WorldWideScience

Sample records for drop tube furnace

  1. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  2. Gasification of biomass in a drop tube furnace. Foergasning av biomassa i fallroersreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, A; Andersson, L A; Bjerle, I [Lund Univ. (SE). Dept. of Chemical Engineering 2

    1989-11-01

    The aim of the present investigation of steam gasification is mainly to study the influence on gas production (quantity, composition) for different temperatures, dwells, and partial pressure of steam and nitrogen in a drop tube furnace. The range of temperature in the experiments was 1000-1400 deg C, range of dwell 0.25-1 sec, and range of water vapor/nitrogen partial pressure ratio 25/75 to 75/25. The degree of burnup increases with increasing dwell. Highest burnup is found at the highest tmperatures. In CO{sub 2} atmosphere the degree of burnup is slightly higher than in N{sub 2} atmosphere. In the steam experiments is shown that a long dwell as well as a high water vapor partial pressure increases burnup. The product gas consists mainly of carbon monoxide and hydrogen, but ca 10% each of carbon dioxide and methane are also found. Hydrocarbons like ethene, acetylene and ethane are also found, but only in a total amount of less than 5%. The experiments in water vapor atmosphere show that a change in steam partial pressure has a very small effect on the composition of the product gas for the temperature range studied. (O.S.) (7 figs.).

  3. Fundamental study of the pulverized coal char combustion in oxyfuel mode with drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takamasa; Takafuji, Makoto; Suda, Toshiyuki; Fujimori, Toshiro [Heat and Fluid Dynamics Department, Yokohama (Japan)

    2013-07-01

    The combustion characteristics of coal char particles in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions were experimentally investigated. Especially, the char burnout, the char particle temperature and the shrinkage of the char particles were discussed. A Drop Tube Furnace (DTF: whose wall temperature was set at 873, 923 and 973 K) was used as the experimental apparatus. The experimental results revealed that, in equivalent oxygen concentration, the char burnout and the char particle temperature were higher in O{sub 2}/N{sub 2} conditions than those in O{sub 2}/CO{sub 2} conditions. The shrinkage of the char particle did not show the large difference in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions. Up to 15% of char burnout, the char particle diameters were reduced gradually. Up to 80% of char burnout, the char particle diameters were not changed. This is supposed that the chemical reaction is mainly occurred not on the external surface but on the internal surface of the char particle. Over 80% of char burnout, sudden shrinkage could be seen. Finally, an empirical equation for the prediction of the char particle shrinkage was introduced. Further investigation is required in high operating temperature, where CO{sub 2} gasification may have a large influence on the char burnout.

  4. Prediction of the burnout performance of some South American coals using a drop-tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Richelieu Barranco; Michael Cloke; Edward Lester [University of Nottingham, Nottingham (United Kingdom). Fuel Technology Centre, School of Chemical, Environmental and Mining Engineering

    2003-10-01

    An experimental investigation into the combustion burnout behaviour of some South American coals was carried out in a drop-tube furnace. The samples, in two size fractions, were initially pyrolysed at a temperature of 1300{sup o}C, in a 1% of oxygen in nitrogen atmosphere for 200 ms. The re-firing of these pyrolysed chars was performed in the same apparatus, at the same temperature, during 400 ms, in an atmosphere containing 5% of oxygen in nitrogen. The coal samples used in this study were characterised by standard tests along with a specially developed image analysis technique (grey-scale histogram). Data of intrinsic reactivity, morphology, and burnout of the chars were correlated with maceral content of the feed coal by mean of linear regressions. In most cases, the results showed a poor correlation. Subsequently, when the rank of the coals was included in the regressions, the correlations remarkably improved in all cases. When further regressions of char properties with the grey-scale histogram of the coals were carried out, much better correlations were achieved. Therefore, the results indicate that the grey-scale histogram analysis provides a simple and objective technique to predict the combustion behaviour of these coals. 17 refs., 6 figs., 4 tabs.

  5. Use of image analysis on the prediction of coal burnout performance in a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    R. Barranco; M. Cloke; E. Lester [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, SChEME

    2003-07-01

    An experimental investigation in a drop-tube furnace (DTF) into the combustion burnout performance of some South American coals was carried out. The coal samples, mainly from Colombia, were crushed and screened into three size fractions: 53-75 {mu}m, 106-125 {mu}m, and 150-180 {mu}m. These samples were characterised by standard tests along with a specially developed image analysis technique (grey-scale histogram). Pyrolysis of these samples was performed at a temperature of 1300{sup o}C, in a 1% of oxygen in nitrogen atmosphere for 200 ms. The chars obtained were then re-fired in the same apparatus, at the same temperature, at various residence times, in an atmosphere containing 5% of oxygen in nitrogen. The changes in the characteristics of the chars produced were assessed using a number of different techniques including intrinsic reactivity test and automatic char analysis. Despite the fact that all the coals used in this study were vitrinite-rich, variations in char morphology were evident. This demonstrated that it was impossible to assign any one char type to a single maceral group. It was apparent that vitrinite generates a wide range of char types depending upon the rank of the parent coal and on the maceral associations within the coal. In addition, a reactivity parameter, derived from the grey-scale histogram obtained by image analysis of the coal, was found to be important in the prediction of coal combustion behaviour. Some properties of the re-fired chars were compared with morphology and intrinsic reactivity data of the pyrolysed chars. The results showed that the poor burnout of one of the coals was clearly due to the formation of some particular chars during pyrolysis. This confirms the usefulness of high temperature pyrolysis chars as a predictor of burnout performance. 18 refs., 8 figs., 2 tabs.

  6. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  7. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  8. Experimental study of volatile-N conversion at O{sub 2}/CO{sub 2} atmosphere in a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huali; Sun, Shaozeng; Chen, Hao; Meng, Xianyu; Wang, Dong [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Wall, Terry F. [Newcastle Univ., NSW (Australia). Chemical Engineering

    2013-07-01

    In coal combustion, NOx is largely formed from the oxidation of volatile nitrogen compounds such as HCN and NH{sub 3}. The experiments on the volatile-N conversion to NO at O{sub 2}/CO{sub 2} atmosphere were carried out in a drop tube furnace. The effects of the excess oxygen ratio {lambda} (0.6-1.4), temperature (1,000-1,300 C), O{sub 2}/CO{sub 2} ratio, and as well as CH{sub 4}/NH{sub 3} mole ratio were investigated. To further understand the importance of NO reburn during volatile combustion, experiments were also performed with different concentrations of background NO (0-950 ppm). The results show that volatile-N conversion to NO is sensitive to excess oxygen ratio {lambda} at strongly oxidizing atmosphere. For volatile combustion, there is an optimal temperature and inlet O{sub 2} concentration to minimize the volatile-N conversion to NO. The CH{sub 4}/NH{sub 3} mole ratio plays an important role on the NO formation under oxidizing atmosphere. High levels of background NO prohibit the volatile-N conversion to NO significantly as the volatile-N conversion ratio decreases by 19-36%. The reburn fractions of recycle NO in fuel-rich and fuel-lean condition are 14.8 and 9.8% at 1,200 C, respectively.

  9. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  10. Metal diffusion from furnace tubes depends on location

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    Studies of metal samples from an ethylene furnace on the Texas Gulf Coast, using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX), reveal preferential diffusion of chromium, titanium, and aluminum in the coil wall to the surfaces of the tube where they form metal oxides. These elements are gradually depleted from the tube wall. Complicated surface reactions that include the formation of several metal oxides, metal sulfides, and metal-catalyzed coke also occur. Several mechanisms can be postulated as to how metal fines or compounds are formed and transferred in the coil and transfer lines exchanger (TLX) of ethylene units. These surface reactions directly or indirectly affect coke formation in the tube. Finally, creep in the coils is likely a factor in promoting corrosion. Such creep is promoted by variable temperature-time patterns to which a coil is exposed during pyrolysis, and then decoking. Periods of stress and compression occur in the coil walls. Knowledge of the diffusion and reactions that take place can result in better furnace operations and decoking procedures to extend the life of the furnace tubes. In this second installment of a four-part series, photomicrographs of four pyrolysis tube samples from the ethylene furnace indicate that significant differences existed between the outer surfaces, inner surfaces, and cross-sectional areas of the samples. The first installment of the series dealt with coke

  11. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  12. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... of the bubble are nearly spherical. As the capillary number increases the thickness of the wetting film between the tube wall and the bubble increases, and the bubble assumes a more slender shape with a characteristic bump at the rear. Recirculations are found in front and behind the bubble, which disappear...

  13. Coke detection in furnaces tubes by radiographic examination

    International Nuclear Information System (INIS)

    Santos, I.S. dos

    1987-01-01

    The coke detection technique by radiographic examinations allows to quantify the coke in furnace coils of Petroleum refineries and petrochemical industries. The paper describes how was determined the radiographic parameters, the wall apparent thickness calculation, the distance source-film, the position of the source and films, the chosen of films and the calculation of exposure time, aiming to obtain high producticity and good quality image. This technique is being used and improved for more than two years with good results. (E.G.) [pt

  14. Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Osintsev, V V; Khidiyatov, A M

    1981-01-01

    The purpose of the invention is to improve the operating efficiency of the furnace device containing prefurnaces connected to the main combustion chamber. For this purpose in the proposed furnace device is equipped with prefurnaces with burners, rectangular vertical chamber of combustion is equipped with central hearth projection. As indicated by studies, the hearth projection of the indicated projections promotes the development of transverse streams which guarantee effective mixing of the combustion products in the upper part of the combustion chamber 3. This reduces the nonuniformity of temperature at the outlet from the latter, decreases the probability of slagging and hot spots on the heating surface.

  15. Burnout in the horizontal tubes of a furnace waterwall panel

    Energy Technology Data Exchange (ETDEWEB)

    B.Y. Kamenetskii [All-Russia Research Institute of Nuclear Power Engineering (OAO VNIIAM), Moscow (Russian Federation)

    2009-07-01

    An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.

  16. Burnout in the horizontal tubes of a furnace waterwall panel

    Science.gov (United States)

    Kamenetskii, B. Ya.

    2009-08-01

    An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.

  17. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  18. Life Management Technique of Thermal Fatigue for SMST Boiler Tube at Different Heating Zone Using Smithy Furnace

    OpenAIRE

    Shekhar Pal,; Pradeep Suman

    2014-01-01

    This paper highlights on the evaluation of thermal fatigue failure for SMST (Salzgitter Mannesmann strain less boiler tube) DMV 304 HCu boiler tube using life management technique by using of smithy furnace. Boiler tubes are highly affected by operating conditions like, high temperature and high pressure. So it needs periodic checking for the purpose of safety and health assessment of the plant. So using this technique we can identify the degradation of tubes at microstructure...

  19. Combustion, cofiring and emissions characteristics of torrefied biomass in a drop tube reactor

    International Nuclear Information System (INIS)

    Ndibe, Collins; Maier, Jörg; Scheffknecht, Günter

    2015-01-01

    The study investigates cofiring characteristics of torrefied biomass fuels at 50% thermal shares with coals and 100% combustion cases. Experiments were carried out in a 20 kW, electrically heated, drop-tube reactor. Fuels used include a range of torrefied biomass fuels, non-thermally treated white wood pellets, a high volatile bituminous coal and a lignite coal. The reactor was maintained at 1200 °C while the overall stoichiometric ratio was kept constant at 1.15 for all combustion cases. Measurements were performed to evaluate combustion reactivity, emissions and burn-out. Torrefied biomass fuels in comparison to non-thermally treated wood contain a lower amount of volatiles. For the tests performed at a similar particle size distribution, the reduced volatile content did not impact combustion reactivity significantly. Delay in combustion was only observed for test fuel with a lower amount of fine particles. The particle size distribution of the pulverised grinds therefore impacts combustion reactivity more. Sulphur and nitrogen contents of woody biomass fuels are low. Blending woody biomass with coal lowers the emissions of SO 2 mainly as a result of dilution. NO X emissions have a more complex dependency on the nitrogen content. Factors such as volatile content of the fuels, fuel type, furnace and burner configurations also impact the final NO X emissions. In comparison to unstaged combustion, the nitrogen conversion to NO X declined from 34% to 9% for air-staged co-combustion of torrefied biomass and hard coal. For the air-staged mono-combustion cases, nitrogen conversion to NO X declined from between 42% and 48% to about 10%–14%. - Highlights: • Impact of torrefaction on cofiring was studied at high heating rates in a drop tube. • Cofiring of torrefied biomasses at high thermal shares (50% and higher) is feasible. • Particle size impacts biomass combustion reactivity more than torrefaction. • In a drop tube reactor, torrefaction has no negative

  20. Mathematical modeling of thermal stresses in basic oxygen furnace hood tubes

    Science.gov (United States)

    Samarasekera, I. V.

    1985-06-01

    The stress-strain history of Basic Oxygen Furnace hood tubes during thermal cycling has been computed using heat flow and stress analyses. The steady-state temperature distribution in a transverse section of the tube was computed at a location where gas temperature in the hood could be expected to be a maximum. Calculations were performed for peak gas temperatures in the range 1950 to 2480 °C (3500 to 4500 °F). The stress-strain history of an element of material located at the center of the tube hot face was traced for three consecutive cycles using elasto-plastic finite-element analysis. It has been shown that the state of stress in the element alternates between compression and tension as the tube successively heats and cools. Yielding and plastic flow occurs at the end of each half of a given cycle. It was postulated that owing to repctitive yielding, plastic strain energy accumulates causing failure of the tubes by fatigue in the low cycle region. Using fatigue theory a conservative estimate for tube life was arrived at. In-plant observations support this mechanism of failure, and the number of cycles within which tube cracking was observed compares reasonably with model predictions. Utilizing the heat flow and stress models it was recommended that tube life could be enhanced by changing the tube material to ARMCO 17-4 pH or AISI 405 steel or alternatively reconstructing hoods with AISI 316L tubes of reduced thickness. These recommendations were based on the criterion that low-cycle fatigue failure could be averted if the magnitude of the cyclic strain could be reduced or if macroscopic plastic flow could be prevented.

  1. The hydrodynamics of segmented two-phase flow in a circular tube with rapidly dissolving drops.

    Science.gov (United States)

    Leary, Thomas F; Ramachandran, Arun

    2017-05-03

    This article discusses boundary integral simulations of dissolving drops flowing through a cylindrical tube for large aspect ratio drops. The dynamics of drop dissolution is determined by three dimensionless parameters: λ, the viscosity of the drop fluid relative to the suspending fluid; Ca, the capillary number defining the ratio of the hydrodynamic force to the interfacial tension force; and k, a dissolution constant based on the velocity of dissolution. For a single dissolving drop, the velocity in the upstream region is greater than the downstream region, and for sufficiently large k, the downstream velocity can be completely reversed, particularly at low Ca. The upstream end of the drop travels faster and experiences greater deformation than the downstream end. The film thickness, δ, between the drop and the tube wall is governed by a delicate balance between dissolution and changes in the outer fluid velocity resulting from a fixed pressure drop across the tube and mass continuity. Therefore, δ, and consequently, the drop average velocity, can increase, decrease or be relatively invariant in time. For two drops flowing in succession, while low Ca drops maintain a nearly constant separation distance during dissolution, at sufficiently large Ca, for all values of k, dissolution increases the separation distance between drops. Under these conditions, the liquid segments between two adjacent drops can no longer be considered as constant volume stirred tanks. These results will guide the choices of geometry and operating parameters that will facilitate the characterization of fast gas-liquid reactions via two-phase segmented flows.

  2. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  3. Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes

    Directory of Open Access Journals (Sweden)

    Yuya Koike

    2017-03-01

    Full Text Available Trace amounts of Cr, Zn, Cd, and Pb were determined by metal furnace atomic absorption spectrometry using absorption tubes. Various absorption tubes were designed as roof- and tube-types, and fixed above the metal furnace in order to extend the light path length. Aqueous standards and samples were injected in the metal furnace and atomized in a metal atomizer with an absorption tube (6 cm length, 15.5 mm diameter. The used of an absorption tube resulted in an enhancement of the atomic absorbance. The ratios of absorbance values with and without the roof- and tube-type absorption tubes were 1.33 and 1.11 for Cr; 1.42 and 1.99 for Zn; 1.66 and 1.98 for Cd; and 1.31 and 1.16 for Pb, respectively. The use of an absorption tube was effective for Zn and Cd analysis, as the absorbance values for these low boiling point metals doubled. The proposed method was successfully applied in the determination of Zn in tap water.

  4. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    International Nuclear Information System (INIS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models

  5. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [Korea University, Seoul (Korea). Institute of Advanced Machinery Design; Lee, Kyu-Jung [Korea University, Seoul (Korea). Dept. of Mechanical Engineering

    2005-08-01

    Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed. (author)

  6. The effect of water jet lancing on furnace wall tubes of high slagged deposit fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V V; Kovalevitch, I A; Maidanik, M N [All-Union Heat Engineering Institute, Siberian Branch, Krasnoyarsk (USSR)

    1990-01-01

    In this paper the results of investigating the effectiveness of water jet lancing on furnace wall tubes of slagged deposits fuels fired boilers type E-500, P-64, P-67 are given. The boilers of these types are designed to burn Jugoslavian lignites are Beresovo lignites of the Kansk-Achinsk deposits. Recommendations for usage of low retractable, long retractable and long-range water blowers, depending on the design, produced in the USSR, the furnace dimension and stability of deposits are given as well.

  7. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Infante Ferreira, C A [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control

    2003-06-01

    Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m{sup -2} s{sup -}2{sup 1} and a quality range from approximately 10-80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18{sup o} helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile. (author)

  8. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  9. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  10. Experimental and visual study on flow patterns and pressure drops in U-tubes

    International Nuclear Information System (INIS)

    Da Silva Lima, J. R.

    2011-01-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s -1 m -2 . The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U-bends successfully

  11. Methodology for full comparative assessment of direct gross glycerin combustion in a flame tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Maturana, Aymer Yeferson; Pagliuso, Josmar D. [Dept. of Mechanical Engineering. Sao Carlos School of Engineering. University of Sao Paulo, Sao Carlos, SP (Brazil)], e-mails: aymermat@sc.usp.br, josmar@sc.usp.br

    2010-07-01

    This study is to develop a methodology to identify and evaluate the emissions and heat transfer associated to combustion of gross glycerin a by-product of the Brazilian biodiesel manufacture process as alternative energy source. It aims to increase the present knowledge on the matter and to contribute to the improvement of the economic and environmental perspective of biodiesel industry. This methodology was considered to be used for assessment of gross glycerin combustion from three different types of biodiesel (bovine tallow, palm and soy). The procedures for evaluation and quantification of emissions of sulphur and nitrogen oxides, total hydrocarbons, carbon monoxide, carbon dioxide, and acrolein were analyzed, described and standardized. Experimental techniques for mutagenic and toxic effects assessment of gases similarly were analyzed and standardized, as well as the calorific power, the associate heat transfer and fundamentals operational parameters. The methodology was developed, using a full-instrumented flame tube furnace, continuous gas analyzers, a chromatograph, automatic data acquisition systems and other auxiliary equipment. The mutagenic and toxic effects of the study was based on Tradescantia clone KU-20, using chambers of intoxication and biological analytical techniques previously developed and others were specially adapted. The benchmark for the initial set up was based on the performance evaluation of the previous equipment tested with diesel considering its behavior during direct combustion. Finally, the following factors were defined for the combustion of crude glycerin, configurations of equipment types, operational parameters such as air fuel ratio adiabatic temperature and other necessary aspect for successful application of the methodology. The developed and integrated methodology was made available to the concern industry, environmental authorities and researchers as procedures to access the viability of gross glycerin or similar fuels as

  12. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    Science.gov (United States)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  13. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Agostini, F.

    2008-07-01

    The complexity of the two-phase flow in a tube bundle presents important problems in the design and understanding of the physical phenomena taking place. The working conditions of an evaporator depend largely on the dynamics of the two-phase flow that in turn influence the heat exchange and the pressure drop of the system. A characterization of the flow dynamics, and possibly the identification of the flow pattern in the tube bundle, is thus expected to lead to a better understanding of the phenomena and to reveal on the mechanisms governing the tube bundle. Therefore, the present study aims at providing further insights into two-phase bundle flow through a new visualization system able to provide for the first time a view of the flow in the core of a tube bundle. In addition, the measurement of the light attenuation of a laser beam through the two-phase flow and measurement of the high frequency pressure fluctuations with a piezo-electric pressure transducer are used to characterize the flow. The design and the validation of this new instrumentation also provided a method for the detection of dry-out in tube bundles. This was achieved by a laser attenuation technique, flow visualization, and estimation of the power spectrum of the pressure fluctuation. The current investigation includes results for two different refrigerants, R134a and R236fa, three saturations temperatures T sat = 5, 10 and 15 °C, mass velocities ranging from 4 to 40 kg/sm² in adiabatic and diabatic conditions (several heat fluxes). Measurement of the local heat transfer coefficient and two-phase frictional pressure drop were obtained and utilized to improve the current prediction methods. The heat transfer and pressure drop data were supported by extensive characterization of the two-phase flow, which was to improve the understanding of the two-phase flow occurring in tube bundles. (author)

  14. Heat transfer and pressure drop in a tube bank inclined with respect to the flow

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Moreno, A.A.

    1985-01-01

    This research is intended to lend understanding and to quantify the heat-transfer and fluid-flow characteristics for yawed tube banks in both staggered and in-line arrays. The investigated range of yaw angle was from 90 (crossflow) to 45/sup 0/, while the freestream Reynolds number (based on the tube diameter) ranged between 7000 and 45,000. The transverse and longitudinal center-to-center distances between the tubes were S/sub T//D = S/sub L//D = 2, respectively. The heat-transfer experiments were carried out on a row-by-row basis. Pressure drop measurements were made not only upstream and downstream of the tube bank but also within it. The patterns of fluid flow adjacent to the tubes were visualized using the oil-lampblack technique. A detailed study was carried out to determine the heat-transfer characteristics of a yawed single cylinder. The yaw angle range was between 90 and 30/sup 0/, and flow visualization was also performed. The pressure measurements showed that the overall dimensionless pressure drop for the staggered array is higher than that for the in-line array for a given Reynolds number or yaw. The flow-visualization patterns showed that the boundary layer separation depends on the yaw angle. For the single cylinder, the Nusselt number varied with the yaw angle in an undulating manner and did not correlate with the Independence Principle.

  15. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Aly, Wael I.A.

    2014-01-01

    Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for

  16. Analysis of ferritic stainless steel tube applied in radiation furnaces; Analise de tubos de aco inoxidavel ferritico para aplicacao em fornos de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Porto, P.C.R.; Spim, J.A. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Tecnologia. Lab. de Fundicao], e-mail: spim@ufrgs.br; Santos, C.A. [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Fac. de Engenharia. Programa de Pos-Graduacao em Engenharia e Tecnologia de Materiais (PGETEMA)

    2006-07-01

    The objective of this work was to evaluate the change in mechanic properties and phase transformations of ferritic stainless steel tube, ASTM 268 Gr 446, applied in high temperature conditions. The work has used tubes from radiation furnaces of the PETROBRAS Xisto Industrialization Unit. The samples used for comparison were obtained from new tubes and tubes already used in furnaces. The test analyses were optical metallography, scanning electron microscopy, energy dispersive spectrometer, hardness and microhardness test and tension test. Results have shown that the new tubes presented a ferritic matrix and in old tubes were observed a great quantity of sigma phase and carbides. Along with the thickness of the tubes it was verified that the inside region presented an increase of sulfate and the outside region an increase of carbides. (author)

  17. Study on drop pressure and flow distribution of double-tube heat exchanger

    International Nuclear Information System (INIS)

    Liu Junqiang; Chen Minghui; Hu Yumin; Li Rizhu; Kong Dechun; Zhang Weijie

    2007-01-01

    The parallel connection channel pressure drop characters of the double-tube bundle heat exchange were experimentally investigated in this paper in order to find out how the flow of the heat exchanger is distributed and then to optimize the structure of heat exchanger according to the flow distribution. A double-tube bundle heat exchanger was built according to the similarity criteria. The experiment system was also built to test the optimization of the heat exchanger. The experiment results reveal that the calculating model is reliable and decreasing pipe space to optimize the heat exchanger is reasonable. (authors)

  18. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    Science.gov (United States)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  19. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  20. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Royen Van, E.

    2011-11-01

    The complexity of two-phase flow boiling on a tube bundle presents many challenges to the understanding of the physical phenomena taking place. It is important to quantify these numerous heat flow mechanisms in order to better describe the performance of tube bundles as a function of the operational conditions. In the present study, the bundle boiling facility at the Laboratory of Heat and Mass Transfer (LTCM) was modified to obtain high-speed videos to characterise the two-phase regimes and some bubble dynamics of the boiling process. It was then used to measure heat transfer on single tubes and in bundle boiling conditions. Pressure drop measurements were also made during adiabatic and diabatic bundle conditions. New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and the Wieland-Werke AG (Gewa-B5) were investigated using R134a and R236fa as test fluids. The tests were carried out at saturation temperatures T sat of 5 °C and 15 °C, mass flow rates from 4 to 35 kg/m 2 s and heat fluxes from 15 to 70 kW/m 2 , typical of actual operating conditions. The flow pattern investigation was conducted using visual observations from a borescope inserted in the middle of the bundle. Measurements of the light attenuation of a laser beam through the intertube two-phase flow and local pressure fluctuations with piezo-electric pressure transducers were also taken to further help in characterising the complex flow. Pressure drop measurements and data reduction procedures were revised and used to develop new, improved frictional pressure drop prediction methods for adiabatic and diabatic two-phase conditions. The physical phenomena governing the enhanced tube evaporation process and their effects on the performance of tube bundles were investigated and insight gained. A new method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients were obtained and then

  1. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    International Nuclear Information System (INIS)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R.

    2008-01-01

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence

  2. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Balakrishnan, A.R. [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: arbala@iitm.ac.in

    2008-01-15

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence.

  3. Rod cluster control assemblies and rod cluster control guide tubes: wear and drop time

    International Nuclear Information System (INIS)

    Zbinden, M.

    1997-01-01

    The wear of RCCAs and of RCC guide tubes is due to two quite different mechanisms and the remedies to apply for each case might lead to contradictory solutions: - the impact/sliding wear for the seldom moving RCCAs, namely the shutdown RCCAs, under flow-induced vibrations, - the axial sliding wear for the control rods subjected to the stepping movements ordered by the acting load. In this case the hydraulic sticking forces are those which produce an evolution of the surface states that may increase the drop time. The introduction, an historical survey of the encountered difficulties, is followed by short description of the components and then the paper presents contributions of EDF in the R and D field, which take place in two successive multi-annual projects. Lastly, some information is given about the recent evolutions and new problems as well for impact/sliding wear as for drop time under normal or seismic conditions. (author)

  4. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  5. Thermal performance and pressure drop of spiral-tube ground heat exchangers for ground-source heat pump

    International Nuclear Information System (INIS)

    Jalaluddin; Miyara, Akio

    2015-01-01

    Thermal performance and pressure drop of the spiral-tube GHE were evaluated in this present work. A numerical simulation tool was used to carry out this research. The heat exchange rates per meter borehole depth of the spiral-tube GHE with various pitches and their pressure drops were compared with that of the U-tube GHE. Furthermore, a comparative analysis between a spiral pipe and straight pipe was performed. In comparison with the straight pipe, using the spiral pipe in the borehole increased the heat exchange rate to the ground per meter borehole depth. However, the pressure drop of water flow also increased due to increasing the length of pipe per meter borehole depth and its spiral geometry. The accuracy of the numerical model was verified for its pressure drop with some pressure drop correlations. The heat exchange rate and pressure drop of the GHEs are presented. As an example, the heat exchange rate per meter borehole depth of spiral pipe with 0.05 m pitch in the turbulent flow increased of 1.5 times. Its pressure drop also increased of 6 times. However, from the view point of energy efficiency, using the spiral pipe in the ground-source heat pump system gives a better performance than using the straight pipe. The heat exchange rate and pressure drop are important parameter in design of the ground-source heat pump (GSHP) system. - Highlights: • Thermal performance and pressure drop of spiral-tube GHE are presented. • Effects of spiral pitch on thermal performance and pressure drop are analyzed. • Using a spiral pipe increases heat exchange rate per meter borehole depth of GHE. • Pressure drop per meter borehole depth also increases in the spiral pipe.

  6. Simulation of Working Processes in the Water-Tube Boiler Furnace with the Purpose of Reducing Emissions of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-04-01

    Full Text Available A significant number of domestic and industrial boilers are in operation in Ukraine. Nitrogen oxides are the most dangerous among all combustion products that pollute the atmosphere, therefore, one should take some measures for decreasing the formation of nitrogen oxides during combustion. The studies were carried out at the boilers of low power (100 kW with a tubular radiator and an open end. The studies in the furnaces of industrial steam boilers having a tubular radiator with a closed end have not been done. The numerical study results of the gaseous fuel combustion processes in the furnace of a DE-10/14 steam water-tube boiler are presented. The fuel-air mixture is formed by premixing the 15% part of the air with a primary burner twist factor n=2.4 and a secondary burner twist factor n=1.6, and an air excess factor αв=10. As a result of the studies, the temperature and velocity distributions of gases in the combustion chamber, the density of heat flows on the screen tubular surfaces, and the concentrations of the combustion components were determined. Flue gas recirculation in the volume of 80-100% is provided, and the reversible movement of combustion products towards the combustion front provides a reduction in the concentration of nitrogen oxides up to 123-125 mg/m3 at the furnace outlet. Disadvantages are the following: the formation of stagnant zones near the end of the secondary radiator. The optimum diameter of the tubular radiator equals to two burners diameters and tubular radiator is located at a distance of one meter from the burner cutoff.

  7. Experimental study of heat transfer and pressure drops for ammonia flowing inside a long tube

    International Nuclear Information System (INIS)

    Malek, A.; Colin, R.

    1985-01-01

    This report presents the results of the experimental study of heat transfer coefficients and pressure drops for boiling ammonia in a long tube. The scope of the tests discussed here corresponds to temperatures ranging from 30 to 70 0 C. This touches on various forthcoming applications, including binary cycles of nuclear power plants, as well as miscellaneous energy recovery cycles (heat pumps, geothermal energy, etc.). The results reported here of ammonia evaporators in the temperature range mentionned for two heat exchanger configurations: vertical and horizontal tubes. The correlations expressing the heat transfer coefficients cover the experimental results with a scatter of about +- 0.15% for the three parameters investigated: mass flow rate, heat load, and saturation pressure. As for pressure drops in two-phase flow, an equation expressing the weight of a column of liquid/vapour mixture is satisfactorily compared with the experimental results obtained here. The calculation of this weight is highly important for heat exchanger design, because it helps to predict the recirculation rate in the case of natural circulation. For some cases of evaporators, the calculation of this weight serves to predict the boiling lag in the lower part of the evaporator, which could give rise to low heat transfer coefficient [fr

  8. Pressure drop and stability of flow in Archimedean spiral tube with transverse corrugations

    Directory of Open Access Journals (Sweden)

    Đorđević Milan

    2016-01-01

    Full Text Available Isothermal pressure drop experiments were carried out for the steady Newtonian fluid flow in Archimedean spiral tube with transverse corrugations. Pressure drop correlations and stability criteria for distinguishing the flow regimes have been obtained in a continuous Reynolds number range from 150 to 15 000. The characterizing geometrical groups which take into account all the geometrical parameters of Archimedean spiral and corrugated pipe has been acquired. Before performing experiments over the Archimedean spiral, the corrugated straight pipe having high relative roughness e/d = 0.129 of approximately sinusoidal type was tested in order to obtain correlations for the Darcy friction factor. Insight into the magnitude of pressure loss in the proposed geometry of spiral solar receiver for different flow rates is important because of its effect upon the efficiency of the receiver. Although flow in spiral and corrugated geometries has the advantages of compactness and high heat transfer rates, the disadvantage of greater pressure drops makes hydrodynamic studies relevant. [Projekat Ministarstva nauke Republike Srbije, br. III 42006 i br. TR 33015

  9. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    Science.gov (United States)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  10. Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

    2010-11-15

    Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter (5.0 mm and 4.0 mm O.D.) horizontal microfin tubes were investigated experimentally covering nominal oil concentrations from 0% to 5%. The research results indicate that, comparing with the frictional pressure drop of pure R410A, the frictional pressure drop of R410A-oil mixture may decrease by maximum of 18% when the vapor quality is lower than 0.6, and increase by maximum of 13% when the vapor quality is higher than 0.6. A new frictional pressure drop correlation for R410A-oil mixture flow condensation inside microfin tubes is developed based on the refrigerant-oil mixture properties, and can agree with 94% of the experimental data within a deviation of -30% to +30%. (author)

  11. A comparison of R-22, R-134a, R-410a, and R-407c condensation performance in smooth and enhanced tubes: Part 2, Pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S J; Tesene, B A

    1999-07-01

    This paper reports pressure drops during condensation for R-22, R-134a, R-410a, and R-407c in three enhanced tubes and one smooth tube. The test tubes were a 3/8 inch outer diameter smooth tube, a 3/8 inch outer diameter microfin tube, a 5/16 inch outer diameter microfin tube, and a 5/8 inch outer diameter microfin tube. Pressure drops are reported at four mass fluxes, at two saturation temperatures, and over a range of average qualities in the test tubes. The pressure drops for R-410a were approximately 40% lower than those of R-22 in both tubes. R-407c had 10% to 20% lower pressure drops than R-22, while 134-a had slightly larger pressure drops than R-22. The microfin tube pressure drops were, on average, 40% to 80% higher than those for the smooth tube for all refrigerants. The pressure drop penalty of the microfin tube was shown to decrease with increased quality.

  12. An experimental study on two-phase pressure drop in small diameter horizontal, downward inclined and vertical tubes

    Directory of Open Access Journals (Sweden)

    Autee Arun

    2015-01-01

    Full Text Available An experimental study of two-phase pressure drop in small diameter tubes orientated horizontally, vertically and at two other downward inclinations of θ= 300 and θ = 600 is described in this paper. Acrylic transparent tubes of internal diameters 4.0, 6.0, and 8.0 mm with lengths of 400 mm were used as the test section. Air-water mixture was used as the working fluid. Two-phase pressure drop was measured and compared with the existing correlations. These correlations are commonly used for calculation of pressure drop in macro and mini-microchannels. It is observed that the existing correlations are inadequate in predicting the two-phase pressure drop in small diameter tubes. Based on the experimental data, a new correlation has been proposed for predicting the two-phase pressure drop. This correlation is developed by modification of Chisholm parameter C by incorporating different parameters. It was found that the proposed correlation predicted two-phase pressure drop at satisfactory level.

  13. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  14. IR1 flow tube and In-Pile Test Section Pressure drop test for the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, K. N.; Chi, D. Y.; Sim, B. S.; Park, S. K.; Lee, J. M.; Lee, C. Y.; Kim, H. N

    2006-02-15

    The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vertical hole call IR1 of HANARO reactor core. In order to verify the pressure drop and flow rate both the inside region of IPS at the annular region between IPS and IR1 flow tube, a pressure drop was measured by varing the flow rate on both regions. The measured pressure drop in the annular region is 209kpa at 14.9kg/s which meets the limiting condition of operation of 200kpa. The measured pressure drop in side the IPS becomes 260.25kpa which is lower than the designed value of 306.65kpa. As the pressure drop is lower than the design value, it is quite conservative from the safety and operating point of view.

  15. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  16. Influence of structure improvement of guide tubes and bundles in pressurized water reactor (PWR) on drop of control rods

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Yu Pingan; Yang Guanyue

    1996-01-01

    In order to alleviate the cross hydraulic load on control rod guide tubes and bundles, some protective sleeves are added to those near the upper plenum outlet nozzles (4 symmetric bundles: 02-26, 03-25, 11-29, 12-28). In a 1/4 scale transparent model of the PWR upper plenum of Qinshan Nuclear Power Station, water was chosen as the fluid and hydraulic experiments with improved control rod guide tubes and bundles were carried out. The results were carefully compared with those of the experiments with unimproved control rod guide tubes and bundles. It is concluded that adding protective sleeves to the control rod guide tubes and bundles near the outlet nozzles will help to lighten the hydraulic load on them and make certain of the free movement and rapid dropping of control rods in the tubes and bundles in emergency by order

  17. Estimation and optimization of heat transfer and overall presure drop for a shell and tube heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Bala Bhaskara [Dept. of Mechanical Engineering, SISTAM College, JNTU, Kakinada (India); Raju, V. Ramachandra [Dept. of Mechanical Engineering, JNTU, Kakinada (India); Deepak, B. B V. L. [Dept. of Industrial Design, National Institute of Technology, Rourkela (India)

    2017-01-15

    Most thermal/chemical industries are equipped with heat exchangers to enhance thermal efficiency. The performance of heat exchangers highly depends on design modifications in the tube side, such as the cross-sectional area, orientation, and baffle cut of the tube. However, these parameters do not exhibit a specific relation to determining the optimum design condition for shell and tube heat exchangers with a maximum heat transfer rate and reduced pressure drops. Accordingly, experimental and numerical simulations are performed for a heat exchanger with varying tube geometries. The heat exchanger considered in this investigation is a single-shell, multiple-pass device. A Generalized regression neural network (GRNN) is applied to generate a relation among the input and output process parameters for the experimental data sets. Then, an Artificial immune system (AIS) is used with GRNN to obtain optimized input parameters. Lastly, results are presented for the developed hybrid GRNN-AIS approach.

  18. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  19. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Bisht, G.S.; Gupta, S.K.; Prabhu, S.V.

    2013-01-01

    Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m 2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)

  20. Study on frictional pressure drop of steam-water two phase flow in optimized four-head internal-ribbed tube

    International Nuclear Information System (INIS)

    Wang Weishu; Zhu Xiaojing; Bi Qincheng; Wu Gang; Yu Shuiqing

    2012-01-01

    The optimized internal-ribbed tube is different from the normal internal-ribbed tube on the frictional pressure drop characteristics. The frictional pressure drop characteristics of steam-water two phase flow in horizontal four-head optimized internal-ribbed were studied under adiabatic condition. According to the experimental and calculation results, the two-phase multiplier is greatly affected by the steam quality and pressure. The two-phase multiplier increases with increasing quality, and decreases with increasing pressure. In the near-critical pressure region, the two-phase multiplier is close to 1. The frictional pressure drop of two phase flow in optimized tube is less than that in the normal tube under the same work condition. The good hydrodynamic condition could be achieved when the optimized internal-ribbed tube is used in the heat transfer equipment because the self-compensating characteristics exist due to the reduction of frictional pressure drop. (authors)

  1. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Masoud Rohani [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazduni.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, Ali Mohammad [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of)

    2011-02-15

    Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 {mu}g l{sup -1} for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 {mu}g l{sup -1} Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.

  2. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  3. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    Science.gov (United States)

    Kim, Nae-Hyun

    2018-02-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  4. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    Science.gov (United States)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  5. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hao; Ding, Guoliang; Jiang, Weiting; Hu, Haitao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, 381 Huaihaizhong Road, Shanghai 200020 (China)

    2009-11-15

    The objective of this paper is to investigate the effect of nanoparticle on the frictional pressure drop characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting the frictional pressure drop of refrigerant-based nanofluid. R113 refrigerant and CuO nanoparticle were used for preparing refrigerant-based nanofluid. Experimental conditions include mass fluxes from 100 to 200 kg m{sup -2} s{sup -1}, heat fluxes from 3.08 to 6.16 kW m{sup -2}, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the frictional pressured drop of refrigerant-based nanofluid increases with the increase of the mass fraction of nanoparticles, and the maximum enhancement of frictional pressure drop is 20.8% under above conditions. A frictional pressure drop correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 92% of the experimental data within the deviation of {+-}15%. (author)

  6. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  7. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  8. Numerical analysis on the condensation heat transfer and pressure drop characteristics of the horizontal tubes of modular shell and tube-bundle heat exchanger

    International Nuclear Information System (INIS)

    Ko, Seung Hwan; Park, Hyung Gyu; Kim, Charn Jung; Park, Byung Kyu

    2001-01-01

    A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite concept method based on FVM and κ-ε turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate 4∼8% higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer

  9. Experimental and analytical study of two-phase pressure drops during evaporation in horizontal tubes

    OpenAIRE

    Moreno Quibén, Jesús; Thome, John Richard

    2007-01-01

    Two-phase flow of gases and liquids or vapors and liquids in pipes, channels, equipment, etc. is frequently encountered in industry and has been studied intensively for many years. The reliable prediction of pressure drop in two-phase flow is thereby an important aim. Because of the complexity of these types of flow, empirical or semiempirical relationships are only of limited reliability and pressure drops predicted using leading methods may differ by up to 100%. In order to improve predicti...

  10. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  11. Solidification of refractory materials processed in the ultra high vacuum drop tube at the CEREM-Grenoble

    International Nuclear Information System (INIS)

    Vinet, B.; Cini, E.; Tournier, S.; Cortella, L.

    1994-01-01

    Undercooling experiments have been performed on refractory materials by processing in a high drop-tube. Emphasis is put on general aspects of surface and bulk microstructures of solidified droplets, including pure metals (W, Re, Ta, Mo, Nb, Ir, Zr) and alloys (W-Re, Mo-Re, Ta-Zr). It is shown that recrystallization often causes polycrystallinity. Moreover, the microstructure is closely related to undercooling amount prior solidification. The effect of secondary cooling on microstructure can also be studied by quenching the samples in solid tin at the end of free-fall. (authors). 20 refs., 11 figs

  12. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid

    International Nuclear Information System (INIS)

    Mirabdolah Lavasani, Arash; Bayat, Hamidreza

    2016-01-01

    Highlights: • Flow around non-circular and circular shaped tube bank is studied. • Effect of using Al_2O_3-water nanofluid on flow and heat transfer is discussed. • Tubes are with in-line and staggered arrangement. • Pressure drop of non-circular tube is noticeably lower that circular tube. - Abstract: Flow and heat transfer of nanofluid inside circular and cam-shaped tube bank is studied numerically. Reynolds number for cam-shaped tube bank is defined based on equivalent diameter of circular tube and varies in range of 100 ⩽ Re_D ⩽ 400. Nanofluid is made by adding Al_2O_3 nanoparticle with volume fraction of 1–7% to pure water. Results show using nanofluid results in higher heat transfer rate for both circular tube bank and cam-shaped tube bank. Also, staggered arrangement has higher heat transfer for both circular and cam-shaped tube bank. Pressure drop from cam-shaped tube bank is substantially lower than circular tube bank for all range of Reynolds number and volume fraction.

  13. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    Science.gov (United States)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  14. Flow instability research on steam generator with straight double-walled heat transfer tube for FBR. Pressure drop under high pressure condition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Yoshida, Hiroyuki; Takase, Kazuyuki; Hayafune, Hiroki; Futagami, Satoshi; Kisohara, Naoyuki

    2008-01-01

    For the Steam Generator (SG) with straight double-walled heat transfer tube that used in sodium cooled Faster Breeder Reactor, flow instability is one of the most important items need researching. As the first step of the research, thermal hydraulics experiments were performed under high pressure condition in JAEA with using a straight tube. Pressure drop, heat transfer coefficients and void fraction data were derived. This paper evaluates the pressure drop data with TRAC-BF1 code. The Pffan's correlation for single phase flow and the Martinelli-Nelson's two-phase flow multiplier are found can be well predicted the present pressure drop data under high pressure condition. (author)

  15. Evaporation of R134a in a horizontal herringbone microfin tube: heat transfer and pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Wellsandt, S; Vamling, L [Chalmers University of Technology, Gothenburg (Sweden). Department of Chemical Engineering and Environmental Science, Heat and Power Technology

    2005-09-01

    An experimental investigation of in-tube evaporation of R134a has been carried out for a 4 m long herringbone microfin tube with an outer diameter of 9.53 mm. Measured local heat transfer coefficients and pressure losses are reported for evaporation temperatures between -0.7 and 10.1 {sup o}C and mass flow rates between 162 and 366 kg m{sup -2} s{sup -1}. Results from this work are compared to experimental results from literature as well as predicted values from some available helical microfin correlations. Differences in heat transfer mechanisms between helical and herringbone microfin tubes are discussed, as heat transfer coefficients in the investigated herringbone tube tend to peak at lower vapour qualities compared to helical microfins. Correlations developed for helical microfin tubes generally predict experimental values within {+-}30% for vapour qualities below 50%. However, at higher qualities none of the correlations are able to reflect the early peak of heat transfer coefficients. Predicted pressure gradients reproduce measured values in general within {+-}20%. (author)

  16. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  17. Al/ oil nanofluids inside annular tube: an experimental study on convective heat transfer and pressure drop

    Science.gov (United States)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza

    2018-04-01

    In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.

  18. Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries

    International Nuclear Information System (INIS)

    Kim, Nae Hyun

    2015-01-01

    R-410A evaporation heat transfer and pressure drop data are provided for three 7.0 mm O.D. microfin tubes. The microfin tubes had different helix angle, fin height and fin apex angle. Tests were conducted for a range of quality (0.2 ∼ 0.8), mass flux (216 ∼ 390 kg/m 2 s), heat flux (9 ∼ 17 kW/m 2 ) and saturation temperature (8 ∼ 12 .deg. C). It was found that three microfin tubes yielded approximately the same heat transfer coefficients. Microfin tube with larger inter-fin spacing or smaller helix angle yielded lager pressure drop. Both heat transfer coefficient and pressure drop increased as mass flux or quality increased. However, they decreased as saturation temperature increased. The range of heat transfer enhancement factor (1.37 ∼ 1.97) was comparable with that of pressure drop penalty factor (1.22 ∼ 1.77). Data are compared with available heat transfer and pressure drop correlations

  19. Friction pressure drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Nariai, Hideki; Kobayashi, Michiyuki; Matsuoka, Takeshi.

    1982-01-01

    Two-phase friction pressure drop and heat transfer coefficients in a once-through steam generator with helically coiled tubes were investigated with the model test rig of an integrated type marine water reactor. As the dimensions of the heat transfer tubes and the thermal-fluid conditions are almost the same as those of real reactors, the data applicable directly to the real reactor design were obtained. As to the friction pressure drop, modified Kozeki's prediction which is based on the experimental data by Kozeki for coiled tubes, agreed the best with the experimental data. Modified Martinelli-Nelson's prediction which is based on Martinelli-Nelson's multiplier using Ito's equation for single-phase flow in coiled tube, agreed within 30%. The effect of coiled tube on the average heat transfer coefficients at boiling region were small, and the predictions for straight tube could also be applied to coiled tube. Schrock-Grossman's correlation agreed well with the experimental data at the pressures of lower than 3.5 MPa. It was suggested that dryout should be occurred at the quality of greater than 90% within the conditions of this report. (author)

  20. Furnace Brazing Parameters Optimized by Taguchi Method and Corrosion Behavior of Tube-Fin System of Automotive Condensers

    Science.gov (United States)

    Guía-Tello, J. C.; Pech-Canul, M. A.; Trujillo-Vázquez, E.; Pech-Canul, M. I.

    2017-08-01

    Controlled atmosphere brazing has a widespread industrial use in the production of aluminum automotive heat exchangers. Good-quality joints between the components depend on the initial condition of materials as well as on the brazing process parameters. In this work, the Taguchi method was used to optimize the brazing parameters with respect to corrosion performance for tube-fin mini-assemblies of an automotive condenser. The experimental design consisted of five factors (micro-channel tube type, flux type, peak temperature, heating rate and dwell time), with two levels each. The corrosion behavior in acidified seawater solution pH 2.8 was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to analyze the microstructural features in the joint zone. The results showed that the parameters that most significantly affect the corrosion rate are the type of flux and the peak temperature. The optimal conditions were: micro-channel tube with 4.2 g/m2 of zinc coating, standard flux, 610 °C peak temperature, 5 °C/min heating rate and 4 min dwell time. The corrosion current density value of the confirmation experiment is in excellent agreement with the predicted value. The electrochemical characterization for selected samples gave indication that the brazing conditions had a more significant effect on the kinetics of the hydrogen evolution reaction than on the kinetics of the metal dissolution reaction.

  1. An Investigation on Cocombustion Behaviors of Hydrothermally Treated Municipal Solid Waste with Coal Using a Drop-Tube Reactor

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2012-01-01

    Full Text Available This work aims at demonstrating the feasibility of replacing Indonesian coal (INC with hydrothermally treated municipal solid waste (MSWH in cocombustion with high ash Indian coal (IC. The combustion efficiencies and emissions (CO, NO of MSWH, INC and their blends with IC for a series of tests performed under a range of temperatures and air conditions were tested in a drop-tube reactor (DTR. The results showed the following. The combustion efficiency of IC was increased by blending both MSWH and INC and CO emission was reduced with increasing temperature. For NO emission, the blending of MSWH led to the increase of NO concentration whereas the effects of INC depended on the temperature. The combustion behaviors of IC-MSWH blend were comparable to those of the IC-INC blend indicating it is possible for MSWH to become a good substitute for INC supporting IC combustion. Moreover, the CO emission fell while the NO emission rose with increasing excess air for IC-MSWH blend at 900°C and the highest combustion efficiency was obtained at the excess air of 1.9. The existence of moisture in the cocombustion system of IC-MSWH blend could slightly improve the combustion efficiency, reduce CO, and increase NO.

  2. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  3. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  4. A new method to calculate pressure drop and shell-side heat transfer coefficient in a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    Baptista Filho, B.D.; Konuk, A.A.

    1981-01-01

    A new method to calculate pressure drop (Δp) and shell-side heat transfer coefficient (h sub(c)) in a shell-and-tube heat exchanger with segmental baffles is presented. The method is based on the solution of the equations of conservation of mass and momentum between two baffles. The calculated distributions of pressure and velocities given respectively, Δp and h sub(c). The values of Δp and h sub(c) are correlated for a given geometry whit the shell side fluid properties and flow rate. The calculated and experimental results agree very well for a U-Tube heat exchanger. (Author) [pt

  5. Analysis of the effect of tube arrangement and inclination on pressure drop in an intermediate heat exchanger of liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    ChoiI, Seok Ki; Choi, Il Kon; Nam, Ho Yun; Choi, Jong Hyeun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    An experimental study on the effect of tube arrangement and inclination on the pressure drop in the intermediate heat exchanger is performed. Measurements are made for pressure drop in the triangular and rotated triangular tue arrays whose inclined angles are 30, 45, 60, 75 and 90 degrees. The pitch to tube diameter ratio is 1.6 and the range of Reynolds number based on the free stream velocity and tube diameter is 870-64,000. The experimental results show that the magnitude of dimensionless pressure drop increases with the inclined angle and decreases significantly when the inclined angle is less than 45 degree. The previous correlations are evaluated using the experimental data. The ESDU correlation agrees well with the present data for the triangular arrays. But some discrepancies are observed for the rotated triangular arrays when the inclined angles are 45 and 30 degrees. The Idel'chik correlation generally agrees well with the measured data for the rotated triangular arrays except for inclined angle of 30 degree. The Idel'chik correlation needs modification for the triangular arrays. The modified Idel'chik correlation agrees well with the measure data within 10%. 32 refs., 59 figs., 11 tabs. (Author)

  6. Experimental investigation and correlation of two-phase frictional pressure drop of R410A-oil mixture flow boiling in a 5 mm microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guoliang; Hu, Haitao; Huang, Xiangchao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China); Gao, Yifeng [International Copper Association, Shanghai Office, Shanghai 200020 (China)

    2009-01-15

    This study presents experimental two-phase frictional data for R410A-oil mixture flow boiling in an internal spiral grooved microfin tube with outside diameter of 5 mm. Experimental parameters include the evaporation temperature of 5 C, the mass flux from 200 to 400 kg m{sup -2} s{sup -1}, the heat flux from 7.46 to 14.92 kW m{sup -2}, the inlet vapor quality from 0.1 to 0.8, and nominal oil concentration from 0 to 5%. The test results show that the frictional pressure drop of R410A initially increases with vapor quality and then decreases, presenting a local maximum in the vapor quality range between 0.7 and 0.8; the frictional pressure drop of R410A-oil mixture increases with the mass flux, the presence of oil enhances two-phase frictional pressure drop, and the effect of oil on frictional pressure drop is more evident at higher vapor qualities where the local oil concentrations are higher. The enhanced factor is always larger than unity and increases with nominal oil concentration at a given vapor quality. The range of the enhanced factor is about 1.0-2.2 at present test conditions. A new correlation to predict the local frictional pressure drop of R410A-oil mixture flow boiling inside the internal spiral grooved microfin tube is developed based on local properties of refrigerant-oil mixture, and the measured local frictional pressure drop is well correlated with the empirical equation proposed by the authors. (author)

  7. Evaporation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low flow rates

    International Nuclear Information System (INIS)

    Kim, Hae Hyun

    2015-01-01

    Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of kg/m 2 s. However, literature surveys reveal that previous investigations were limited to mass flux over 100 kg/m 2 s. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes (50-250 kg/m 2 s) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at 8 degrees celsius, and the heat flux was maintained at 4.kW/m"2. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to 150 kg/m 2 s, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations

  8. Evaporation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Hyun [Div. of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2015-09-15

    Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of kg/m{sup 2}s. However, literature surveys reveal that previous investigations were limited to mass flux over 100 kg/m{sup 2}s. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes (50-250 kg/m{sup 2}s) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at 8 degrees celsius, and the heat flux was maintained at 4.kW/m{sup 2}. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to 150 kg/m{sup 2}s, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations.

  9. Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches

    Directory of Open Access Journals (Sweden)

    Okbaz Abdulkerim

    2017-01-01

    Full Text Available In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.

  10. A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    P. Shahmohammadi

    2016-01-01

    Full Text Available The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were defined using the user define function. The results revealed that heat transfer and pressure drop were increased with mass flow rate as well as baffle numbers. Adding nanoparticles to the based fluid did not have a significant effect on pressure drop in the shell side. The best heat transfer performance of heat exchangers was for γ-Al2O3-water 1 vol.% and higher nanoparticles concentration was not suitable. The suitable baffle spacing was 43.4% of the shell diameter, showing a good agreement with Bell-Delaware method.

  11. Experimental sizing and assessment of two-phase pressure drop correlations for a capillary tube with transcritical and subcritical carbon dioxide flow

    International Nuclear Information System (INIS)

    Trinchieri, R; Boccardi, G; Calabrese, N; Zummo, G; Celata, G P

    2014-01-01

    In the last years, CO 2 was proposed as an alternative refrigerant for different refrigeration applications (automotive air conditioning, heat pumps, refrigerant plants, etc.) In the case of low power refrigeration applications, as a household refrigerator, the use of too expensive components is not economically sustainable; therefore, even if the use of CO 2 as the refrigerant is desired, it is preferable to use conventional components as much as possible. For these reasons, the capillary tube is frequently proposed as expansion system. Then, it is necessary to characterize the capillary in terms of knowledge of the evolving mass flow rate and the associate pressure drop under all possible operative conditions. For this aim, an experimental campaign has been carried out on the ENEA test loop 'CADORE' to measure the performance of three capillary tubes having same inner diameter (0.55 mm) but different lengths (4, 6 and 8 meters). The test range of inlet pressure is between about 60 and 110 bar, whereas external temperatures are between about 20 to 42 °C. The two-phase pressure drop through the capillary tube is detected and experimental values are compared with the predictions obtained with the more widely used correlations available in the literature. Correlations have been tested over a wide range of variation of inlet flow conditions, as a function of different inlet parameters.

  12. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  13. Experimental Heat Transfer, pressure drop, and Flow Visualization of R-134a in Vertical Mini/Micro Tubes

    OpenAIRE

    Owhaib, Wahib

    2007-01-01

    For the application of minichannel heat exchangers, it is necessary to have accurate design tools for predicting heat transfer and pressure drop. Until recently, this type of heat exchangers was not well studied, and in the scientific literature there were large discrepancies between results reported by different investigators. The present thesis aims to add to the knowledge of the fundamentals of single- and two-phase flow heat transfer and pressure drop in narrow channels, thereby aiding in...

  14. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  15. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    International Nuclear Information System (INIS)

    Yi, M.

    2004-01-01

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO 2 , argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 ± 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 ± 1000SCCM and a time requirement of 56 ± 5 seconds to flush an entire module

  16. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    Science.gov (United States)

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes

    International Nuclear Information System (INIS)

    Ravigururajan, T.S.; Bergles, A.E.

    1985-01-01

    General correlations for friction factors and heat transfer coefficients for single-phase turbulent flow in internally ribbed tubes are presented. Data from previous investigations are gathered for a wide range of tube parameters with e/d: 0.01 to 0.2; p/d: 0.1 to 7.0; α/90: 0.3 to 1.0, and flow parameters Re: 5000 to 250,000 and Pr: 0.66 to 37.6. The data were applied to a linear model to get normalized correlations that were then modified to fit tubes with extremely small parametric values. A shape function was included in the friction correlation to account for different rib profiles. The friction correlation predicts 96% of the data base to within +. 50% and 77% of the data base to within +. 20%. Corresponding figures for the heat transfer correlation are 99% and 69%. The present correlations are superior, for this extensive data base, to those presented by other investigators

  18. Evaporation of R407C and R410A in a horizontal herringbone microfin tube: heat transfer and pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Wellsandt, S; Vamling, L [Chalmers University of Technology, Gothenburg (Sweden). Department of Chemical Engineering and Environmental Science, Heat and Power Technology

    2005-09-01

    An experimental investigation of in-tube evaporation of R410A and R407C has been carried out for a 4 m long herringbone microfin tube with an outer diameter of 9.53 mm. Measured local heat transfer coefficients and pressure losses are reported for evaporation temperatures for R410A and R407C between -2.2 and 9.5 {sup o}C and between -5.5 and 13.8 {sup o}C, respectively. Mass flow rates between 162 and 366 kg m{sup -2} s{sup -1} have been investigated. Results from this work are compared to R134a data from an earlier work by the present authors, and also to predicted values from some available helical microfin correlations. Compared to R134a data, heat transfer coefficients for the investigated mixtures are generally lower, especially at low mass flow rates. No major effect of heat flux on heat transfer coefficients was found, with the exception of the high quality region. Predicted heat transfer coefficients from helical microfin correlations strongly overpredict the present data. Global pressure losses are predicted well, even though local deviations are found. (author)

  19. Investigation of the pressure drop inside a rectangular channel with a built-in U-shaped tube bundle heat exchanger

    Directory of Open Access Journals (Sweden)

    Xi-yue Liu

    2017-01-01

    Full Text Available A simplified approach which utilizes an isotropic porous medium model has been widely adopted for modeling the flow through a compact heat exchanger. With respect to situations where the compact heat exchangers are partially installed inside a channel, such as the application of recuperators in an intercooled recuperative engine, the use of an isotropic porous medium model needs to be carefully assessed because the flow passing through the heat exchanger is very complicated. For this purpose, in this study the isotropic porous medium model is assessed together with specific pressure–velocity relationships for flow field modeling inside a rectangular channel with a built-in double-U-shaped tube bundle heat exchanger. Firstly, experiments were conducted using models to investigate the relationship between the pressure drop and the inlet velocity for a specific heat exchanger with different installation angles inside a rectangular channel. Secondly, a series of numerical computations were carried out using the isotropic porous medium model and the pressure–velocity relationship was then modified by introducing correction coefficients empirically. Finally, a three-dimensional (3-D direct computation was made using a computational fluid dynamics (CFD method for the comparison of detailed flow fields. The results suggest that the isotropic porous medium model is capable of making precise pressure drop predictions given the reasonable pressure–velocity relationship but is unable to precisely simulate the detailed flow features.

  20. Dropped Ceiling

    OpenAIRE

    Tabet, Rayyane

    2012-01-01

    On December 2nd 1950 the first drop of Saudi oil arrived to Lebanon via the newly constructed Trans-Arabian Pipeline, the world's longest pipeline and the largest American private investment in a foreign land. The 30inch wide structure which spanned 1213 kilometers passing through Saudi Arabia, Jordan, and Syria to end in Lebanon had required 3 years of planning and surveying, 2 years of installation, the fabrication of 256,000 tons of steel tubes, the employment of 30,000 workers, the ratifi...

  1. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  2. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  3. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    Highlights: • Non-linear model of supercritical CFB boiler with annular furnace is developed. • Many empirical correlations are used to solve the model. • The thermal–hydraulic characteristics of boiler are analyzed. • The results show that the design of the annular furnace is reasonable. - Abstract: The development of supercritical Circulating Fluidized Bed (CFB) boiler has great economic and environmental value. An entirely new annular furnace structure with outer and inner ring sidewalls for supercritical CFB boiler has been put forward by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences and Dongfang Boiler Group Co., Ltd. (DBC). Its outer and inner ring furnace structure makes more water walls arranged and reduces furnace height availably. In addition, compared with other additional evaporating heating surface structures such as mid-partition and water-cooled panels, the integrative structure can effectively avoid the bed-inventory overturn and improve the penetrability of secondary air. The conditions of the 600 MW supercritical CFB boiler including capability, pressure and mass flux are harsh. In order to insure the safety of boiler operation, it is very necessary to analyze the thermal–hydraulic characteristics of water-wall system. The water-wall system with complicated pipe arrangement is regarded as a network consisting of series-parallel circuits, pressure nodes and linking circuits, which represent vertical water-wall tubes, different headers and linking tubes, respectively. Based on the mass, momentum and energy conservation, a mathematical model is built, which consists of some simultaneous nonlinear equations. The mass flux in circuits, pressure drop between headers, outer vapor temperature of water-wall system and metal temperature data of tubes at the boiler maximum continuous rating (BMCR), 75% BMCR and 30% BMCR loads are obtained by solving the mathematical model. The results show that the vertical water

  4. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  5. Energy conservation in industrial furnaces with vertical radiation roofs of reinforced refractory concrete

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, E

    1981-01-01

    The paper discusses static systems for furnaces of reinforced refractory concrete, the temperature field over the finned-plate cross section, the calculation of the reinforced refractory concrete, experimental application in a flat open-hearth pusher furnace, a pack heating furnace, and a sinker furnace. There are cantilever beam plates, frames, and drop ceiling elements particularly suited for efficient use of high-performance burners.

  6. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  7. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  8. Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Tsung-Han

    2007-01-01

    Volatiles release and particle formation for two kinds of pulverized coals (a high volatile bituminous coal and a low volatile bituminous coal) in a drop tube furnace are investigated to account for the reactions of pulverized coal injected in blast furnaces. Two different sizes of feed particles are considered; one is 100-200 mesh and the other is 200-325 mesh. By evaluating the R-factor, the devolatilization extent of the larger feed particles is found to be relatively poor. However, the swelling behavior of individual or two agglomerated particles is pronounced, which is conducive to gasification of the chars in blast furnaces. In contrast, for the smaller feed particles, volatiles liberated from the coal particles can be improved in a significant way as a result of the amplified R-factor. This enhancement can facilitate the performance of gas phase combustion. Nevertheless, the residual char particles are characterized by agglomeration, implying that the reaction time of the char particles will be lengthened, thereby increasing the possibility of furnace instability. Double peak distributions in char particle size are observed in some cases. This possibly results from the interaction of the plastic state and the blowing effect at the particle surface. Considering the generation of tiny aerosols composed of soot particles and tar droplets, the results indicate that their production is highly sensitive to the volatile matter and elemental oxygen contained in the coal. Comparing the reactivity of the soot to that of the unburned char, the former is always lower than the latter. Consequently, the lower is the soot formation, the better is the blast furnace stability

  9. Evaluation of the crack initiation of curved compact tension specimens of a Zr-2.5Nb pressure tube using the unloading compliance and direct current potential drop methods

    International Nuclear Information System (INIS)

    Jeong, Hyeon Cheol; Ahn, Sang Bok; Park, Joong Chul; Kim, Young Suk

    2005-01-01

    Zr-2.5Nb pressure tubes, carrying fuel bundles and heavy water coolant inside, degrade due to neutron irradiation and hydrogen embrittlement during their operation in heavy water reactors. The safety criterion for the Zr-2.5Nb tubes to meet is a leak-before-break (LBB) requirement. To evaluate a safety margin related to the LBB criterion, facture toughness of the pressure tubes are to be determined periodically with their operational time. For a reliable evaluation of the LBB safety criterion of the pressure tubes, it is required to precisely determine their fracture toughness. Since the fracture toughness or J of the pressure tubes is determined only by the extended crack length, it is important to reliably and precisely evaluate the advanced crack length. However, the problem lies with the detection of the crack opening point because prior plastic deformation before a start of the crack makes it difficult. The aim of this work is to evaluate which method can define the crack initiation point in the Zr- 2.5Nb compact tension specimens more precisely between the unloading compliance method with a crack opening displacement (COD) gauge and the direct current potential drop (DCPD) methods

  10. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  11. Experimental studies on the evaporative heat transfer and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5 mm for an inclination angle of 45

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Min; Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Yong Jin [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2010-08-15

    Heat transfer characteristics show different tendency according to the tube orientations such as horizontal, vertical, and inclined positions. In this study, evaporative heat transfer characteristics and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward are investigated in inclined smooth and micro-fin tubes. Smooth and micro-fin tubes with outer diameter of 5 mm and length of 1.44 m with inclination angle of 45 were chosen as test tubes. Average inner diameters of test tubes are 4.0 mm (smooth tube) and 4.13 mm (micro-fin tube). The tests were conducted at mass fluxes from 212 to 656 kg/m{sup 2} s, saturation temperatures from -10 to 30 C and heat fluxes from 15 to 60 kW/m{sup 2} for CO{sub 2}. In addition, for CO{sub 2}/propane mixtures, the test was carried out at inlet temperatures from -10 to 30 C for several compositions (75/25, 50/50, 25/75 wt%) with the same mass fluxes, heat fluxes applied for CO{sub 2}. Heat transfer coefficients in inclined tube are approximately 1.8-3 times higher than those in horizontal tube and the average pressure drop of inclined tube exists between that of horizontal and vertical tubes. (author)

  12. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  13. Dental Porcelain Furnaces: Test and Evaluation.

    Science.gov (United States)

    1988-01-01

    D Q)L a ) a) C ) C C C C c *. . 3a)0. >4 a)->4 >4 -, Z 0 -a-’- 4-% a) ( nca )m m nU Cs C ) (3 ) 11) a) a) a3) Q) a) W) a2) C C~~ >4 L > > >1 >1 4 > 4...Fig. 1) is a computerized programmable porcelain furnace with 45 open programs. This unit has a large detachable cathode -ray tube (CRT) screen which

  14. Heat transfer and pressure drop studies of TiO2/DI water nanofluids in helically corrugated tubes using spiraled rod inserts

    Science.gov (United States)

    Anbu, S.; Venkatachalapathy, S.; Suresh, S.

    2018-05-01

    An experimental study on the convective heat transfer and friction factor characteristics of TiO2/DI water nanofluids in uniformly heated plain and helically corrugated tubes (HCT) with and without spiraled rod inserts (SRI) under laminar flow regime is presented in this paper. TiO2 nanoparticles with an average size of 32 nm are dispersed in deionized (DI) water to form stable suspensions containing 0.1, 0.15, 0.2, and 0.25% volume concentrations of nanoparticles. It is found that the inclusion of nanoparticles to DI water ameliorated Nusselt number which increased with nanoparticles concentration upto 0.2%. Two spiraled rod inserts made of copper with different pitches (pi = 50 mm and 30 mm) are inserted in both plain and corrugated tubes and it is found that the addition of these inserts increased the Nusselt number substantially. For Helically corrugated tube with lower pitch and maximum height of corrugation (pc = 8 mm, hc = 1 mm) with 0.2% volume concentration of nanoparticles, a maximum enhancement of 15% in Nusselt number is found without insert and with insert having lower pitch (pi = 30 mm) the enhancement is 34% when compared to DI water in plain tube. The results on friction factor show a maximum penalty of about 53.56% for the above HCT.

  15. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  16. Furnaces for destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A

    1897-12-04

    Shale or other material is dropped from a hopper F into an annular retort or kiln A/sup 3/, the walls of which enclose annular flues C, C/sup 1/ in which gas is burnt to heat it. Radial flues also extend across the kiln. The kiln is supported above the ground level by pillars B. The material rests at the bottom on an annular plate H, having a flat middle portion with inclined sides. This is supported within an annular hopper I, provided with counterweighted discharging doors I/sup 1/, held by latches and sealed by placing water on them; or a large conical hopper may be used, provided with a conveyer screw, and containing water. Four long scrapers J are reciprocated radially on the flat part of the plate H by rods J/sup 1/, passed through stuffing-boxes in the hopper, and engaged with eccentric K which are rotated by worm gearing. Doors M in the hopper I, and holes in the plate H, permit stirring-tools to be introduced. The upper part of the kiln consists of iron rings a, a/sup 1/; the products of combustion from the flues pass through openings a/sup 5/ into a central chimney a/sup 3/. The products of distillation are delivered through tubes G.

  17. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O' Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  18. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  19. Drop trampoline

    Science.gov (United States)

    Chantelot, Pierre; Coux, Martin; Clanet, Christophe; Quere, David

    2017-11-01

    Superhydrophobic substrates inspired from the lotus leaf have the ability to reflect impacting water drops. They do so very efficiently and contact lasts typically 10 ms for millimetric droplets. Yet unlike a lotus leaf most synthetic substrates are rigid. Focusing on the interplay between substrate flexibility and liquid repellency might allow us to understand the dynamic properties of natural surfaces. We perform liquid marbles impacts at velocity V onto thin ( 0.01 mm) stretched circular PDMS membranes. We obtain contact time reductions of up to 70%. The bouncing mechanism is drastically modified compared to that on a rigid substrate: the marble leaves the substrate while it is still spread in a disk shape as it is kicked upwards by the membrane. We show that the bouncing is controlled by an interplay between the dynamics of the drop and the membrane.

  20. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  1. Thermal and friction drop characteristic of heat exchangers with elliptical tubes and smooth fins//Caracterización térmica e hidráulica de intercambiadores de calor con tubos elípticos y aletas lisas

    Directory of Open Access Journals (Sweden)

    Rubén Borrajo-Pérez

    2012-09-01

    Full Text Available Pressure drop and heat transfer are the most important parameters in compact heat exchanger. There is a lack of information in the literature about heat exchanger with elliptical tube. The objective of this work was the experimental characterization of compact heat exchangers models using elliptical tube with eccentricity of 0,5 and smooth fins. The Reynolds numbers and the spacing were varied and always inside laminar regime. The experiments were conducted in an open wind tunnel using sublimation of naphthalene and the heat and mass transfer analogy. As results, the average and local Nusselt number and friction factor for 36 models were obtained. Correlations for Colburn and friction factors were presented. This correlations were obtained for 200tube, compact heat exchanger._______________________________________________________________________________Resumen:Caída de presión y transferencia de calor son importantes parámetros en intercambiadores de calor. Existe falta de información cuando de intercambiadores de calor y tubos elípticos se trata. El objetivo del trabajo fue caracterizar experimentalmente modelos de intercambiadores de calor con tubos elípticos yaletas lisas. El numero de Reynolds y los espaciamientos fueron variados, dentro del régimen laminar. Los experimentos fueron desarrollados en un túnel de viento de circuito abierto usando la sublimación de naftaleno y la analogía calor y masa. Los números de Nusselt medio, locales y el factor de fricción fueronobtenidos en forma de correlaciones de Factores de Fricción y Colburn. Las correlaciones, validas para 200

  2. Pressure drop in T's in concentric ducts

    International Nuclear Information System (INIS)

    Shock, R.A.W.

    1983-02-01

    A set of experiments has been carried out to measure the pressure drop characteristics of single-phase flow in dividing and joining right-angled T's in a concentric ducting system. These have been compared with measured pressure drops in a simple round tube system. In most tests with the concentric system the number of velocity heads lost is either similar to, or more than, the value for the round tubes. (author)

  3. Evaluation of ultrasound inspection of steel H K-40 tubes used in oil processing plant furnaces; Avaliacao da inspecao ultra-sonica de tubos de aco HK-40 usado em fornos de plantas de processamento de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Staszczak, Eduardo Jose; Rebello, Joao Marcos Alcoforado; Riguera, Glaucio [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Ensaios Nao-Destrutivos; Martins, Marcus Vinicius M.; Carneval, Ricardo de Oliveira [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-06-01

    The ultra-sound inspection is usually an alternative to the techniques used for the inspection of tubes of steel H K-40. Even so up to now it was not very analyzed it remains so much to real potentiality of the technique in what it refers to the minimum size of discontinuities for its detection with relationship to the characterization of the size of discontinuities and the respective ultra-sound signal. This work besides reviewing fundamental aspects of the problems of inspection of these tubes tries to relate the form of the ultra-sound signal with the size of the found discontinuities. (author)

  4. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  5. Modelling and control of a diffusion/LPCVD furnace

    Science.gov (United States)

    Dewaard, H.; Dekoning, W. L.

    1988-12-01

    Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.

  6. Video monitoring system for enriched uranium casting furnaces

    International Nuclear Information System (INIS)

    Turner, P.C.

    1978-03-01

    A closed-circuit television (CCTV) system was developed to upgrade the remote-viewing capability on two oralloy (highly enriched uranium) casting furnaces in the Y-12 Plant. A silicon vidicon CCTV camera with a remotely controlled lens and infrared filtering was provided to yield a good-quality video presentation of the furnace crucible as the oralloy material is heated from 25 to 1300 0 C. Existing tube-type CCTV monochrome monitors were replaced with solid-state monitors to increase the system reliability

  7. Computer simulation of processes in the dead–end furnace

    International Nuclear Information System (INIS)

    Zavorin, A S; Khaustov, S A; Zaharushkin, Russia N A

    2014-01-01

    We study turbulent combustion of natural gas in the reverse flame of fire–tube boiler simulated with the ANSYS Fluent 12.1.4 engineering simulation software. Aerodynamic structure and volumetric pressure fields of the flame were calculated. The results are presented in graphical form. The effect of the twist parameter for a drag coefficient of dead–end furnace was estimated. Finite element method was used for simulating the following processes: the combustion of methane in air oxygen, radiant and convective heat transfer, turbulence. Complete geometric model of the dead–end furnace based on boiler drawings was considered

  8. Reports on research achievements in developing high-performance industrial furnaces in fiscal 1998 (Research and development of high-performance industrial furnaces). Volume 1; 1998 nendo koseino kogyoro nado ni kansuru kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    From the reports on research achievements in developing high-performance industrial furnaces in fiscal 1998, the report volume 1 was prepared as a research achievement report of each working group, detailing fundamental researches, heating furnaces, and heat treatment furnaces. The fundamental researches have researched combustion evaluating technology, characteristics of the area in the vicinity of a combustor, characteristics of combustion of high-temperature air, heating characteristics of a furnace to investigate effect of local heat absorption, and combustion evaluation. For the heating furnaces, the following subjects were studied: development of an in-furnace combustion model, summary of an experiment for evaluating high-temperature air combustion, furnace height relative to combustion heat transfer characteristics, heat loss minimizing technology, combustion heat transfer characteristics of liquid fuels, optimal operation of the high-temperature air combustion, basic control in heating control, and steel piece heating control. Studies were performed for the heat treatment furnaces on the case of a direct firing furnace in evaluating the heat transfer characteristics, the case of a radiant tube furnace, application of thermal fluid simulation technology, furnace averaging technology, soot reducing technology, control technology, and trial design on a high-performance heat treatment furnace. (NEDO)

  9. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  10. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  11. Fluorophotometric determination of uranium: an automated sintering furnace and factors affecting precision

    International Nuclear Information System (INIS)

    Strain, J.E.

    1978-07-01

    The fusion furnace consists of four individually controlled, slotted-tube furnaces that automatically dry, sinter and anneal the fluoride or carbonate pellet used in the fluorometric determination of uranium. The furnace operates in air and prepares approximately 90 pellets per hour for fluorometric measurement. The factors that were thought to affect the precision of the method were investigated. The two factors that seem to be the most influential are (1) the manner in which the sample is loaded onto the pellet; and (2) the surface characteristics of the platinum dish in which the pellet is sintered and measured fluorometrically

  12. Furnace for treating bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1922-04-28

    A furnace with saw-teeth-like profiled hearth, which by means of a kind of shaking slide executes a backward and forward motion, for carrying out the process according to Patent 422,391. It is characterized in that the stroke of the hearth moving in the furnace is smaller than the length of the profile tooth and the height of the feed is held less than the tooth height.

  13. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  14. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  15. The development of crack measurement system using the direct current potential drop method for use in the hot cell

    International Nuclear Information System (INIS)

    Kim, Do-Sik; Ahn, Sang-Bok; Lee, Key-Soon; Kim, Yong-Suk; Kwon, Sang-Chul

    1999-01-01

    The crack length measurement system using the direct current potential drop (DCPD) method was developed for the detection of crack growth initiation and subsequent crack growth. The experimental precautions and data processing procedure required for its application were also described find discussed. The system presented herein was specially built for use in fracture toughness testing of unirradiated or irradiated pressure tube materials from nuclear reactor. The application of this system for fracture toughness determination was illustrated from the test of curved compact tension specimens removed from CANDU reactor pressure tubes. The crack extension was monitored using the DCPD method. It is found that the changes of the potential drop and the changes of the crack length have a linear relationship. The final crack front was marked by heat-tinting after the test and the specimen broken open for determination of the initial and final physical crack length. The physical crack lengths, obtained by the 9-point average method described in ASTM E1737-96 on heat-tinted fracture surface, were used to calibrate the DCPD method for each test on an individual basis by matching the change in voltage to the crack extension. It is found that this system can be recommended for determination of the J-integral resistance (J-R) curve of unirradiated or irradiation materials in the hot cell, especially when testing at elevated temperature and in the environment chamber or furnace. (author)

  16. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  17. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J; Mannila, P; Laukkanen, J [Oulu Univ. (Finland)

    1997-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  18. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  19. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  20. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany, F.R.)

    1979-10-01

    Presented in two parts, this paper is intended to provide an outline of the theoretical fundamentals for the design of rotating-hearth furnaces for heating round stock and deals with the characteristic design features of such furnaces.

  1. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  2. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  3. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  4. Behavior of coke in large blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N

    1978-01-01

    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  5. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  6. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  7. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  8. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  9. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  10. Remote maintenance techniques in the furnace cell of a high level waste vitrification plant

    International Nuclear Information System (INIS)

    Selig, M.

    1983-01-01

    Remote controlled maintenance and changing techniques for the furnace of a vitrification plant for radioactive waste was developed and tested on a 1:1 model. The model was fitted out with imitation main components, remote control equipment, lead-ins and the complete tubing so that the trials could be carried out in a manner replicating as closely as possible the situation found under operating conditions. The development of remote-handled tube cable connectors, tube cable jumpers and plugs and sockets was an important aspect of the developmental programme. (orig.) [de

  11. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  12. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  13. Technological indicators of operation of the rotating-hearth furnace in conditions of discontinued production

    Directory of Open Access Journals (Sweden)

    Lazić, L.

    2008-04-01

    Full Text Available Quality heating of the steel charge to be rolled into seamless tubes in the rotating-hearth furnace requires continuous operation of the pilger mill. Interruption of the charging schedule leads to impaired charge heating process. Prolonged heating time causes a rise in the charge temperature above the limit values, and that in turn brings to a larger quantity of scale formed on the charge surface. Final result is loss of metal and overheating of the charge accompanied by increased fuel consumption and lower furnace productivity.

  14. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  15. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  16. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  17. Evaluation of the crack initiation of curved compact tension specimens of a Zr-2.5Nb pressure tube using the unloading compliance and direct current potential drop methods

    International Nuclear Information System (INIS)

    Kim, Young Suk; Jeong, Hyeon Cheol; Ahn, Sang Bok

    2005-01-01

    The Direct Current Potential Drop(DCPD) method and the Unloading Compliance(UC) method with a crack opening displacement gauge were applied simultaneously to the Zr-2.5Nb Curved Compact Tension (CCT) specimens to determine which of the two methods can precisely determine the crack initiation point and hence the crack length for evaluation of their fracture toughness. The DCPD method detected the crack initiation at a smaller load-time displacement compared to the UC method. As a verification, a direct observation of the fracture surfaces on the curved compact tension specimens was made on the CCT specimens experiencing either 0.8 to 1.0 mm load line displacement or various loads from 50% to 80% of the maximum peak load, or P max . The DCPD method is concluded to be more precise in determining the crack initiation and fracture toughness, J in Zr-2.5Nb CCT specimens than the UC method

  18. Axisymmetric Liquid Hanging Drops

    Science.gov (United States)

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  19. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  20. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  1. Dynamics of deforming drops

    NARCIS (Netherlands)

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate

  2. Refractory of Furnaces to Reduce Environmental Impact

    Science.gov (United States)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  3. Fluxless furnace brazing and its theoretical fundamentals

    International Nuclear Information System (INIS)

    Lison, R.

    1979-01-01

    In this paper the theoretical fundamental of fluxless furnace brazing are described. The necessary conditions for a wetting in the vacuum, under a inert-gas and with a reducing gas are discussed. Also other methods to reduce the oxygen partial pressure are described. Some applications of fluxless furnace brazing are outlined. (orig.) [de

  4. Refractory of Furnaces to Reduce Environmental Impact

    International Nuclear Information System (INIS)

    Hanzawa, Shigeru

    2011-01-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO 2 produced from this high energy load. To improve this situation, R and D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO 2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  5. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  6. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  7. The new Drop Tower catapult system

    Science.gov (United States)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  8. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    International Nuclear Information System (INIS)

    Andrew Seltzer

    2006-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H 2 O and CO 2 concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O 2 . Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar

  9. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  10. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  11. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  12. Heat transfer simulation in a furnace for steam reformer. Gas kaishitsu ronai no dennetsu simulation ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Taniguchi, H; Guo, K [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Katayama, T; Nagata, T [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1991-01-10

    This paper discusses the heat transfer analysis in a furnace for LPG reforming to produce gas enriched hydrogen. The three-dimensional combined radiative and convective heat transfer processes in a furnace for LPG reforming is simulated by introducing the radiosity concept into the radiative heat ray method for an accurate radiative heat transfer analysis. Together with an analysis of the chemical reaction in the reactor tubes of the furnace, the heat transfer simulation gives the three-dimensional profile of the combustion gas temperature in the furnace, the tube-surface heat-flux distribution and the composition of the reformed gas. From the results of the analysis, it was clarified that increasing the jet angle of the heating burner raises the gas temperature and the tube surface heat flux near the burner entrance, and that the flame shape is the most important factor for deciding the heat flux distribution of the tube surface because the heat transfer effect by flame radiation is much more than that by convection of the combustion gas. 18 refs., 9 figs., 2 tabs.

  13. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  14. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  15. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  16. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  17. Boiling and condensation in microfin tubes

    Science.gov (United States)

    Schlager, Lynn M.

    A general overview of microfin tubes and their applications is presented. Manufacturing processes, commercial availability, experimental heat transfer, and pressure drop data for various refrigerants (including alternative refrigerants and refrigerant-oil mixtures), physical mechanisms of enhancement, and the incorporation of microfin tubes in common heat exchanger configurations are discussed. Microfin tubes, also known by various trade names, are characterized by numerous small fins which typically spiral down the inside wall of tubes at angles ranging from 10 to 30 degrees. The number of fins ranges from 48 to 70 with typical fin heights of 0.12 to 0.30 mm (fin height generally less than 3 percent of the inside diameter of the tube). Fin shapes may vary and the inside surface area of microfin tubes is 10 to 70 percent greater than the area of equivalent smooth tubes. Heat transfer can be enhanced by up to a factor of three with microfin tubes.

  18. International blast furnace hearth and raceway symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Papers presented discussed some of the physical and chemical processes occuring in the raceway and hearths of blast furnaces. The injection of coal or fuel slurries to replace some of the coke was also covered. Fourteen papers are abstracted separately.

  19. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  20. Hopewell Furnace NHS : alternative transportation study

    Science.gov (United States)

    2009-12-31

    This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...

  1. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces

    International Nuclear Information System (INIS)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-01-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  2. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  3. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  4. Multiphase flow modelling of furnace tapholes

    OpenAIRE

    Reynolds, Quinn G.; Erwee, Markus W.

    2017-01-01

    Pyrometallurgical furnaces of many varieties make use of tapholes in order to facilitate the removal of molten process material from inside the vessel. Correct understanding and operation of the taphole is essential for optimal performance of such furnaces. The present work makes use of computational fluid dynamics models generated using the OpenFOAM® framework in order to study flow behaviour in the taphole system. Single-phase large-eddy simulation models are used to quantify the discharge ...

  5. Cold experiments on ligament formation for blast furnace slag granulation

    International Nuclear Information System (INIS)

    Liu Junxiang; Yu Qingbo; Li Peng; Du Wenya

    2012-01-01

    Rotary cup atomization for molten slag granulation is an attractive alternative to water quenching. However, the mechanism of disintegration of molten slag must be assessed. In the present study, a glycerol/water mixture was substituted for molten slag, and the mechanism of ligament formation in a rotary cup was investigated using photos taken by a high-speed camera. The effects of the angular speed and inner depth of the rotary cup on ligament disintegration was investigated. The results showed that one state of disintegration may transform into another state as the angular speed of the rotary cup increases at a given liquid flow rate. During ligament formation, the number of ligaments increased with an increase in the angular speed of the rotary cup, and a decrease in the diameter of ligament and liquid drop was observed. Moreover, the initial point of disintegration of the ligament moved to the lip of the rotary cup as the angular speed increased. An equation describing the relationship between the diameter of the liquid drop and various factors was used to predict the diameter of the liquid drop. A rotary cup with an inner depth of 30 mm was the best choice for granulation. The results of the present study will be useful for designing devices used in molten slag granulation. - Highlights: ►The results can be used in the granulation of molten blast furnace slag. ► The three different states of disintegration occur as the angular speed of rotary cup increases. ► The mechanism of ligament disintegration is analyzed. ► Eq. can be used to predict the diameter of liquid drop. ► A rotary cup with an inner depth of 30 mm is optimal for granulation.

  6. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  7. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  8. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  9. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  10. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  11. Vlasov simulations of parallel potential drops

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2013-07-01

    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  12. Two secondary drops

    Indian Academy of Sciences (India)

    Figure shows formation of two secondary drops of unequal size and their merger. The process is same as the earlier process until t= 0.039 Tc with necking occurring at two places, one at the bottom of the column and the other at the middle. The necking at the middle of the liquid column is due to Raleigh instability.

  13. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... the parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each...... of the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then free...

  14. Modern State and Efficiency Analysis of Heat Recovery in Fuel Furnaces Using High Temperature Recuperators. Part 2

    Directory of Open Access Journals (Sweden)

    B. S. Soroka

    2013-01-01

    Full Text Available The paper analyzes various factors that affect upon heat transfer in high temperature recuperators, namely: heat transfer enhancement, heat exchange surface increase and rise of temperature head between primary and secondary heat transfer fluids. Comparison of experimental data with the results of mathematical and computational fluid dynamics (CFD modeling has been performed in the paper. The paper considers some new designs of high temperature heat recovery plants: tube recuperator equipped with internal inserts – secondary emitters inside tubes for metallurgical furnaces and high-efficient two-way radiative recuperators for machinery engineering furnaces.  Advantages of new recuperators in comparison with existing analogues have been estimated in the paper. These advantages are:  provision of additional fuel saving due to increase of preheating temperature of the combustion air and improvement of design stability by decrease of tube wall temperature.

  15. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  16. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    Science.gov (United States)

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  17. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace

    International Nuclear Information System (INIS)

    Soares, R.A.L.; Castro, J.R. de S.

    2012-01-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  18. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  19. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  20. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  1. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  2. A method to determine the dampening system of control rod drop mechanism for PWR reactors

    International Nuclear Information System (INIS)

    Trindade, C.E.; Mattos, J.R.L. de; Perrotta, J.A.

    1988-08-01

    A method to determine the Control Assembly damping drop system (dashpot/guide tube) was developed. It's presented a theoretical model, an experimental device and the procedures to determine this system, which is used in PWR reactors. (author) [pt

  3. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  4. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  5. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-09-01

    Part I of this paper is intended to present a review of the theory of heating round stock of a length considerably exceeding the diameter. It is permissible to neglect heating from the ends of the cylinders. With short and thick ingots as used in pilgrim mills, for instance, such simplification is not possible. The method for calculating the waste gas temperature can also be used for the remaining furnace sections provided certain conditions are allowed for and computational procedures observed. Part II of the paper will deal with this and with the major design features of rotating-hearth furnaces.

  6. Process and furnace for working bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1921-06-28

    A process for working up bitumen-containing materials, such as coal, peat and shale is characterized in that the material in thin-height batches with constant shaking by means of forward and backward movement of an elongated horizontal hearth heated underneath on which the material freely lies and on which it is moved in the furnace, through a single narrow furnace space with zone-wise heating of the hearth. A drying zone, a spent-material removal zone, and a carbonization zone are provided. Under separate hoods the gases and vapors are removed from these zones.

  7. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  8. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  9. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  10. Research achievement report for fiscal 1998 on the development of high-performance industrial furnaces. Research and development of high-performance industrial furnaces and the like (2); 1998 nendo koseino kogyoro no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu (2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Volume 2 named above contains part of research achievement reports and individual research achievement reports. The aluminum melting furnace working group research achievement report covers aluminum melting furnace operating patterns, concentrated impinging flame mode and dispersed impinging flame mode, and honeycomb and ball structures in heat storing bodies. The tubular heater working group report mentions the application of this facility to oil heating furnaces, studies and investigations for the embodiment of real systems using the tubular heater, and tests conducted in a furnace with plural heating tube lines. The individual research achievement reports elaborate on the development of technologies of heat transfer optimization under unsteady conditions in the steel material heating process, research and development of high-efficiency heat transfer technologies, development of heating furnace geometry optimization technologies, research and development of a high-performance controlled atmosphere heat treatment furnace, development of high-efficiency heat transfer technologies in high-temperature jet flame heating, development of heat uniformity improvement technologies for example for the steel material heating process, construction of optimum combustion control technologies for the regenerative burner furnace, research concerning laser-aided measurement in industrial furnaces, etc. (NEDO)

  11. Toward an early detection of PWR control rod anomalous dropping

    International Nuclear Information System (INIS)

    Blazquez, J.; Vallejo, I.

    1998-01-01

    Some anomalous PWR control rods dropping occurred in the past. It is assumed to be caused by a geometrical deformation of its guide tube, which might be related with neutron fluence and its sharp changes. Now at days, this problem is an open field of research, oriented to the understanding and prevention of the event. Work here is focused toward early detection. A differential equation modelling control rod free fall movement is found. There result three acceleration terms: gravity; friction with fluid; and friction with its guide tube. From recorded Plant measurements, both friction coefficients are estimated. The one from guide tube experiences a large variation in case of anomalous dropping; so relationship with neutron fluence is proposed for the prevention purpose. (Author)

  12. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  13. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Science.gov (United States)

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  14. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  15. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zeini Jahromi, Elham; Bidari, Araz; Assadi, Yaghoub; Milani Hosseini, Mohammad Reza; Jamali, Mohammad Reza

    2007-01-01

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L -1 with detection limit of 0.6 ng L -1 . The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L -1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L -1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with

  16. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  17. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  18. Thermal model of the whole element furnace

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1998-01-01

    A detailed thermal analysis was performed to calculate temperatures in the whole element test furnace that is used to conduct drying studies of N-Reactor fuel. The purpose of this analysis was to establish the thermal characteristics of the test system and to provide a basis for post-test analysis

  19. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  20. Blast furnace hearth lining: post mortem analysis

    International Nuclear Information System (INIS)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando

    2017-01-01

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10"6 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  1. Aerosol and particle transport in biomass furnaces

    NARCIS (Netherlands)

    Kemenade, van H.P.; Obernberger, G.

    2005-01-01

    The particulate emissions of solid fuel fired furnaces typically exhibit a bimodal distribution: a small peak in the range of 0.1 mm and a larger one above 10 mm. The particles with sizes above 10 mm are formed by a mechanical process like disintegration of the fuel after combustion, or erosion,

  2. Furnace for distillation of shales, etc

    Energy Technology Data Exchange (ETDEWEB)

    Germain-Clergault, M

    1863-07-09

    Practical experience and continuous operation of 55 retorts for 5 years of the system of vertical retorts patented in 1857 (French Patent 18,422) has shown the advantages resulting from this furnace which gives over a mean yield of 5% of Auton shale, which is /sup 1///sub 2/% more than the old systems with a fuel economy varying from 15 to 20%.

  3. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  4. Dropping out of school

    Directory of Open Access Journals (Sweden)

    M. Teneva

    2017-09-01

    Full Text Available The modern technological society needs educated people who, through their high professionalism, are called upon to create its progress. In this aspect, a serious problem stands out – the dropout from school of a large number of children, adolescents and young people. The object of the research is the premature interruption of training for a large number of Bulgarian students. The subject of the study is the causes that provoke the students’ dropping out of school. The aim is to differentiate the negative factors leading to dropping out of school, and to identify the motivating factors that encourage the individual to return to the educational environment. In order to realize the so set target, a specially designed test-questionnaire has been used. The survey was conducted among students attending evening courses who have left their education for various reasons and are currently back to the school institution. The contingent of the study includes 120 students from the evening schools. The results indicate that the reasons which prompted the students to leave school early differentiate into four groups: family, social, economic, educational, personal. The motivation to return to school has been dictated in the highest degree by the need for realization of the person on the labor market, followed by the possibility for full social functioning.

  5. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  6. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  7. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  8. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  9. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  10. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  11. Techniques for measurement of heat flux in furnace waterwalls of boilers and prediction of heat flux – A review

    International Nuclear Information System (INIS)

    Sankar, G.; Chandrasekhara Rao, A.; Seshadri, P.S.; Balasubramanian, K.R.

    2016-01-01

    Highlights: • Heat flux measurement techniques applicable to boiler water wall are elaborated. • Applications involving heat flux measurement in boiler water wall are discussed. • Appropriate technique for usage in high ash Indian coal fired boilers is required. • Usage of chordal thermocouple is suggested for large scale heat flux measurements. - Abstract: Computation of metal temperatures in a furnace waterwall of a boiler is necessary for the proper selection of tube material and thickness. An adequate knowledge of the heat flux distribution in the furnace walls is a prerequisite for the computation of metal temperatures. Hence, the measurement of heat flux in a boiler waterwall is necessary to arrive at an optimum furnace design, especially for high ash Indian coal fired boilers. Also, a thoroughly validated furnace model will result in a considerable reduction of the quantum of experimentation to be carried out. In view of the above mentioned scenario, this paper reviews the research work carried out by various researchers by experimentation and numerical simulation in the below mentioned areas: (i) furnace modeling and heat flux prediction, (ii) heat flux measurement techniques and (iii) applications of heat flux measurements.

  12. Silva. EDF two-phase 1D annular model of a CFB boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.

    1997-01-01

    SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.

  13. Composition and microstructure of a furnace ash deposit from a coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Fessler, R R

    1980-07-01

    An exploratory study of the structure and composition of furnace-ash deposits was carried out using optical metallography, electron microprobe analysis, scanning electron microscopy, and energy-dispersive X-ray analysis. The results of these analyses were supplemented by studies of particulate melting temperature using hot-stage microscopy to measure melting temperature, and energy-dispersive X-ray analyses to measure composition of melted particles. It was found that the general structure of the ash deposit was a matrix of glassy, spherical particles having a wide range of composition in which unfused particles containing iron oxide and calcium oxide were dispersed. At the imprint of the tube surface a considerable concentration of calcium, sulphur and iron was found. Near the fused outer surface of the deposit, the glassy materials had melted into a porous, glassy slag containing spherical globules of iron oxide combined with other materials. There were no systematic compositional gradients from the tube surface to the fused outer layer except for the sulfur layer found only at the tube surface. However, there were significant differences in composition from particle to particle and these differences were similar to those found in the coal mineral matter as isolated by low-temperature ashing. Single particles of low-temperature ash were found having low fusion temperatures, in the range of fusion temperatures for particles in furnance has. Thus, the glassy spheres found in furnace deposits could originate from single coal particles, without the need of interactions among coal particles or ash particles.

  14. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  15. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  16. First drop dissimilarity in drop-on-demand inkjet devices

    International Nuclear Information System (INIS)

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-01

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  17. Heat transfer intensification within tube recuperator by inserting secondary emitters inside air channels

    International Nuclear Information System (INIS)

    Sandor, P.; Soroka, B.; Kudryavtsev, V.; Zgurskyy, V.

    2009-01-01

    The research program was stipulated by reduction the service life of the tube recuperators of reheating furnaces at DUNAFERR metallurgical works in Dunaujvaros (Hungary) while replacement the natural gas by coke - oven gas as a furnace fuel took place and air preheating temperature was increased. The tests procedure consists in comparison of temperature and pressure distributions by air flows preheating under air moving inside the tube loops. Advantages of new recuperator design compared to ordinary one have been proven by validation of concept for adequacy to the testing results. The first tests have demonstrated enhancement of local specific and total heat fluxes transferred from flue gases to air flow within the MD tube loops in comparison with those for BD loops by 25 to 45% - dependence on temperature level within the heating (furnace) chamber and on preheated air flow rate. (author)

  18. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  19. Furnaces for the distillation of coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, F A; Deacon, M; Brady, N P.W.

    1918-08-14

    A tunnel or other furnace for the distillation of coal of the kind provided with inverted pockets in its roof to collect diverse distillates in the manner described, characterized by one or more of the pockets being provided with a sloping roof whose gradient from the higher end downwards is in the direction of the forward travel of the fuel beneath it for the purposes described.

  20. Husk energy for boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Deven, M.

    1985-10-01

    In view of the technical feasibility and economic viability, industries located in rice, coconut, and cotton growing areas, can easily switch over from oil/coal fired furnace/boilers to husk fired ones and thereby effect fuel economy. The banks and financial institutions will readily agree to provide finance as per directions of the governments and in some cases they also offer subsidy for development and utilization of energy saving devices.

  1. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    Science.gov (United States)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  2. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  3. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  4. Smelting of high-quality boiler steel in large-load arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kablukovskij, A F; Breus, V M; Tyurin, E I; Khristich, V D; Dumchev, Ya P [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-02-01

    High-grade steel can be obtained in large-capacity furnaces if the smelting technology used takes account of the size of the aggregates, the course of the metal fusion process, interaction with slag, furnace atmosphere, reducing agents, and other process characteristics. 12Kh1MF boiler steel smelted in a 100-ton electric arc furnace by an oxidizing process with oxygen bath blow and cast by the siphon method into 6.5-ton ingots using a slag-forming mixture (240 mm diameter billets and 219 to 245 mm diameter tubes) is satisfactory with regard to macro and microstructure, oxygen and nonmetallic oxide inclusion content, and mechanical properties. The stress rupture strength of 10/sup 5/ h at 570/sup 0/C is similar to that of open-hearth steel. Sulfides larger than a 3.5 spheroid have been detected in it. The nitrogen content of the electric steel is 0.0090 to 0.0120%, which is somewhat greater than usual in open-hearth metal. Of the oxygen inclusions in the steel, spinel-alumina predominates. Large inclusions were represented mainly by brittle silicates which appeared to be of exogenous origin.

  5. A comparison of tape-tying versus a tube-holding device for securing endotracheal tubes in adults.

    Science.gov (United States)

    Murdoch, E; Holdgate, A

    2007-10-01

    During the transfer of intubated patients, endotracheal tube security is paramount. This study aims to compare two methods of securing an endotracheal tube in adults: tying with a cloth tape versus the Thomas Endotracheal Tube Holder (Laerdal). A manikin-based study was performed using paramedics and critical care doctors (consultants and senior trainees) as participants. Each participant was asked to secure an endotracheal tube that had been placed within the trachea of a manikin a total of six times, the first three times using tied cloth tape and the last three times using a Thomas Endotracheal Tube Holder. Following each 'fixation' and after the participant had left the room, the security of the tube was tested by applying a fixed force laterally and to the right by dropping a 1.25 kg weight a distance of 50 cm. The amount of movement of the tube with respect to the teeth was measured and recorded in millimetres. Two-hundred-and-seventy tube fixations (135 tied vs. 135 tube holder) were performed by 45 participants. The degree of tube movement was significantly higher when the tube was secured with a tie compared with when the tube holder was used (median movement 22 mm vs. 4 mm, P tube holder device minimised tube movement in a manikin model when compared with conventional tape tying. The use of this device when transporting intubated patients may reduce the risk of tube displacement though further clinical studies are warranted.

  6. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  7. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  8. Constructal design of a blast furnace iron-making process based on multi-objective optimization

    International Nuclear Information System (INIS)

    Liu, Xiong; Chen, Lingen; Feng, Huijun; Qin, Xiaoyong; Sun, Fengrui

    2016-01-01

    For the fixed total raw material cost and based on constructal theory and finite time thermodynamics, a BFIM (blast furnace iron-making) process is optimized by taking a complex function as optimization objective. The complex function is integrated with HM (hot metal) yield and useful energy of the BF (blast furnace). The optimal cost distribution of raw materials (namely “generalized optimal construct”) is obtained. The effects of some parameters, such as oxygen enrichment, blast temperature and pulverized coal dosage, on the optimization results are analyzed. The results show that the HM yield, useful energy and complex function are, respectively, increased by 3.13%, 2.66% and 2.90% after generalized constructal optimization. The utilization efficiencies of the BFG (blast furnace gas) and slag are 41.3% and 57.1%, respectively, which means that the utilization potentials of the BFG and slag can be further exploited. Increasing pulverized coal dosage and decreasing the agglomerate ratio can increase the complex function. The performance the BFIM process can be improved by adjusting the oxygen enrichment, blast temperature, blast dosage, pressure ratio of the Brayton cycle's air compressor and relative pressure drop of the air compressor inlet to their optimal values, respectively, which are new findings of this paper. - Highlights: • Constructal optimization of a blast furnace iron-making process is performed. • Finite time thermodynamic model of open Brayton cycle is adopted. • Weighting function is taken as optimization objective. • Optimal cost distribution of the raw materials is obtained.

  9. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  10. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  11. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  12. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  13. Fouling of heat exchanger surfaces by dust particles from flue gases of glass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mutsaers, P.L.M.; Beerkens, R.G.C.; Waal, H. de (Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Delft. Inst. of Applied Physics)

    1989-08-01

    Fouling by dust particles generally leads to a reduction of the heat transfer and causes corrosion of secondary heat exchangers. A deposition model, including thermodynamic equilibrium calculations, has been derived and applied to describe the deposition (i.e. fouling) process and the nature of the deposition products in a secondary heat exchanger. The deposition model has been verified by means of laboratory experiments, for the case of flue gases from soda-lime glass furnaces. Corrosion of iron-containing metallic materials, caused by the deposition products, has been briefly investigated with the same equipment. There is a close similarity between the experimental results and model calculations. The largest deposition rates from flue gases on cylindrical tubes in cross-flow configuration, are predicted and measured at the upstream stagnation point. The lowest deposition rates are determined at downstream stagnation point locations. At tube surface temperatures of approximately 520 to 550 K, the fouling rate on the tube reaches a maximum. In this temperature region NaHSO{sub 4} is the most important deposition product. This component is mainly formed at temperatures from 470 up to 540 K. The compound Na{sub 3}H(SO{sub 4}){sub 2} seems to be stable up to 570 K, for even higher temperatures Na{sub 2}SO{sub 4} has been found. These deposition products react with iron, SO{sub 3}, oxygen and water vapour forming the complex corrosion product Na{sub 3}Fe(SO{sub 4}){sub 3}. NaHSO{sub 4}, which is formed at tube surface temperatures below 540 K, causes more severe corrosion of iron-containing materials than Na{sub 2}SO{sub 4}. Maintaining temperatures of the heat exchanger surfaces above 550 to 600 K reduces the fouling tendency and corrosion in case of flue gases from oil-fired soda-lime glass furnaces. (orig.).

  14. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  15. Potential drop crack measurement systems for CANDU components

    Energy Technology Data Exchange (ETDEWEB)

    Sahney, R [Carleton Univ., Ottawa, ON (Canada)

    1994-12-31

    A project to develop an automated crack measurement system for CANDU pressure tube burst testing is currently underway. The system will utilize either Direct Current Potential Drop (DCPD) or Alternating Current Potential Drop (ACPD) techniques for crack measurement. The preliminary stage of the project involves testing and comparison of both ACPD and DCPD methods on a Zr - 2.5% Nb alloy plate with saw cuts (used to simulate cracks). Preliminary results show that both ACPD and DCPD techniques are capable of detecting cracks; further testing is in progress to determine the ability of each of the two systems to make accurate crack depth measurements. This paper will describe the two potential drop techniques and will present test results from the experimental program. (author). 10 refs., 7 figs.

  16. Predictive control of thermal state of blast furnace

    Science.gov (United States)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  17. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  18. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  19. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    Martocci, A.P.; Mihalow, F.A.

    1985-01-01

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  20. Continuous denitration device using a microwave furnace

    International Nuclear Information System (INIS)

    Sato, Hajime

    1982-04-01

    A continuous denitration device is described that enables to obtain dried U or Pu dioxide or a mixture of these from a solution of uranyl or plutonium nitrate or a mixed solution of these by irradiation with microwaves. This device allows uranyl or plutonium nitrate to crystallize and the resulting crystals to be separated from the solution. A belt conveyer carries the crystals to a microwave heating furnace for denitration. Approximately 2.4 kg dried cake of U dioxide per hour is obtained [fr

  1. A simple method for preparing superconducting FeSe pellets without sealing in evacuated silica tubes

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2017-01-01

    Superconducting tetragonal FeSe pellets were made by reacting mixtures of elemental Fe and Se powders in argon atmosphere without sealing in evacuated silica tubes. A simple tube furnace has been used. Although the tube's material consisted of quartz, an alumina tube could be used as well. X......-ray pure samples with onset of superconducting transition between 8.0K and 8.5K were obtained under specific heat treatment conditions. Residual, unreacted Fe particles could be virtually eliminated through prolonged annealing. A key factor for the synthesis of good samples consists in using processing...

  2. 45-FOOT HIGH DROP TOWER

    Data.gov (United States)

    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  3. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  4. Energy Efficiency Model for Induction Furnace

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  5. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  6. Fire-tube boiler optimization criteria and efficiency indicators rational values defining

    Science.gov (United States)

    Batrakov, P. A.; Mikhailov, A. G.; Ignatov, V. Yu

    2018-01-01

    Technical and economic calculations problems solving with the aim of identifying the opportunity to recommend the project for industrial implementation are represented in the paper. One of the main determining factors impacting boiler energy efficiency is the exhaust gases temperature, as well as the furnace volume thermal stress. Fire-tube boilers with different types of furnaces are considered in the study. The fullest analysis of the boiler performance thermal and technical indicators for the following engineering problem: Q=idem, M=idem and evaluation according to η, B is presented. The furnace with the finned ellipse profile application results in the fuel consumption decrease due to a more efficient heat exchange surface of the furnace compared to other examined ones.

  7. Tube vibration in industrial size test heat exchanger

    International Nuclear Information System (INIS)

    Halle, H.; Wambsganss, M.W.

    1980-03-01

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  8. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  9. Liquid flow in the hearth of the blast furnace

    International Nuclear Information System (INIS)

    Gauje, P.; Nicolle, R.; Steiler, J.M.; Venturini, M.J.; Libralesso, J.M.

    1992-01-01

    The hearth of a blast furnace is poorly known. Our approach to characterize the hearth involves classical methods of chemical engineering, assessing the flow conditions by means of radioactive tracer techniques. The most important feature of this study is to combine measurements on industrial blast furnaces, experiments on a small scale model and flow model. calculations. 8 refs., 16 figs

  10. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    As a prelude to necessary industrialization, foundries are springing up in various parts of Nigeria and most of these foundries rely on oil fired furnaces in their operation. This study is aimed at developing an oil fired crucible furnace from locally sourced materials for foundries in Nigeria. In our design, a new system of fuel ...

  11. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  12. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  13. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  14. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  15. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  16. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  17. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  18. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  19. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating

  20. Modeling, Prediction, and Control of Heating Temperature for Tube Billet

    Directory of Open Access Journals (Sweden)

    Yachun Mao

    2015-01-01

    Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.

  1. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  2. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  3. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  4. Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement

    International Nuclear Information System (INIS)

    Bayat, Hamidreza; Lavasani, Arash Mirabdolah; Maarefdoost, Taher

    2014-01-01

    Highlights: • Thermal–hydraulic performance of a non-circular tube bundle has been investigated experimentally. • Tubes were mounted in staggered arrangement with two longitudinal pitch ratios 1.5 and 2. • Drag coefficient and Nusselt number of tubes in second row was measured. • Friction factor of this tube bundle is lower than circular tube bundle. • Thermal–hydraulic performance of this tube bundle is greater than circular tube bundle. - Abstract: Flow and heat transfer from cam-shaped tube bank in staggered arrangement is studied experimentally. Tubes were located in test section of an open loop wind tunnel with two longitudinal pitch ratios 1.5 and 2. Reynolds number varies in range of 27,000 ⩽ Re D ⩽ 42,500 and tubes surface temperature is between 78 and 85 °C. Results show that both drag coefficient and Nusselt number depends on position of tube in tube bank and Reynolds number. Tubes in the first column have maximum value of drag coefficient, while its Nusselt number is minimum compared to other tubes in tube bank. Moreover, pressure drop from this tube bank is about 92–93% lower than circular tube bank and as a result thermal–hydraulic performance of this tube bank is about 6 times greater than circular tube bank

  5. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  6. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  7. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  8. Thermocapillary reorientation of Janus drops

    Science.gov (United States)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  9. Recycling of electric arc furnace dust

    International Nuclear Information System (INIS)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2010-01-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  10. Pressure drop in two-phase He I natural circulation loop at low vapour quality

    International Nuclear Information System (INIS)

    Baudouy, B.

    2003-01-01

    Steady state pressure drop in a two-phase He I natural circulation loop has been measured at atmospheric pressure. Results are obtained up to 0.2 exit vapor quality for a 14-mm diameter copper tube heated over a length of 1.2 m. Pressure drop assessment, done with the momentum balance equation including subcooling, reveals that the homogeneous model and Friedel's friction multiplier associated with Huq and Loth's void fraction correlations predict data within 15%. (author)

  11. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  12. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  13. Burner for a wood burning furnace

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, H

    1981-12-10

    The burner according to the invention consists of a horizontal tube, whose front wall is penetrated by an intake pipe, which is surrounded by a pipe duct and several divided shells, which are arranged below the pipe duct. The front wall is also provided with air openings. The intake pipe is provided with a spiral and moves chopped wood into the burner.

  14. The Automation Control System Design of Walking Beam Heating Furnace

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distribution system picture of walking beam heating furnace were designed. Charge machine movement process was elaborated. Walking beam movement process was elaborated. Extractor movement process was elaborated. The hydraulic station of walking mechanism was elaborated. Relative control circuit diagram was designed. The control function of parallel shift motor, uplifted and degressive motor was elaborated. The control circuit diagram of parallel shift motor of charge machine and extractor of first heating furnace was designed. The control circuit diagram of uplifted and degressive motor of charge machine and extractor of first heating furnace was designed. The realization method of steel blank length test function was elaborated. The realization method of tracking and sequence control function of heating furnace field roller were elaborated. The design provides important reference base for enhancing walking beam heating furnace control level.

  15. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  16. Pressure drop and friction factor correlations of supercritical flow

    International Nuclear Information System (INIS)

    Fang Xiande; Xu Yu; Su Xianghui; Shi Rongrong

    2012-01-01

    Highlights: ► Survey and evaluation of friction factor models for supercritical flow. ► Survey of experimental study of supercritical flow. ► New correlation of friction factor for supercritical flow. - Abstract: The determination of the in-tube friction pressure drop under supercritical conditions is important to the design, analysis and simulation of transcritical cycles of air conditioning and heat pump systems, nuclear reactor cooling systems and some other systems. A number of correlations for supercritical friction factors have been proposed. Their accuracy and applicability should be examined. This paper provides a comprehensive survey of experimental investigations into the pressure drop of supercritical flow in the past decade and a comparative study of supercritical friction factor correlations. Our analysis shows that none of the existing correlations is completely satisfactory, that there are contradictions between the existing experimental results and thus more elaborate experiments are needed, and that the tube roughness should be considered. A new friction factor correlation for supercritical tube flow is proposed based on 390 experimental data from the available literature, including 263 data of supercritical R410A cooling, 45 data of supercritical R404A cooling, 64 data of supercritical carbon dioxide (CO 2 ) cooling and 18 data of supercritical R22 heating. Compared with the best existing model, the new correlation increases the accuracy by more than 10%.

  17. Thermostatic tissue platform for intravital microscopy: 'the hanging drop' model.

    Science.gov (United States)

    Pavlovic, Dragan; Frieling, Helge; Lauer, Kai-Stephan; Bac, Vo Hoai; Richter, Joern; Wendt, Michael; Lehmann, Christian; Usichenko, Taras; Meissner, Konrad; Gruendling, Matthias

    2006-11-01

    Intravital microscopy imposes the particular problem of the combined control of the body temperature of the animal and the local temperature of the observed organ or tissues. We constructed and tested, in the rat ileum microcirculation preparation, a new organ-support platform. The platform consisted of an organ bath filled with physiological solution, and contained a suction tube, a superfusion tube, an intestine-support hand that was attached to a micromanipulator and a thermometer probe. To cover the intestine we used a cover glass plate with a plastic ring glued on its upper surface. After a routine procedure (anaesthesia, monitoring and surgery), the intestine segment (2-3 cm long) was gently exteriorized and placed on the 'hand' of the organ support. A small part of the intestine formed a small 'island' in the bath that was filled with physiological salt solution. The cover glass was secured in place. The physiological salt solution from the superfusion tube, which was pointed to the lower surface of the cover glass, formed a 'hanging drop'. The objective of the microscope was then immersed into distilled water that was formed by the cover glass plastic ring. The 'hanging drop' technique prevented any tissue quenching, ensured undisturbed microcirculation, provided for stable temperature and humidity, and permitted a clear visual field.

  18. A study of burning processes of fossil fuels in straitened conditions of furnaces in low capacity boilers by an example of natural gas

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Khokhlov, D. A.; Zaichenko, M. N.

    2018-03-01

    The aim of this work is to research operations of modern combined low-emission swirl burner with a capacity of 2.2 MW for fire-tube boiler type KV-GM-2.0, to ensure the effective burning of natural gas, crude oil and diesel fuel. For this purpose, a computer model of the burner and furnace chamber has been developed. The paper presents the results of numerical investigations of the burner operation, using the example of natural gas in a working load range from 40 to 100%. The basic features of processes of fuel burning in the cramped conditions of the flame tube have been identified to fundamentally differ from similar processes in the furnaces of steam boilers. The influence of the design of burners and their operating modes on incomplete combustion of fuel and the formation of nitrogen oxides has been determined.

  19. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  20. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  1. Model of Draining of the Blast Furnace Hearth with an Impermeable Zone

    Science.gov (United States)

    Saxén, Henrik

    2015-02-01

    Due to demands of lower costs and higher productivity in the steel industry, the volume of operating blast furnaces has grown during the last decades. As the height is limited by the allowable pressure drop, the hearth diameter has grown considerably and, along with this, also draining-related problems. In this paper a mathematical model is developed for simulating the drainage in the case where an impermeable region exists in the blast furnace hearth. The model describes the quasi-stationary drainage process of a hearth with two operating tapholes, where the communication between the two pools of molten slag and iron can be controlled by parameterized expressions. The model also considers the case where the buoyancy of the liquids is sufficient for lifting the coke bed. The implications of different size of the liquid pools, communication between the pools, bed porosity, etc. are studied by simulation, and conclusions concerning their effect on the drainage behavior and evolution of the liquid levels in the hearth are drawn. The simulated liquid levels are finally demonstrated to give rise to a pressure profile acting on the hearth which agrees qualitatively with signals from strain gauges mounted in the hearth wall of an industrial ironmaking process.

  2. Determination of trace amounts of cadmium in zirconium and its alloys by graphite furnace AAS

    International Nuclear Information System (INIS)

    Takashima, Kyoichiro; Toida, Yukio

    1994-01-01

    Trace amount of cadmium in zirconium and its alloys was determined by graphite furnace atomic absorption spectrometry (GF-AAS) after ion exchange separation. A 2g chip sample was decomposed with 20ml of hydrofluoric acid (1+9) and a few drops of nitric acid. A trace amount of cadmium was separated from zirconium by strongly acidic cation-exchange resin (MCI GEL CK 08P) using 50ml of hydrochloric acid as an eluent. The solution was gently evaporated to dryness on an electric hot plate heater and under an infrared lamp. The residue was dissolved in 1ml of nitric acid (1+14) and diluted to 10ml in a volumetric glass flask with distilled water. Ten microliters of this solution was injected into a graphite furnace and then atomized at 2200degC for 4s in argon at a flow rate of 3.0l/min. Acids used in the analytical procedure were purified by azeotropic distillation and cation-exchange resin. The limit of determination (3σ BK ) for cadmium was 0.5ngCd/g and the relative standard deviation (RSD) at 1ngCd/g level was less than 20% for the GF-AAS. The accuracy of this technique was confirmed by NIST SRM 1643b (trace elements in water). (author)

  3. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, Hanneke

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also

  4. Pressure drop in contraction flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...

  5. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  6. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  7. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  8. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  9. Evaluation of Grade 120 Granulated Ground blast Furnace Slag.

    Science.gov (United States)

    1999-06-01

    This study evaluates Grade 120 Granulated Ground Blast Furnace Slag (GGBFS) and its effect on the properties of hydraulic cement concretes used in structural and pavement construction. Several mix designs, structural and pavement, were used for this ...

  10. Elements of the electric arc furnace's environmental management

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  11. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  12. CMOS Thermal Ox and Diffusion Furnace: Tystar Tytan 2000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Names: CMOS Wet Ox, CMOS Dry Ox, Boron Doping (P-type), Phos. Doping (N-Type)This four-stack furnace bank is used for the thermal growth of silicon...

  13. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    Science.gov (United States)

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  14. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  15. Modular Distributed Concentrator for Solar Furnace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to develop a lightweight approach to achieving the high concentrations of solar energy needed for a solar furnace achieving temperatures of...

  16. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  17. Furnace coking simulations in a laboratory apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, Paul [Champion Technologies Inc (United States)], email: paul.eaton@champ-tech.com; Newman, Bruce [ConocoPhillips (United States)], email: Bruce.A.Newman@conocophillips.com; Gray, Murray; Kubis, Alan; Derakhshesh, Marzie; Holt, Chris; Mitlin, David [Department of Chemical and Materials Engineering, University of Alberta (Canada)

    2010-07-01

    This work deals with simulating fouling behavior of crude oil in a delayed coker furnace. Fouling on different heated metal probes was investigated; these were mainly stainless steel, iron, or mild steel probes. Heat transfer theory was used to calculate the system fouling factor, and this parameter was recorded as a function of time to model in-situ fouling intensity. Physical and chemical properties such as buildup thickness and composition were investigated using different measuring techniques, most important of which were extractive-iron-nickel ion chromatography, optical and scanning electron microscopy (SEM), and electron dispersion spectroscopy (EDS). Changes in surface layers of the metallic probe during coke formation along with microstructures of the coke were examined using a focused-ion beam (FIB). It was shown that the iron probe exhibited more buildups on its surface than stainless steels, and fouling of mild steel came in between. As for oils with different concentrations, fouling of diluted atmospheric tower bottom (ATB) was greater than that of undiluted ATP.

  18. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G.; Decours, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l

  19. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G; Decours, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l'avantage de supprimer les cavites

  20. The Automation Control System Design of Walking Beam Heating Furnace

    OpenAIRE

    Hong-Yu LIU; Jun-Qing LIU; Jun-Jie XI

    2014-01-01

    Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distributio...

  1. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  2. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  3. Energy transformation and flow topology in an elbow draft tube

    Directory of Open Access Journals (Sweden)

    Štefan D.

    2012-06-01

    Full Text Available Paper presents a computational study of energy transformation in two geometrical configurations of Kaplan turbine elbow draft tube. Pressure recovery, hydraulic efficiency and loss coefficient are evaluated for a series of flow rates and swirl numbers corresponding to operating regimes of the turbine. These integral characteristics are then correlated with local flow field properties identified by extraction of topological features. Main focus is to find the reasons for hydraulic efficiency drop of the elbow draft tube.

  4. Hydraulic design considerations for a multi-tube sodium economizer

    International Nuclear Information System (INIS)

    Hassberger, J.A.; McConnell, P.M.; Olson, W.H.

    1975-01-01

    Operating experience gained from tests shows that flow distribution effects can severely affect the thermal performance of high effectiveness, low pressure drop sodium heat exchangers. It has been shown that design efforts for such devices must include proper consideration of potential causes of flow maldistribution within the tube bundle. Furthermore, it has been demonstrated that fairly simple design features can be capable of eliminating detrimental flow fields in the tube bundle

  5. Manufacture of seamless stainless steel tubings and related equipment

    International Nuclear Information System (INIS)

    Wali, D.K.; Chaudhary, S.

    1997-01-01

    Production of seamless tubes for special application is one of the important production activities of Nuclear Fuel Complex (NFC), Hyderabad. NFC had set up facility of Hot Extrusion Press and Cold Pilger Mills with related finishing and inspection equipment for manufacturing quality seamless tubes of zirconium alloy for application in nuclear power reactors in early 70''s. Being aware that the demand for seamless tube in a developing economy gradually increases till it reaches around 30 to 40% of the total requirement of tubes and pipes and also of the fact that manufacturing technology developed for production of zircaloy seamless tubes for nuclear application, can easily be harnessed and spinned off for production of seamless tubes in materials generally difficult to hot roll (in other than extrusion process), NFC augmented its seamless tube manufacturing facility by adding, a vertical piercing press, series of induction furnaces and large size pilger mills to meet existing market demand of power sector, engineering, fertilisers and petro chemical industries and any other specialised applications

  6. Similarity of Ferrosilicon Submerged Arc Furnaces With Different Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2017-12-01

    Full Text Available In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c3 (Westly was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J1 (Jaccard was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

  7. From nuclei to liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca-Rocha, A.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Carjan, N. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires

    1995-12-31

    Collisions of symmetric mercury-drop pairs have been studied experimentally as a function of impact parameter, in a relative-velocity range going from a coalescence-dominated region to interactions yielding several residues. The experiments are compared with predictions of a dynamical model used in nuclear physics. The time evolution of the shapes is well reproduced by the simulation. (authors). 8 refs., 3 figs.

  8. The dynamics of Leidenfrost drops

    OpenAIRE

    van Limbeek, Michiel Antonius Jacobus

    2017-01-01

    Temperature control is omnipresent in today’s life: from keeping your fridge cold, maintaining a room at a pleasant temperature or preventing your computer from overheating. Efficient ways of heat transfer are often based on phase change, making use of the high latent heat of evaporation. In the context of spray cooling, liquid drops are impacting a hot plate to ensure a rapid cooling. At some temperature however, no contact occurs between the liquid and the plate, and the heat transfer rate ...

  9. Device for making liquid drops

    International Nuclear Information System (INIS)

    Yamada, Masao; Fukuda, Fumito; Nishikawa, Masana; Ishii, Takeshi.

    1976-01-01

    Object: To provide a device for producing liquid drops in the form of liquefied gases indispensable to make deuterium and tritium ice pellets used as a fusion fuel in a tokamak type fusion reactor. Structure: First, pressure P 1 at the upper surface of liquefied gas in a container and outlet pressure P 2 of a nozzle disposed at the lower part of the container are adjusted into the state of P 1 >= P 2 , and it is preset so that even under such conditions, the liquefied gas from the nozzle is not naturally flown out. Next, a vibration plate disposed within the container is rapidly downwardly advanced toward the nozzle through a predetermined distance. As a result, pressure of the liquefied gas within a depression under the vibration plate rises instantaneously or in a pulse fashion to dissatisfy the aforesaid set condition whereby the liquefied gas may be flown out from the nozzle in the form of liquid drops. In accordance with the present device, it is possible to produce a suitable number of drops at a suitable point. (Yoshihara, H.)

  10. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  11. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  12. TECHNOLOGICAL PECULIARITIES O F MELTING AND OUT-OF-FURNACE PROCESSING OF BALANCED STEELS IN CONDITIONS OF ELECTRIC FURNACE STEELMAKING AND CONTINUOUS CASTING

    Directory of Open Access Journals (Sweden)

    S. V. Terletski

    2007-01-01

    Full Text Available The technological peculiarities of melting and out-of-furnace processing of balanced steels in conditions of electric furnace steelmaking and continuous cast of RUP “BMZ” are considered.

  13. Phase separation and pressure drop of two-phase flow in vertical manifolds

    International Nuclear Information System (INIS)

    Zetzmann, K.

    1982-01-01

    The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de

  14. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  15. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  16. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  17. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  18. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  19. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  20. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  1. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  2. Transfer coefficients for plate fin and elliptical tube heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.; Saboya, F.E.M.

    1981-01-01

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt

  3. Numerical and experimental study of a hydrodynamic cavitation tube

    Science.gov (United States)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  4. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  5. Effect of surrounding gas temperature on the morphological evolution of TiO2 nanoparticles generated by laser ablation in tubular furnace

    International Nuclear Information System (INIS)

    Tsuji, Masayuki; Seto, Takafumi; Otani, Yoshio

    2012-01-01

    Titanium oxide nanoparticles are synthesized by laser ablation of Ti target in oxygen atmosphere under well-controlled temperature profiles in a tubular furnace. The size and the shape of generated nanoparticles are varied by changing the temperature of furnace. The mobility-based size distributions of generated air-borne nanoparticles are measured using a scanning mobility particle sizer, and the size distributions of primary particles are analyzed by a scanning electron microscope. When the particles are generated by laser ablation at the room temperature, the particles are agglomerates in gas phase with the average mobility diameter of 117 nm and the mean diameter of primary particles of 11 nm. The primary particle diameter increases from 11 to 24 nm by raising the furnace temperature up to 800 °C. Since the mass of Ti vapor ablated from a target is found to be constant regardless of the furnace temperature, this particle growth may be attributed to the reduction in nuclei number as a result of mild quenching at higher temperatures. As the temperature reaches higher than 1,000 °C, the mobility diameter suddenly drops and the primary particle diameter increases due to sintering, and at 1,200 °C the mobility diameter coincides with the primary particle diameter. Since the laser oven method offers an independent control of vapor concentration and the temperature of surrounding atmosphere, it is an effective tool to study the formation process of nanoparticles from primary particles with a given size.

  6. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  7. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  8. 49 CFR 178.603 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... used for the hydrostatic pressure or stacking test. Exceptions for the number of steel and aluminum..., non-resilient, flat and horizontal surface. (e) Drop height. Drop heights, measured as the vertical... than flat drops, the center of gravity of the test packaging must be vertically over the point of...

  9. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  10. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  11. Structural ceramics containing electric arc furnace dust

    International Nuclear Information System (INIS)

    Stathopoulos, V.N.; Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J.

    2013-01-01

    Highlights: • Zn is stabilized due to formation of ZnAl 2 O 4 spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an

  12. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  13. A new compact fixed-point blackbody furnace

    International Nuclear Information System (INIS)

    Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T.; Yamada, Y.; Ishii, J.

    2013-01-01

    More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale

  14. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  15. Heat transfer and pressure drop during flow boiling of R407C; Waermeuebergang und Druckverlust beim Stroemungssieden von R407C

    Energy Technology Data Exchange (ETDEWEB)

    Rollmann, Philipp; Spindler, Klaus [Stuttgart Univ. (DE). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2011-10-15

    The heat transfer and pressure drop during flow boiling of R407C in a horizontal microfin tube have been investigated. The measured heat transfer coefficient is compared with the correlations of Liu and Winterton as well as Cavallini et al. The measured pressure drop is compared with the correlations of Kuo and Wang as well as Mueller-Steinhagen and Heck. (orig.)

  16. Passive heat transfer enhancement in 3D corrugated tube

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Engelbrecht, Kurt; Bahl, Christian

    transfer and fluid flow with a constant wall temperature and total pressure drop. The governing equations for these problems were solved using the Finite Element Method. The results of numerical modelling show significant increase in NTU for double corrugated tubes compared to a circular tube. The friction......An innovative hydraulic design was studied for corrugated tube geometry for a heat exchanger. An ellipse based double corrugation was used as a concept of the geometry. The hydraulic diameter (Dh) is maintained over the tube length while the shape of the cross section varies continuously along...... the flow direction. 38 corrugated tubes with a Dh of 5 mm were studied numerically with corrugation heights from 0.23 to 0.69 mm and corrugation periods from 5 to 50 mm for laminar flow with water. Computational fluid dynamics (CFD) is used as a tool to study the effect of corrugation geometry on heat...

  17. Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.

    Science.gov (United States)

    La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel

    2017-12-15

    Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Experimental heat transfer in tube bundle

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number

  19. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  20. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  1. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  2. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  3. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  4. Intercostal drainage tube or intracardiac drainage tube?

    Science.gov (United States)

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  5. Effects of fin shape on condensation in herringbone microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Miyara, Akio [Saga University (Japan). Dept. of Mechanical Engineering; Otsubo, Yusuke; Ohtsuka, Satoshi; Mizuta, Yoshihiko [Saga University (Japan). Graduate School of Science and Engineering

    2003-06-01

    Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2-4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved. (author)

  6. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  7. Arrangement of furnaces and retorts for the distillation of shale, etc. [injection of hot air

    Energy Technology Data Exchange (ETDEWEB)

    Lahore, M

    1846-01-31

    The patent is concerned with the distillation of dried materials, the distillation being facilitated by injection of hot air into the retorts. Figures show apparatus for heating the air, consisting of a series of pipes, connected together and placed horizontally in the interior of the furnace on bricks arranged in such a way that the flames and smoke circulate, as shown, around each pipe, touching first all the surface of the large one placed in the center. The air enters this tube, and from it passes into the others which it runs through successively, coming finally into the last pipe, being heated in this journey to a very high temperature. The last tube ends in a bell from which different branches start, each supplied with stop-cocks, to lead this hot air into the different sections of the retort. With the stop-cocks the quantity of air can be regulated at will, in the compartment of the retort, for accelerating the operation more or less.

  8. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  9. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  10. Production of blast furnace coke from soft brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, G.; Wundes, H.; Schkommodau, F.; Zinke, H.-G. (VEB Gaskombinat Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    Reviews experimental production and utilization of high quality brown coal coke in the GDR during 1985 and 1986. The technology of briquetting and coking brown coal dust is described; the superior parameters of produced coke quality are listed in comparison to those of regular industrial coke made from brown and black coal. Dust emission from high quality brown coal coke was suppressed by coke surface treatment with dispersion foam. About 4,200 t of this coke were employed in black coal coke substitution tests in a blast furnace. Substitution rate was 11%, blast furnace operation was positive, a substitution factor of 0.7 t black coal coke per 1 t of brown coal coke was calculated. Technology development of high quality brown coal coke production is regarded as complete; blast furnace coke utilization, however, requires further study. 8 refs.

  11. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  12. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  13. Lead scrap processing in rotary furnaces: a review

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, M

    1987-01-01

    Formerly, the lead scrap had been processed mainly in reverberatory and shaft furnaces or, even, in rotary furnaces (R.F.). The direct smelting of battery scrap entrains an expensive pollution control and high operating costs because of slag recirculation, coke consumption, losses in slag and matte. Nowadays, mechanized battery wrecking plants allow selective separation of casings and separators from metallic Pb (grids, poles, solders) as well as lead in non-metallic form (PbSO/sub 4/, PbO, PbO/sub 2/, contaminated with some Sb) frequently called paste. Because of their high performance and flexibility in metallurgical processing (melting, reducing, oxidizing and selective pouring) the R.F. supersedes the reverberatory furnace worldwide.

  14. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  15. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    International Nuclear Information System (INIS)

    JOHNSTON, D.C.

    2000-01-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed Loss on Ignition (LOI) equipment, including a model 1608FL CMTM Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform LOI testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an expected airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet G1 filter will be flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A

  16. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  17. Modelling of a one pass smoke tube boiler

    DEFF Research Database (Denmark)

    Karstensen, Claus M. S.; Sørensen, Kim

    2004-01-01

    A nonlinear state-space model with five states describing a one pass smoke tube boiler has been formulated. By means of mass- and energy-balance the model describes the dynamics of the Furnace, the Convection Zone and the Water/Steam Part and the three sub models are merged into an overall model....... The model is further linearized for use in a linear control design. The simulations have been carried out by means of MATLAB/SIMULINK and the models have been verified with measurements from a full scale boiler plant. Parameters in the model that are difficult to calculate have been estimated and the method...

  18. Who is dropping your course?

    Science.gov (United States)

    Storrs, Alex; Ghent, C.; Labattaglia, R.

    2011-01-01

    We present an analysis of pre and post instruction instruments in a basic astronomy course. This analysis is built on the Light and Spectroscopy Concept Inventory (LSCI, Bardar et al. 2007). In addition to assessing our student's gain in knowledge of this fundamental topic, we have added some demographic questions. While the primary purpose is to compare the gain in knowledge during a semester of instruction to changes in instruction, we also look at the demographics of students who take the pretest but not the posttest. These students are usually excluded from this type of analysis. We look for trends in the demographic information among students who drop the course, and suggest ways to make the course more palatable. References: Bardar et al., 2007: "Development and Validation of the Light and Spectroscopy Concept Inventory", Astr. Ed. Rev. 5(2), 103-113

  19. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  20. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  1. Modernization of two gas-fired shaft annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthof, G.; Porst, G.; Raczek, S.

    1986-04-01

    The objective was to modernize two existing shaft-type annealing furnaces used for the heat treatment of grey iron castings with the aim of reducing the consumption of gaseous fuel, minimize the formation of scale, decrease maintenance expense and apply more automatic control to the annealing process. This was to be achieved by an optimum combination of new types of construction materials and advanced firing and control equipment. The author describes the furnace in its condition prior to and after reconstruction. The operating results obtained after reconstruction were found to justify the costs incurred. The payback period is roughly one year.

  2. Nodal wear model: corrosion in carbon blast furnace hearths

    International Nuclear Information System (INIS)

    Verdeja, L. F.; Gonzalez, R.; Alfonso, A.; Barbes, M. F.

    2003-01-01

    Criteria developed for the Nodal Wear Model (NWM) were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node) of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid. (Author) 31 refs

  3. Use of coal-water mixtures in blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Malgarini, G; Giuli, M; Davide, A; Carlesi, C [Centro Sviluppo Materiali, Rome (Italy); Italsider, Genoa [Italy; Deltasider, Piombino [Italy

    1989-03-01

    At the present time, an ironworks blast furnace employing a pulverized coal injection (PCI) system is in operation at the Piombino Works (Italy). A wide development, within this industry, of PCI techniques is expected in the near future to limit, as much as possible, the rebuilding of coke ovens. Research activities and industrial trials aimed at maximizing the use of coal injection into blast furnaces are in course of development. This paper uses flowsheets to illustrate such a system and provides graphs to indicate the economic convenience of PCI systems as compared with systems using naphtha as an injected fuel.

  4. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  5. Energy Balance in DC Arc Plasma Melting Furnace

    International Nuclear Information System (INIS)

    Zhao Peng; Meng Yuedong; Yu Xinyao; Chen Longwei; Jiang Yiman; Nie Guohua; Chen Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency. (plasma technology)

  6. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  7. Destructive investigations of decommissioned guide tubes: characterization of wear

    International Nuclear Information System (INIS)

    Ambard, A.; Lina, A.; Bosselut, D.; Deforge, D.; Robinot, P.; Thebault, Y.; Paulhies, M.; Maingot, S.

    2011-01-01

    The wear of control rods has been a major maintenance concern for EDF since the nineties. Surface treatment of the rods (nitriding, chrome plating) were developed to deal with this issue. However, the question came to know whether the guiding tube in which those new control rods are inserted are also worn. EDF interest into guide tube wear has been renewed by the slow increase of the drop time in B06 position. EDF performed field examinations and some laboratory experiments to answer to this question. Two guide tubes were extracted from various cores. They were chosen due to their different positions within the core and the different nature of their counter bodies (different control rods surface treatment). Their continuous part were sliced to reduce their activity. Their dimensions were measured and compared to the nominal dimensions. Wear was evidenced with a low level. It is mainly concentrated around the notch. Some distinctions could be made depending on the guiding tube examined. Metallographic examinations were performed using SEM. The wear patterns of the guiding tubes appear similar from those of the control rods, which means that similar wear mechanisms must be involved. A tentative explanation of the increase of the rod drop time in position B06 is proposed. A tentative explanation of the low increase of rod drop time is presented. It could result from the conjunction of a larger pressing force in B06 position than in other position of the core as well as the conformal contact observed. The conformal contact in itself could results from the larger pressing force and the use of hardened rods. The findings of these field examinations have comforted EDF strategy concerning B06 guide tubes: they are changed before their drop time reaches a critical value. (authors)

  8. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  9. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube......’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  10. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  11. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    Energy Technology Data Exchange (ETDEWEB)

    TU, K.C.

    1999-10-08

    Multi-Canister Overpacks (MCOs) containing spent nuclear fuel (SNF) will be routinely handled at the Canister Storage Building (CSB) during fuel movement operations in the SNF Project. This analysis was performed to investigate the potential for damage from an eccentric accidental drop onto the standard storage tube, overpack tube, service station, or sample/weld station. Appendix D was added to the FDNW document to include the peer Review Comment Record & transmittal record.

  12. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    International Nuclear Information System (INIS)

    TU, K.C.

    1999-01-01

    Multi-Canister Overpacks (MCOs) containing spent nuclear fuel (SNF) will be routinely handled at the Canister Storage Building (CSB) during fuel movement operations in the SNF Project. This analysis was performed to investigate the potential for damage from an eccentric accidental drop onto the standard storage tube, overpack tube, service station, or sample/weld station. Appendix D was added to the FDNW document to include the peer Review Comment Record and transmittal record

  13. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  14. The influence of near burner region aerodynamics on the formation and emission of nitrogen oxides in a pulverized coal-fired furnace

    International Nuclear Information System (INIS)

    Abbas, T.; Costen, P.; Lockwood, F.C.

    1992-01-01

    This paper reports that detailed measurements have been performed for two distinct pulverized-coal-fired burners in a large-scale laboratory furnace. Comparative in-flame data are archived and include gas temperature, O 2 , CO concentration, and an inventory of stable fuel nitrogen species and solids (HCN, NH 3 , N 2 O, NO, nitrogen release, mass flux, and particle burnout). A significant decrease in the NO concentration in the near burner region and a substantial decrease in the furnace exit values are observed when the central tube from a single annular orifice burner jet (normally the location of a gas or oil burner for light-up purposes) is replaced with a single central orifice burner jet of same cross-sectional area. The latter burner exhibits the delayed combustion phenomena normally associated with a tangentially fired system. The particle burnout remains unaffected due to the longer particles' residence time in the all-important oxygen lean internal recirculation zone

  15. Categorising YouTube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  16. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  17. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  18. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.; Stipan, L.

    1992-03-01

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  19. Sludge Batch 5 Slurry Fed Melt Rate Furnace Test with Frits 418 and 550

    International Nuclear Information System (INIS)

    Miller, Donald; Pickenheim, Bradley

    2009-01-01

    Based on Melt Rate Furnace (MRF) testing for the Sludge Batch 5 (SB5) projected composition and assessments of the potential frits with reasonable operating windows, the Savannah River National Laboratory (SRNL) recommended Slurry Fed Melt Rate Furnace (SMRF) testing with Frits 418 and 550. DWPF is currently using Frit 418 with SB5 based on SRNL's recommendation due to its ability to accommodate significant sodium variation in the sludge composition. However, experience with high boron containing frits in DWPF indicated a potential advantage for Frit 550 might exist. Therefore, SRNL performed SMRF testing to assess Frit 550's potential advantages. The results of SMRF testing with SB5 simulant indicate that there is no appreciable difference in melt rate between Frit 418 and Frit 550 at a targeted 34 weight % waste loading. Both batches exhibited comparable behavior when delivered through the feed tube by the peristaltic pump. Limited observation of the cold cap during both runs showed no indication of major cold cap mounding. MRF testing, performed after the SMRF runs due to time constraints, with the same two Slurry Mix Evaporator (SME) dried products led to the same conclusion. Although visual observations of the cross-sectioned MRF beakers indicated differences in the appearance of the two systems, the measured melt rates were both ∼0.6 in/hr. Therefore, SRNL does not recommend a change from Frit 418 for the initial SB5 processing in DWPF. Once the actual SB5 composition is known and revised projections of SB5 after the neptunium stream addition and any decants is provided, SRNL will perform an additional compositional window assessment with Frit 418. If requested, SRNL can also include other potential frits in this assessment should processing of SB5 with Frit 418 result in less than desirable melter throughput in DWPF. The frits would then be subjected to melt rate testing at SRNL to determine any potential advantages

  20. Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

    OpenAIRE

    Man Young Kim

    2013-01-01

    In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribut...

  1. Sepsis from dropped clips at laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Hussain, Sarwat

    2001-01-01

    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis

  2. Concrete with steel furnace slag and fractionated reclaimed asphalt pavement.

    Science.gov (United States)

    2014-09-01

    Steel furnace slag (SFS) is an industrial by-product material that can contain free calcium oxide (CaO) and free magnesium oxide (MgO), both : of which can cause significant expansion when hydrated. SFS aggregates are therefore not commonly used in c...

  3. REFINERY STAGE OF OXIDES RESTORATION IN ROTATIONAL FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2012-01-01

    Full Text Available The article is devoted to research of process of the iron-containing waste recycling in rotary tilting furnaces, in particular, to the phenomenon of formation of ball iron at transition from hard-phase to liquid-phase stage of iron restoration from scale.

  4. Analysis of a furnace for heat generation using polydisperse biomass

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    In many agro-industrial activities, the processing of raw material generates a substantial amount of fine materials. Examples include the production of soluble coffee, processing of rice, and wood processing, among others. In many regions, these by-products keep piling up on the courtyard of companies or become an environmental problem for land dumps. However, detailed tests of these byproducts indicate that they are excellent sources of energy. With this in mind, a furnace was developed to generate clean and hot air, using the alimentation system for pneumatic transport. Wood sawdust was used as fuel for analysis. The obtained results were considered satisfactory, proven by the small heat losses, primarily by the non-burned carbon monoxide (less than 0.2%) and the cooling of the furnace (less than 2.5%) whereas the losses by the exhaust gases were a little more than 23%. The thermal efficiency of the furnace was considered high when compared to others with an indirect heating system, obtaining an average value of 73%. The developed furnace, beyond being efficient, allows the use of the waste from the wood industry, which is important in the reduction of environmental impacts and minimizing production costs associated with the acquisition of conventional energy. (author)

  5. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  6. Modeling of evaporation processes in glass melting furnaces

    NARCIS (Netherlands)

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  7. Development of synthetic graphite resistive elements for sintering furnace

    International Nuclear Information System (INIS)

    Otani, C.; Rezende, Mirabel C.; Polidoro, H.A.; Otani, S.

    1987-01-01

    The synthetic graphites have been produced using lignin coke, natural graphite and phenolic resin. The bulk density, porosity, flexural strength and eletrical resistivity measurements have been performed on specimens at about 2400 0 C. The performance of these materials, as heating elements, was evaluated in a sintering furnace prototype. This paper reports the fabrication process and the experimental results. (Author) [pt

  8. Studying and improving blast furnace cast iron quality

    Directory of Open Access Journals (Sweden)

    Т. К. Balgabekov

    2014-10-01

    Full Text Available In the article there are presented the results of studies to improve the quality of blast furnace cast iron. It was established that using fire clay suspension for increasing the mould covering heat conductivity improves significantly pig iron salable condition and filtration refining method decreases iron contamination by nonmetallic inclusions by 50 – 70 %.

  9. Fuzzy diagnosis of float-glass production furnace

    NARCIS (Netherlands)

    Spaanenburg, L; TerHaseborg, H; Nijhuis, JAG; Reusch, B

    1997-01-01

    The industrial production of high-quality float-glass is usually supervised by the single human expert. It is of interest to formalize his empirical knowledge to support the furnace operator at all times during the day. The paper describes the systematic development of a fuzzy expert with 6 blocks

  10. Furnace Fire and Women: Agents of Iron Production and Social ...

    African Journals Online (AJOL)

    ... production either in the decoration of technical ceramics or activities and usage of or exchanges of words among the workers during production activities. Such rich experience lends a means of putting together ingredients resulting in a material culture made of iron. Key words: Ethiopia, Oromo, myth, furnace, fire, women, ...

  11. Numerical modelling of an industrial glass-melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S C [Brigham Young Univ., Advanced Combustion Engineering Research Center, Provo, UT (United States); Webb, B W; McQuay, M Q [Brigham Young Univ., Mechanical Engineering Dept., Provo, UT (United States); Newbold, J [Lockheed Aerospace, Denver, CO (United States)

    2000-03-01

    The predictive capability of two comprehensive combustion codes, PCGC-3 and FLUENT, to simulate local flame structure and combustion characteristics in a industrial gas-fired, flat-glass furnace is investigated. Model predictions are compared with experimental data from the furnace for profiles of velocity, species concentrations, temperatures, and wall-incident radiative heat flux. Predictions from both codes show agreement with the measured mean velocity profiles and incident radiant flux on the crown. However, significant differences between the code predictions and measurements are observed for the flame-ozone temperatures and species concentrations. The observed discrepancies may be explained by (i) uncertainties in the distributions of mean velocity and turbulence in the portneck, (ii) uncertainties in the port-by-port stoichiometry, (iii) different grid-based approximations to the furnace geometry made in the two codes, (iv) the assumption of infinitely fast chemistry made in the chemical reaction model of both codes, and (v) simplifying assumptions made in the simulations regarding the complex coupling between the combustion space, batch blanket, and melt tank. The study illustrates the critical need for accurate boundary conditions (inlet air and fuel flow distributions, boundary surface temperatures, etc.) and the importance of representative furnace geometry in simulating these complex industrial combustion systems. (Author)

  12. A review of NOx formation mechanisms in recovery furnaces

    International Nuclear Information System (INIS)

    Nichols, K.M.; Thompson, L.M.; Empie, H.J.

    1993-01-01

    Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0 2 ) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0 2 . An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion

  13. Materials analyses of ceramics for glass furnace recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.W.; Tennery, V.J.

    1979-11-01

    The use of waste heat recuperation systems offers significant promise for meaningful energy conservation in the process heat industries. This report details the analysis of candidate ceramic recuperator materials exposed to simulated industrial glass furnace hot flue gas environments. Several candidate structural ceramic materials including various types of silicon carbide, several grades of alumina, mullite, cordierite, and silicon nitride were exposed to high-temperature flue gas atmospheres from specially constructed day tank furnaces. Furnace charging, operation, and batch composition were selected to closely simulate industrial practice. Material samples were exposed in flues both with and without glass batch in the furnace for times up to 116 d at temperatures from 1150 to 1550/sup 0/C (2100 to 2800/sup 0/F). Exposed materials were examined by optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, and x-ray fluorescence to identify material degradation mechanisms. The materials observations were summarized as: Silicon carbide exhibited enhanced corrosion at lower temperatures (1150/sup 0/C) when alkalies were deposited on the carbide from the flue gas and less corrosion at higher temperatures (1550/sup 0/C) when alkalies were not deposited on the carbide; alumina corrosion depended strongly upon purity and density and alumina contents less than 99.8% were unsatisfactory above 1400/sup 0/C; and mullite and cordierite are generally unacceptable for application in soda-lime glass melting environments at temperatures above 1100/sup 0/C.

  14. Analyses of laser and furnace treated sol-gel coatings

    NARCIS (Netherlands)

    De Hosson, JT; De Haas, M; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    Here we explore a new method that allows thin films to be made with almost any composition and degree of porosity by means of a combination of sol-gel and laser technology. Results are presented for furnace and laser treated TEOTI-(tetraethylorthotitanate as sol precursor) coated silicon samples.

  15. Analysis of combustion efficiency in a pelletizing furnace

    Directory of Open Access Journals (Sweden)

    Rafael Simões Vieira de Moura

    Full Text Available Abstract The objective of this research is to assess how much the improvement in the combustion reaction efficiency can reduce fuel consumption, maintaining the same thermal energy rate provided by the reaction in a pelletizing furnace. The furnace for pelletizing iron ore is a complex thermal machine, in terms of energy balance. It contains recirculation fan gases and constant variations in the process, and the variation of a single process variable can influence numerous changes in operating conditions. This study demonstrated how the main variables related to combustion in the burning zone influence fuel consumption (natural gas from the furnace of the Usina de Pelotização de Fábrica (owned by VALE S/A, without changing process conditions that affect production quality. Variables were analyzed regarding the velocity and pressure of the fuel in the burners, the temperature of the combustion air and reactant gases, the conversion rate and the stoichiometric air/fuel ratio of the reaction. For the analysis, actual data of the furnace in operation was used, and for the simulation of chemical reactions, the software Gaseq® was used. The study showed that the adjustment of combustion reaction stoichiometry provides a reduction of 9.25% in fuel consumption, representing a savings of US$ 2.6 million per year for the company.

  16. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  17. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  18. Pressure drop in two-phase He I natural circulation loop at low vapour quality

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    2003-01-01

    Steady state pressure drop in a two-phase He I natural circulation loop has been measured at atmospheric pressure. Results are obtained up to 0.2 exit vapor quality for a 14-mm diameter copper tube heated over a length of 1.2 m. Pressure drop assessment, done with the momentum balance equation including subcooling, reveals that the homogeneous model and Friedel's friction multiplier associated with Huq and Loth's void fraction correlations predict data within 15%. (author)

  19. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  20. Contribution to the heat transfer analysis of substitute refrigerants in evaporator tubes with smooth or enhanced tube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, N

    1997-12-31

    The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, requests a good knowledge of heat transfer properties of substitute fluids. A new test facility has been built at the Laboratory for Industrial Energy Systems (LENI) to contribute to this international effort. It consists of two sets of concentric tubes allowing either annular or inside tube convective boiling with a counter current water flow heating to be studied. A new data base including heat transfer coefficients and pressure drop measurements for four new refrigerants (R123, R134A, R402A and R404A) and three older refrigerants (R11, R12 and R502) has been collected. Flow boiling measurements covered a broad range of mass velocities, vapor qualities and heat fluxes. Some of the tests included plain tubes and others enhanced surface tubes (microfilms from Wieland) in horizontal and vertical orientations. An improved Wilson plot technique, that covers both the transition and turbulent flow regimes of the water flowing in the annular channel for the inside tube boiling tests, is proposed to overcome the severe limitations of conventional Wilson plots, to improve accuracy and to facilitate data processing. Mean flow boiling heat transfer coefficients were measured for R12 and R134A evaporating inside a horizontal plain tube and for R11 and R123 evaporating inside a horizontal plain tube. Local flow boiling heat transfer coefficients were measured for : R134A, R123, R404A and R502 evaporating inside a horizontal plain tube, for R134A and R123 evaporating inside a horizontal microfin tube and for R134 evaporating inside a vertical microfin tube. In addition microfin heat transfer augmentation relative to plain tube test data was investigated. The measured heat transfer coefficients were compared to different existing inside tube flow boiling correlations. (author) figs., tabs., refs.

  1. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  2. 10 CFR 431.72 - Definitions concerning commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial warm air furnaces. 431... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces § 431.72 Definitions concerning commercial warm air furnaces. The following definitions apply for purposes of this subpart D, and of subparts...

  3. 76 FR 56339 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2011-09-13

    ...) which covered furnaces (but not boilers), and it establishes amended energy efficiency standards for... Database for Residential Furnaces and Boilers,\\7\\ and the Consortium for Energy Efficiency's Qualifying...\\ Consortium of Energy Efficiency, Qualifying Furnace and Boiler List (2010) (Available at: http://www.cee1.org...

  4. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  5. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Science.gov (United States)

    2010-07-15

    ... Furnace Fans: Reopening of Public Comment Period AGENCY: Office of Energy Efficiency and Renewable Energy... work of residential heating and cooling systems (``furnace fans''). The comment period closed on July 6... information relevant to the furnace fan rulemaking will be accepted until July 27, 2010. ADDRESSES: Interested...

  6. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  7. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  8. Nonlinear oscillations of inviscid free drops

    Science.gov (United States)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  9. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Soft drop jet mass measurement

    CERN Document Server

    Roloff, Jennifer Kathryn; The ATLAS collaboration

    2018-01-01

    Calculations of jet substructure observables that are accurate beyond leading-logarithm accuracy have recently become available. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This poster documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log( ρ^2), where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 ifb of sqrt(s) = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  11. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  12. Efficient use of power in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, E R; Medley, J E

    1978-02-01

    The maximum transfer of electric energy to the metal in an arc furnace depends on the length of arc and the impedance of the electrical supply system from the generators to the arc itself. The use of directly-reduced sponge iron by continuous feeding results in long periods of flat-bath operation, when it is particularly important to keep a short high-current arc to get the heat into the metal rather than to the refractories, which would suffer excessive wear. By reference to a 125 ton furnace, a method of assessing the optimum operating currents and power factors and the effects of differing power-supply systems is illustrated. The importance of a low-impedance power system is illustrated, and the possibility of being unable to use the maximum furnace power without excessive refractory wear is noted. The particular problems of connecting arc-furnace loads to electrical supply systems are reviewed, and consideration is given to the problem of voltage flicker. The use of compensators is discussed with reference to existing installations, in which strong supplies from the supply-authority system are not economically available. The furnace operating characteristics, which indicate the optimum points of working, have to be checked on commissioning, and the test procedures are outlined. The optimum points for each type of charge and steel can be assessed only during their actual production. The importance of proper recording of relevant data is stressed, and reference is made to the use of computers and automatic power-input controllers.

  13. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  14. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  15. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    Science.gov (United States)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  16. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  17. Pyrotechnic Tubing Connector

    Science.gov (United States)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  18. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  19. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  20. Many Drops Make a Lake

    Directory of Open Access Journals (Sweden)

    Chaitanya S. Mudgal

    2014-03-01

    greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.

  1. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces; La metalurgia del mercurio en Almaden: desde los hornos de aludeles a los hornos Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-07-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  2. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  3. University Drop-Out: An Italian Experience

    Science.gov (United States)

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  4. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  5. Why Do Students Drop Advanced Mathematics?

    Science.gov (United States)

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  6. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  7. Simulation and analysis of the thermal and deformation behaviour of `as-received` and `hydrided` pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    Energy Technology Data Exchange (ETDEWEB)

    Muir, W C; Bayoumi, M H [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 {mu}g/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs.

  8. Simulation and analysis of the thermal and deformation behaviour of 'as-received' and 'hydrided' pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    International Nuclear Information System (INIS)

    Muir, W.C.; Bayoumi, M.H.

    1995-01-01

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 μg/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs

  9. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  10. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  11. Pressure drop in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    Measurements of pressure drop through a bundle comprising 16 rods and their lower arrangement grid as well as orifices similar to those of ET-RR-1 core have been done. Experiments are carried out under adiabatic turbulent flow conditions at about 35 degree C. Bundle Reynolds number range is 4 x 10 -2 x 10. Orifices of diameters 4.5, 3.25 or 2.5 cm. are mounted underneath the bundle. The bundle and lower grid pressure drop coefficients are 3.75 and 1.8 respectively. Orifices pressure drop coefficients are 2.65, 19.67 and 53.55 respectively. The ratio of bundle pressure drop to that of 4.5 cm. Orifice diameter is 1.415. The pressure drop coefficients are utilizer to calculate flow through bundles. The flow rate per bundle is 39.1, 20.4 or 13.1 m 3 /hr. Depending on orifice diameter

  12. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  13. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  14. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  15. Feasibility study of utilizing solar furnace technology in steel making industry

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspoursani, K. [The Faculty of Mechanical Engineering, Takestan Islamic Azad University (Iran, Islamic Republic of)], Email: a.abbaspour@tiau.ac.ir; Tofigh, A.A.; Nahang Toudeshki, S.; Hadadian, A. [Department of Energy, Materials and Energy Research Center (Iran, Islamic Republic of)], Email: Ali.A.Tofigh@gmail.com, email: toudeshki@hotmail.com, email: Arash.Hadadian@gmail.com; Farahmandpour, B. [Iranian Fuel Conservation company (Iran, Islamic Republic of)], Email: farahmandpour@gmail.com

    2011-07-01

    In Iran, the casting industry consumes 33.6% of electricity production, and most of this electricity is used in the melting process. Currently, scrap preheating is done using electric arc furnaces and the aim of this study is to assess the feasibility of replacing electric arc furnaces with solar furnaces. The performance of solar furnaces in the Iran Alloy Steel Company under Yazd climate conditions was studied. It was found that the solar irradiation time and solar insulation are sufficient to operate a solar furnace with the capacity to preheat 250 thousand tons per year of scrap to 500 degrees celsius. Results showed that such a furnace would decrease energy consumption by 40 GWh per year and that it would take 5 years to return the investment. This study demonstrated that operating a solar furnace in the Iran Alloy Steel Company under Yazd climate conditions is feasible and would result in economic and environmental benefits.

  16. Investigation and analysis of the usefulness of the Zellik method to design energy conserving electric furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.; Fay, G.

    1984-01-01

    The characteristics predetermined by the method Zellik in designing the electrical furnaces isolated traditionally are comparable with measured values of furnaces in operation. The newest furnaces have been built with isolation resulting in a lower energy consumption. To plot the static characteristics, the furnace was heated up three times to the steady state. In determining the static heat capacity the stored heat was measured by the conventional method. With a view to determining the kinetic heat capacity the furnace was heated up at different rates. On the base of the operating results of the furnace can be stated both the practicability of the method Zellik and the improvement of the characteristics of the furnace isolated with fibrous material.

  17. Choice of technological regimes of a blast furnace operation with injection of hot reducing gases

    Directory of Open Access Journals (Sweden)

    Babich, A. I.

    2002-08-01

    Full Text Available Injection rate of fossil fuels is limited because of drop in the flame temperature in the raceway and problems in the deadman region and the cohesive zone. The next step for obtaining a considerable coke saving, a better operation in the deadman as an well as increase in blast furnace productivity and minimizing the environmental impact due to a decrease in carbon dioxide emmision would be injection by tuyeres of hot reducing gases (HRG which are produced by low grade coal gasification or top gas regenerating. Use of HRG in combination with high pulverized coal inyection PCI rate and oxigen enrichment in the blast could allow to keep and to increase the competitiveness of the blast furnace process. Calculations using a mathematical model show that the HRG injection in combination with pulverized coal (PC and enriching blast with oxigen can provide an increase in PC rate up to 300-400 kg/tHM and a rise in the furnace productivity by 40-50 %. Blast furnace operation with full oxigen blast (100 % of process oxigen with the exception for the hot blast is possible when HRG is injected.

    La tasa de inyección de combustibles fósiles está limitada a causa de la caída de la temperatura de llama en el raceway (cavidad frente a las toberas y a problemas en la región del "hombre muerto" y en la zona cohesiva. La inyección por tobera de gases reductores calientes (GRC, que se producen por gasificación de carbón de bajo grado o generación de gas de tragante, será la próxima etapa para lograr un considerable ahorro adicional de coque, una zona del "hombre muerto" bien definida, además de un aumento en la productividad del horno alto y para minimizar el impacto ambiental debido a una disminución de la emisión de dióxido de carbono. El uso de GRC en combinación con una tasa elevada de inyección de carbón pulverizado (ICP con viento enriquecido en oxígeno, podrá permitir mantener y aumentar la competitividad del proceso del horno

  18. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  19. High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data

    OpenAIRE

    Alipour, Yousef

    2013-01-01

    The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are...

  20. Vaporization inside a mini microfin tube: experimental results and modeling

    Science.gov (United States)

    Diani, A.; Rossetto, L.

    2015-11-01

    This paper proposes a comparison among the common R134a and the extremely low GWP refrigerant R1234yf during vaporization inside a mini microfin tube. This microfin tube has an internal diameter of 2.4 mm, it has 40 fins, with a fin height of 0.12 mm. Due to the high heat transfer coefficients shown by this tube, this technology can lead to a refrigerant charge reduction. Tests were run in the Heat Transfer in Micro Geometries Lab of the Dipartimento di Ingegneria Industriale of the Università di Padova. Mass velocities range between 375 and 940 kg m-2 s-1, heat fluxes from 10 to 50 kW m-2, vapour qualities from 0.10 to 0.99, at a saturation temperature of 30°C. The comparison among the two fluids is proposed at the same operating conditions, in order to highlight the heat transfer and pressure drop differences among the two refrigerants. In addition, two correlations are proposed to estimate the heat transfer coefficient and frictional pressure drop during refrigerant flow boiling inside mini microfin tubes. These correlations well predict the experimental values, and thus they can be used as a useful tool to design evaporators based on these mini microfin tubes.

  1. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

    2009-03-15

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  2. Chemical energy in electro arc furnace - examples from experience

    International Nuclear Information System (INIS)

    Shushlevski, Ljupcho; Georgievski, Panche; Hadzhidaovski, Ilija

    2004-01-01

    Great competition on the market in steel-producing and chemical lack of electrical energy leads to realization of new project in section Steelworks AD 'Makstil' - Skopje named: 'Substitution of electrical energy i.e. entering of additional chemical energy in Electrical arc furnace for steel melting using fuels-naturual gas (CH 4 ), oxygen (O 2 ) and carbon (C)'. It is accumulate experience from two and one half year of intensive use of chemical energy with its accompanying problems, appropriate efficiency and economy in process for steel producing. In 2001 year we announced and described project for using of an additional alternative chemical energy in aggregate Electrical are furnace. In this work we will present realization, working experience and efficiency of the system for generating chemical energy. Practical realization needs serious approach in chemical energy usage The usage of chemical energy brings restrictions and needs many innovation for protection of equipment from shown aggressiveness during the combustion of fuel gasses. (Author)

  3. Advanced wood burning furnaces. 2. rev. ed.; Moderne Holzfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, W. (comp.)

    2001-07-01

    New and environment-friendly technologies meet high requirements in terms of emission reduction and comfort of operation. In the field of wood burning furnaces, there is still a lack of knowledge which results in excessive cost, environmental pollution and loss of image. This brochure shows how wood furnaces should be operated correctly and also reviews the state of the art. [German] Durch die technische Entwicklung neuer, wirkungsvoller und vor allem umweltfreundlicher Heiztechniken wird zudem den in den letzten Jahren gestiegenen Anforderungen an den Emissionsschutz und den Bedienungskomfort Rechnung getragen. Mit Holz wird jedoch z. T. nicht immer richtig geheizt. Das kostet Geld und fuehrt zu vermeidbaren Umweltbelastungen und Imageschaeden. Ziel dieser Broschuere ist es daher, mit den Techniken des Heizens mit Holz vertraut zu machen und einen Ueberblick ueber den heutigen Stand zu geben. (orig.)

  4. Simulating the heat transfer process of horizontal anode baking furnace

    Energy Technology Data Exchange (ETDEWEB)

    L.Q. Zhang; C.G. Zheng; M.H. Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2005-07-01

    A transient two-dimensional mathematical model of a horizontal baking furnace is presented. The model combines complex thermal phenomena in a baking process such as air infiltration, evolution and combustion of volatile matters, combustion of packing coke, and heat losses. The predicted results are in good agreement with measured data. Furthermore, the process is simulated under different operating conditions such as firing cycle time, airflow and air infiltration. The simulated results indicate that the fuel consumption decreases as the firing cycle time decreases. It is also found that reducing the airflow and air infiltration will help to save fuel. The model is proved to be a useful tool for the process optimisation of the baking furnace in the aluminum industry.

  5. Simulation, optimization and control of a thermal cracking furnace

    International Nuclear Information System (INIS)

    Masoumi, M.E.; Sadrameli, S.M.; Towfighi, J.; Niaei, A.

    2006-01-01

    The ethylene production process is one of the most important aspect of a petrochemical plant and the cracking furnace is the heart of the process. Since, ethylene is one of the raw materials in the chemical industry and the market situation of not only the feed and the product, but also the utility is rapidly changing, the optimal operation and control of the plant is important. A mathematical model, which describes the static and dynamic operations of a pilot plant furnace, was developed. The static simulation was used to predict the steady-state profiles of temperature, pressure and products yield. The dynamic simulation of the process was used to predict the transient behavior of thermal cracking reactor. Using a dynamic programming technique, an optimal temperature profile was developed along the reactor. Performances of temperature control loop were tested for different controller parameters and disturbances. The results of the simulation were tested experimentally in a computer control pilot plant

  6. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  7. Through-furnace for burning solid organic substances

    International Nuclear Information System (INIS)

    Kemmler, G.; Schlich, E.

    1984-01-01

    The through-furnace for burning radio-active organic solid waste consists of a reaction pipe heated from the outside, an input device and an output device. A solid pump is used as the input device, which has a common longitudinal axis with the reaction pipe. The reaction pipe is widened in the transport direction of the combustion pipe, where the angle between the longitudinal axis and the pipe wall is 0.5 to 5 0 . The pipe wall is wholely or partially permeable to gas. The thermal treatment of the solid organic substances can occur by combustion or by pyrohydrolysis or pyrolysis in the through-furnace. (orig./HP) [de

  8. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  9. Orgin of Slag from Early Medieval Age Furnaces in Nitra

    Directory of Open Access Journals (Sweden)

    Julius Dekan

    2005-01-01

    Full Text Available Two types of archaeological artefacts from remains of Early Medieval Age furnaces excavated in Nitra are analysed. They are supposed to originate from slag of glass and iron production. Employing Mossbauer spectrometry, iron crystallographic sites are identified and compared. In all samples, Fe2+ and Fe3+ structural positions were revealed. Some of the archeological artefacts including those that were supposed to originate from glass production show a presence of metallic iron and/or magnetic oxides. Based on the results of Mossbauer effect measurements performed at room temperature as well as 77 K (liquid nitrogen temperature analytical evidence is provided that the iron sites identified are not as those usually encountered in glasses. Consequently, a conclusion is proposed that neither of the investigated furnaces was used for glass production.

  10. Pollutant emissions of commercial and industrial wood furnaces

    International Nuclear Information System (INIS)

    Baumbach, G.; Angerer, M.

    1993-03-01

    Based on literature surveys, personal contacts to designers, manufactures and users of woold furnaces, as well as informations of experts from Austria and Switzerland, the used wood fuels and combustion techniques and the potentially by commercial and industrial wood burning emitted air pollutants are described; including the mechanism of pollutant formation, concentrations, and their environmental relevance. The actual situation in Baden-Wuerttemberg concerning the used wood fuels, the state of installed and operated furnaces and the amount of emitted pollutants is presented basing on informations of the 'Statistical Country Bureau' and a country-wide inquiry round the chimney-sweepers. In order to realize the described existing possibilities to reduce pollutant emissions the introduction of a general brand test and certification mode is proposed. (orig.). 53 figs., 118 refs [de

  11. Fuzzy Logic Temperature Control System For The Induction Furnace

    Directory of Open Access Journals (Sweden)

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  12. System design description for the whole element furnace testing system

    International Nuclear Information System (INIS)

    Ritter, G.A.; Marschman, S.C.; MacFarlan, P.J.; King, D.A.

    1998-05-01

    This document provides a detailed description of the Hanford Spent Nuclear Fuel (SNF) Whole Element Furnace Testing System located in the Postirradiation Testing Laboratory G-Cell (327 Building). Equipment specifications, system schematics, general operating modes, maintenance and calibration requirements, and other supporting information are provided in this document. This system was developed for performing cold vacuum drying and hot vacuum drying testing of whole N-Reactor fuel elements, which were sampled from the 105-K East and K West Basins. The proposed drying processes are intended to allow dry storage of the SNF for long periods of time. The furnace testing system is used to evaluate these processes by simulating drying sequences with a single fuel element and measuring key system parameters such as internal pressures, temperatures, moisture levels, and off-gas composition

  13. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    Science.gov (United States)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  14. Analysis of rod drop and pulsed source measurements of reactivity in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Brittain, I.

    1970-05-01

    Reactivity measurements by the rod-drop and pulsed source methods in the Winfrith SGHWR are seriously affected by spatial harmonics. A method of calculation is described which enables the spatial harmonics to be calculated in non-uniform cores in two or three dimensions, and thus allows a much more rigorous analysis of the experimental results than the usual point model. The method is used to analyse all the rod-drop measurements made during commissioning of the Winfrith SGHWR, and to comment on the results of pulsed source measurements. The reactivity worths of banks of ten and twelve shut-down tubes deduced from rod-drop and pulsed source experiments are in satisfactory agreement with each other and also with AIMAZ calculated values. The ability to calculate higher spatial harmonics in nonuniform cores is thought to be new, and may have a wider application to reactor kinetics through the method of Modal Analysis. (author)

  15. Effect of drag-reducing polymers on Tubing Performance Curve (TPC) in vertical gas-liquid flows

    NARCIS (Netherlands)

    Shoeibi Omrani, P.; Veltin, J.; Turkenburg, D.H.

    2014-01-01

    This paper discusses the effect of drag reducing polymers on the Tubing Performance Curve (TPC) of vertical air-water flows at near atmospheric conditions. The effect of polymer concentration, liquid and gas flow rates on the pressure drop curve (Tubing Performance Curve) was investigated

  16. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  17. Calcinating petroleum coke in a furnace with a rotating hearth

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, M M; Ezhov, B M; Galeeva, Z G; Goriunov, V S; Karpinskaia, N N; Zaitseva, S A

    1980-01-01

    A scheme is described for an industrial device with a bottom furnace for calcinating coke from slow coking. The consumption and operational indicators of the process during the calcination of standard and needle cokes are given, together with data on the quality of dry and calcinated cokes under different conditions. The basic drawbacks in the operation of the device are described, and measures are proposed for increasing its operational effectiveness.

  18. Furnace for degasification and gasification of combustibles rich in ashes

    Energy Technology Data Exchange (ETDEWEB)

    1952-05-13

    A furnace is described for the degasification and the gasification of combustibles rich in ashes with continuous-functioning vertical chambers of transversal rectangular sections in which the washing gas flows from one side to the other, traversing the combustible, characterized by the fact that the height of the combustible surrounded by the washing gas stays in a proportion higher than 10:1 to the thickness of the width of combustible.

  19. A new role for reduction in pressure drop in cyclones using computational fluid dynamics techniques

    Directory of Open Access Journals (Sweden)

    D. Noriler

    2004-01-01

    Full Text Available In this work a new mechanical device to improve the gas flow in cyclones by pressure drop reduction is presented and discussed. This behavior occurs due to the effects of introducing swirling breakdown phenomenon at the inlet of the vortex finder tube. The device consists of a tube with two gas inlets in an appositive spiral flux that produces a sudden reduction in the tangential velocity peak responsible for practically 80 % of the pressure drop in cyclones. In turn, peak reduction causes a decrease in pressure drop by a breakdown of the swirling, and because of this the solid particles tend to move faster toward the wall , increasing collection efficiency. As a result of this phenomenon the overall performance of cyclones is improved. Numerical simulations with 3-D, transient, asymmetric and anisotropic turbulence closure by differential Reynolds stress for Lapple and Stairmand standard geometries of 0.3 m in diameter, show a reduction in pressure drop of 20 % and a shift of the tangential velocity peak toward the wall. All numerical experiments were carried out with a commercial CFD code showing numerical stability and good convergence rates with high-order interpolation schemes, SIMPLEC pressure-velocity coupling and other numerical features.

  20. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  1. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  2. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  3. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    Science.gov (United States)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  4. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  5. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  6. Methods of steel manufacturing - The electric arc furnace

    Science.gov (United States)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  7. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  8. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  9. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  10. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  11. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  12. Bull Moose Tube Company

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against the Bull Moose Tube Company, a business located at 1819 Clarkson Road, Chesterfield, MO, 63017, for alleged violations at the facility located at 406 East Industrial Drive,

  13. Tracheostomy tube - eating

    Science.gov (United States)

    Trach - eating ... take your first bites. Certain factors may make eating or swallowing harder, such as: Changes in the ... easier to swallow. Suction the tracheostomy tube before eating. This will keep you from coughing while eating, ...

  14. Thyrotoxicosis Presenting as Unilateral Drop Foot.

    Science.gov (United States)

    Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki

    2017-01-01

    Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.

  15. Preparation and characterisation of superheated drop detectors

    International Nuclear Information System (INIS)

    Krishnamoorthy, P.

    1989-01-01

    Basic mechanism of bubble nucleation in superheated drops with respect to minimum energy of radiation and temperature is discussed. Experimental details and techniques for the preparation of Superheated Drop Detectors (SDDs) is explained. For the sample preparation, homogeneous composition of polymer (Morarfloc) and glycerine was used as the host medium and three different refrigerants Mafron-21, Mafron-12 and Mafron-11/12 (50:50) were chosen as the sensitive liquids. A pressure reactor developed at Health and Safety Laboratory is used for dispersing the sensitive liquid drops in the homogeneous composition under pressure. Some of the imporatant detector characteristics were studied. (author). 26 refs., 9 figs., 1 tab

  16. Streak tube development

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Estrella, R.M.

    1979-01-01

    A research program for the development of a high-speed, high-resolution streak image tube is described. This is one task in the development of a streak camera system with digital electronic readout, whose primary application is for diagnostics in underground nuclear testing. This program is concerned with the development of a high-resolution streak image tube compatible with x-ray input and electronic digital output. The tube must be capable of time resolution down to 100 psec and spatial resolution to provide greater than 1000 resolution elements across the cathode (much greater than presently available). Another objective is to develop the capability to make design changes in tube configurations to meet different experimental requirements. A demountable prototype streak tube was constructed, mounted on an optical bench, and placed in a vacuum system. Initial measurements of the tube resolution with an undeflected image show a resolution of 32 line pairs per millimeter over a cathode diameter of one inch, which is consistent with the predictions of the computer simulations. With the initial set of unoptmized deflection plates, the resolution pattern appeared to remain unchanged for static deflections of +- 1/2-inch, a total streak length of one inch, also consistent with the computer simulations. A passively mode-locked frequency-doubled dye laser is being developed as an ultraviolet pulsed light source to measure dynamic tube resolution during streaking. A sweep circuit to provide the deflection voltage in the prototype tube has been designed and constructed and provides a relatively linear ramp voltage with ramp durations adjustable between 10 and 1000 nsec

  17. Researching YouTube

    OpenAIRE

    Arthurs, Jane; Drakopoulou, Sophia; Gandini, Alessandro

    2018-01-01

    ‘Researching YouTube’ introduces the special issue of Convergence which arose out of an international academic conference on YouTube that was held in London at Middlesex University in September 2016. The conference aimed to generate a robust overview of YouTube’s changing character and significance after its first ten years of development by creating a productive dialogue between speakers from different disciplines and cultures, and between YouTube-specific research and wider debates in media...

  18. Tubing crimping pliers

    Science.gov (United States)

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  19. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  20. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    Scheidl, H.

    1976-01-01

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures