhibit different kinematics and muscle activity compared to uninjured archers. Therefore, in order to prevent shoulder joint impingement during archery, training is necessary what can make lower trapezius muscle activity

  11. Evaporation and boiling crisis of droplets alcohol solution

    OpenAIRE

    Misyura S.Y.; Morozov V.S.

    2017-01-01

    Evaporation and boiling crisis of droplets ethanol aqueous solution were studied experimentally. The evaporation intensity depends on the nucleate boiling, solution diffusion, a change in physical characteristics with time and droplet interfacial surface area. At nucleate boiling in a droplet, most evaporation relates to a growth in the droplet surface area and only 20 % relates to the diffusion effect and a variation in the thermophysical coefficients. At boiling crisis, experimental depende...

  12. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  13. Acceleration grid

    International Nuclear Information System (INIS)

    Hemmerich, J.; Kupschus, P.; Fraenkle, H.

    1983-01-01

    The acceleration grid is used in nuclear fusion technique as an ion beam grid. It consists of perforated plates at different potentials situated behind one another in the axial movement direction of their through holes. In order to prevent interference in the perforated hole area due to thermal expansion, the perforated plates are fixed with elastic springiness (plate fields) at their edges. (DG) [de

  14. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  15. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  16. Shoulder impingement syndrome: diagnostic accuracy of magnetic resonance imaging and radiographic signs

    International Nuclear Information System (INIS)

    Williamson, M.P.; Chandnani, V.P.; Baird, D.E.; Deberardino, T.M.; Swenson, G.W.; Hansen, M.F.

    1994-01-01

    Shoulder impingement syndrome is commonly encountered in orthopaedics. In a blinded retrospective study, magnetic resonance imaging and roentgenographic signs in 41 patients with clinical signs of impingement syndrome were compared with 40 control patients. Statistically significant differences between the groups included the absence of subacromial fat, as well as the presence of a supraspinatus tear, subacromial osteophytes, and a decreased coracohumeral distance. Other signs reported to occur in patients with impingement syndrome did not vary significantly in the population studied. 20 refs., 12 figs

  17. Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter.

    Science.gov (United States)

    Ding, Ruihua; Ung, W Lloyd; Heyman, John A; Weitz, David A

    2017-01-01

    Active manipulation of droplets is crucial in droplet microfluidics. However, droplet polydispersity decreases the accuracy of active manipulation. We develop a microfluidic "droplet filter" that accurately separates droplets by size. The droplet filter has a sharp size cutoff and is capable of distinguishing droplets differing in volume by 20%. A simple model explains the behavior of the droplets as they pass through the filter. We show application of the filter in improving dielectric sorting efficiency.

  18. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  19. Analysis of factors influencing the impingement of threadfin shad (Dorosoma pretenense) at power plants in the southeastern United States

    International Nuclear Information System (INIS)

    Loar, J.M.; Griffith, J.S.; Kumar, K.D.

    1977-01-01

    Data on intake design and location, plant operating procedures, water quality, numbers of fish impinged, and sampling procedures were analyzed for 27 fossil-fueled and 5 nuclear power plants located on inland waters in the southeastern United States. Small (less than 9 cm) clupeids, especially threadfin shad (Dorosoma pretenense), comprised the majority of the fish impinged at these facilities. The parameter that was most strongly associated with shad impingement was water temperature. Maximum impingement rates occurred during the winter when intake temperatures dropped below 10 0 C. Analyses of differences in impingement rates between plants failed to adequately demonstrate that the magnitude of impingement at a particular plant was the result of any site-specific characteristics associated with intake design or location. High approach velocities at the traveling screens did not necessarily result in high levels of impingement. Results obtained from inter-unit comparisons at several plants indicate that unit and screen differences do exist, but it is unclear from existing data whether or not such inter-unit differences determine the magnitude of impingement losses or merely affect the distribution of impinged fish at a given intake structure. Recommendations for monitoring fish impingement include the identification of impinged fish by species, collection of data on water temperatures and various plant operational parameters, periodic analyses of localized velocity regimes near the intake, and frequent estimates of the relative density of the fish population in the vicinity of the intake

  20. Colliding droplets in turbulent flows : A numerical study

    NARCIS (Netherlands)

    Perrin, V.E.

    2015-01-01

    Droplets and the way they collide are at the very base of the formation of clouds and the initiation of warm rain. The evolution of a cloud droplet into a rain droplet can be classi?ed into three stages. For each stage different growth mechanisms can be identi?ed. In the ?rst stage condensation is

  1. Dynamics of droplet breakup in a T-junction

    NARCIS (Netherlands)

    Hoang, D.A.; Portela, L.M.; Kleijn, C.R.; Kreutzer, M.T.; Van Steijn, V.

    2013-01-01

    The breakup of droplets due to creeping motion in a confined microchannel geometry is studied using three-dimensional numerical simulations. Analogously to unconfined droplets, there exist two distinct breakup phases: (i) a quasi-steady droplet deformation driven by the externally applied flow; and

  2. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  3. Non-equilibrium solidification of undercooled droplets during ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thermal history of droplets associated with gas atomization of melt has been investigated. A mathematical model, based on classical theory of heterogeneous nucleation and volume separation of nucleants among droplets size distribution, is described to predict undercooling of droplets. Newtonian heat flow.

  4. Droplet microfluidic platform for cell electrofusion

    NARCIS (Netherlands)

    Schoeman, R.M.

    2015-01-01

    In this thesis a lab on a chip platform is described which is capable of electrofusing cells in a picoliter droplet. The platform consist out of glass part containing recessed platinum electrodes plasma bonded to a PDMS slab containing microchannels. First the two cell populations are introduced

  5. Evaporation of nanofluid droplets on hydrophilic surfaces

    International Nuclear Information System (INIS)

    Shin, Dong Hwan; Lee, Seong Hyuk

    2009-01-01

    The main objective of this study is to investigate the evaporation characteristics and wetting dynamics of nanofluid droplets on hydrophilic surfaces. The evaporation processes of Al 2 O 3 nanofluid droplets are visualized for different liquid volumes and particle concentrations, and the in-situ measured total evaporation time, contact radius, and contact angle are presented by using a digital image analysis technique. In addition, the measurements are compared with the theoretical estimation of total evaporation time and the edge shrinking velocities are measured for examining the formation of nanoparticles strains. It is found that the measured initial contact angles decreases as the volume fraction of nanofluid increases, resulting in the decrease in the center-height of droplet, and the total evaporation time decreases with increase in the volume fraction of nanofluid. In particular, the rapid increase in the droplet edge shrinking velocity near a last stage of evaporation can be observed, and it would affect some inward movement of nanoparticles suspended in a base fluid.

  6. Droplet Manipulations in Two Phase Flow Microfluidics

    NARCIS (Netherlands)

    Pit, Arjen; Duits, Michael H.G.; Mugele, Friedrich Gunther

    2015-01-01

    Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of

  7. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bio analysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  8. Adjuvants for single droplet application of glyphosate

    DEFF Research Database (Denmark)

    Mathiassen, Solvejg K.; Kudsk, Per; Lund, Ivar

    2016-01-01

    Retention and biological activity of droplets of glyphosate deposited onto plant leaves using a Drop on Demand inkjet printer application system, was examined on pot-grown Brassica napus, Solanum nigrum, Chenopodium album, Silene noctiflora and Echinocloa crus-galli plants. Retention was measured...

  9. Adjuvants for single droplet application of glyphosate

    DEFF Research Database (Denmark)

    Mathiassen, Solvejg Kopp; Kudsk, Per; Lund, Ivar

    2016-01-01

    Retention and biological activity of droplets of glyphosate deposited onto plant leaves using a Drop on Demand inkjet printer application system, was examined on pot-grown Brassica napus, Solanum nigrum, Chenopodium album, Silene noctiflora and Echinocloa crus-galli plants. Retention was measured...... but the biological activity of glyphosate was not improved....

  10. Deformable nematic droplets in a magnetic field

    NARCIS (Netherlands)

    Otten, R.H.J.; van der Schoot, P. P. A. M.

    2012-01-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find

  11. Moving droplets : The measurement of contact lines

    NARCIS (Netherlands)

    Poelma, C.; Franken, M.J.Z.; Kim, H.; Westerweel, J.

    2014-01-01

    Contact lines are the locations where a gas, liquid and a solid meet. From everyday experience we know that such contact lines can be mobile, for example in the case of a water droplet sliding over a glass surface. However, the continuum description of the flow towards or away from a contact line

  12. Droplet size distribution in condensing flow

    NARCIS (Netherlands)

    Sidin, R.S.R.

    2009-01-01

    In this thesis, the problem of predicting the droplet size distribution in condensing ow is in- vestigated numerically and analytically. The work focuses on two types of problems: one where condensation occurs during the transonic expansion of a vapor-mixture, and a second one where condensation

  13. Prediction on Droplet Sauter Mean Diameter in Gas-Liquid Mist Flow Based on Droplet Fractal Theory

    Directory of Open Access Journals (Sweden)

    Jian-Yi Liu

    2015-01-01

    Full Text Available We present a fractal model for droplet Sauter mean diameter in gas-liquid mist flow, based on the droplet fractal theory and the balance relationship between total droplet surface energy and total gas turbulent kinetic energy. The present model is expressed as functions of the droplet fractal dimension, gas superficial velocity, liquid superficial velocity, and other fluid characteristics. Agreement between the present model predictions and experimental measurements is obtained. Results verify the reliability of the present model.

  14. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008–22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089–94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  15. Operator formulation of the droplet model

    International Nuclear Information System (INIS)

    Lee, B.W.

    1987-01-01

    We study in detail the implications of the operator formulation of the droplet model. The picture of high-energy scattering that emerges from this model attributed the interaction between two colliding particles at high energies to an instantaneous, multiple exchange between two extended charge distributions. Thus the study of charge correlation functions becomes the most important problem in the droplet model. We find that in order for the elastic cross section to have a finite limit at infinite energy, the charge must be a conserved one. In quantum electrodynamics the charge in question is the electric charge. In hadronic physics, we conjecture, it is the baryonic charge. Various arguments for and implications of this hypothesis are presented. We study formal properties of the charge correlation functions that follow from microcausality, T, C, P invariances, and charge conservation. Perturbation expansion of the correlation functions is studied, and their cluster properties are deduced. A cluster expansion of the high-energy T matrix is developed, and the exponentiation of the interaction potential in this scheme is noted. The operator droplet model is put to the test of reproducing the high-energy limit of elastic scattering quantum electrodynamics found by Cheng and Wu in perturbation theory. We find that the droplet model reproduces exactly the results of Cheng and Wu as to the impact factor. In fact, the ''impact picture'' of Cheng and Wu is completely equivalent to the droplet model in the operator version. An appraisal is made of the possible limitation of the model. (author). 13 refs

  16. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  17. Chemotactic droplet swimmers in complex geometries.

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V; Baldwin, Kyle A; Maass, Corinna C

    2018-02-07

    Chemotaxis 1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22; Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  18. Evaporation of ethanol/water droplets: examining the temporal evolution of droplet size, composition and temperature.

    Science.gov (United States)

    Hopkins, Rebecca J; Reid, Jonathan P

    2005-09-08

    The evolving size, composition, and temperature of evaporating ethanol/water aerosol droplets 25-57 microm in radius are probed by cavity enhanced Raman scattering (CERS) and laser induced fluorescence. This represents the first study in which the evolving composition of volatile droplets has been probed with spatial selectivity on the millisecond time scale, providing a new strategy for exploring mass and heat transfer in aerosols. The Raman scattering intensity is shown to depend exponentially on species concentration due to the stimulated nature of the CERS technique, providing a sensitive measure of the concentration of the volatile ethanol component. The accuracy with which we can determine droplet size, composition, and temperature is discussed. We demonstrate that the CERS measurements of evolving size and composition of droplets falling in a train can be used to characterize, and thus avoid, droplet coagulation. By varying the surrounding gas pressure (7-77 kPa), we investigate the dependence of the rate of evaporation on the rate of gas diffusion, and behavior consistent with gas diffusion-limited evaporation is observed. We suggest that such measurements can allow the determination of the vapor pressures of components within the droplet and can allow the determination of activity coefficients of volatile species.

  19. Arthroscopic treatment of iliopsoas impingement (IPI) after total hip replacement.

    Science.gov (United States)

    Jerosch, Jorg; Neuhäuser, Christian; Sokkar, Sherif M

    2013-10-01

    The purpose of the study was to present our arthroscopic surgical technique and the results in patient with an iliopsoas impingement (IPI) syndrome after a hip replacement. Between 1999 and 2011, 35 patients with the clinical picture of an IPI after total hip replacement were diagnosed and treated arthroscopically. The age was ranged from 58 to 82 years. All patients underwent conservative treatment for at least 6 months without success. The indication for the arthroscopic procedure was the failure of the conservative therapy as well as typical clinical signs as painful hip flexion, a positive local anesthesia test and radiological evidence of the presence of a prominent anterior acetabular component. The arthroscopic treatment was performed in all patients with anterior capsulotomy and partial capsulectomy of the hip joint. After identification of the pathology an arthroscopic release of the iliopsoas tendon in the region of the proved lesion was performed. The average follow-up period was 3.6 years (6 months to 12 years). In all patients osseous integrated acetabular components were found. In six cases there was a surface replacement, in three cases it was a cementless screw-in cup and in the other three cases it was a cementless modular press-fit cup. 8 out of 12 patients suffered from a hip dysplasia with a secondary osteoarthritis. After establishing an anterior capsular window arthroscopically, the iliopsoas tendon could be visualized in all cases. In addition to multiple local tendinitis all patients already showed mechanical limitation with partial rupture of variable extent in the iliopsoas tendon. During the arthroscopy the lesion was detected at the level of the anterior prominent acetabular component as well as distal to it. 10 out of 12 patients reported immediately after postoperative mobilization that the typical preoperative complaints have disappeared. Two patients still had residual pain. In one of those patients this was relieved by the time

  20. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, C.L.; Wilson, D.J. [Nuffield Orthopaedic Centre, Department of Radiology, Oxford (United Kingdom); Coltman, T.P. [Nuffield Orthopaedic Centre, Department of Orthopaedic Surgery, Oxford (United Kingdom)

    2008-03-15

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  1. Characterization of symptomatic hip impingement in butterfly ice hockey goalies.

    Science.gov (United States)

    Ross, James R; Bedi, Asheesh; Stone, Rebecca M; Sibilsky Enselman, Elizabeth; Kelly, Bryan T; Larson, Christopher M

    2015-04-01

    This study aimed to characterize the radiographic deformity observed in a consecutive series of butterfly goalies with symptomatic mechanical hip pain and to use computer-based software analysis to identify the location of impingement and terminal range of motion. We also compared these analyses to a matched group of positional hockey players with symptomatic femoroacetabular impingement (FAI). A consecutive series of 68 hips in 44 butterfly-style hockey goalies and a matched group of 34 hips in 26 positional hockey players who underwent arthroscopic correction for symptomatic FAI were retrospectively analyzed. Each patient underwent preoperative anteroposterior (AP) and modified Dunn lateral radiographs and computed tomography (CT) of the affected hips. Common FAI measurements were assessed on plain radiographs. Patient-specific, CT-based 3-dimensional (3D) models of the hip joint were developed, and the femoral version, alpha angles at each radial clock face position, and femoral head coverage were calculated. Maximum hip flexion, abduction, internal rotation in 90° flexion (IRF), flexion/adduction/internal rotation (FADIR), and butterfly position were determined, and the areas of bony collision were defined. Butterfly goalies had an elevated mean alpha angle on both AP (61.3°) and lateral radiographs (63.4°) and a diminished beta angle (26.0°). The mean lateral center-edge angle (LCEA) measured 27.3° and acetabular inclination was 6.1°. A crossover sign was present in 59% of the hips. The maximum alpha angle on the radial reformatted computed tomographic scan was significantly higher among the butterfly goalies (80.9° v 68.6°; P hockey goalies have a high prevalence of FAI, characterized by a unique femoral cam-type deformity and noted by an elevated alpha angle and loss of offset, which is greater in magnitude and more lateral when compared with that in positional hockey players. Associated acetabular dysplasia is also common among hockey goalies. Level

  2. Subacromial Tenoxicam Injection in the Treatment of Impingement Syndrome

    Science.gov (United States)

    Çift, Hakan; Özkan, Feyza Ünlü; Şeker, Ali; İşyar, Mehmet; Ceyhan, Erman; Mahiroğulları, Mahir

    2014-01-01

    Objectives: As subacromial bursa injection is widely used for pain relief and functional improvements in patients with periarticular shoulder disorder, we aimed to present our results of subacromial tenoxicam injection in the treatment of impingement syndrome. Methods: Patients presented to the Department of Orthopaedics and Traumatology, Istanbul Medipol University with the primary complaints of shoulder pain from January 2012 to June 2013 were selected. Those who met the following inclusion criteria were finally considered: 1) who had a clinical sign of a painful arc and positive in Hawkins test and/or Neer impingement sign; 2) who had a precise rotator cuff injury including partial cuff tears, or subacromial bursitis detected during ultrasonography or MRI. The exclusion criteria were as follows: 1) who underwent shoulder surgery; 2) who had full thickness rotator cuff rupture; 3) who had hemiplegic shoulder pain; and 4) who displayed any suspected fracture on X-ray or had a recent shoulder trauma; 5) who showed limited active ROM and stiffness due to adhesive capsulitis. Thirty one shoulders out of thirty patients were treated with subacromial tenoxicam injection. Ten of them were left shoulders. Fifteen of the patients were women.. Patients had a mean age of 51.6 (30-73). Patients were evaluated 4 times. Before the first injection, 1 week after the first injection, 2 weeks after the second injection and 3 weeks after the third injection. In every injection 20 mg tenoxicam was performed. Results: In order to relieve the pain; two patients were given only one injection, thirteen patients were given two injections and “3 injections protocol” were done to fifteen patients. The mean pre- and posttreatment VAS scores were 7.9 (between, 7-9) and 2.7 (between, 2-4) points respectively. The average pre and posttreatment DASH scores were 59.41 (between, 45-80) and 14 (between, 8.3-25.8) points respectively. The mean pre and posttreatment range of motion were 106

  3. Acupuncture treatment of shoulder impingement syndrome: A randomized controlled trial.

    Science.gov (United States)

    Rueda Garrido, Juan Carlos; Vas, Jorge; Lopez, D Rafael

    2016-04-01

    Shoulder pain or omalgia is one of the main types of osteoarticular pain that can be observed in every-day clinical practice, frequently causing significant functional impairment. The most common cause of shoulder pain is impingement syndrome. To decrease the intensity of short- and mid-term pain in the injured shoulder by means of acupuncture. Randomized controlled trial with two groups of participants: one group received true acupuncture (TA) and the other received acupuncture at sham points (SA). The treatment was carried out over 4 weeks, with the participants receiving a session every week. The results were measured immediately after the treatment (T1) and 3 months later (T2). To evaluate the results, we used the 100 mm Visual Analogue Scale (VAS), and to assess the functionality of the shoulder we employed the UCLA questionnaire (0-35 points). A total of 68 participants were included in the analysis (TA, n=35; SA, n=33), with a mean age of 33.4 years (SD 12.53). We found significant differences in the analyzed results between the two groups, as we observed a decrease on the intensity of pain for the TA group of 44.13 mm at T1 (CI 95% 36.7; 51.5) and 87.58 mm at T2 (CI 95% 28.32; 46.81), while the decrease in the FA group was of 19.84 mm at T1 (CI 95% 12.2; 27.4) and 20 mm at T2 (CI 95% 10.9; 29.09). When the UCLA scores were analyzed, the results were clinically meaningful in support of TA in terms of functional assessment of the shoulder. No adverse effects were reported. The use of acupuncture to treat impingement syndrome seems to be a safe and reliable technique to achieve clinically significant results and could be implemented in the therapy options offered by the health services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging

    International Nuclear Information System (INIS)

    McCarthy, C.L.; Wilson, D.J.; Coltman, T.P.

    2008-01-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  5. Accelerated treatment.

    Science.gov (United States)

    Barkley, H T

    1985-05-01

    In the first third of this century, the prevailing concept was that malignant cells had a brief period of sensitivity and radiation treatments were ideally given in overall times of 2 weeks or less. Following the Second World War, routine treatment times were extended to 5 to 8 weeks to avoid severe acute normal tissue reactions and achieve higher tumor doses. In reaction to these prolonged overall times, a series of large-fraction, shortened-overall-time clinical experiments were attempted, with disastrous normal tissue effects and poor tumor control. More recently, attempts to accelerate treatment have been accomplished by utilizing multiple fractions per day or semicontinuous irradiation. Unfortunately, the majority of these attempts have been forced by the occurrence of unacceptable normal tissue reactions to significantly reduce total dose or introduce lengthy splits in treatment. These results suggest that in our current state of knowledge accelerated schedules be reserved for use in the treatment of rapidly proliferating neoplasms or for palliation.

  6. Effects of physiotherapy in patients with shoulder impingement syndrome: a systematic review of the literature.

    NARCIS (Netherlands)

    Kromer, T.O.; Tautenhahn, U.G.; Bie, R.A. de; Staal, J.B.; Bastiaenen, C.H.

    2009-01-01

    OBJECTIVE: To critically summarize the effectiveness of physio-therapy in patients presenting clinical signs of shoulder impingement syndrome. DESIGN: Systematic review. METHODS: Randomized controlled trials were searched electronically and manually from 1966 to December 2007. Study quality was

  7. Heat Transfer Experiments in a Submerged Impinging round Jet using Liquid Crystal Thermometry

    Czech Academy of Sciences Publication Activity Database

    Vejražka, Jiří; Marty, P.; Sobolík, Václav

    2002-01-01

    Roč. 20, č. 1 (2002), s. 45-50 ISSN 0392-8764 Institutional research plan: CEZ:AV0Z4072921 Keywords : heat transfer * impinging jet * liquid crystal Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  8. Electromagnetic Control of High Heat-Flux Spray Impingement Boiling Under Microgravity Conditions

    National Research Council Canada - National Science Library

    Gray, Donald D; Kuhlman, John M; Glaspell, Shannon L; Hunnell, C. A; Kreitzer, Paul J; Mehra, Deepak; Youssef, Rageey M

    2007-01-01

    .... Yerkes of the Air Force Research Laboratory (AFRL). The West Virginia University (WVU) investigation of electrical body forces to enhance and control spray impingement boiling extended the AFRL research...

  9. The Use of Osteopathic Manual Therapy and Rehabilitation for Subacromial Impingement Syndrome: A Case Report.

    Science.gov (United States)

    Bennett, Sam; Macfarlane, Chris; Vaughan, Brett

    Rotator cuff dysfunction is common in athletes involved with overhead sports. Secondary subacromial impingement is a common cause of pain for patients with rotator cuff dysfunction. Exercise rehabilitation and manual therapy can be used in the treatment of subacromial impingement to decrease pain, increase functionality and support a return to activity. The current case report describes a 24-year-old patient with supraspinatus tendinosis and secondary subacromial impingement who was experiencing pain when playing tennis, and during daily activities involving overhead movements. Osteopathic manual therapy and rehabilitation was undertaken leading to significant improvements in pain and function over a six-week period. The current case report describes an evidence-informed approach to the management of subacromial impingement syndrome whilst incorporating a manual therapy technique, balanced ligamentous tension, that has received little attention in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Clinical trials in orthopaedics and the future direction of clinical investigations for femoroacetabular impingement

    DEFF Research Database (Denmark)

    Clohisy, John C; Kim, Young-Jo; Lurie, Jon

    2013-01-01

    Femoroacetabular impingement (FAI) represents a heterogeneous group of disorders that affect a diverse patient population. The natural history of the disease, the role of nonsurgical management, the indications for surgery, optimal surgical techniques, and the predictors of treatment outcomes nee...

  11. Specific or general exercise strategy for subacromial impingement syndrome-does it matter?

    DEFF Research Database (Denmark)

    Shire, Alison R; Stæhr, Thor A B; Overby, Jesper B

    2017-01-01

    . Results were synthesised qualitatively or quantitatively, where appropriate. Results Six randomized controlled trials were included with 231 participants who experienced symptoms of subacromial impingement syndrome. Four studies evaluated the effectiveness of specific scapular exercise strategy and two...

  12. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    Science.gov (United States)

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  13. Laser Accelerator

    Science.gov (United States)

    2014-09-01

    Photocathode emitters eject electrons from the cathode by the photoelectric effect. A drive laser source shines light energy onto a metal or...synchronized so that the electrons ejected via the photoelectric effect are properly accelerated. 15 Figure 2.4: Cross-section of a triple spoke cavity, from...2.3: Available Pulsed Magnets at PFF LANL. SP = Short Pulse. MP = Mid-Pulse, after [19] Cell No. Magnet Pulse Duration (ms) Bore (mm) 1 50 T SP 25 24

  14. The Lipid Droplet – A Well-Connected Organelle

    Directory of Open Access Journals (Sweden)

    Qiang eGao

    2015-08-01

    Full Text Available Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.

  15. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  16. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    Lake City, Utah; July 27, 2016 Prepared in collaboration with Sierra Lobo, Inc. 14. ABSTRACT An experimental study has been conducted to explore...visually prominent, the impingement sheet was subjected to incremental pressure amplitudes in a pressure anti-node (PAN) and pressure node (PN...been conducted to explore the coupling between the impact waves created by impinging jets and high frequency acoustic pressure perturbations. High

  17. Shoulder impingement revisited: evolution of diagnostic understanding in orthopedic surgery and physical therapy.

    Science.gov (United States)

    Braman, Jonathan P; Zhao, Kristin D; Lawrence, Rebekah L; Harrison, Alicia K; Ludewig, Paula M

    2014-03-01

    "Impingement syndrome" is a common diagnostic label for patients presenting with shoulder pain. Historically, it was believed to be due to compression of the rotator cuff tendons beneath the acromion. It has become evident that "impingement syndrome" is not likely an isolated condition that can be easily diagnosed with clinical tests or most successfully treated surgically. Rather, it is likely a complex of conditions involving a combination of intrinsic and extrinsic factors. A mechanical impingement phenomenon as an etiologic mechanism of rotator cuff disease may be distinct from the broad diagnostic label of "impingement syndrome". Acknowledging the concepts of mechanical impingement and movement-related impairments may better suit the diagnostic and interventional continuum as they support the existence of potentially modifiable impairments within the conservative treatment paradigm. Therefore, it is advocated that the clinical diagnosis of "impingement syndrome" be eliminated as it is no more informative than the diagnosis of "anterior shoulder pain". While both terms are ambiguous, the latter is less likely to presume an anatomical tissue pathology that may be difficult to isolate either with a clinical examination or with diagnostic imaging and may prevent potentially inappropriate surgical interventions. We further recommend investigation of mechanical impingement and movement patterns as potential mechanisms for the development of shoulder pain, but clearly distinguished from a clinical diagnostic label of "impingement syndrome". For shoulder researchers, we recommend investigations of homogenous patient groups with accurately defined specific pathologies, or with subgrouping or classification based on specific movement deviations. Diagnostic labels based on the movement system may allow more effective subgrouping of patients to guide treatment strategies.

  18. Ultrasound of the coracoacromial ligament in asymptomatic volunteers and patients with shoulder impingement.

    Science.gov (United States)

    Dietrich, Tobias J; Jonczy, Maciej; Buck, Florian M; Sutter, Reto; Puskas, Gabor J; Pfirrmann, Christian Wa

    2016-08-01

    The coracoacromial ligament is part of the coracoacromial arch, which is considered to be involved in shoulder impingement. To compare the coracoacromial ligament on ultrasound in asymptomatic volunteers and in patients with subacromial shoulder impingement. Twenty-nine asymptomatic volunteers (mean age, 35.5 years) and 29 patients (mean age, 49.9 years) with shoulder impingement, diagnosed by experienced shoulder surgeons, were prospectively included. Two radiologists obtained and analyzed ultrasound images of the coracoacromial ligament in the longitudinal axis. The ligament thickness was 1.4 ± 0.2 mm at its midportion, 1.8 ± 0.4 mm at the coracoid, and 2.1 ± 0.6 mm at the acromion in asymptomatic volunteers compared with 1.3 ± 0.2 mm, 1.9 ± 0.5 mm, and 1.9 ± 0.5 mm in impingement patients for observer 1. The ligament length was 30.6 ± 2.4 mm in asymptomatic volunteers compared with 30.4 ± 3.6 mm in impingement patients for observer 1. An anteriorly convex shape of the superficial contour of the coracoacromial ligament was significantly more frequent in impingement patients compared with asymptomatic volunteers for both observers (observer 1: 10% (3/29) versus 45% (13/29), P value shoulder impingement, an anteriorly convex shape of the superficial contour of the coracoacromial ligament was significantly more frequent in impingement patients compared with asymptomatic volunteers. © The Foundation Acta Radiologica 2015.

  19. Arthroscopic treatment of impingement of the ankle reduces pain and enhances function

    DEFF Research Database (Denmark)

    Rasmussen, S; Hjorth Jensen, C

    2002-01-01

    A consecutive series of 105 patients with a median age of 35 (16-62) years who were operated on with arthroscopic resection for impingement of the ankle using standardized technique without distraction is presented. All patients complained of painful dorsiflexion and had failed to respond...... synovectomy and intravenous antibiotics. In one patient persistent symptoms were recorded. Ankle arthroscopy yielded good results in the treatment of anterior impingement of the ankle as it effectively reduced pain and enhanced function....

  20. Computed tomography assessment of hip joints in asymptomatic individuals in relation to femoroacetabular impingement.

    Science.gov (United States)

    Kang, Alan C L; Gooding, Andrew J; Coates, Mark H; Goh, Tony D; Armour, Paul; Rietveld, John

    2010-06-01

    Femoroacetabular impingement has become a well-recognized entity predisposing to acetabular labral tears and chondral damage, and subsequently development of osteoarthritis of the hip joint. In the authors' experience, it is common to see bony abnormalities predisposing to femoroacetabular impingement in the contralateral asymptomatic hips in patients with unilateral femoroacetabular impingement. This study was undertaken to investigate the prevalence of bony abnormalities predisposing to femoroacetabular impingement in asymptomatic individuals without exposing study participants to unnecessary radiation. Cross-sectional study; Level of evidence, 4. Fifty individuals (100 hip joints), ranging from 15 to 40 years of age, who were seen at a local hospital between March and August 2008 with abdominal trauma or nonspecific abdominal pain in whom abdominal computed tomography was performed to aid diagnosis were prospectively studied. These patients were not known to have any history of hip-related problems. Raw data from the abdominal computed tomography scan, performed on a 64-slice multidetector computed tomography scanner, were reformatted using bone algorithm into several different planes. Several measurements and observations of the hip joints were made in relation to femoroacetabular impingement. The 100 hip joints from 50 patients with no history of hip problems demonstrated that 39% of the joints (31% of female, 48% of male joints) have at least 1 morphologic aspect predisposing to femoroacetabular impingement. The majority (66% to 100% ) of the findings were bilateral; 33% of female and 52% of male asymptomatic participants in our study had at least 1 predisposing factor for femoroacetabular impingement in 1 or both of their hip joints. Based on the data collected from this study, the acetabular crossover sign had a 71% sensitivity and 88% specificity for detecting acetabular retroversion. Nonquantitative assessment of the femoral head at the anterior

  1. Association between kyphosis and subacromial impingement syndrome: LOHAS study.

    Science.gov (United States)

    Otoshi, Kenichi; Takegami, Misa; Sekiguchi, Miho; Onishi, Yoshihiro; Yamazaki, Shin; Otani, Koji; Shishido, Hiroaki; Kikuchi, Shinichi; Konno, Shinichi

    2014-12-01

    Kyphosis is a cause of scapular dyskinesis, which can induce various shoulder disorders, including subacromial impingement syndrome (SIS). This study aimed to clarify the impact of kyphosis on SIS with use of cross-sectional data from the Locomotive Syndrome and Health Outcome in Aizu Cohort Study (LOHAS). The study enrolled 2144 participants who were older than 40 years and participated in health checkups in 2010. Kyphosis was assessed by the wall-occiput test (WOT) for thoracic kyphosis and the rib-pelvic distance test (RPDT) for lumbar kyphosis. The associations between kyphosis, SIS, and reduction in shoulder elevation (RSE) were investigated. Age- and gender-adjusted logistic regression analysis demonstrated significant association between SIS and WOT (odds ratio, 1.65; 95% confidence interval, 1.02, 2.64; P shoulder elevation induced by the restriction of the thoracic spine extension and scapular dyskinesis. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. [Effectiveness of physiotherapy on painful shoulder impingement syndrome].

    Science.gov (United States)

    Gomora-García, Mónica; Rojano-Mejía, David; Solis-Hernández, José Luis; Escamilla-Chávez, Carolina

    2016-01-01

    Painful shoulder impingement syndrome is one of the first reasons for care in rehabilitation centres. As the evidence regarding the effectiveness of physical measures as adjuvant treatment is limited, the aim of this study was to determine the effectiveness of physiotherapy on shoulder pain. A retrospective and analytical study was conducted using the medical records of patients with shoulder pain who attended in a rehabilitation centre from October 2010 to September 2011. The demographic and clinical data were collected, and the clinical improvement was determined as: complete, incomplete, or no improvement. Chi squared was used to determine whether there were differences between the different modalities of physiotherapy, as well as the level of improvement. The study included a total of 181 patients, with a mean age of 54.3 years, and a mean of 4.6 months of onset of pain. The physiotherapy treatments included: warm compresses plus interferential current (60.2%), and warm compresses plus ultrasound (17.1%). Just over half (53.6%) obtained a moderate recovery, 36.4% slight improvement, and 9.9% no improvement. No significant differences were found between the different forms of therapy. The supervised rehabilitation program consists of 9 sessions of physiotherapy. A functional improvement of 90% was obtained, without finding any statistical differences between the therapies used. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  3. Magnetic resonance imaging findings in anterolateral impingement of the ankle

    International Nuclear Information System (INIS)

    Jordan, L.K. III.; Cooperman, A.E.; Helms, C.A.; Speer, K.P.

    2000-01-01

    Objective. To demonstrate the MR imaging findings of anterolateral impingement (ALI) of the ankle.Design and patients. Nine patients with a history of ankle inversion injury and chronic lateral ankle pain were imaged with MR imaging, and the findings correlated with the results of arthroscopy. Three additional patients with clinically suspected ALI of the ankle were also included. Ankle MR imaging studies from 20 control patients in whom ALI was not suspected clinically were examined for similar findings to the patient group.Results. MR imaging findings in the patients with ALI included a soft tissue signal mass in the anterolateral gutter of the ankle in 12 of 12 (100%) cases, corresponding to the synovial hypertrophy and soft tissue mass found at arthroscopy in the nine patients who underwent arthroscopy. Disruption, attenuation, or marked thickening of the anterior talofibular ligament was seen in all cases. Additional findings included signs of synovial hypertrophy elsewhere in the tibiotalar joint in seven of 12 patients (58%) and bony and cartilaginous injuries to the tibiotalar joint in five of 12 (42%). None of the control patients demonstrated MR imaging evidence of a soft tissue mass in the anterolateral gutter.Conclusions. ALI of the ankle is a common cause for chronic lateral ankle pain. It has been well described in the orthopedic literature but its imaging findings have not been clearly elucidated. The MR imaging findings, along with the appropriate clinical history, can be used to direct arthroscopic examination and subsequent debridement. (orig.)

  4. A Novel Association between Femoroacetabular Impingement and Anterior Knee Pain.

    Science.gov (United States)

    Sanchis-Alfonso, Vicente; Tey, Marc; Monllau, Joan Carles

    2015-01-01

    Background. For a long time it has been accepted that the main problem in the anterior knee pain (AKP) patient is in the patella. Currently, literature supports the link between abnormal hip function and AKP. Objective. Our objective is to investigate if Cam femoroacetabular impingement (FAI) resolution is related to the outcome in pain and disability in patients with chronic AKP recalcitrant to conservative treatment associated with Cam FAI. Material and Methods. A retrospective study on 7 patients with chronic AKP associated with FAI type Cam was performed. Knee and hip pain were measured with the visual analogue scale (VAS), knee disability with the Kujala scale, and hip disability with the Nonarthritic Hip Score (NAHS). Results. The VAS knee pain score and VAS hip pain score had a significant improvement postoperatively. At final follow-up, there was significant improvement in all functional scores (Kujala score and NAHS). Conclusion. Our finding supports the link between Cam FAI and AKP in some young patients. Assessment of Cam FAI should be considered as a part of the physical examination of patients with AKP, mainly in cases with pain recalcitrant to conservative treatment.

  5. A Novel Association between Femoroacetabular Impingement and Anterior Knee Pain

    Directory of Open Access Journals (Sweden)

    Vicente Sanchis-Alfonso

    2015-01-01

    Full Text Available Background. For a long time it has been accepted that the main problem in the anterior knee pain (AKP patient is in the patella. Currently, literature supports the link between abnormal hip function and AKP. Objective. Our objective is to investigate if Cam femoroacetabular impingement (FAI resolution is related to the outcome in pain and disability in patients with chronic AKP recalcitrant to conservative treatment associated with Cam FAI. Material and Methods. A retrospective study on 7 patients with chronic AKP associated with FAI type Cam was performed. Knee and hip pain were measured with the visual analogue scale (VAS, knee disability with the Kujala scale, and hip disability with the Nonarthritic Hip Score (NAHS. Results. The VAS knee pain score and VAS hip pain score had a significant improvement postoperatively. At final follow-up, there was significant improvement in all functional scores (Kujala score and NAHS. Conclusion. Our finding supports the link between Cam FAI and AKP in some young patients. Assessment of Cam FAI should be considered as a part of the physical examination of patients with AKP, mainly in cases with pain recalcitrant to conservative treatment.

  6. Hydrodynamics of Leidenfrost droplets in one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2013-04-24

    Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].

  7. Hydrodynamics of Leidenfrost droplets in one-component fluids.

    Science.gov (United States)

    Xu, Xinpeng; Qian, Tiezheng

    2013-04-01

    Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].

  8. Binary particle separation in droplet microfluidics using acoustophoresis

    Science.gov (United States)

    Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria

    2018-02-01

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  9. Effect of Surfactants on the Growth of Individual Cloud Droplets

    Science.gov (United States)

    Frossard, A. A.; Li, W.; Gerard, V.; Noziere, B.; Cohen, R. C.

    2016-12-01

    Accurately predicting cloud droplet growth and lifetime remains a large uncertainty in estimates of Earth's changing energy budget. Current findings suggest that surface-active organic compounds and other surfactants in cloud droplets can affect the rate and magnitude of water condensation onto and evaporation from droplets affecting a myriad of cloud properties. This idea represents a significant change from prior thinking that focused solely on solubility as the chemical influence on water uptake to droplets. Recent observations show that surfactants extracted from atmospheric aerosol particles can considerably reduce the surface tension of water, making them important factors in cloud droplet growth that were until recently considered to be negligible. Using the surfactant Igepal CA-630, which has properties similar to that of surfactants extracted from atmospheric aerosol samples, model cloud droplets were created in the laboratory. The evaporation and condensation of the individual droplets were investigated using an aerosol optical trap with Raman spectroscopy. With a change in relative humidity (RH) from 70% to 80%, droplets containing both Igepal and NaCl had much larger changes in droplet radii than droplets containing NaCl only, demonstrating a significant effect of surface tension depression on evaporation and condensation. Given an increase in RH in the atmosphere, this could lead to droplets containing surfactants growing larger than those without surfactants and a substantial change in CCN activity.

  10. Small Levitating Ordered Droplet Clusters: Stability, Symmetry, and Voronoi Entropy.

    Science.gov (United States)

    Fedorets, Alexander A; Frenkel, Mark; Bormashenko, Edward; Nosonovsky, Michael

    2017-11-16

    A method to generate levitating monodisperse microdroplet clusters with an arbitrary number of identical droplets is presented. Clusters with 1-28 droplets levitate over a locally heated water layer in an ascending vapor-air jet. Due to the attraction to the center of the heated area combined with aerodynamic repulsion between the droplets, the clusters form structures that are quite diverse and different from densest packing of hard spheres. The clusters self-organize into stable and reproducible configurations dependent on the number of droplets while independent of the droplets' size. The central parts of larger clusters reproduce the shape of smaller clusters. The ability to synthesize stable clusters with a given number of droplets is important for tracing droplets, which is crucial for potential applications such as microreactors and for chemical analysis of small volumes of liquid.

  11. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  12. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  13. Impingement and entrainment of fishes at the Savannah River Plant: an NPDES 316b demonstration

    International Nuclear Information System (INIS)

    McFarlane, R.W.; Frietsche, R.F.; Miracle, R.D.

    1978-02-01

    Environmental impacts of the Savannah River Plant's withdrawal of Savannah River water include impingement of juvenile and adult fish on trash removal screens, and entrainment of planktonic fish eggs and larval fish into the pumping system. The Savannah River Plant (SRP) has the capacity to pump 3.6 million cubic meters of water per day--25% of the minimal river discharge--for cooling and other purposes. Present removal is 7% of the actual river discharge. In the river and intake canals reside sixty-nine species of fishes. The species composition of the resident fish community of the intake canals is similar to the species composition in the river, but different in relative species abundance. The dominant sunfishes tend to reside in the canals for long periods and seldom go from canal to canal. The fish impingement rate at the plant ranks very low in comparison with electric power plants on inland waters. Thirty-five species of fishes were impinged during 1977. The average impingement rate of 7.3 fish per day extrapolates to 2,680 fish per year. No single species comprised more than 10% of the sample. The most commonly impinged species were bluespotted sunfish, warmouth, channel catfish, and yellow perch. The relative abundance of those species impinged deviates from their relative abundance in the canal fish population

  14. Subacromial impingement in patients with whiplash injury to the cervical spine

    Directory of Open Access Journals (Sweden)

    Giddins Grey E

    2008-06-01

    Full Text Available Abstract Background Impingement syndrome and shoulder pain have been reported to occur in a proportion of patients following whiplash injuries to the neck. In this study we aim to examine these findings to establish the association between subacromial impingement and whiplash injuries to the cervical spine. Methods and results We examined 220 patients who had presented to the senior author for a medico-legal report following a whiplash injury to the neck. All patients were assessed for clinical evidence of subacromial impingement. 56/220 patients (26% had developed shoulder pain following the injury; of these, 11/220 (5% had clinical evidence of impingement syndrome. Only 3/11 patients (27% had the diagnosis made prior to evaluation for their medico-legal report. In the majority, other clinicians had overlooked the diagnosis. The seatbelt shoulder was involved in 83% of cases (p Conclusion After a neck injury a significant proportion of patients present with shoulder pain, some of whom have treatable shoulder pathology such as impingement syndrome. The diagnosis is, however, frequently overlooked and shoulder pain is attributed to pain radiating from the neck resulting in long delays before treatment. It is important that this is appreciated and patients are specifically examined for signs of subacromial impingement after whiplash injuries to the neck. Direct seatbelt trauma to the shoulder is one possible explanation for its aetiology.

  15. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  16. Global rainbow refractometry for droplet temperature measurement

    International Nuclear Information System (INIS)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux; Gerard Grehan

    2005-01-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm 3 . The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  17. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  18. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  19. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  20. Heat Transfer and Observation of Droplet-Surface Interactions During Air-Mist Cooling at CSP Secondary System Temperatures

    Science.gov (United States)

    Huerta L., Mario E.; Mejía G., M. Esther; Castillejos E., A. Humberto

    2016-04-01

    Air-mists are key elements in the secondary cooling of modern thin steel slab continuous casters. The selection of water, W, and air, A, flow rates, and pressures in pneumatic nozzles open up a wide spectrum of cooling possibilities by their influence on droplet diameter, d, droplet velocity, v, and water impact flux, w. Nonetheless, due to the harsh environment resulting from the high temperatures and dense mists involved, there is very little information about the correlation between heat flux extracted, - q, and mist characteristics, and none about the dynamics of drop-wall interactions. For obtaining both kinds of information, this work combines a steady-state heat flux measuring method with a visualization technique based on a high-speed camera and a laser illumination system. For wall temperatures, T w, between ~723 K and ~1453 K (~450 °C and ~1180 °C), which correspond to film boiling regime, it was confirmed that - q increases with increase in v, w, and T w and with decrease in d. It should be noticed, however, that the increase in w generally decreases the spray cooling effectiveness because striking drops do not evaporate efficiently due to the interference by liquid remains from previous drops. Visualization of the events happening close to the surface also reveals that the contact time of the liquid with the surface is very brief and that rebounding, splashing, sliding, and levitation of drops lead to ineffective contact with the surface. At the center of the mist footprint, where drops impinge nearly normal to the surface those with enough momentum establish intimate contact with it before forming a vapor layer that pushes away the remaining liquid. Also, some drops are observed sliding upon the surface or levitating close to it; these are drops with low momentum which are influenced by the deflecting air stream. At footprint positions where oblique impingement occurs, frequently drops are spotted sliding or levitating and liquid films flowing in

  1. Herniation pits and their renaissance in association with femoroacetabular impingement; Herniation Pits und ihre Renaissance im Zusammenhang mit femoroazetabulaerem Impingement

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, Stephonie [Unfallklinik Murnau (Germany). Radiologie; Augat, P. [Unfallklinik Murnau (Germany). Radiologie; Paracelsus Univ. Salzburg (Austria). Biomechanisches Labor; Scheidler, J. [Radiologischs Zentrum Muenchen-Pasing (Germany). Radiologie

    2010-07-15

    Hernitation pits (HPs) of the femoral neck were first described in 1982. The purpose of this paper is to summarize the information concerning HPs published since then and to show their association with the diagnosis of femoroacetabular impingement (FAI) which has occurred within the last years. HPs are predominantly located at the anterior-superior femoral neck with a typical radiological appearance, which makes it possible to differentiate them from the numerous differential diagnoses mentioned. In the early publications HPs were described as a separate entity, while recent studies increasingly assign them to intra-osseous ganglia. In contrast to the early publications depicting HPs as an incidental finding, they are currently mainly mentioned in association with FAI and at the same time are partly considered to be a radiological indicator of FAI. In summary, HPs should always be recognized and documented because they may contribute to the diagnosis of FAI which is essential for preventing or delaying osteoarthritis of the hip joint in the early stage. (orig.)

  2. Enhancement of Nucleate Boiling Heat Flux on Macro/Micro-Structured Surfaces Cooled by Multiple Impinging Jets

    Science.gov (United States)

    Kugler, Scott Lee

    1997-01-01

    An experimental investigation of nucleate boiling heat transfer from modified surfaces cooled by multiple in-line impinging circular jets is reported and found to agree with single jet results. A copper block is heated from the back by two electrical arcs, and cooled on the opposite side by three identical liquid jets of distilled water at subcoolings of 25 C 50 C and 77 C and Freon 113 at 24 C subcooling. Liquid flow rates are held constant at 5, 10, and 15 GPH for each of the three jets with jet velocities ranging from 1.4 m/s to 1 1.2 m/s and jet diameters from 0.95 mm to 2.2 mm. To increase the maximum heat flux (CHF) and heat removal rate, the boiling surface was modified by both macro and micro enhancements. Macro modification consists of machined radial grooves in the boiling surface arranged in an optimally designed pattern to allow better liquid distribution along the surface. These grooves also reduce splashing of liquid droplets, and provide 'channels' to sweep away bubbles. Micro modification was achieved by flame spraying metal powder on the boiling surface, creating a porous, sintered surface. With the addition of both micro and macro structured enhancements, maximum heat flux and nucleate boiling can be enhanced by more than 200%. Examination of each surface modification separately and together indicates that at lower superheats, the micro structure provides the enhanced heat transfer by providing more nucleation sites, while for higher superheats the macro structure allows better liquid distribution and bubble removal. A correlation is presented to account for liquid subcoolings and surface enhancements, in addition to the geometrical and fluid properties previously reported in the literature.

  3. Accelerator neutrinos

    International Nuclear Information System (INIS)

    Autiero, D.; Declais, Y.

    2005-01-01

    In the last years neutrino physics was shaken by many important experimental results bringing solid proofs in favor of neutrino oscillations. The goal of the present and future generation of experiments at accelerators is to complete the comprehension of neutrino mixing and of the pattern of neutrino masses, perform precise measurements of all these parameters and investigate CP violation in the neutrino sector. Most of these goals will be achieved with the study of ν μ → ν e oscillations, which are mainly ruled by the still unknown mixing angle Θ 13 . A multi-step experimental strategy has to be attempted, depending on the magnitude of Θ 13 . (authors)

  4. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  5. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  6. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...... of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations...

  7. Solute-mediated interactions between active droplets

    Science.gov (United States)

    Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna

    2017-09-01

    Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

  8. Dilute nanoemulsions via separation of satellite droplets.

    Science.gov (United States)

    Deen, Shad; Sajjadi, Shahriar

    2013-10-01

    A facile method is suggested for fabrication of dilute nanoemulsions. In a typical emulsification process, drops are usually accompanied by off-grade satellite droplets. The size of these satellite droplets ranges from hundreds of nanometers to above microns. Experiments were carried out to assess the possibility of separation of nanodrops from macroemulsions made via a conventional method in order to produce nanoemulsions. A low-power homogenizer was used to produce parent emulsions which were then injected from the bottom to a glass column containing water and allowed to cream. By monitoring drops remaining in the bottom of the column, it is clearly shown how progressively smaller they become with time yielding eventually dilute nanoemulsions. The average diameter of drops reduced to 100 nm when oil with high viscosity was used. The concentration of resulting nanoemulsions increased with increasing viscosity and ratio of the disperse phase of parent emulsions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Ballistic model to estimate microsprinkler droplet distribution

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca

    2003-01-01

    Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.

  10. Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

    Science.gov (United States)

    Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.

    2009-01-01

    Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.

  11. Microorganism lipid droplets and biofuel development

    OpenAIRE

    Liu, Yingmei; Zhang, Congyan; Shen, Xipeng; Zhang, Xuelin; Cichello, Simon; Guan, Hongbin; Liu, Pingsheng

    2013-01-01

    Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG...

  12. Droplets on porous hydrophobic surfaces perfused with gas: An air-table for droplets

    Science.gov (United States)

    Vourdas, Nikolaos; Stathopoulos, Vassilis; Laboratory of Chemistry; Materials Technology Team

    2016-11-01

    Wetting phenomena on porous hydrophobic surfaces are strongly related to the volume and the pressure of gas pockets resided at the solid-liquid interface. When the porous medium is perfused with gas by means of backpressure an inherently sessile pinned droplet undergoes various changes in its shape, contact angles and mobility. This provides an alternative method for active and controlled droplet actuation, without use of electricity, magnetism, foreign particles etc. Superhydrophobicity is not a prerequisite, electrode fabrication is not needed, the liquid is not affected thermally or chemically etc. In this work we explore this method, study the pertinent underlying mechanisms, and propose some applications. The adequate backpressure for droplet actuation has been measured for various hydrophobic porous surfaces. Backpressure for actuation may be as low as some tens of mbar for some cases, thus providing a rather low-energy demanding alternative. The droplet actuation mechanism has been followed numerically; it entails depinning of the receding contact line and movement, by means of a forward wave propagation reaching on the front of the droplet. Applications in valving water plugs inside open- or closed- channel fluidics will be provided.

  13. Development of an imaging system for single droplet characterization using a droplet generator.

    Science.gov (United States)

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  14. Adaptive Liquid Lens Actuated by Droplet Movement

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2014-08-01

    Full Text Available In this paper we report an adaptive liquid lens actuated by droplet movement. Four rectangular PMMA (Polymethyl Methacrylate substrates are stacked to form the device structure. Two ITO (Indium Tin Oxide sheets stick on the bottom substrate. One PMMA sheet with a light hole is inserted in the middle of the device. A conductive droplet is placed on the substrate and touches the PMMA sheet to form a small closed reservoir. The reservoir is filled with another immiscible non-conductive liquid. The non-conductive liquid can form a smooth concave interface with the light hole. When the device is applied with voltage, the droplet stretches towards the reservoir. The volume of the reservoir reduces, changing the curvature of the interface. The device can thus achieve the function of an adaptive lens. Our experiments show that the focal length can be varied from −10 to −159 mm as the applied voltage changes from 0 to 65 V. The response time of the liquid lens is ~75 ms. The proposed device has potential applications in many fields such as information displays, imaging systems, and laser scanning systems.

  15. Second law analysis of convective droplet burning

    International Nuclear Information System (INIS)

    Puri, I.K.

    1991-01-01

    In this paper the entropy generation due to burning particles in a gaseous stream is considered and the contribution to it compared. A second law analysis is undertaken in order to minimize the entropy generation and therefore the lost available work. The optimum flow conditions from this thermodynamically advantageous perspective are determined for a burning droplet at low Reynolds number and an optimum transfer number obtained. The transfer number so obtained depends directly on the square of the relative velocity, and inversely on the net enthalpy rise due to burning and the ratio of ambient to flame temperature. In realistic flows, where the transfer number and net heat release are fixed, these quantities are related to the relative velocity and ambient to flame temperature ratio in order to operate at optimum conditions. The square of the relative velocity in such flows is a small fraction of the net heat release so that, to operate at optimum thermodynamic conditions, it is determined that the droplet Reynolds number must be large suggesting a large droplet size and low gas velocity. Considerations pertaining to engineering practice are also considered and it is concluded that within constraints practice is consistent with the implications of the second law analysis

  16. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    Science.gov (United States)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  17. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  18. Femoroacetabular impingement in former high-level youth soccer players.

    Science.gov (United States)

    Johnson, Adam C; Shaman, Mark A; Ryan, Thomas G

    2012-06-01

    Femoroacetabular impingement (FAI) can be a source of hip pain in young adults. Repetitive kicking associated with youth soccer may lead to morphologic changes of the proximal femur that predispose a person to the development of FAI. Young adults who participated in high-level soccer competition as youths are more likely to demonstrate radiographic changes consistent with FAI and to have increased alpha angles as compared with controls. Cross-sectional study; Level of evidence, 3. Pelvic radiographs (anteroposterior and frog-lateral) were obtained on 50 individuals who participated in high-level soccer during skeletal immaturity and 50 controls who did not participate in high-level soccer. There were 25 men and 25 women in each group. All subjects were between 18 and 30 years of age, had a body mass index of less than 30, and had not sought or received treatment for hip disorders. Radiographs were analyzed independently for the presence of FAI, and alpha angles were measured. Hips with alpha angles that measured greater than or equal to 55° were deemed to have cam deformity. Fifteen of the 25 male subjects had evidence of cam deformity, compared with 14 male controls. Nine of the 25 female subjects had evidence of cam deformity, compared with 8 female controls. Neither of these differences was statistically significant. There was a significantly higher prevalence of cam deformity in men as compared with women (29 vs 17, P = .016). Participation in high-level soccer during skeletal immaturity is not associated with a higher risk of development of cam deformity in the young adult years. There is a high prevalence of cam deformity in the young adult population. Males demonstrate a higher prevalence of cam deformity than do females.

  19. Subacromial impingement syndrome--effectiveness of physiotherapy and manual therapy.

    Science.gov (United States)

    Gebremariam, Lukas; Hay, Elaine M; van der Sande, Renske; Rinkel, Willem D; Koes, Bart W; Huisstede, Bionka M A

    2014-08-01

    The subacromial impingement syndrome (SIS) includes the rotator cuff syndrome, tendonitis and bursitis of the shoulder. Treatment includes surgical and non-surgical modalities. Non-surgical treatment is used to reduce pain, to decrease the subacromial inflammation, to heal the compromised rotator cuff and to restore satisfactory function of the shoulder. To select the most appropriate non-surgical intervention and to identify gaps in scientific knowledge, we explored the effectiveness of the interventions used, concentrating on the effectiveness of physiotherapy and manual therapy. The Cochrane Library, PubMed, EMBASE, PEDro and CINAHL were searched for relevant systematic reviews and randomised clinical trials (RCTs). Two reviewers independently extracted data and assessed the methodological quality. A best-evidence synthesis was used to summarise the results. Two reviews and 10 RCTs were included. One RCT studied manual therapy as an add-on therapy to self-training. All other studies studied the effect of physiotherapy: effectiveness of exercise therapy, mobilisation as an add-on therapy to exercises, ultrasound, laser and pulsed electromagnetic field. Moderate evidence was found for the effectiveness of hyperthermia compared to exercise therapy or ultrasound in the short term. Hyperthermia and exercise therapy were more effective in comparison to controls or placebo in the short term (moderate evidence). For the effectiveness of hyperthermia, no midterm or long-term results were studied. In the midterm, exercise therapy gave the best results (moderate evidence) compared to placebo or controls. For other interventions, conflicting, limited or no evidence was found. Some physiotherapeutic treatments seem to be promising (moderate evidence) to treat SIS, but more research is needed before firm conclusions can be drawn. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  1. POSTURAL ALTERATIONS IN PATIENTS WITH SUBACROMIAL IMPINGEMENT SYNDROME.

    Science.gov (United States)

    Alizadehkhaiyat, Omid; Roebuck, Margaret M; Makki, Ahmed T; Frostick, Simon P

    2017-12-01

    An aberrant upper body posture has been proposed as one of the etiological factors contributing to the development of subacromial impingement syndrome (SAIS). Clinicians have translated this supposition into assessment and rehabilitation programs despite insufficient and conflicting evidence to support this approach. The purpose of this study was to compare several postural variables between the SAIS patients and asymptomatic healthy controls. Case-Control Study. A total of 75 participants including 39 patients (20 females; 19 males) and 36 healthy controls (15 females; 21 males) participated in the study. Study evaluated several postural variables including forward head posture (FHP), forward shoulder posture (FSP), thoracic kyphosis index (TKI), scapular index (SI), normalized scapular protraction (NSP), and the lateral scapular slide test (LSST). The variables were compared between patient and control groups according to sex. Significant differences were observed in the female patients compared to asymptomatic controls for the FHP (49.38 + 9.6o vs 55.5o+8.38, p=0.03), FSP (45.58 + 10.1o vs 53.68 + 7.08, p=0.02), and LSST in third position (10.2 + 2.1cm vs 11.5 + 0.7cm, p=0.01). Male patients showed a significant difference only in the FSP compared to controls (61.9o+9.4o vs 49.78 + 9.28, p<0.001). While inadequate data on the relationship between dysfunctional posture and SAIS has led to broad variations in current rehabilitation strategies, the results of the present study revealed different patterns of postural aberrations in female and male patients with SAIS. This clarifies the need to develop individualized or sex-specific approaches for assessing posture in men and women with SAIS and rehabilitation programs based on the assessment results. 3b.

  2. Shoulder proprioception in patients with subacromial impingement syndrome.

    Science.gov (United States)

    Sahin, Ebru; Dilek, Banu; Baydar, Meltem; Gundogdu, Mehtap; Ergin, Burcu; Manisali, Metin; Akalin, Elif; Gulbahar, Selmin

    2017-01-01

    Recently, proprioception deficits of the rotator cuff and the deltoid muscles have been suggested to play a pivotal role in the subacromial impingement syndrome (SIS). To date, there are no study has been found where the kinesthesia and joint position senses have been evaluated together in SIS. To investigate the shoulder proprioception in patients with SIS. Sixty-one patients with SIS and 30 healthy controls, aging between 25 and 65 years, were included in the study. Main outcome measure was proprioception, assessed with an isokinetic dynamometer. Kinesthesia, active and passive joint repositioning senses were tested at 0° and 10° external rotation. All tests were repeated 4 times and the mean of angular errors were obtained. The mean age was 49.14 ± 10.27 and 48.80 ± 11.09 years in patient group and in control group respectively. No significant difference was found between two groups in terms of age, gender and dominance. When involved and uninvolved shoulders of the patient group were compared, kinesthesia, active and passive joint position senses were significantly impaired in involved shoulders at all angles (P shoulders of the patient group were compared to the control group, kinesthesia, active and passive joint position senses were significantly impaired in involved shoulders in patient group at all angles (P shoulders of the patient group were compared to the control group, kinesthesia at 10° was significantly impaired (P shoulder proprioception was impaired in patients with SIS. This proprioceptive impairment was found not only in involved shoulders but also in uninvolved shoulders in patients with SIS.

  3. Radiographic evidence of femoroacetabular impingement in athletes with athletic pubalgia.

    Science.gov (United States)

    Economopoulos, Kostas J; Milewski, Matthew D; Hanks, John B; Hart, Joseph M; Diduch, David R

    2014-03-01

    Two of the most common causes of groin pain in athletes are femoroacetabular impingement (FAI) and athletic pubalgia. An association between the 2 is apparent, but the prevalence of radiographic signs of FAI in patients undergoing athletic pubalgia surgery remains unknown. The purpose of this study was to determine the prevalence of radiologic signs of FAI in patients with athletic pubalgia. We hypothesized that patients with athletic pubalgia would have a high prevalence of underlying FAI. Case series. Level 4. A retrospective review of all patients evaluated at our institution with athletic pubalgia who underwent surgical treatment (ie, for sports hernia) from 1999 to 2011 was performed. The radiographs of patients with athletic pubalgia were reviewed for radiographic signs of FAI. Alpha angles were measured using frog-leg lateral radiographs. Pincer lesions were identified by measuring the lateral center-edge angle and identifying the presence of a "crossover" sign on anteroposterior radiographs. Phone follow-up was performed 2 years or more after the initial sports hernia surgery to evaluate recurrent symptoms. Forty-three patients underwent 56 athletic pubalgia surgeries. Radiographic evidence of FAI was identified in at least 1 hip in 37 of 43 patients (86%). Cam lesions were identified in 83.7% of the population; the alpha angle averaged 66.7° ± 17.9° for all hips. Pincer lesions were present in 28% of the hips. Eight patients had recurrent groin pain, 3 patients had revision athletic pubalgia surgery, and 1 had hip arthroscopy. The study demonstrates a high prevalence of radiographic FAI in patients with athletic pubalgia. Underlying FAI may be a cause of continued groin pain after athletic pubalgia surgery. Patients with athletic pubalgia should be evaluated closely for FAI.

  4. Does Femoroacetabular Impingement Cause Hip Instability? A Systematic Review.

    Science.gov (United States)

    Canham, Colin D; Yen, Yi-Meng; Giordano, Brian D

    2016-01-01

    To determine whether femoroacetabular impingement (FAI) is associated with hip instability. A systematic search examining FAI and hip instability was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Clinical and basic science studies were included. Instability had to be documented with either a clinical or imaging examination. Studies were excluded if they did not define diagnostic criteria for FAI, involved prosthetic hips, were not in English, were review articles, or reported Level V evidence (case reports, expert opinion). Rates of FAI morphologic features in patients with documented hip instability were determined. Mechanisms and rates of FAI-induced hip subluxation were examined in basic science studies. The search yielded 1,630 relevant studies. Seven studies (4 clinical and 3 basic science) met inclusion criteria. Four studies investigated an association between FAI and hip instability in 92 patients with an average age of 31 years. Seventy-six patients experienced frank dislocations and 16 experienced posterior subluxation events. The prevalence of FAI was documented in 89 patients with hip instability. The rates of cam and pincer morphologic characteristics were 74% and 64%, respectively. The average lateral center edge angle and prevalence of acetabular retroversion were 30° and 70%, respectively (n = 76 patients). All 3 basic science studies had real-time visualization of FAI-induced hip subluxations. High rates of FAI morphologic characteristics are present in patients with hip instability. FAI morphologic characteristics may predispose the hip to instability through anatomic conflict caused by pincer or cam lesions (or both) levering the femoral head posteriorly. Level IV, systematic review of Level III, Level IV, and non-clinical studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. Patient Satisfaction Reporting for the Treatment of Femoroacetabular Impingement.

    Science.gov (United States)

    Kahlenberg, Cynthia A; Nwachukwu, Benedict U; Schairer, William W; McCormick, Frank; Ranawat, Anil S

    2016-08-01

    The purpose of this study was to evaluate how patient satisfaction after surgical femoroacetabular impingement (FAI) treatment is measured and reported in the current evidence base. A review of the MEDLINE database was performed. Clinical outcome studies of FAI that reported a measure of patient satisfaction were included. Patient demographics, clinical outcome scores, and patient satisfaction measures were extracted. The NewCastle Ottawa Scale (NOS) was used to grade quality. Statistical analysis was primarily descriptive. Twenty-six studies met inclusion criteria; the mean NOS score among included studies was 5.7. Most studies were level 3 or 4 (n = 25, 96.1%). A 0 to 10 numeric scale, described by some studies as a visual analog scale, was the most commonly used method to assess satisfaction (n = 21; 80.8%), and mean reported scores ranged from 6.8 to 9.2 out of 10. Four studies (15.4%) used an ordinal scale, and 1 study (3.8%) used willingness to undergo surgery again as the measure of satisfaction. None of the included studies assessed preoperative satisfaction or patient expectation. Pooled cohort analysis was limited by significant overlapping study populations. Predictors of patients' satisfaction identified in included studies were presence of arthritis and postoperative outcome scores. Patient satisfaction was not uniformly assessed in the literature. Most studies used a 0- to 10-point satisfaction scale, but none distinguished between the process of care and the outcome of care. Although satisfaction scores were generally high, the quality of the methodologies in the studies that reported satisfaction was low, and the studies likely included overlapping patient populations. More work needs to be done to develop standardized ways for assessing patient satisfaction after arthroscopic hip surgery and other procedures in orthopaedic sports medicine. Level III, systematic review of Level III studies. Copyright © 2016 Arthroscopy Association of North

  6. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  7. Membrane orientation of droplets prepared from Chara corallina internodal cells.

    Science.gov (United States)

    Berecki, G; Eijken, M; Van Iren, F; Van Duijn, B

    2001-01-01

    It is generally accepted that the membrane surrounding droplets from characean cells originates from the tonoplast, but there is some uncertainty regarding droplet membrane sidedness. This issue was addressed directly by combining two different droplet isolation methods and the patch clamp technique. Neutral red accumulation was used to demonstrate the presence of H(+)-transport over the membrane and to predict membrane orientation. Two types of droplet populations with differently oriented membranes could be formed in an iso-osmotic bath solution. Cytoplasmic droplets (cytosolic side of the tonoplast inside) contained cytoplasm, while the second type of droplet population contained vacuolar sap (vacuolar droplets, vacuolar side of the tonoplast inside). Smaller vesicels also appeared inside the droplets, with an apparently inversely oriented membrane. Confocal laser scanning microscopy indirectly demonstrated that, at least with one of the droplet isolation methods, the plasma membrane entirely remains in the internodal cell after intracellular perfusion. Both types of droplet populations allowed the formation of excised patches and single-channel measurements by the patch clamp technique. Properties of anion channels in the tonoplast could be used to prove the predicted membrane orientation, knowing that Ca2+ can only activate these channels from the cytosolic side. These results provide useful data for studies addressing ligand-binding, block and modulation, organization and interaction of proteins within the membrane or with other regulatory factors, where it is important to control membrane orientation.

  8. Flow structure of compound droplets moving in microchannels

    Science.gov (United States)

    Che, Zhizhao; Yap, Yit Fatt; Wang, Tianyou

    2018-01-01

    Compound droplets can be used in substance encapsulation and material compartmentalization to achieve a precise control over the relevant processes in many applications, such as bioanalysis, pharmaceutical manufacturing, and material synthesis. The flow fields in compound droplets directly affect the performance of these applications, but it is challenging to measure them experimentally. In this study, the flow in compound droplets in axisymmetric microchannels is simulated using the finite volume method, and the interface is captured using the level set method with surface tension accounted for via the ghost fluid method. The combination of the level set method and the ghost fluid method reduces spurious currents that are produced unphysically near the interface and achieves a precise simulation of the complex flow field within compound droplets. The shape of compound droplets, the vortical patterns, the velocity fields, and the eccentricity are investigated, and the effects of the key dimensionless parameters, including the size of the compound droplet, the size of the core droplet, the capillary number, and the viscosity ratio, are analyzed. The flow structures in multi-layered compound droplets are also studied. This study not only unveils the complex flow structure within compound droplets moving in microchannels but can also be used to achieve a precise control over the relevant processes in a wide range of applications of compound droplets.

  9. Scapular Stabilization and Muscle Strength in Manual Wheelchair Users with Spinal Cord Injury and Subacromial Impingement

    Science.gov (United States)

    Bickel, C. Scott

    2016-01-01

    Background: Manual wheelchair users with spinal cord injury (SCI) are frequently diagnosed with subacromial impingement. Objective: To determine whether the pattern of muscle imbalance and impaired scapular stabilization in able-bodied (AB) adults with impingement is different from that in manual wheelchair users with SCI and impingement. Methods: The following measurements were collected from 22 adults with subacromial impingement (11 SCI, 11 AB): ratio of normalized muscle electrical activity of upper and lower trapezius (UT:LT) during arm abduction; force during abduction, adduction, internal rotation, external rotation, and push and pull; ratios of force for abduction to adduction (AB:ADD), internal to external rotation (IR:ER), and push to pull (PUSH:PULL). Results: Shoulders with impingement had significantly higher UT:LT activation (1.46 ± 0.52) than shoulders without impingement (0.93 ± 0.45) (P = .006), regardless of wheelchair user status. Significant differences between AB participants and those with SCI were observed for ABD:ADD (P = .005), PUSH:PULL (P = .012), and pull strength (P = .043). Participants with SCI had a significantly greater ABD:ADD (1.37 ± 0.36) than AB participants (1.04 ± 0.22) (P = .002) and a significantly greater PUSH:PULL (1.53 ± 0.36) than AB participants (1.26 ± 0.18) (P = .005) because of decreased strength in adduction (P = .021) and pull (P = .013). Conclusions: Strategies targeting the posterior shoulder girdle for AB adults are appropriate for manual wheelchair users with SCI and impingement and should focus on scapular retractors and arm adductors with emphasis on scapular depression and posterior tilting. PMID:29398894

  10. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  11. Droplets flow and heat transfer at top region of core in reflood phase

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Ohnuki, Akira; Sobajima, Makoto

    1983-02-01

    The heat transfer at the top region of core is complicated due to the strong thermal non-equilibrium just after the start of reflood phase in a postulated PWR-LOCA experiment. The film taken with a high-speed cinecamera shows upward droplets flow and falling water film on the non-heated rod just after the start of reflood at elevation 3235 mm above the bottom of heated length of heater rods in Slab Core Reflood Test. The measured mean diameter of droplet is about 1 mm. This value of mean diameter is larger than the measured result for the annular dispersed flow in a pipe. On the other hand, the corresponding Weber number is smaller than the Weber number in the accelerating flow obtained in the previous studies. The calculated heat transfer coefficient of the droplets flow approximately agrees with the sum of Dittus-Boelter's convective heat transfer term and radiative heat transfer term evaluated with the network analysis by Sun et al. (author)

  12. Semi-automatic bubble counting system for superheated droplet detectors

    International Nuclear Information System (INIS)

    Reina, Luiz C.; Bellido, Luis F.; Ramos, Paulo R.; Silva, Ademir X. da; Facure, Alessandro; Dantas, Jose E.R.

    2009-01-01

    Neutron dose rate measurements are normally performed by means of PADC, CR-39 and TLD detectors. Although, none of these devices can give instant reading of the neutron dose, recently new kind of detectors are being developed, based on the formation of tiny drops in a superheated liquid suspended in a polymer or gel solution, called superheated droplet detector (SDD) or also as bubble detectors (BD), with no response for gamma radiation. This work describes the experimental setup and the developed procedures for acquiring and processing digital images obtained with bubble detector spectrometer (BDS), developed by Bubble Technology Industries, for personal neutron dosimeter and/or neutron energy fluence measurements in nuclear facilities. The results of the neutron measurements obtained during the F-18 production, at the RDS-111 cyclotron, are presented. These neutron measurements were the first ones with this type of BDS detectors in a particle accelerator facility in Brazil and it was very important to estimate neutron dose rate received by occupationally exposed individuals. (author)

  13. Motion of ^4He Droplets Sliding Down a Cesium Substrate

    Science.gov (United States)

    Burton, J. C.; Taborek, P.; Rutledge, J. E.

    2004-03-01

    We have studied the sliding motion of superfluid ^4He droplets on evaporated Cs surfaces. The surfaces were inclined with respect to the horizon so that the drops moved along them under the influence of gravity and contact forces between the liquid and solid. The experiments were thus identical to the "block on a plane" problems familiar from introductory physics courses. The motion of the drop was recorded with a high-speed video. Once the mass of the drop or the angle of inclination of the surface became large enough to overcome the initial pinning, or static friction, the drops moved with an acceleration that was constant to within 1%. This is in marked contrast to the motion of classical liquids, such as water or mercury, in similar experiments. The later fluids exhibit stick-slip motion and the average speed tends to saturate or even decrease as the drops progress down surfaces of similar quality. We will present high-speed videos of the motion of ^4He drops and classical liquid drops and discuss the results in terms of the well-known failure of classical hydrodynamics to model a moving contact line.

  14. Stochastic growth of cloud droplets by collisions during settling

    Science.gov (United States)

    Madival, Deepak G.

    2018-04-01

    In the last stage of droplet growth in clouds which leads to drizzle formation, larger droplets begin to settle under gravity and collide and coalesce with smaller droplets in their path. In this article, we shall deal with the simplified problem of a large drop settling amidst a population of identical smaller droplets. We present an expression for the probability that a given large drop suffers a given number of collisions, for a general statistically homogeneous distribution of droplets. We hope that our approach will serve as a valuable tool in dealing with droplet distribution in real clouds, which has been found to deviate from the idealized Poisson distribution due to mechanisms such as inertial clustering.

  15. Droplet networks with incorporated protein diodes show collective properties

    Science.gov (United States)

    Maglia, Giovanni; Heron, Andrew J.; Hwang, William L.; Holden, Matthew A.; Mikhailova, Ellina; Li, Qiuhong; Cheley, Stephen; Bayley, Hagan

    2009-07-01

    Recently, we demonstrated that submicrolitre aqueous droplets submerged in an apolar liquid containing lipid can be tightly connected by means of lipid bilayers to form networks. Droplet interface bilayers have been used for rapid screening of membrane proteins and to form asymmetric bilayers with which to examine the fundamental properties of channels and pores. Networks, meanwhile, have been used to form microscale batteries and to detect light. Here, we develop an engineered protein pore with diode-like properties that can be incorporated into droplet interface bilayers in droplet networks to form devices with electrical properties including those of a current limiter, a half-wave rectifier and a full-wave rectifier. The droplet approach, which uses unsophisticated components (oil, lipid, salt water and a simple pore), can therefore be used to create multidroplet networks with collective properties that cannot be produced by droplet pairs.

  16. Phase rainbow refractometry for accurate droplet variation characterization.

    Science.gov (United States)

    Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard

    2016-10-15

    We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.

  17. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  18. Printing microstructures in a polymer matrix using a ferrofluid droplet

    International Nuclear Information System (INIS)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.

    2016-01-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  19. Anterior internal impingement of the shoulder in rugby players and other overhead athletes.

    Science.gov (United States)

    Shah, Siddharth R; Horsley, Ian; Rolf, Christer G

    2017-04-01

    Impingement syndromes are a common cause of shoulder pain in overhead athletes. Anterior internal impingement is a recently suggested mechanism for activity-related pain of the shoulder. Impingement syndromes were initially described to occur due to repetitive or excessive contact between the rotator cuff and other structures in the shoulder. This is a retrospective, clinical case study reporting 54 consecutive cases of anterior internal impingement in overhead athletes, of which 28 (51.2%) cases were of rugby players. All had undergone physiotherapy without relief of the symptoms. Of 54, there were 45 male and 9 female patients with an average age of 27 years (range, 17-51). The mean duration from injury to surgery was 40.7 weeks (range, 5-364). Of the 54 patients, 29 (53.7%) were full-time professional and 25 (46.3%) were semiprofessional or recreational athletes. The players associated the onset of pain occurred following an injury in 29/54 cases (53.4%), whereas in the remaining 25 cases (46.2%), a gradual onset of symptoms was described. All 54 patients could demonstrate a "functional impingement sign" in positioning their arm and provoke pain. On examination, the examiner could reproduce the same pain in 38/54 (70.3%) patients only. Of the 54 patients, "SLAP tests" including O'Brien's test, Palm up test, and compression rotation test were positive in shoulders of 39 (72.2 %) patients, Jobe's test in 27 (50%), Gerber's lift off test in 6 (11%), and Hawkin's test in 6 (11%) patients. During arthroscopic assessment, impinging flap tears were found in 44 (81.4%) patients from the SLAP, whereas undersurface rotator cuff flap tears were found in 24 (44.4%), flap tears from the anterior or inferior labrum were found in 16 (29.6%), and distal subscapularis flap tears were found in 10 (18.5%) patients. Only in 12/54 patients (22.2%) was an isolated pathology found, in all cases SLAP tears. Treatment included vaporisation and excision of the impinging flaps. In 15

  20. Influence of nozzle arrangement on flow and heat transfer characteristics of arrays of circular impinging jets

    Directory of Open Access Journals (Sweden)

    Perapong Tekasakul

    2013-04-01

    Full Text Available The effect of jet arrangements on flow and heat transfer characteristics was experimentally and numerically investigatedfor arrays of impinging jets. The air jets discharge from round orifices and perpendicularly impinge on a surface within arectangular duct. Both the in-line and staggered arrangements, which have an array of 6×4 nozzles, were examined. A jet-toplate distance (H and jet-to-jet distance (S were fixed at H=2D and S=3D, respectively (where D is the round orificediameter. The experiments were carried out at jet Reynolds number Re=5,000, 7,500 and 13,400. Temperature distributions onthe impingement surface were measured using a Thermochromic Liquid Crystal sheet, and Nusselt number distributions wereevaluated using an image processing method. The flow characteristics on the impingement surface were visualized using theoil film technique. The numerical simulation employed to gain insight into the fluid flow of jets between the orifice plate andthe impingement wall was via computational fluid dynamics. The results reveal that the effect of crossflow on the impingingjets for the staggered arrangement is stronger than that in the case of in-line arrangement. In the latter case of in-line arrangement, the crossflow could pass throughout the passage between the rows of jets, whereas in the former case the crossflowwas hampered by the downstream jets. The average Nusselt number of the in-line arrangement is higher than that of thestaggered arrangement by approx. 13-20% in this study.