Electronically driven short-range lattice instability: Possible role in superconductive pairing
International Nuclear Information System (INIS)
Szasz, A.
1991-01-01
A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed
Superconductivity is pair work
International Nuclear Information System (INIS)
Wengenmayr, Roland
2011-01-01
Electric cables that routinely conduct electricity without loss - physicists have been motivated by this idea ever since superconductivity was discovered 100 years ago. Researchers working with Bernhard Keimer at the Max Planck Institute for Solid State Research in Stuttgart and Frank Steglich at the Max Planck Institute for Chemical Physics of Solids in Dresden want to gain a detailed understanding of how unconventional superconductors lose their resistivity. (orig.)
Mesoscopic pairing without superconductivity
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Pairing induced superconductivity in holography
Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad
2014-09-01
We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.
Charge Aspects of Composite Pair Superconductivity
Flint, Rebecca
2014-03-01
Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.
Odd-frequency pairing in superconducting heterostructures
Energy Technology Data Exchange (ETDEWEB)
Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl
2009-04-22
We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.
Pair Fermi contour and high-temperature superconductivity
Belyavsky, V I
2002-01-01
The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials
Odd-frequency pairing in superconducting heterostructures .
Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.
2007-03-01
We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.
Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe
Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre
2018-01-01
In most unconventional superconductors, like the high-Tc cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.
Unconventional superconductivity in iron pnictides: Magnon mediated pairing
kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban
2018-02-01
We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.
Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars
International Nuclear Information System (INIS)
Leinson, L.B.
2001-01-01
The neutrino emission due to formation and breaking of Cooper pairs of protons in superconducting cores of neutron stars is considered with taking into account the electromagnetic coupling of protons to ambient electrons. It is shown that collective response of electrons to the proton quantum transition contributes coherently to the complete interaction with a neutrino field and enhances the neutrino-pair production. Our calculation shows that the contribution of the vector weak current to the ννbar emissivity of protons is much larger than that calculated by different authors without taking into account the plasma effects. Partial contribution of the pairing protons to the total neutrino radiation from the neutron star core is very sensitive to the critical temperatures for the proton and neutron pairing. We show domains of these parameters where the neutrino radiation, caused by a singlet-state pairing of protons is dominating
Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.
2018-06-01
The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.
Cooper pairs' magnetic moment in MCFL color superconductivity
International Nuclear Information System (INIS)
Feng Bo; Ferrer, Efrain J.; Incera, Vivian de la
2011-01-01
We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.
Broadband illumination of superconducting pair breaking photon detectors
International Nuclear Information System (INIS)
Guruswamy, T; Goldie, D J; Withington, S
2016-01-01
Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)
The formation of Cooper pairs and the nature of superconducting currents
International Nuclear Information System (INIS)
Weisskopf, V.F.
1979-12-01
A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons to change its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (orig.)
The formation of Cooper pairs and the nature of superconducting currents
International Nuclear Information System (INIS)
Weisskopf, V.F.
1981-01-01
A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons from changing its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (author)
New superconducting cyclotron driven scanning proton therapy systems
International Nuclear Information System (INIS)
Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan
2005-01-01
Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC
Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity
International Nuclear Information System (INIS)
Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori
2016-01-01
Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.
Single-flavor color superconductivity with color-sextet pairing
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš
2005-01-01
Roč. 55, č. 1 (2005), s. 9-16 ISSN 0011-4626 R&D Projects: GA ČR(CZ) GA202/02/0847 Keywords : color superconductivity * spontaneous symmetry breaking Subject RIV: BE - Theoretical Physics Impact factor: 0.360, year: 2005
Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas
Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y
2015-01-01
CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...
Energy Technology Data Exchange (ETDEWEB)
Mohapatra, Rasmita, E-mail: rmrmmohapatra@gmail.com [P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore, Odisha 756019 (India); Rout, G.C., E-mail: gcr@iopb.res.in [Physics Enclave, Plot no-664/4825, Lane-4A, Shree Vihar, Patia, Bhubaneswar, Odisha 751024 (India)
2015-05-15
Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures.
International Nuclear Information System (INIS)
Mohapatra, Rasmita; Rout, G.C.
2015-01-01
Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures
Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model
International Nuclear Information System (INIS)
Toschi, A; Barone, P; Capone, M; Castellani, C
2005-01-01
The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function
Ketterson, John B
2008-01-01
Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...
Pairing fluctuation effects on the single-particle spectra for the superconducting state
International Nuclear Information System (INIS)
Pieri, P.; Pisani, L.; Strinati, G.C.
2004-01-01
Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors
Valence skipping driven superconductivity and charge Kondo effect
International Nuclear Information System (INIS)
Yanagisawa, Takashi; Hase, Izumi
2013-01-01
Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary
International Nuclear Information System (INIS)
McDonald, Ross D; Harrison, Neil; Singleton, John
2009-01-01
We propose that the extraordinarily high superconducting transition temperatures in the cuprates are driven by an exact mapping of the d x 2 -y 2 Cooper-pair wavefunction onto the incommensurate spin fluctuations observed in neutron-scattering experiments. This is manifested in the direct correspondence between the inverse of the incommensurability factor δ seen in inelastic neutron-scattering experiments and the measured superconducting coherence length ξ 0 . Strikingly, the relationship between ξ 0 and δ is valid for both La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x , suggesting a common mechanism for superconductivity across the entire hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the cuprates, we propose that the fluctuations responsible for superconductivity are driven by a Fermi-surface instability. On the basis of these findings, one can specify the optimal characteristics of a solid that will exhibit 'high T c ' superconductivity. (fast track communication)
Non-separable pairing interaction kernels applied to superconducting cuprates
International Nuclear Information System (INIS)
Haley, Stephen B.; Fink, Herman J.
2014-01-01
Highlights: • Non-separable interaction kernels with weak interactions produces HTS. • A probabilistic approach is used in filling the electronic states in the unit cell. • A set of coupled equations is derived which describes the energy gap. • SC properties of separable with non-separable interactions are compared. • There is agreement with measured properties of the SC and normal states. - Abstract: A pairing Hamiltonian H(Γ) with a non-separable interaction kernel Γ produces HTS for relatively weak interactions. The doping and temperature dependence of Γ(x,T) and the chemical potential μ(x) is determined by a probabilistic filling of the electronic states in the cuprate unit cell. A diverse set of HTS and normal state properties is examined, including the SC phase transition boundary T C (x), SC gap Δ(x,T), entropy S(x,T), specific heat C(x,T), and spin susceptibility χ s (x,T). Detailed x,T agreement with cuprate experiment is obtained for all properties
Directory of Open Access Journals (Sweden)
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems
International Nuclear Information System (INIS)
Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.
1995-01-01
The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs
A Pole Pair Segment of a 2-MW High-Temperature Superconducting Wind Turbine Generator
DEFF Research Database (Denmark)
Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen
2017-01-01
A 2-MW high-temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a full-size stationary experimental setup, which is one pole pair segment...... and the setup in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the setup is a good surrogate for these that would be used...
A Pole Pair Segment of a 2 MW High Temperature Superconducting Wind Turbine Generator
DEFF Research Database (Denmark)
Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen
2016-01-01
A 2 MW high temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a fullsize stationary experimental set-up, which is one pole pair segment...... generator and the set-up in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the set-up is a good surrogate...
International Nuclear Information System (INIS)
Magalhaes, S.G.; Zimmer, F.M.; Kipper, C.J.; Calegari, E.J.
2007-01-01
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field Γ. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of Γ affects deeply the transition lines
Superconducting properties of the η-pairing state in the Penson-Kolb-Hubbard model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2004-01-01
The Penson-Kolb-Hubbard model, i.e. the Hubbard model with the pair-hopping interaction J is studied. We focus on the properties of the superconducting state with the Cooper-pair center-of mass momentum q Q(η-phase). The transition into the η-phase, which is favorized by the repulsive J (J c |, dependent on band filling, on-site interaction U and band structure, and the system never exhibits standard BCS-like features. This is in obvious contrast with the properties of the isotropic s-wave state, stabilized by the attractive J and attractive U, which exhibit at T = 0 a smooth crossover from the BCS-like limit to that of tightly bound pairs with increasing pairing strength. (author)
Energy Technology Data Exchange (ETDEWEB)
Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)
2002-09-01
The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)
Energy Technology Data Exchange (ETDEWEB)
Keidel, Felix; Burset, Pablo; Trauzettel, Bjoern [Institute of Theoretical Physics and Astrophysics, University of Wuerzburg, 97074 Wuerzburg (Germany); Crepin, Francois [Laboratoire de Physique Theorique de la Matiere Condensee, UPMC, Sorbonne Universites, 75252 Paris (France)
2016-07-01
The scientific interest in Quantum Spin Hall systems is far from declining. While these certainly are fascinating by themselves, there is plenty of new and exciting physics to arise when superconductivity and ferromagnetism are brought into the game. The strong constraint of helicity in the edge states of a two-dimensional topological insulator is responsible for an intimate relation between the allowed scattering processes in a hybrid junction and the parameters of the system, namely the superconducting order parameter and the magnetic field. In our work, we study a helical liquid in proximity to a conventional s-wave superconductor and ferromagnetic insulators by means of a Green's function analysis. The ferromagnet gives rise to sub-gap Andreev/Majorana bound states and non-local crossed Andreev reflection (CAR), both of which decisively affect the pairing and transport properties of the junction. As a result, the simple s-wave symmetry of the superconductor is enriched and unconventional odd-frequency triplet superconductivity emerges. Strikingly, we have identified a setup that favors CAR over electron co-tunneling and may allow for the indirect measurement of the symmetries of the superconducting order parameter.
Arrays of Cooper pair boxes coupled to a superconducting reservoir: 'superradiance' and 'revival'
International Nuclear Information System (INIS)
Rodrigues, D A; Gyoerffy, B L; Spiller, T P
2004-01-01
We consider an array of l b Cooper pair boxes, each of which is coupled to a superconducting reservoir by a capacitive tunnel junction. We discuss two effects that probe not just the quantum nature of the islands, but also of the superconducting reservoir coupled to them. These are analogues to the well-known quantum optical effects 'superradiance' and 'revival'. When revival is extended to multiple systems, we find that 'entanglement revival' can also be observed. In order to study the above effects, we utilize a highly simplified model for these systems in which all the single-electron energy eigenvalues are set to be the same (the strong coupling limit), as are the charging energies of the Cooper pair boxes, allowing the whole system to be represented by two coupled quantum spins, one finite, which represents the array of boxes, and one representing the reservoir, which we consider in the limit of infinite size. Although this simplification is drastic, the model retains the main features necessary to capture the phenomena of interest. Given the progress in superconducting box experiments over recent years, it is possible that experiments to investigate both of these interesting quantum coherent phenomena could be performed in the foreseeable future
Implementing quantum optics with parametrically driven superconducting circuits
Aumentado, Jose
Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.
Plasmon-phonon pairing mechanism and superconducting state parameters in layered mercury cuprates
International Nuclear Information System (INIS)
Varshney, D.; Tosi, M.P.
1999-06-01
An effective two-dimensional dynamic interaction is developed which incorporated screening of holes by plasmons and by optical phonons to discuss the nature of the pairing mechanism leading to superconductivity in layered mercury cuprates. The system is treated as an ionic solid containing layers of charge carriers and a model dielectric function is set up which fulfils the appropriate sum rules on the electronic and ionic polarizabilities. The values of the coupling strength and of the Coulomb interaction parameter indicate that the superconductor is in the strong coupling regime with effective screening of the charge carriers. The superconducting transition temperature of optically doped HgBa 2 CuO 4+δ is estimated as 94 K from Kresin's strong coupling theory and the energy gap ratio is substantially larger than the BCS value. The value of the isotope exponent is severely reduced below the BCS value. The implications of the model and its analysis are discussed. (author)
Directory of Open Access Journals (Sweden)
Yucel Yildirim
2011-09-01
Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.
Ghatak, Ananya; Das, Tanmoy
2018-01-01
Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.
International Nuclear Information System (INIS)
Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)
2001-01-01
A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By
Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing
Halder, Avik; Kresin, Vitaly V.
2015-12-01
A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.
International Nuclear Information System (INIS)
Taylor, A.W.B.; Noakes, G.R.
1981-01-01
This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)
Cerenkov Radiator Driven by a Superconducting RF Electron Gun
International Nuclear Information System (INIS)
Poole, B.R.; Harris, J.R.
2011-01-01
The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.
Superconducting gap anisotropy and d-wave pairing in YBa2Cu3O7-δ
Verma, Sanjeev K.; Gupta, Anushri; Kumari, Anita; Indu, B. D.
2018-02-01
Considering Born-Mayer-Huggins potential as a most suitable potential to study the dynamical properties of high-temperature superconductors (HTS), the many-body quantum dynamics to obtain phonon Green’s functions has been developed via a Hamiltonian that incorporates the contributions of harmonic electron and phonon fields, phonon field anharmonicities, defects and electron-phonon interactions without considering BCS structure. This enables one to develop the quasiparticle renormalized frequency dispersion in the representative high-temperature cuprate superconductor YBa2Cu3O7-δ. The superconducting gap shows substantial changes with increased doping. The in-plane gap study revealed a v-shape gap with a nodal point along kx = ±ky direction for optimum doping (δ = 0.16) and the nodal point vanished in underdoped and overdoped regimes. The dx2-y2 pairing symmetry is observed at optimum doping with the presence of s or dxy components ( < 3%) in underdoped and overdoped regimes.
An experimental mechanical switch for 3 kA driven by superconducting coils
International Nuclear Information System (INIS)
Herman, H.J.; Ten Haken, B.; Van de Klundert, L.J.M.
1986-01-01
Usually mechanical switches that are built for use in superconducting circuits are driven in some way by a rod which is controlled at room temperature. In this paper, an alternative method to drive the electrodes of the switch is reported. In fact the new device is a superconducting relay that uses an antiseries connection of two superconducting air-core coils. The repulsing force of these relay coils enables the switch to be closed by applying a pressure to the electrodes. The off-state is effected by a set of springs which interrupt the electrodes when the coil current is switched off. We realized that this electro-magnetic method of producing large forces could be promising for driving a mechanical switch. The desired method was demonstrated by an experimental model. A switch-on resistance of 8*10 -8 Ω with a switch current of 3 kA and a contact force of 20 kN was measured
Dynamics of vortex–antivortex pair in a superconducting thin strip with narrow slits*
International Nuclear Information System (INIS)
He An; Xue Cun; Zhou You-He
2017-01-01
In the framework of phenomenological time-dependent Ginzburg–Landau (TDGL) formalism, the dynamical properties of vortex–antivortex (V-Av) pair in a superconductor film with a narrow slit was studied. The slit position and length can have a great impact not only on the vortex dynamical behavior but also the current–voltage ( I – V ) characteristics of the sample. Kinematic vortex lines can be predominated by the location of the slit. In the range of relatively low applied currents for a constant weak magnetic field, kinematic vortex line appears at right or left side of the slit by turns periodically. We found such single-side kinematic vortex line cannot lead to a jump in the I – V curve. At higher applied currents the phase-slip lines can be observed at left and right sides of the slit simultaneously. The competition between the vortex created at the lateral edge of the sample and the V-Av pair in the slit will result in three distinctly different scenarios of vortex dynamics depending on slit length: the lateral vortex penetrates the sample to annihilate the antivortex in the slit; the V-Av pair in the slit are driven off and expelled laterally; both the lateral vortex and the slit antivortex are depinned and driven together to annihilation in the halfway. (paper)
Poole, Charles P; Farach, Horacio A
1995-01-01
Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high
Shinozaki, B.; Ezaki, S.; Odou, T.; Makise, K.; Asano, T.
2018-03-01
Transport properties have been investigated for the epitaxial superconducting NbN thin films. We analysed the excess conductance σ’ ≡ σ(T) - σN by the sum of the Aslamazov-Larkin (AL) and Maki-Thompson (MT) terms for thermal fluctuations above T c, where the σN ≡1/R sq N is the normal state sheet conductance. We have found that the theoretical expression σ’theo (T) = σ’AL (T) + σ’MT (T,δ) can be well fitted to σ’exp (T) with use of the suitable value of the pair breaking parameter δ in the MT term relating to the inelastic scattering rate 1/τin(T) as δ = πħ/8k B Tτin. The rate 1/τin(T) given by the sum of 1/τfluc(T), 1/τe-e(T) and 1/τe-ph (T) is determined from the analysis of the magneto-conductance Δσ = σ(H) – σ(0) by the sum of AL, MT and the localization terms, where the first, second and third terms correspond to the rate due to the superconducting fluctuation effect, electron-electron and electron-phonon interactions, respectively. The R sq N dependence of δ is expressed by δ = δ0 + αR sq N, where the first term δ0 due to 1/τe-ph (T) and the second term due to the sum of 1/τfluc(T) and 1/τe-e(T). Although we obtained a reasonable value of Debye temperature ΘD ≈630 K from the δ0, the magnitude of the α is about 5 times larger than the theoretical value.
Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.
2016-01-01
In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.
International Nuclear Information System (INIS)
Langone, J.
1989-01-01
This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries
International Nuclear Information System (INIS)
Onnes, H.K.
1988-01-01
The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace
International Nuclear Information System (INIS)
Andersen, N.H.; Mortensen, K.
1988-12-01
This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs
International Nuclear Information System (INIS)
Palmieri, V.
1990-01-01
This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio
Thomas, D B
1974-01-01
A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).
International Nuclear Information System (INIS)
Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato
2014-01-01
We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion
International Nuclear Information System (INIS)
Li, C.; Ru, C.Q.; Mioduchowski, A.
2006-01-01
Inspired by recent interest in torsion of the central pair microtubules in eukaryotic flagella, a novel thin-walled elastic beam model is suggested to study critical condition under which uniform bending of a flagellum will cause lateral/torsional buckling of the central pair. The model is directed to the central pair itself and the role of all surrounding cross-linkings inside the flagellum is modeled as an equivalent surrounding elastic medium. The model predicts that bending-driven torsion of the central pair does occur when the radius of curvature of the bent flagellum reduces to a moderate critical value typically of tens of microns. In particular, this critical value is almost independent of the flagellum length, and more sensitive to the parameters defining the surrounding elastic medium than the shear modulus of microtubules. The predicted wavelengths of the torsional buckling mode are insensitive to the flagellum length and comparable to some known related experimental data. These results indicate that torsion of the central pair microtubules in flagella is inevitable as a result of bending-driven lateral buckling. This offers an entirely new insight into the ongoing research on the mechanism of the central pair torsion
International Nuclear Information System (INIS)
Kakani, S.L.; Kakani, Shubhra
2007-01-01
The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted
International Nuclear Information System (INIS)
Caruana, C.M.
1988-01-01
Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness
Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.
2018-05-01
The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.
Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing
International Nuclear Information System (INIS)
Wood, R.F.
1993-06-01
The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons
International Nuclear Information System (INIS)
Fedorov, N.; Rinderer, L.
1977-01-01
We have studied the current-induced breakdown of superconductivity in wide (100--980 μm) and thin (0.25--0.98 μm) films of tin. It is shown that the current at which the resistance of the sample begins to rise rapidly in the process of the destruction of superconductivity by a current can be fairly well associated with the theoretical value of the pair-breaking current in the Ginzburg-Landau phenomenological approach (I/sub c//sup G L/). This effect is observed over a rather wide temperature region (up to ΔTapprox.0.7 K), depending on the electron mean free path in the films. The values of the critical currents outside the above-mentioned region correlate qualitatively with those determined by inhomogeneities of the films as proposed by Larkin and Ovchinnikov
Laser driven electron-positron pair creation-kinetic theory versus analytical approximations
International Nuclear Information System (INIS)
Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.
2013-01-01
The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
First tests of twisted-pair HTS 1 kA range cables for use in superconducting links
Ballarino, A; Hurte, J; Sitko, M; Willering, G
2011-01-01
The requirement at CERN for 1 kA range High Temperature Superconducting (HTS) cables optimized for long electrical transfer has led to the design and assembly of a novel type of cable that can be made from pre-reacted MgB2, Bi-2223 or YBCO tapes. The cable consists of an assembly of twisted pairs, each of which is made from three superconducting tapes with the required copper stabilizer. The twisted pair cable is designed to transfer a DC current of ± 600 A in helium gas environment. The paper reports on the results of the electrical tests performed on twisted-pair cables of identical structure and made from commercially available MgB2, Bi-2223 and YBCO tapes. The twist pitch of the cables is adapted to match the mechanical properties of the different superconductors. Critical current tests were performed at both liquid helium and liquid nitrogen temperature. The electrical performance of several cables made from different conductors is reported and compared.
Energy Technology Data Exchange (ETDEWEB)
C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg
2011-09-01
We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.
Free-electron laser multiplex driven by a superconducting linear accelerator.
Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim
2016-09-01
Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.
Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan
2014-01-01
Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.
Energy Technology Data Exchange (ETDEWEB)
Henry, S., E-mail: s.henry@physics.ox.ac.uk; Pipe, M.; Cottle, A.; Clarke, C.; Divakar, U.; Lynch, A.
2014-11-01
The cryoEDM neutron electric dipole moment experiment requires a SQUID magnetometry system with pick-up loops inside a magnetically shielded volume connected to SQUID sensors by long (up to 2 m) twisted-wire pairs (TWPs). These wires run outside the main shield, and therefore must run through superconducting capillaries to screen unwanted magnetic pick-up. We show that the average measured transverse magnetic pick-up of a set of lengths of TWPs is equivalent to a loop area of 5.0×10{sup −6} m{sup 2}/m, or 14 twists per metre. From this we set the requirement that the magnetic shielding factor of the superconducting capillaries used in the cryoEDM system must be greater than 8.0×10{sup 4}. The shielding factor—the ratio of the signal picked-up by an unshielded TWP to that induced in a shielded TWP—was measured for a selection of superconducting capillaries made from solder wire. We conclude the transverse shielding factor of a uniform capillary is greater than 10{sup 7}. The measured pick-up was equal to, or less than that due to direct coupling to the SQUID sensor (measured without any TWP attached). We show that discontinuities in the capillaries substantially impair the magnetic shielding, yet if suitably repaired, this can be restored to the shielding factor of an unbroken capillary. We have constructed shielding assemblies for cryoEDM made from lengths of single core and triple core solder capillaries, joined by a shielded Pb cylinder, incorporating a heater to heat the wires above the superconducting transition as required.
Cooper-pair size and binding energy for unconventional superconducting systems
Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez
2018-06-01
The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.
Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.
2018-06-01
Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.
International Nuclear Information System (INIS)
Narlikar, A.V.
1993-01-01
Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig
International Nuclear Information System (INIS)
Anon.
1988-01-01
This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject
International Nuclear Information System (INIS)
Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.
1989-01-01
Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry
Crossover from phonon-mediated to repulsion-induced superconducting pairing with large momentum
International Nuclear Information System (INIS)
Belyavsky, V.I.; Kopaev, Yu.V.; Nguyen, N.T.; Togushova, Yu.N.
2005-01-01
There are asymmetric and symmetric solutions of the self-consistency equation which takes into account both phonon-mediated and Coulomb pairing interactions. The first of them leads to the order parameter with a nodal line and, in the case of pairing with large momentum, exists at any repulsive and attractive strengths. The second one arises if the attraction exceeds a level depending on the repulsion strength and dominates the pairing in the strong attraction limit. The competition of attraction and repulsion results in unusual isotope-effect exponent observed in the cuprates
Unconventional superconductivity and surface pairing symmetry in half-Heusler compounds
Wang, Qing-Ze; Yu, Jiabin; Liu, Chao-Xing
2018-06-01
Signatures of nodal line/point superconductivity [Kim et al., Sci. Adv. 4, eaao4513 (2018), 10.1126/sciadv.aao4513; Brydon et al., Phys. Rev. Lett. 116, 177001 (2016), 10.1103/PhysRevLett.116.177001] have been observed in half-Heusler compounds, such as LnPtBi (Ln = Y, Lu). Topologically nontrivial band structures, as well as topological surface states, have also been confirmed by angular-resolved photoemission spectroscopy in these compounds [Liu et al., Nat. Commun. 7, 12924 (2016), 10.1038/ncomms12924]. In this paper, we present a systematical classification of possible gap functions of bulk states and surface states in half-Heusler compounds and the corresponding topological properties based on the representations of crystalline symmetry group. Different from all the previous studies based on the four band Luttinger model, our study starts with the six-band Kane model, which involves both four p-orbital type of Γ8 bands and two s-orbital type of Γ6 bands. Although the Γ6 bands are away from the Fermi energy, our results reveal the importance of topological surface states, which originate from the band inversion between Γ6 and Γ8 bands, in determining surface properties of these compounds in the superconducting regime by combining topological bulk state picture and nontrivial surface state picture.
International Nuclear Information System (INIS)
2007-01-01
During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with
Theory of superconductivity. II. Excited Cooper pairs. Why does sodium remain normal down to 0 K?
International Nuclear Information System (INIS)
Fujita, S.
1992-01-01
Based on a generalized BCS Hamiltonian in which the interaction strengths (V 11 , V 22 , V 12 ) among and between electron (12) and hole (2) Cooper pairs are differentiated, the thermodynamic properties of a type-I superconductor below the critical temperature T c are investigated. An expression for the ground-state energy, W - W 0 , relative to the unperturbed Block system is obtained. The usual BCS formulas are obtained in the limits: (all) V jl = V 0 , N 1 (0) = N 2 (0). Any excitations generated through the BCS interaction Hamiltonian containing V jl must involve Cooper pairs of antiparallel spins and nearly opposite momenta. The nonzero momentum or excited Cooper pairs below T c are shown to have an excitation energy band minimum lower than the quasi-electrons, which were regarded as the elementary excitations in the original BCS theory. The energy gap var-epsilon g (T) defined relative to excited and zero-momentum Copper pairs (when V jl > 0) decreases from var-epsilon g (0) to 0 as the temperature T is raised from 0 to T c . If electrons only are available as in a monovalent metal like sodium (V 12 = 0), the energy constant Δ 1 is finite but the energy gap vanishes identically for all T. In agreement with the BCS theory, the present theory predicts that a pure nonmagnetic metal in any dimensions should have a Cooper-pair ground state whose energy is lower than that of the Bloch ground state. Additionally it predicts that a monovalent metal should remain normal down to 0 K, and that there should be no strictly one-dimensional superconductor
Energy Technology Data Exchange (ETDEWEB)
Yashwant, G.; Prajapat, C.L. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Jayakumar, O.D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Singh, M.R.; Gupta, S.K. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Ravikumar, G. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India)], E-mail: gurazada@barc.gov.in
2008-06-15
Magnetization measurements on lead nanoparticles in the size range 35-45 nm are presented. It is shown that the critical fields in these nanoparticles are enhanced significantly above their bulk values with temperature dependence also distinct from that of bulk. The observed 'type II' like shape of the magnetization curves is explained on the basis of the Ginzburg-Landau phenomenology by invoking the pair breaking effect of the London screening currents, which makes the effective penetration depth an increasing function of the field. The temperature dependence of critical field is found to be consistent with our explanation.
Energy Technology Data Exchange (ETDEWEB)
Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.
2005-07-01
Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.
Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal
Energy Technology Data Exchange (ETDEWEB)
Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM
2009-01-01
The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Breather kink-antikink-pair conversion in the driven sine-Gordon system
DEFF Research Database (Denmark)
Lomdahl, P. S.; Olsen, O. H.; Samuelsen, Mogens Rugholm
1984-01-01
Breather excitations in the sine-Gordon equation influenced by constant driving forces are investigated—large driving forces cause the breather to split into a kk― (2π kink-2π antikink) pair while for small driving forces the breather excitations enter stationary modes. A perturbation method...
Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production
Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.
2018-05-01
The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.
Directory of Open Access Journals (Sweden)
Tonio Heidegger
2017-08-01
Full Text Available Background: Modulation of cortical excitability by transcranial magnetic stimulation (TMS is used for investigating human brain functions. A common observation is the high variability of long-term depression (LTD-like changes in human (motor cortex excitability. This study aimed at analyzing the response subgroup distribution after paired continuous theta burst stimulation (cTBS as a basis for subject selection.Methods: The effects of paired cTBS using 80% active motor threshold (AMT in 31 healthy volunteers were assessed at the primary motor cortex (M1 corresponding to the representation of the first dorsal interosseous (FDI muscle of the left hand, before and up to 50 min after plasticity induction. The changes in motor evoked potentials (MEPs were analyzed using machine-learning derived methods implemented as Gaussian mixture modeling (GMM and computed ABC analysis.Results: The probability density distribution of the MEP changes from baseline was tri-modal, showing a clear separation at 80.9%. Subjects displaying at least this degree of LTD-like changes were n = 6 responders. By contrast, n = 7 subjects displayed a paradox response with increase in MEP. Reassessment using ABC analysis as alternative approach led to the same n = 6 subjects as a distinct category.Conclusion: Depressive effects of paired cTBS using 80% AMT endure at least 50 min, however, only in a small subgroup of healthy subjects. Hence, plasticity induction by paired cTBS might not reflect a general mechanism in human motor cortex excitability. A mathematically supported criterion is proposed to select responders for enrolment in assessments of human brain functional networks using virtual brain lesions.
International Nuclear Information System (INIS)
Kitazawa, Masakiyo; Kunihiro, Teiji; Koide, Tomoi; Nemoto, Yukio
2005-01-01
We investigate the fluctuations of the diquark-pair field and their effects on observables above the critical temperature T c in two-flavor color superconductivity (CSC) at moderate density using a Nambu-Jona-Lasinio-type effective model of QCD. Because of the strong-coupling nature of the dynamics, the fluctuations of the pair field develop a collective mode, which has a prominent strength even well above T c . We show that the collective mode is actually the soft mode of CSC. We examine the effects of the pair fluctuations on the specific heat and the quark spectrum for T above but close to T c . We find that the specific heat exhibits singular behavior because of the pair fluctuations, in accordance with the general theory of second-order phase transitions. The quarks display a typical non-Fermi liquid behavior, owing to the coupling with the soft mode, leading to a pseudo-gap in the density of states of the quarks in the vicinity of the critical point. Some experimental implications of the precursory phenomena are also discussed. (author)
Self-driven cooling loop for a large superconducting magnet in space
Mord, A. J.; Snyder, H. A.
1992-01-01
Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.
International Nuclear Information System (INIS)
EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.
2011-01-01
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
Dynamics of the resistive state of a narrow superconducting channel in the ac voltage-driven regime
International Nuclear Information System (INIS)
Yerin, Yu.S.; Fenchenko, V.N.
2013-01-01
Within the time-dependent Ginzburg-Landau equations the dynamics of the order parameter in superconducting narrow channels of different lengths is investigated in the ac voltage-driven regime. The resistive state of the system at low frequencies of the applied voltage is characterized by the formation of periodic-in-time groups of oscillating phase-slip centers (PSC). An increase in frequency reduces the duration of the existence of these periodic groups. Depending on the length of the channel the ac voltage either tends to revert the channel to the state with one central PSC in periodic groups or minimizes the number of forming PSCs and orders their pattern in the system. A further increase in frequency for rather short channels leads to suppression of the order parameter without any creation of PSCs. For systems, whose length exceeds the specified limit, the formation of PSC occurs after a certain time which increases rapidly with frequency. The current-voltage characteristics of rather short channels at different applied voltage frequencies are calculated too. It is found that the current-voltage characteristics have a step-like structure, and the height of the first step is determined by the quadruple value of the Josephson frequency.
Basic Study of Superconductive Actuator
涌井, 和也; 荻原, 宏康
2000-01-01
There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...
Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A
2013-03-15
Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.
International Nuclear Information System (INIS)
Hirsch, J.E.; Marsiglio, F.
1989-01-01
The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero
Grant, Paul
2014-03-01
This talk will reprise a personal journey by the speaker in industrial and applied physics, commencing with his employment by IBM at age 17 in the early 1950s, and continuing through his corporate sponsored undergraduate and graduate years at Clarkson and Harvard Universities, resulting in 1965 in a doctorate in applied physics from the latter. He was subsequently assigned by IBM to its research division in San Jose (now Almaden), where he initially carried out both pure and applied theoretical and experimental investigations encompassing a broad range of company-related product technologies...storage, display, printer and data acquisition hardware and software. In 1973, he undertook performing DFT and quantum Monte Carlo calculations in support of group research in the then emerging field of organic and polymer superconductors, a very esoteric pursuit at the time. Following upon several corporate staff assignments involving various product development and sales strategies, in 1982 he was appointed manager of the cooperative phenomena group in the Almaden Research Center, which beginning in early 1987, made significant contributions to both the basic science and applications of high temperature superconductivity (HTSC). In 1993, after a 40-year career, he retired from IBM to accept a Science Fellow position at the Electric Power Research Institute (EPRI) where he funded power application development of superconductivity. In 2004, he retired from his EPRI career to undertake ``due diligence'' consulting services in support of the venture capital community in Silicon Valley. As a ``hobby,'' he currently pursues and publishes DFT studies in hope of discovering the pairing mechanism of HTSC. In summary, the speaker's career in industrial and applied physics demonstrates one can combine publishing a record three PRLs in one month with crawling around underground in substations with utility lineman helping install superconducting cables, along the way publishing 10
International Nuclear Information System (INIS)
Hebard, A.F.; Fiory, A.T.; Siegal, M.P.; Phillips, J.M.; Haddon, R.C.
1991-01-01
Low-field ac screening measurements on YBa 2 Cu 3 O 7-δ films and (BEDT-TTF) 2 Cu(SCN) 2 crystals [where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene], both thought to contain a high density of defects, reveal a diminution of screening and a common extrinsic temperature dependence of the screening length λ. Vortex-core pinning at the defects is shown to give a low-temperature T 2 power-law temperature dependence to λ that, in contrast to the exponential behavior expected from s-wave pairing, can be mistaken as evidence for lines or nodes of the energy gap on the Fermi surface
Drive the Dirac electrons into Cooper pairs in SrxBi2Se3
Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu
2017-01-01
Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs. PMID:28198378
Spin Triplet Nematic Pairing Symmetry and Superconducting Double Transition in U1-xThxBe13
Machida, Kazushige
2018-03-01
Motivated by a recent experiment on U1-xThxBe13 with x = 3%, we develop a theory to narrow down the possible pair symmetry to consistently describe the double transition utilizing various theoretical tools, including group theory and Ginzburg-Landau theory. It is explained in terms of the two-dimensional representation Eu with spin triplet. Symmetry breaking causes the degenerate Tc to split into two. The low-temperature phase is identified as the cyclic p wave: d(k) = \\hat{x}kx + ɛ \\hat{y}ky + ɛ 2\\hat{z}kz with ɛ3 = 1, whereas the biaxial nematic phase: d(k) = √{3} (\\hat{x}kx - \\hat{y}ky) is the high-temperature one. This allows us to simultaneously identify the uniaxial nematic phase: d(k) = 2\\hat{z}kz - \\hat{x}kx - \\hat{y}ky for UBe13, which spontaneously breaks the cubic symmetry of the system. Those pair functions are fully consistent with this description and existing data. We comment on the accidental scenario in addition to this degeneracy scenario and the intriguing topological nature hidden in this long-known material.
International Nuclear Information System (INIS)
Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu
2014-01-01
A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects
Energy Technology Data Exchange (ETDEWEB)
Anversa, Jonas [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Escola de Engenharia Civil, Faculdade Meridional, 99070-220, Passo Fundo, RS (Brazil); Chakraborty, Sudip, E-mail: sudiphys@gmail.com [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Piquini, Paulo [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden)
2016-05-23
In this letter, we are reporting the change of superconducting critical temperature in Sb{sub 2}Se{sub 3} topological insulator under the influence of an external hydrostatic pressure based on first principles electronic structure calculations coupled with Migdal–Eliashberg model. Experimentally, it was shown previously that Sb{sub 2}Se{sub 3} was undergoing through a transition to a superconducting phase when subjected to a compressive pressure. Our results show that the critical temperature increases up to 6.15 K under the pressure unto 40 GPa and, subsequently, drops down until 70 GPa. Throughout this pressure range, the system is preserving the initial Pnma symmetry without any structural transformation. Our results suggest that the possible relevant mechanism behind the superconductivity in Sb{sub 2}Se{sub 3} is primarily the electron–phonon coupling.
International Nuclear Information System (INIS)
Kustom, R.L.; Akita, S.; Okada, H.; Skiles, J.
1985-01-01
Superconductive Magnetic Energy Storage (SMES) coils for diurnal load leveling and system peaking are envisioned to operate at hundreds of thousands of amperes and a few kilovolts. The interface between the SMES coil and the electric utility is envisioned to be Graetz bridges using SCR switches. Many parallel SCR switches or bridge units will have to operate in parallel because of the high operating current of the coil. Current balancing on parallel Graetz bridges driving a single 8-hy superconducting coil has been achieved on a laboratory model using delay-angle control with an LSI 11/2 microprocessor and external digital control hardware
Maassen van den Brink, A.; Odintsov, A.A.; Bobbert, P.A.; Schön, G.
1991-01-01
Small capacitance tunnel junctions show single electron effects and, in the superconducting state, the coherent tunneling of Cooper pairs. We study these effects in a system of two Josephson junctions, driven by a voltage source with a finite impedance. Novel features show up in theI–V
Energy Technology Data Exchange (ETDEWEB)
Smylie, M. P.; Claus, H.; Kwok, W. -K.; Louden, E. R.; Eskildsen, M. R.; Sefat, A. S.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Bokari, E.; Niraula, P. M.; Kayani, A.; Dewhurst, C. D.; Snezhko, A.; Welp, U.
2018-01-19
The temperature dependence of the London penetration depth Delta lambda(T) in the superconducting doped topological crystalline insulator Sn1-xInxTe was measured down to 450 mK for two different doping levels, x approximate to 0.45 (optimally doped) and x approximate to 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T-c, indicating that ferroelectric interactions do not compete with superconductivity.
Inhomogeneous superconductivity in a ferromagnet
International Nuclear Information System (INIS)
Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.
2003-01-01
We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)
Interplay between superconductivity and magnetism in iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Chubukov, Andrey V [University of Wisconsin
2015-06-10
This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between
Introduction to superconductivity
Darriulat, Pierre
1998-01-01
The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.
Sun, Jiannan; Wang, Dan; Cheng, Heyong; Liu, Jinhua; Wang, Yuanchao; Xu, Zigang
2015-01-30
This study achieved resolution improvement for iodine speciation in the presence of an ion-pairing reagent by a pressure-driven capillary electrophoresis (CE) system. Addition of 0.01mM tetrabutyl ammonium hydroxide (TBAH) as the ion-pairing reagent into the electrophoretic buffer resulted in the complete separation of four iodine species (I(-), IO3(-), mono-iodothyrosine-MIT and di-iodothyrosine-DIT), because of the electrostatic interaction between TBAH and the negatively charged analytes. A +16kV separation voltage was applied along the separation capillary (50μm i.d., 80cm total and 60cm effective) with the inlet grounded. The detection wavelength was fixed at 210nm, and the pressure-driven flow rate was set at 0.12mLmin(-1) with an injected volume of 2μL. The optimal electrolyte consisted of 2mM borate, 2mM TBAH and 80% methanol with pH adjusted to 8.5. Baseline separation of iodine species was achieved within 7min. The detection limits for I(-), IO3(-), MIT and DIT were 0.052, 0.040, 0.032 and 0.025mgL(-1), respectively. The relative standard deviations of peak heights and areas were all below 3% for 5mgL(-1) and 5% for 1mgL(-1). Application of the proposed method was demonstrated by speciation analysis of iodine in two seaweed samples. The developed method offered satisfactory recoveries in the 91-99% range and good precisions (iodine speciation in environmental, food and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Crystalline color superconductivity
International Nuclear Information System (INIS)
Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna
2001-01-01
In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena
Newhouse, Vernon L
1975-01-01
Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells
Directory of Open Access Journals (Sweden)
A Bianconi
2006-09-01
Full Text Available The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.
pairing symmetry and electrodynamics of superconducting YBa2Cu3O7-δ, Nd1.85Ce0.15CuO4, and Nb
International Nuclear Information System (INIS)
Wu, Dong-Ho; Mao, Jian; Anlage, S.M.
1995-01-01
We experimentally investigate the pairing symmetry and electrodynamics of YBa 2 Cu 3 O 7-δ (YBCO), Nd 1.85 Ce 0.15 CuO 4 (NCCO), and Nb by examining the temperature dependence of the penetration depth λ (T) and surface resistance R s (T) in a comparative manner. Using the measured λ(T) and R s (T), we extract the complex conductivity σ=σ 1 -iσ 2 for each sample, and the quasiparticle scattering time τ(T) for the ab-plane and c-axis in YBCO. While NCCO and Nb show a strong resemblance in their electrodynamic properties, the electrodynamic properties of YBCO are very distinctive from the others. The results suggest that NCOO may have a BCS s-wave-like pairing state, while YBCO possibly has an unconventional pairing state. We compare the results on YBCO with the d-wave pairing scenario, as well as with other possible theoretical models
Quasiparticle dynamics in aluminium superconducting microwave resonators
De Visser, P.J.
2014-01-01
This thesis describes the intrinsic limits of superconducting microresonator detectors. In a superconductor at low temperature, most of the electrons are paired into so called Cooper pairs, which cause the well-known electrical conduction without resistance. Superconducting microwave resonators have
Energy Technology Data Exchange (ETDEWEB)
Delayen, Jean [Old Dominion Univ., Norfolk, VA (United States)
2014-11-14
This report summarizes the work done by Old Dominion University, in collaboration with the Thomas Jefferson National Accelerator Facility toward the development of high-velocity superconducting spoke cavities.
Junctionless Cooper pair transistor
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)
2017-02-15
Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
Superconductivity - applications
International Nuclear Information System (INIS)
The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de
Laviana, Aaron A; Tan, Hung-Jui; Hu, Jim C; Weizer, Alon Z; Chang, Sam S; Barocas, Daniel A
2018-03-01
To perform a bicenter, retrospective study of perioperative outcomes of retroperitoneal versus transperitoneal robotic-assisted laparoscopic partial nephrectomy (RALPN) and assess costs using time-driven activity-based costing (TDABC). We identified 355 consecutive patients who underwent RALPN at University of California Los Angeles and the University of Michigan during 2009-2016. We matched according to RENAL nephrometry score, date, and institution for 78 retroperitoneal versus 78 transperitoneal RALPN. Unadjusted analyses were performed using McNemar's Chi-squared or paired t test, and adjusted analyses were performed using multivariable repeated measures regression analysis. From multivariable models, predicted probabilities were derived according to approach. Cost analysis was performed using TDABC. Patients treated with retroperitoneal versus transperitoneal RALPN were similar in age (P = 0.490), sex (P = 0.715), BMI (P = 0.273), and comorbidity (P = 0.393). Most tumors were posterior or lateral in both the retroperitoneal (92.3%) and transperitoneal (85.9%) groups. Retroperitoneal RALPN was associated with shorter operative times (167.0 versus 191.1 min, P = 0.001) and length of stay (LOS) (1.8 versus 2.7 days, P factoring in disposable equipment, operative time, LOS, and personnel. In two high-volume, tertiary centers, retroperitoneal RALPN is associated with reduced operative times and shortened LOS in posterior and lateral tumors, whereas sharing similar clinicopathologic outcomes, which may translate into lower healthcare costs. Further investigation into anterior tumors is needed.
Superconductivity in doped semiconductors
Energy Technology Data Exchange (ETDEWEB)
Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr
2015-07-15
A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.
International Nuclear Information System (INIS)
Valles, James
2008-01-01
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
Geneva University - Superconducting flux quantum bits: fabricated quantum objects
2007-01-01
Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...
International Nuclear Information System (INIS)
Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.
1989-01-01
We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology
Pairing mechanism in oxide superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
1988-01-01
A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity
Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures
Energy Technology Data Exchange (ETDEWEB)
Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)
2015-07-01
Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.
Topological Superconductivity on the Surface of Fe-Based Superconductors.
Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng
2016-07-22
As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.
Investigations into nuclear pairing
International Nuclear Information System (INIS)
Clark, R.M.
2006-01-01
This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)
Superconductivity and spin fluctuations
International Nuclear Information System (INIS)
Scalapino, D.J.
1999-01-01
The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations
Topological confinement and superconductivity
Energy Technology Data Exchange (ETDEWEB)
Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
Dougherty, Ralph
2013-01-01
While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
Energy Technology Data Exchange (ETDEWEB)
Surmach, M.A.; Brueckner, F.; Kamusella, S.; Sarkar, R.; Portnichenko, P.Y.; Klauss, H.H.; Inosov, D.S. [TU Dresden (Germany); Park, J.T. [MLZ, Garching (Germany); Ghambashidze, G. [MPI, Stuttgart (Germany); Luetkens, H.; Biswas, P. [PSI, Villigen (Switzerland); Choi, W.J.; Seo, Y.I.; Kwon, Y.S. [DGIST, Daegu (Korea, Republic of)
2015-07-01
Using μSR, INS and NMR, we investigated the novel Fe-based superconductor with a triclinic crystal structure (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8} (T{sub c}=13 K). The T-dependence of the superfluid density from the μSR measurements indicates the presence of two superconducting gaps. Our INS data revealed commensurate spin fluctuations at the (π, 0) wave vector. Their intensity remains unchanged across T{sub c}, indicating the absence of a spin resonance typical for many Fe-pnictides. Instead, we observed a peak around ℎω{sub 0} = 7 meV at the same wave vector, which persists above T{sub c} and is characterized by the ratio ℎω{sub 0}/k{sub B}T{sub c}∼6.2, i.e. significantly higher than typical values for the magnetic resonant modes in iron pnictides (∝ 4.3). The T-dependence of magnetic intensity at 7 meV revealed an anomaly around T*=45 K related to the disappearance of this new mode. A suppression of the spin-lattice relaxation rate, 1=/T{sub 1}T, observed by NMR immediately below T* without any notable subsequent anomaly at T{sub c}, indicates that T{sup *} could mark the onset of a pseudogap in (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8}, likely associated with the emergence of preformed Cooper pairs.
Theories of superconductivity (a few remarks)
International Nuclear Information System (INIS)
Ginzburg, V.L.
1992-01-01
The early history in the development of superconductivity. Idea of pairing, Schafroth and BCS types of theories. Some remarks on present state of the microscopical theory of high-temperature superconductors (HTSC). Mean field macroscopic theory of superconductivity and its specific features in HTSC. About generalized macroscopic theory applicable in critical region. Concluding remarks. (orig.)
International Nuclear Information System (INIS)
Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.
1988-01-01
Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed
International Nuclear Information System (INIS)
2010-01-01
Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)
Energy Technology Data Exchange (ETDEWEB)
Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)
2015-07-15
Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.
Interplay of magnetism and superconductivity
International Nuclear Information System (INIS)
Akhavan, M.
2006-01-01
After about two decades of intense research since the discovery of high-temperature superconductivity (HTSC) in cuprates, although many aspects of the physics and chemistry of these cuprate superconductors are now well understood, the underlying pairing mechanism remains elusive. Magnetism and superconductivity are usually thought as incompatible, but in number of special materials including HTSCs these two mutually excluding mechanisms are found to coexist. The presence in a system of superconductivity and magnetism, gives rise to a large number of interesting phenomenon. This article provides perspective on recent developments and their implications for our understanding of the interplay between magnetism and superconductivity in new materials. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)
On the combination of the Cooper pair and the Ogg pair in the high-Tc oxide superconductor
International Nuclear Information System (INIS)
Zhang Liyuan.
1991-08-01
In this paper it is argued that the superconductivity of the high-T c oxide superconductor (HTOS) can be explained by the combinating mechanism of the Cooper pair and the Ogg pair. The properties of the superconducting state of the HTOS have been calculated under this mechanism, and the theoretical results are overall consistent with the experiment. (author). 37 refs
Sunwong, P; Higgins, J S; Hampshire, D P
2014-06-01
We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10⁶ A m⁻¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max) ≈ (1.35 × 10(-3))D(0.41) l h(‑1) A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high
International Nuclear Information System (INIS)
Sunwong, P.; Higgins, J. S.; Hampshire, D. P.
2014-01-01
We present the designs of probes for making critical current density (J c ) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ∼0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J c measurements, made by uniformly ramping the current up to a maximum current (I max ) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b ′ ), and the maximum safe temperature for the critical-current leads (T max ). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI max /A=[1.46D −0.18 L 0.4 (T max −300) 0.25D −0.09 +750(b ′ /I max )D 10 −3 I max −2.87b ′ ]× 10 6 A m −1 where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm 2 is obtained when I max = 1000 A, T max = 400 K, D = 0.2, b ′ = 0.3 l h −1 and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h −1 . When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I max ≈ (1.35 × 10 −3 )D 0.41 l h ‑1 A −1 . A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in
Superconductivity in doped Dirac semimetals
Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2016-07-01
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
International Nuclear Information System (INIS)
Jerome, D.
1980-01-01
We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)
Lighting up superconducting stripes
Ergeçen, Emre; Gedik, Nuh
2018-02-01
Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.
International Nuclear Information System (INIS)
Goncharov, A.F.; Struzhkin, V.V.
2003-01-01
We overview recent high-pressure studies of high-temperature superconductor MgB 2 by Raman scattering technique combined with measurements of superconducting critical temperature T c and lattice parameters up to 57 GPa. An anomalously broadened Raman band at 620 cm -1 is observed and assigned to the in-plane boron stretching E 2g mode. It exhibits a large Grueneisen parameter indicating that the vibration is highly anharmonic. The pressure dependencies of the E 2g mode and T c reveal anomalies at 15-22 GPa (isotope dependent). The anharmonic character of the E 2g phonon mode, its anomalous pressure dependence, and also that for T c are interpreted as a result of a phonon-assisted Lifshitz electronic topological transition
Unconventional superconductivity in heavy-fermion compounds
Energy Technology Data Exchange (ETDEWEB)
White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)
2015-07-15
Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.
Theory of high temperature superconductivity
International Nuclear Information System (INIS)
Srivastava, C.M.
1989-01-01
This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown
International Nuclear Information System (INIS)
Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.
1978-01-01
This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures
International Nuclear Information System (INIS)
Kormann, R.; Loiseau, R.; Marcilhac, B.
1989-01-01
The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr
Energy Technology Data Exchange (ETDEWEB)
Anon.
1988-09-15
Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.
Superconductivity: Phenomenology
International Nuclear Information System (INIS)
Falicov, L.M.
1988-08-01
This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect
Czech Academy of Sciences Publication Activity Database
Symonová, Radka; Majtánová, Zuzana; Sember, Alexandr; Staaks, G.B.O.; Bohlen, Jörg; Freyhof, J.; Rábová, Marie; Ráb, Petr
2013-01-01
Roč. 13, FEB 14 (2013), 42/1-42/21 ISSN 1471-2148 R&D Projects: GA ČR GA523/08/0824; GA MŠk LC06073; GA ČR(CZ) GPP506/11/P596 Institutional research plan: CEZ:AV0Z50450515 Keywords : species pairs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.407, year: 2013
Theory-guided discovery of new superconducting materials
Kolmogorov, Aleksey
2015-03-01
Extensive theoretical effort to predict new superconductors has resulted in remarkably few discoveries. Successful examples so far have been restricted primarily to pressure- or doping-driven superconducting transformations in existing materials. In this talk I will describe our work that has led to the prediction and discovery of a brand-new superconducting FeB4 compound with a previously unknown crystal structure. First measurements supported the predicted phonon-mediated pairing mechanism, rare for an iron-based superconductor. The identification of FeB4 candidate material was a result of combined high-throughput screening, targeted evolutionary search, and rational design. The systematic study of more than 12,000 metal boride phases has identified dozens of synthesizable materials with unusual structural motifs, some of which have been confirmed experimentally. I will overview employed strategies for selecting promising superconducting compounds and describe our on-going work on accelerating the search for stable materials. Research is sponsered by the NSF.
Pairing from dynamically screened Coulomb repulsion in bismuth
Ruhman, Jonathan; Lee, Patrick A.
2017-12-01
Recently, Prakash et al. have discovered bulk superconductivity in single crystals of bismuth, which is a semimetal with extremely low carrier density. At such low density, we argue that conventional electron-phonon coupling is too weak to be responsible for the binding of electrons into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction generated on the scale of the collective plasma modes. We model the electronic states in bismuth to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller velocity. We find a weak-coupling instability, which is greatly enhanced by the presence of the hole pocket. Therefore we argue that bismuth is the first material to exhibit superconductivity driven by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the s -wave channel without breaking time-reversal symmetry.
Ruthenates: simple superconducting qubits
International Nuclear Information System (INIS)
Gulian, Armen M.; Wood, Kent S.
2004-01-01
We propose triplet superconductors, such as ruthenates, as a prospective material for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually very easy to imagine the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of the Bose-Einstein condensates and should facilitate long decoherence times of these qubits versus other 'vectorial' schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for a requirement like entanglement between qubits via the proximity effect
International Nuclear Information System (INIS)
Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.
1976-01-01
Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons
Superconductivity in doped two-leg ladder cuprates
International Nuclear Information System (INIS)
Qin Jihong; Yuan Feng; Feng Shiping
2006-01-01
Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime
Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran
2018-06-01
In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.
International Nuclear Information System (INIS)
Ruvalds, J.
1990-01-01
This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors
International Nuclear Information System (INIS)
Murphy, J.H.
1982-01-01
A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings
International Nuclear Information System (INIS)
1994-08-01
This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature
International Nuclear Information System (INIS)
Willen, E.
1996-01-01
Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine
International Nuclear Information System (INIS)
Pankratov, S.G.
1987-01-01
A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular
International Nuclear Information System (INIS)
Gray, K.E.
1978-01-01
A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor
International Nuclear Information System (INIS)
Crisan, M.
1988-01-01
This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity
Gauge Model of High-Tc Superconductivity
International Nuclear Information System (INIS)
Ng, Sze Kui
2012-01-01
A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.
Superconductivity in compensated and uncompensated semiconductors
Directory of Open Access Journals (Sweden)
Youichi Yanase and Naoyuki Yorozu
2008-01-01
Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.
Color symmetrical superconductivity in a schematic nuclear quark model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; da Providencia, J.
2010-01-01
In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...
Thermodynamic Green functions in theory of superconductivity
Directory of Open Access Journals (Sweden)
N.M.Plakida
2006-01-01
Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.
Changes of superconducting interaction in interfaces
International Nuclear Information System (INIS)
Halbritter, J.
1976-01-01
The leakage of conduction electrons from metals into dielectric or semiconducting coatings yields changes in electron phonon coupling and hybridization with localized states in the coating. The changed electron-phonon coupling explains the observed strengthened superconducting interaction with some monolayer thick coating. The hybridization with localized states, i.e. resonance scattering, yields pair weakening and hence a monotonic depression of superconductivity with coating thickness in agreement with experiments. The latter effect explains quantitatively the Tsub(c) and Δ depression (Δ/kTsub(c) approximately equal to const) and a decrease in the Maki-Thompson-fluctuation term observed with thin superconducting films. (author)
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.
2014-01-01
Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...
International Nuclear Information System (INIS)
Wilczek, F.
1997-01-01
The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken
Energy Technology Data Exchange (ETDEWEB)
Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)
1997-09-22
The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.
Sagan, Bruce E.; Savage, Carla D.
2012-01-01
We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...
1985-01-01
Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.
Melt formed superconducting joint between superconducting tapes
International Nuclear Information System (INIS)
Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.
1992-01-01
This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes
Superconductivity in LiFeAs probed with quasiparticle interference
Energy Technology Data Exchange (ETDEWEB)
Sun, Zhixiang; Nag, Pranab Kumar; Baumann, Danny; Kappenberger, Rhea [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)
2016-07-01
In spite of many theoretical and experimental efforts on studying the superconductivity of iron-based high temperature superconductors, the puzzle about LiFeAs's superconducting mechanism and pairing symmetry are still not clear. Here we want to present our low temperature scanning tunneling microscopy results on probing the superconductivity of LiFeAs. By taking conductance spectroscopic maps for both the superconducting state and normal state, we identify the scatterings due to the electron and hole bands close to the Fermi level. We observe a strong indication that the superconducting behavior in the hole bands are important for the formation of superconductivity in LiFeAs. Our results may also shine light on understanding the superconductivity in other iron pnictide superconductors.
The pairing theory - its physical basis and its consequences
International Nuclear Information System (INIS)
Schrieffer, J.R.
1992-01-01
The key developments which set the scene for the microscopic theory of superconductivity are discussed and the physical reasoning which lead to the pairing theory is presented. Consequences of the BCS theory are reviewed. (orig.)
Unresolved problems in superconductivity of CaC6
Mazin, I.I.; Boen, L.; Dolgov, O.V.; Golubov, Alexandre Avraamovitch; Bachelet, G.B.; Giantomassi, M.; Andersen, O.K.
2007-01-01
We discuss the current status of the theory of the “high-temperature” superconductivity in intercalated graphites YbC6 and CaC6. We emphasize that while the general picture of conventional, phonon-driven superconductivity has already emerged and is generally accepted, there are still interesting
Nature of inhomogeneous states in superconducting junctions
International Nuclear Information System (INIS)
Ivlev, B.I.; Kopnin, N.B.
1982-01-01
A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally
Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model
International Nuclear Information System (INIS)
Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian
1988-01-01
The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs
Unconventional superconductivity in heavy fermionic and high-Tc superconductors
International Nuclear Information System (INIS)
Volovik, G.E.
1989-01-01
Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough
International Nuclear Information System (INIS)
1980-05-01
Abstracts of papers presented at the meeting are given. Topics covered include: Kapitza resistance; superconducting tunneling; energy gap enhancement in superconductors; instabilities in nonequilibrium superconducting states; exchange of charge between superconducting pairs and quasiparticles; motion of magnetic flux (flux flow); and other new phenomena
International Nuclear Information System (INIS)
Ohnuma, Toshiro; Ohno, J.
1994-01-01
Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves
Energy Technology Data Exchange (ETDEWEB)
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors
Directory of Open Access Journals (Sweden)
Y.-B. Huang
2012-12-01
Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.
Energy Technology Data Exchange (ETDEWEB)
Lobanov, Artur; Seitz, Claudia; Melzer-Pellmann, Isabell [DESY, Hamburg (Germany)
2016-07-01
We present a search for direct gluino-pair production in events with a single lepton using 13 TeV pp-collisions at the CMS experiment. This final state is characterised by high multiplicities of jets and b-quark jets, as well as a large scalar sum of all jet transverse momenta, and a large scalar sum of the transverse missing momentum and the lepton transverse momentum, called L{sub T}. The dominating Standard Model backgrounds in this phase-space are tt+jets and W+jets production. A data-driven method is used to estimate the background in the search regions. All backgrounds except for QCD in the (high ΔΦ(W,l)) signal regions are predicted by from the number of events in the low ΔΦ(W,l) region, with transfer factors determined also from data, while for the multi-jet events a fake-lepton enriched side-band is used. We conclude by showing predictions and final results from data corresponding to 2.1 fb{sup -1} integrated luminosity recorded with the CMS detector during the LHC Run2 in 2015.
The state of superconductivity
International Nuclear Information System (INIS)
Clark, T.D.
1981-01-01
The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)
Mirror nesting and repulsion-induced superconductivity
International Nuclear Information System (INIS)
Belyavsky, Vladimir I.; Kapaev, Vladimir V.; Kopaev, Yurii V.
2004-01-01
Mirror nesting condition that is a rise of pair Fermi contour due to matching of some pieces of the Fermi contour and an isoline of the pair-relative-motion kinetic energy may be satisfied, at definite total pair momenta, due to special features of electron dispersion. Perfect mirror nesting results in a rise of the possibility of superconducting ordering up to arbitrary small pairing repulsive interaction strength. Due to kinematical constraints, the order parameter exists only inside some definite domain of the momentum space and changes its sign on a line belonging to this domain
涌井, 和也; 荻原, 宏康
1999-01-01
Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...
Design of RF structures for a superconducting proton linac
International Nuclear Information System (INIS)
Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.
2013-01-01
One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)
Pb induces superconductivity in Bi2Se3 analyzed by point contact spectroscopy
Arevalo-López, P.; López-Romero, R. E.; Escudero, R.
2015-01-01
Some topological insulators become superconducting when doped with Cu and Pd. Superconductivity in a non-superconductor may be induced by proximity effect: i.e. Contacting a non-superconductor with a superconductor. The superconducting macroscopic wave function will induce electronic pairing into the normal compound. In the simplest topological insulator, Bi$_2$Se$_3$, superconductivity may be induced with Pb. We studied with point contact junctions formed by contacting Bi$_2$Se$_3$ crystals ...
100 years of superconductivity
Rogalla, Horst
2011-01-01
Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi
High-temperature superconductivity
International Nuclear Information System (INIS)
Ginzburg, V.L.
1987-07-01
After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs
Superconducting accelerator technology
International Nuclear Information System (INIS)
Grunder, H.A.; Hartline, B.K.
1986-01-01
Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost
New universality class for superconducting order parameter
International Nuclear Information System (INIS)
Dobroliubov, M.I.; Khlebnikov, S.Yu.
1991-04-01
We present a model of superconductivity with pairing due to Aharonov-Bohm forces. The gap is proportional to the first power of the small parameter (in which the self-consistent perturbation scheme is developed), as opposed to the BCS class of models where the gap is exponentially suppressed with the small parameter. (orig.)
Mechanisms of conventional and high Tc superconductivity
International Nuclear Information System (INIS)
Kresin, V.L.; Morawitz, H.; Wolf, S.A.
1993-01-01
This book gives a careful and objective review of theories of superconductivity in traditional superconductors, organics, and high Tc cuprates. Of course, the authors do still present their own theories of cuprate superconductivity, but only in the final chapter after other possibilities have been discussed. The book should be especially useful for researchers entering the field of high Tc superconductivity. The reviews of photon mediated pairing and strong coupling theory are very welcome, since much of this material has not been reviewed since the classic 1969 volume edited by Parks. In particular the authors dispel the various myths that phonon mediated pairing leads to upper bounds on Tc. In addition to phonon mediated pairing the book discussed in detail pairing due to exchange of acoustic (demon) plasmons, excitons, or magnetic fluctuations. There have been so many diverse mechanisms based on strong correlation and large U Hubbard models that a book like this can only discuss a limited selection of the main contenders. In particular here the emphasis on Fermi liquid based models no doubt reflects the authors' own point of view. A whole chapter discusses the concepts of induced superconductivity, in the proximity effect, and its application to materials with several different electronic subsystems
High field superconducting magnets
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
Understanding and application of superconducting materials
International Nuclear Information System (INIS)
Moon, Byeong Mu; Lee, Chun Heung
1997-02-01
This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.
Crystallography of color superconductivity
International Nuclear Information System (INIS)
Bowers, Jeffrey A.; Rajagopal, Krishna
2002-01-01
We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e., different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star
International Nuclear Information System (INIS)
Meyerhoff, R.W.
1977-01-01
A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface
Tailoring Superconductivity with Quantum Dislocations.
Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang
2017-08-09
Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
Energy Technology Data Exchange (ETDEWEB)
Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)
2015-07-01
Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.
2015-03-01
Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.
Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.
Ren, Yong; Liu, Xiaogang; Gao, Xiang
2016-01-01
The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.
WORKSHOPS: Radiofrequency superconductivity
International Nuclear Information System (INIS)
Anon.
1992-01-01
In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991
WORKSHOPS: Radiofrequency superconductivity
Energy Technology Data Exchange (ETDEWEB)
Anon.
1992-01-15
In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.
Overview on superconducting photoinjectors
Directory of Open Access Journals (Sweden)
A. Arnold
2011-02-01
Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1 μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.
Reluctance motor employing superconducting magnetic flux switches
International Nuclear Information System (INIS)
Spyker, R.L.; Ruckstadter, E.J.
1992-01-01
This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces
Superconducting rf activities at Cornell University
International Nuclear Information System (INIS)
Padamsee, H.; Hakimi, M.; Kirchgessner, J.
1988-01-01
Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e + e - storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures
DEFF Research Database (Denmark)
Wang, H.Q.; Xu, G.S.; Guo, H.Y.
2012-01-01
The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low...
Superconductivity: Is there a problem in transuranics?
International Nuclear Information System (INIS)
Colineau, Eric; Griveau, Jean-Christophe; Eloirdi, Rachel; Hen, Amir; Caciuffo, Roberto
2014-01-01
Superconductivity was first reported in 1942 for uranium metal (¡-U) and in 1958 for U compounds: UCo, U6Mn, U6Fe, and U6Co, with critical temperatures Tc, of 1.7, 2.3, 3.9, and 2.3K, respectively. A new class of U superconductors emerged in the early 1980’s with the discovery of U heavy fermion superconductors : UBe13 (Tc = 0.85K), UPt3 (Tc = 0.53K), URu2Si2 (Tc = 1.5K) , UPd2Al3 (Tc = 1.9K) … Furthermore, in most of these systems, the superconducting phases coexist with antiferromagnetic (AF) correlations which have characteristic temperatures, usually the Néel temperature TN, that are typically one order of magnitude greater than the corresponding superconducting critical temperatures Tc. Superconductivity was even shown to co-exist with ferromagnetism in e.g. UGe2 (Tc ï» 0.8K, TC ï» 30K at p ï» 1.2GPa) and URhGe (Tc = 0.25K, TC = 9.5K). Heavy fermion superconductors still remain a major challenge for condensed matter physics. The existence of heavy fermion superconductivity and its coexistence or proximity with magnetic order suggests that the conventional mechanism of phonon-mediated superconductivity is inappropriate and that alternative mechanisms, like spin fluctuations, should be considered for Cooper pairing
Controlling superconductivity by tunable quantum critical points.
Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson
2015-03-04
The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.
Half-metallic superconducting triplet spin multivalves
Alidoust, Mohammad; Halterman, Klaus
2018-02-01
We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.
Tetracritical point and current circulations in superconducting state
International Nuclear Information System (INIS)
Belyavskij, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.
2005-01-01
Phase diagram reflecting the key peculiar features of the standard diagram of the cuprate superconductors was studied in terms of the Ginzburg-Landau phenomenology near the tetracritical point resulting from the competition of superconducting and dielectric channels of pairing. Two-component parameter of order the relative phase of which is associated with antiferromagnetic dielectric ordering corresponds to the superconducting pairing at repulsion. In case of slight doping the dielectric order coexists with superconductivity below the temperature of superconducting phase transition and manifests itself as a slight pseudoslit above the mentioned temperature. A segment of pseudoslit region adjacent to the superconducting state corresponds to the matured fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and may be interpreted as a region of a strong pseudoslit. At increase of doping one observes a phase transition from the coexistence region and the orbital antiferromagnetism to the conventional superconducting state covering the region of matured fluctuations of the order parameter in the form of quasi-stationary states of the noncorrelated orbital circulation currents adjacent to the line of phase transition [ru
Axicell MFTF-B superconducting-magnet system
International Nuclear Information System (INIS)
Wang, S.T.; Bulmer, R.; Hanson, C.; Hinkle, R.; Kozman, T.; Shimer, D.; Tatro, R.; VanSant, J.; Wohlwend, J.
1982-01-01
The Axicell MFTF-B magnet system will provide the field environment necessary for tandem mirror plasma physics investigation with thermal barriers. The performance of the device will stimulate DT to achieve energy break-even plasma conditions. Operation will be with deuterium only. There will be 24 superconducting coils consisting of 2 sets of yin-yang pairs, 14 central-cell solenoids, 2 sets of axicell mirror-coil pairs, and 2 transition coils between the axicell mirror coil-pairs and the yin-yang coils. This paper describes the progress in the design and construction of MFTF-B Superconducting-Magnet System
Superconducting current in a bisoliton superconductivity model
International Nuclear Information System (INIS)
Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.
1991-01-01
It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent
History of the theory of superconductivity
International Nuclear Information System (INIS)
Frohlich, H.
1983-01-01
This chapter points out that in the years from Onnes' discovery that the electric resistivity of mercury completely disappeared at about 4K in 1911 up to 1950, many attempts to develop a theory of superconductivity failed, and the subject became an outstanding problem in physics. Discusses the introduction of field theory into solid state physics, which proved to be the decisive step toward a theory. Describes how Schrieffer's suggestion of a wave function for the multielectron problem in terms of electron pairs led to the theory of superconductivity, or the so called B.C.S. theory
Topological phase diagram of superconducting carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)
2016-07-01
The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.
Correlation effects in superconducting quantum dot systems
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Theoretical studies of superconductivity in doped BaCoSO
Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping
2018-06-01
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.
Attenuation in Superconducting Circular Waveguides
Directory of Open Access Journals (Sweden)
K. H. Yeap
2016-09-01
Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.
Liu, Ye-Hua; Wang, Wan-Sheng; Wang, Qiang-Hua; Zhang, Fu-Chun; Rice, T. M.
2017-07-01
We apply the recent wave-packet formalism developed by Ossadnik to describe the origin of the short-range ordered pseudogap state as the hole doping is lowered through a critical density in cuprates. We argue that the energy gain that drives this precursor state to Mott localization, follows from maximizing umklapp scattering near the Fermi energy. To this end, we show how energy gaps driven by umklapp scattering can open on an appropriately chosen surface, as proposed earlier by Yang, Rice, and Zhang. The key feature is that the pairing instability includes umklapp scattering, leading to an energy gap not only in the single-particle spectrum but also in the pair spectrum. As a result the superconducting gap at overdoping is turned into an insulating pseudogap in the antinodal parts of the Fermi surface.
Enhanced superconductivity of fullerenes
Energy Technology Data Exchange (ETDEWEB)
Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy
2017-06-20
Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.
Alonso, Jose R.; Antaya, Timothy A.
2012-01-01
Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.
Superconductivity in transition metals.
Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P
2015-03-13
A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Superconducting classes in heavy fermions systems
International Nuclear Information System (INIS)
Volovik, G.E.; Gor'kov, L.P.
1985-01-01
A mathematical method for constructing of the superconductivity classes for nontrivial superconductors is described. All superconducting phases which can arise directly on transition from the normal state for cubic, hexagonal and tetragonal symmetries are enumerated. It is shown that in the triplet case the types of zeros in the energy gap always correspond to points on the Fermi surface, whereas for signlet pairing the whole zero lines are possible. For the phases with zeros on the lines or points, the low-temperature specific heat varies as T 2 on T 3 respectivelty. The superconducting phases which arise from the multydimensional representations may possess a magnetic moment which induces currents on the surface of a monodomain sample even in the absence of an external magnetic field. The specific case of a domain wall is considered and it is shown that large magnetic currents of magnetization are present in the wall
Luminescence and squeezing of a superconducting light-emitting diode
Hlobil, Patrik; Orth, Peter P.
2015-05-01
We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.
Magnetic flux periodicities and finite momentum pairing in unconventional superconductors
Energy Technology Data Exchange (ETDEWEB)
Loder, Florian
2009-12-22
This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)
International Nuclear Information System (INIS)
1990-01-01
The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)
Geometrical resonance effects in thin superconducting films
International Nuclear Information System (INIS)
Nedellec, P.
1977-01-01
Electron tunneling density of states measurements on thick and clear superconducting films (S 1 ) backed by films in the normal or superconducting state (S 2 ) show geometrical resonance effects associated with the spatial variation of Δ(x), the pair potential, near the interface S 1 -S 2 . The present understanding of this so-called 'Tomasch effect' is described. The dispersion relation and the nature of excitations in the superconducting state are introduced. It is shown that the introduction of Green functions give a general description of the superconducting state. The notion of Andreev scattering at the S 1 -S 2 interface is presented and connect the geometrical resonance effects to interference process between excitations. The different physical parameters involved are defined and used in the discussion of some experimental results: the variation of the period in energy with the superconducting thickness is connected to the renormalized group velocity of excitations traveling perpendicular to the film. The role of the barrier potential at the interface on the Tomasch effect is described. The main results discussed are: the decrease of the amplitude of the Tomasch structures with energy is due to the loss of the mixed electron-hole character of the superconducting excitations far away from the Fermi level; the variation of the pair potential at the interface is directly related to the amplitude of the oscillations; the tunneling selectivity is an important parameter as the amplitude as well as the phase of the oscillations are modified depending on the value of the selectivity; the phase of the Tomasch oscillations is different for an abrupt change of Δ at the interface and for a smooth variation. An ambiguity arises due to the interplay between these parameters. Finally, some experiments, which illustrate clearly the predicted effects are described [fr
Superconductivity and fast proton transport in nanoconfined water
Johnson, K. H.
2018-04-01
A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).
Mean-field approach to unconventional superconductivity
International Nuclear Information System (INIS)
Sacks, William; Mauger, Alain; Noat, Yves
2014-01-01
Highlights: • A model Hamiltonian for unconventional superconductivity (SC) is proposed. • The pseudogap (PG) state is described in terms of pair fluctuations. • SC coherence is restored by a new pair–pair interaction, which counteracts fluctuations. • Given the temperature dependence of the parameters, the SC to PG transition is examined. • The theory fits the ‘peak–dip–hump’ features of cuprate and pnictide excitation spectra. - Abstract: We propose a model that connects the quasiparticle spectral function of high-T c superconductors to the condensation energy. Given the evidence for pair correlations above T c , we consider a coarse-grain Hamiltonian of fluctuating pairs describing the incoherent pseudogap (PG) state, together with a novel pair–pair interaction term that restores long-range superconducting (SC) coherence below T c . A mean-field solution then leads to a self-consistent gap equation containing the new pair–pair coupling. The corresponding spectral function A(k,E) reveals the characteristic peak–dip–hump features of cuprates, now observed on iron pnictides (LiFeAs). The continuous transition from SC to PG states is discussed
Magnetic Fluctuations in Pair-Density-Wave Superconductors
Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.
2016-04-01
Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
Superconducting gap anomaly in heavy fermion systems
International Nuclear Information System (INIS)
Rout, G.C.; Ojha, M.S.; Behera, S.N.
2008-01-01
The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)
Laboratory report on RF superconductivity at Peking University
International Nuclear Information System (INIS)
Kui, Zhao; Baocheng, Zhang; Lifang, Wang; Jin, Yu; Rongli, Geng; Genfa, Wu; Tong, Wang; Jinhu, Song; Chia-erh, Chen
1996-01-01
The activities on RF superconductivity at Peking University in the past two years are reported. Two 1.5 GHz Nb cavities were successfully fabricated using Chinese Nb sheets in 1994. One of the cavities has been measured, and the results are given. A laser driven DC electron gun has been designed and constructed which is the pre-testing device of photo-electron gun using superconducting cavity. A series of experiments on the cathode and cavity will be performed in the near future. Two superconducting accelerating devices are being considered for two projects in China. (R.P.)
Superconductivity in the Penson-Kolb Model on a Triangular Lattice
Ptok, A.; Mierzejewski, M.
2008-07-01
We investigate properties of the two-dimensional Penson-Kolb model with repulsive pair hopping interaction. In the case of a bipartite square lattice this interaction may lead to the η-type pairing, when the phase of superconducting order parameter changes from one lattice site to the neighboring one. We show that this interaction may be responsible for the onset of superconductivity also for a triangular lattice. We discuss the spatial dependence of the superconducting order parameter and demonstrate that the total momentum of the paired electrons is determined by the lattice geometry.
Superconducting materials - the path to applications
Energy Technology Data Exchange (ETDEWEB)
Evetts, J E; Glowacki, B A [Interdisciplinary Research Centre in Superconductivity and Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)
2000-05-01
As the application of high-temperature superconductivity gradually becomes a reality it is clear that painstaking incremental progress in the development of materials is the key to success. Superconducting materials can only be applied against an engineering specification that has to be determined for each particular application from the design requirements for economic viability and for operation and safety margins in service. As a consequence the type of research activity appropriate for the development and optimization of a conductor processing route varies depending on the maturity of the technology. In this overview the evolution of research activity will be followed from near market industry driven design and development of fully engineered conductors through to research on basic and enabling science for materials processing that is largely academic and curiosity driven. The most effective path to applications depends on a considered balance of research that is different for each conductor family depending on the state of maturity of the conductor processing route. (author)
Superconducting materials - the path to applications
International Nuclear Information System (INIS)
Evetts, J.E.; Glowacki, B.A.
2000-01-01
As the application of high-temperature superconductivity gradually becomes a reality it is clear that painstaking incremental progress in the development of materials is the key to success. Superconducting materials can only be applied against an engineering specification that has to be determined for each particular application from the design requirements for economic viability and for operation and safety margins in service. As a consequence the type of research activity appropriate for the development and optimization of a conductor processing route varies depending on the maturity of the technology. In this overview the evolution of research activity will be followed from near market industry driven design and development of fully engineered conductors through to research on basic and enabling science for materials processing that is largely academic and curiosity driven. The most effective path to applications depends on a considered balance of research that is different for each conductor family depending on the state of maturity of the conductor processing route. (author)
Laser activated superconducting switch
International Nuclear Information System (INIS)
Wolf, A.A.
1976-01-01
A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity
Frontiers in Superconducting Materials
Narlikar, Anant V
2005-01-01
Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.
Superconductivity and their applications
Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano
2017-01-01
Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...
Superconducting machines. Chapter 4
International Nuclear Information System (INIS)
Appleton, A.D.
1977-01-01
A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)
Superconductivity in the actinides
International Nuclear Information System (INIS)
Smith, J.L.; Lawson, A.C.
1985-01-01
The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials
WORKSHOP: Radiofrequency superconductivity
Energy Technology Data Exchange (ETDEWEB)
Anon.
1984-10-15
The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.
WORKSHOP: Radiofrequency superconductivity
International Nuclear Information System (INIS)
Anon.
1984-01-01
The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators
Quantum heat engine with coupled superconducting resonators
DEFF Research Database (Denmark)
Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.
2017-01-01
We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....
Energy Technology Data Exchange (ETDEWEB)
Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)
2016-05-15
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.
Directory of Open Access Journals (Sweden)
Armen N. Kocharian
2016-05-01
Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.
Superconductivity in power engineering
International Nuclear Information System (INIS)
1989-01-01
This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de
Superconductivity and its application
International Nuclear Information System (INIS)
Spadoni, M.
1988-01-01
This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials
Superconducting quantum electronics
International Nuclear Information System (INIS)
Kose, V.
1989-01-01
This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region
Superconducting linear accelerator cryostat
International Nuclear Information System (INIS)
Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.
1984-01-01
A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)
Lightwave-driven quasiparticle collisions on a subcycle timescale.
Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R
2016-05-12
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
A dielectric approach to high temperature superconductivity
International Nuclear Information System (INIS)
Mahanty, J.; Das, M.P.
1989-01-01
The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig
Electronic pairing mechanism due to band modification with increasing pair number
International Nuclear Information System (INIS)
Mizia, J.
1995-01-01
It is shown that a shift of an electron band with electron occupation number n, which is changing during the transition to the superconducting state, can lower the total energy of the system. In fact it will bring a negative contribution to the pairing potential, which is proportional to the product of the electron band shift with occupation number and the charge transfer during the transition to the superconducting state. The shift of the electron band comes from the change of stresses and the change of correlation effects in the CuO 2 plane with n, that in turn is caused by the changing oxygen concentration. This model explains the phenomenological success of Hirsch's model, which gives no explanation how the band shift in energy can give rise to superconductivity. (orig.)
Orbitally limited pair-density-wave phase of multilayer superconductors
Möckli, David; Yanase, Youichi; Sigrist, Manfred
2018-04-01
We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .
Energy Technology Data Exchange (ETDEWEB)
Do Tran, C; Nguyen Van, C [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam); Nguyen Manh, D [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam) Centre National de la Recherche Scientifique, Lab. d' Etudes des Proprietes Electroniques des Solides, 38 - Grenoble (France)
1991-11-01
A theory of itinerant ferromagnetism in superconducting semimetals is proposed. A nonzero mean magnetisation appears in the superconducting state due to the interaction (interference) of spin density wave (SDW), charge density wave (CDW) and Cooper pair wave. Phase diagram and physical properties of the states considered are investigated analytically and numerically. (orig.).
The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling
Zhao, Jingxiang; Yan, Xu; Gu, Qiang
2017-10-01
The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.
Radiation effects on superconductivity
International Nuclear Information System (INIS)
Brown, B.S.
1975-01-01
The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references
Superconducting elliptical cavities
Sekutowicz, J K
2011-01-01
We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.
Superconductivity in technology
International Nuclear Information System (INIS)
Komarek, P.
1976-01-01
Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)
Academic training: Applied superconductivity
2007-01-01
LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2Â K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the alreadyÂ known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview ofÂ phenomenology and basic theory of superconductivity, the lectures for this a...
Superconducting rotating machines
International Nuclear Information System (INIS)
Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.
1975-01-01
The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed
Superconductivity in bad metals
International Nuclear Information System (INIS)
Emery, V.J.; Kivelson, S.A.
1995-01-01
It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described
Pairing from strong repulsion in triangular lattice Hubbard model
Zhang, Shang-Shun; Zhu, Wei; Batista, Cristian D.
2018-04-01
We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators. Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole. We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a field-induced polarized background is strong enough to bind a second hole. The effective interaction between these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.
Submicron superconducting structures
International Nuclear Information System (INIS)
Golovashkin, A.I.; Lykov, A.N.
1986-01-01
An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field
Superconducting wind turbine generators
DEFF Research Database (Denmark)
Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen
2010-01-01
, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...
Superconducting Wind Turbine Generators
Directory of Open Access Journals (Sweden)
Yunying Pan
2016-08-01
Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.
Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor
Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz
2018-01-01
We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.
Faraei, Zahra; Jafari, S. A.
2017-10-01
We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.
Superconductivity and electron microscopy
International Nuclear Information System (INIS)
Hawkes, P.W.; Valdre, U.
1977-01-01
In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)
Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates
International Nuclear Information System (INIS)
Liu Fusui; Chen Wanfang
2008-01-01
This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates
Possible universal cause of high-Tc superconductivity in different metals
International Nuclear Information System (INIS)
Amusia, M.Ya.; Shaginyan, V.R.
2002-01-01
Using the theory of the high temperature superconductivity based on the idea of the fermion condensation quantum phase transition (FCQPT) it is shown that neither the d-wave pairing symmetry, nor the pseudogap phenomenon, nor the presence of the Cu-O 2 planes are of decisive importance for the existence of the high-T c superconductivity. The analysis of recent experimental data on this type of superconductivity in different materials is carried out. It is shown that these facts can be understood within the theory of superconductivity based on the FCQPT. The main features of a room-temperature superconductor are discussed [ru
Isominkowskian theory of Cooper Pairs in superconductors
International Nuclear Information System (INIS)
Animalu, A.O.E.
1993-01-01
Via the use of Santilli's isominkowskian space, the author presents a relativistic extension of the author's recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T c superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs
Novel Approach to Linear Accelerator Superconducting Magnet System
International Nuclear Information System (INIS)
Kashikhin, Vladimir
2011-01-01
Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.
On magnon mediated Cooper pair formation in ferromagnetic superconductors
Directory of Open Access Journals (Sweden)
Rakesh Kar
2014-08-01
Full Text Available Identification of pairing mechanism leading to ferromagnetic superconductivity is one of the most challenging issues in condensed matter physics. Although different models have been proposed to explain this phenomenon, a quantitative understanding about this pairing is yet to be achieved. Using the localized-itinerant model, we find that in ferromagnetic superconducting materials both triplet pairing and singlet pairing of electrons are possible through magnon exchange depending upon whether the Debye cut off frequency of magnons is greater or lesser than the Hund's coupling (J multiplied by average spin (S per site. Taking into account the repulsive interaction due to the existence of paramagnons, we also find an expression for effective interaction potential between a pair of electrons with opposite spins. We apply the developed formalism in case of UGe2 and URhGe. The condition of singlet pairing is found to be fulfilled in these cases, as was previously envisaged by Suhl [Suhl, Phys. Rev. Lett. 87, 167007 (2001]. We compute the critical temperatures of URhGe at ambient pressure and of UGe2 under different pressures for the first time through BCS equation. Thus, this work outlines a very simple way to evaluate critical temperature in case of a superconducting system. A close match with the available experimental results strongly supports our theoretical treatment.
Coupling ultracold atoms to a superconducting coplanar waveguide resonator
Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.
2017-01-01
We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...
Superconducting materials and magnets
International Nuclear Information System (INIS)
1991-04-01
The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs
'Speedy' superconducting circuits
International Nuclear Information System (INIS)
Holst, T.
1994-01-01
The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)
ESCAR superconducting magnet system
International Nuclear Information System (INIS)
Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.
1975-01-01
Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)
Superconducting tin core fiber
International Nuclear Information System (INIS)
Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary
2015-01-01
In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)
Superconductivity in doped insulators
International Nuclear Information System (INIS)
Emery, V.J.; Kivelson, S.A.
1995-01-01
It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described
Superconducting active impedance converter
International Nuclear Information System (INIS)
Ginley, D.S.; Hietala, V.M.; Martens, J.S.
1993-01-01
A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures
The origins of macroscopic quantum coherence in high temperature superconductivity
International Nuclear Information System (INIS)
Turner, Philip; Nottale, Laurent
2015-01-01
Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new
Superconducting materials for large scale applications
International Nuclear Information System (INIS)
Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.
2004-01-01
Significant improvements in the properties of superconducting materials have occurred recently. These improvements are being incorporated into the latest generation of wires, cables, and tapes that are being used in a broad range of prototype devices. These devices include new, high field accelerator and NMR magnets, magnets for fusion power experiments, motors, generators, and power transmission lines. These prototype magnets are joining a wide array of existing applications that utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments such as ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising new materials such as MgB2 have been discovered and are being studied in order to assess their potential for new applications. In this paper, we will review the key developments that are leading to these new applications for superconducting materials. In some cases, the key factor is improved understanding or development of materials with significantly improved properties. An example of the former is the development of Nb3Sn for use in high field magnets for accelerators. In other cases, the development is being driven by the application. The aggressive effort to develop HTS tapes is being driven primarily by the need for materials that can operate at temperatures of 50 K and higher. The implications of these two drivers for further developments will be discussed. Finally, we will discuss the areas where further improvements are needed in order for new applications to be realized
Quantum Statistical Approach to Superconductivity
Nam, Eunsoo
The Frohlich Hamiltonian representing an interaction between electron and phonon is derived. By exchanging a virtual phonon, a system of two electrons can lower the system's total energy if the difference of their kinetic energies is less than the energy of the phonon exchanged. This is shown by using quantum mechanical perturbation theory, which is fully developed. A general theory of superconductivity is developed, starting with a BCS Hamiltonian in which the interaction strengths (V_{11}, V_{22 }, V_{12}) among and between "electron" (1) and "hole" (2) Cooper pairs are differentiated. The supercondensate is shown to be composed of equal numbers of "electron" and "hole" ground (zero-momentum) Cooper pairs with charges mp 2e.. Based on the Hamiltonian, the normal-to-super phase transition is investigated, approaching the critical temperature T_{c} from the high temperature side. Non zero momentum Cooper pairs, that is, pairs of electrons (holes) with antiparallel spins and nearly opposite momenta above T_{c } in the bulk limit, are shown to move like independent bosons with the energy momentum relation varepsilon = (1/2)upsilon_ {F}p, where upsilon_ {F} represents the Fermi velocity. We have investigated the Bose-Einstein condensation of pairons. The system of free Cooper pairs in a 3D superconductors undergoes a phase transition of the second order with the critical temperature T_{c} given byk_{B}T_{c } = (1/2)(pi^2hbar^3v_sp {F}{3}n/1.20257)^{1over3 }where n is the number density of Cooper pairs. We calculate various properties associated with superconductivity at finite temperature. We derive general expressions for the energy gaps for both quasi electrons and pairons. Based on the independent pairon model, we explain the flux quantization, London's equation and the Josephson effects, stressing the importance of the macroscopic wave -function which represents the supercondensate in motion. We derived the basic equations governing the behavior of the
Superconducting characteristics of the Penson-Kolb model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2000-01-01
We study superconducting properties of the Penson-Kolb model, i. e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction J. The evolution of the critical fields, the coherence length, the Ginzburg ratio, and London penetration depth with particle concentration n and pairing strength are determined. The results are compared with those found earlier for the attractive Hubbard model. (author)
Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging
Noroozian, Omid
Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be
Effect of Fibonacci modulation on superconductivity
International Nuclear Information System (INIS)
Gupta, Sanjay; Sil, Shreekantha; Bhattacharyya, Bibhas
2006-01-01
We have studied finite-sized single band models with short-range pairing interactions between electrons in the presence of diagonal Fibonacci modulation in one dimension. Two models, namely the attractive Hubbard model and the Penson-Kolb model, have been investigated at half-filling at zero temperature by solving the Bogoliubov-de Gennes equations in real space within a mean-field approximation. The competition between 'disorder' and the pairing interaction leads to a suppression of superconductivity (of usual pairs with zero centre-of-mass momenta) in the strong-coupling limit while an enhancement of the pairing correlation is observed in the weak-coupling regime for both models. However, the dissimilarity of the pairing mechanisms in these two models brings about notable differences in the results. The extent to which the bond-ordered wave and the η-paired (of pairs with centre-of-mass momenta = π) phases of the Penson-Kolb model are affected by the disorder has also been studied in the present calculation. Some finite size effects are also identified
Robust Concurrent Remote Entanglement Between Two Superconducting Qubits
Directory of Open Access Journals (Sweden)
A. Narla
2016-09-01
Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.
Directory of Open Access Journals (Sweden)
Takashi Yanagisawa
2015-01-01
Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.
Entangling a nanomechanical resonator and a superconducting microwave cavity
International Nuclear Information System (INIS)
Vitali, D.; Tombesi, P.; Woolley, M. J.; Doherty, A. C.; Milburn, G. J.
2007-01-01
We propose a scheme able to entangle at the steady state a nanomechanical resonator with a microwave cavity mode of a driven superconducting coplanar waveguide. The nanomechanical resonator is capacitively coupled with the central conductor of the waveguide and stationary entanglement is achievable up to temperatures of tens of milliKelvin
A new quantum interferometer effect in superconducting oxide ceramics
International Nuclear Information System (INIS)
Chela Flores, J.; Shehata, L.N.
1987-08-01
On the basis of a phenomenological approach to type II high T c superconductivity, we suggest that in the lanthanum compounds the Mercereau effect for a coupled junction pair should display and ex-dependent shift in the period of modulation of the tunnelling current. (author). 14 refs
Superconductivity and electrical resistivity in alkali metal doped ...
Indian Academy of Sciences (India)
We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to ...
Magnetic and superconducting nanowires
DEFF Research Database (Denmark)
Piraux, L.; Encinas, A.; Vila, L.
2005-01-01
magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...
Hybrid superconducting magnetic suspensions
International Nuclear Information System (INIS)
Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.
1996-01-01
Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO
Superconducting Technology Assessment
National Research Council Canada - National Science Library
2005-01-01
This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...
Superconductivity: materials and applications
International Nuclear Information System (INIS)
Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.
2008-01-01
This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)
Superconductivity and its devices
International Nuclear Information System (INIS)
Forbes, D.S.
1981-01-01
Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles
Superconductivity: Heike's heritage
van der Marel, D.; Golden, M.
2011-01-01
A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.
RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop
International Nuclear Information System (INIS)
Lengeler, Herbert
1989-01-01
Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to
Stacked magnet superconducting bearing
International Nuclear Information System (INIS)
Rigney, T.K. II; Saville, M.P.
1993-01-01
A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines
Superconductivity at high pressures
Energy Technology Data Exchange (ETDEWEB)
Brandt, N B; Ginzburg, N I
1969-07-01
Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.
Superconductivity: A critical analysis
International Nuclear Information System (INIS)
Sacchetti, Nicola
1997-01-01
It is some forty years now that superconductivity has entered into the field of applied Physics. Countless applications have been proposed some of which have been successfully tested in the form of prototypes and relatively few have become widely used products. This article offers an objective examination of what applied superconductivity represents in the area of modern technology highlighting its exclusive advantages and its inevitable limitations
Generalized Superconductivity. Generalized Levitation
International Nuclear Information System (INIS)
Ciobanu, B.; Agop, M.
2004-01-01
In the recent papers, the gravitational superconductivity is described. We introduce the concept of generalized superconductivity observing that any nongeodesic motion and, in particular, the motion in an electromagnetic field, can be transformed in a geodesic motion by a suitable choice of the connection. In the present paper, the gravitoelectromagnetic London equations have been obtained from the generalized Helmholtz vortex theorem using the generalized local equivalence principle. In this context, the gravitoelectromagnetic Meissner effect and, implicitly, the gravitoelectromagnetic levitation are given. (authors)
Superconducting magnets for accelerators
International Nuclear Information System (INIS)
Denisov, Yu.N.
1979-01-01
Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru
Emergent Higgsless Superconductivity
Directory of Open Access Journals (Sweden)
Cristina Diamantini M.
2017-01-01
Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.
Superconducting Fullerene Nanowhiskers
Directory of Open Access Journals (Sweden)
Yoshihiko Takano
2012-04-01
Full Text Available We synthesized superconducting fullerene nanowhiskers (C_{60}NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C_{60} nanowhiskers (K_{x}C_{60}NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K_{3.3}C_{60}NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C_{60} crystal was less than 1%. We report the superconducting behaviors of our newly synthesized K_{x}C_{60}NWs in comparison to those of K_{x}C_{60} crystals, which show superconductivity at 19 K in K_{3}C_{60}. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.
High-current applications of superconductivity
International Nuclear Information System (INIS)
Komarek, P.
1995-01-01
The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations
Importance of interlayer pair tunneling: A variational perspective
International Nuclear Information System (INIS)
Medhi, Amal; Basu, Saurabh
2011-01-01
We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.
Superconducting nanostructured materials
International Nuclear Information System (INIS)
Metlushko, V.
1998-01-01
Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines
Superconducting wind turbine generators
International Nuclear Information System (INIS)
Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B
2010-01-01
We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.
Superconductivity and macroscopic quantum phenomena
International Nuclear Information System (INIS)
Rogovin, D.; Scully, M.
1976-01-01
It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)
Superconducting state mechanisms and properties
Kresin, Vladimir Z; Wolf, Stuart A
2014-01-01
'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.
Fullerides - Superconductivity at the limit
Palstra, Thomas T. M.
The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.
International Nuclear Information System (INIS)
Hartwig, W.H.; Passow, C.
1975-01-01
Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines
Superconducting Ferromagnetic Nanodiamond.
Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V
2017-06-27
Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.
Two-particle self-consistent approach to unconventional superconductivity
Energy Technology Data Exchange (ETDEWEB)
Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)
2013-07-01
A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.
Interband superconductivity: Contrasts between Bardeen-Cooper-Schrieffer and Eliashberg theories
Dolgov, Oleg V.; Mazin, Igor I.; Parker, David; Golubov, Alexandre Avraamovitch
2009-01-01
recently discovered iron pnictide superconductors apparently present an unusual case of interband-channel pairing superconductivity. Here we show that in the limit where the pairing occurs within the interband channel, several surprising effects occur quite naturally and generally: different density
The role of local repulsion in superconductivity in the Hubbard–Holstein model
Energy Technology Data Exchange (ETDEWEB)
Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo
2017-01-15
Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
Correlated Dirac particles and superconductivity on the honeycomb lattice
Wu, Wei; Scherer, Michael M.; Honerkamp, Carsten; Le Hur, Karyn
2013-03-01
We investigate the properties of the nearest-neighbor singlet pairing and the emergence of d-wave superconductivity in the doped honeycomb lattice considering the limit of large interactions and the t-J1-J2 model. First, by applying a renormalized mean-field procedure as well as slave-boson theories which account for the proximity to the Mott-insulating state, we confirm the emergence of d-wave superconductivity, in agreement with earlier works. We show that a small but finite J2 spin coupling between next-nearest neighbors stabilizes d-wave symmetry compared to the extendeds-wave scenario. At small hole doping, to minimize the energy and to gap the whole Fermi surface or all the Dirac points, the superconducting ground state is characterized by a d+id singlet pairing assigned to one valley and a d-id singlet pairing to the other, which then preserves time-reversal symmetry. The slightly doped situation is distinct from the heavily doped case (around 3/8 and 5/8 filling) supporting a pure chiral d+id symmetry and breaking time-reversal symmetry. Then, we apply the functional renormalization group and study in more detail the competition between antiferromagnetism and superconductivity in the vicinity of half filling. We discuss possible applications to strongly correlated compounds with copper hexagonal planes such as In3Cu2VO9. Our findings are also relevant to the understanding of exotic superfluidity with cold atoms.
Superconductive analogue of spin glasses
International Nuclear Information System (INIS)
Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.
1987-07-01
The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs
Quenches in large superconducting magnets
International Nuclear Information System (INIS)
Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.
1977-08-01
The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed
Connectivity and superconductivity
Rubinstein, Jacob
2000-01-01
The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.
International Nuclear Information System (INIS)
Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.
1997-01-01
The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)
Superconducting accelerator magnet design
International Nuclear Information System (INIS)
Wolff, S.
1994-01-01
Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)
Large Superconducting Magnet Systems
Védrine, P.
2014-07-17
The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.
Superconducting super collider
International Nuclear Information System (INIS)
Limon, P.J.
1987-01-01
The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures
Large Superconducting Magnet Systems
Energy Technology Data Exchange (ETDEWEB)
Védrine, P [Saclay (France)
2014-07-01
The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.
Effect of anitiferromagnetism on superconducting gap of cuprates
International Nuclear Information System (INIS)
Rout, G.C.; Panda, B.N.; Bishoyi, K.C.
2000-01-01
The interplay between superconductivity (SC) and antiferromagnetism (AF) is studied in strongly correlated systems: R 2-x M x CuO 4 (R = Nd, La, Pr, Gd; M = Sr, Ge). It is assumed that superconductivity arises due to BCS pairing mechanism in presence of AF in Cu lattices of Cu-O planes. Temperature dependence of SC gap as well as staggered magnetic field are calculated analytically and solved self-consistently with respect to half-filled band situation for different model parameters λ 1 , and λ 2 being SC and AF coupling parameters respectively. The SC gap is studied in the coexistent phase of SC and AFM. (author)
Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides
International Nuclear Information System (INIS)
Tsendin, K.D.; Popov, B.P.; Denisov, D.V.
2004-01-01
The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity
Single-flavour and two-flavour pairing in three-flavour quark matter
International Nuclear Information System (INIS)
Alford, Mark G; Cowan, Greig A
2006-01-01
We study single-flavour quark pairing ('self-pairing') in colour-superconducting phases of quark matter, paying particular attention to the difference between scenarios where all three flavours undergo single-flavour pairing, and scenarios where two flavours pair with each other ('2SC' pairing) and the remaining flavour self-pairs. We perform our calculations in the mean-field approximation using a pointlike four-fermion interaction based on single gluon exchange. We confirm the result from previous weakly-coupled-QCD calculations that when all three flavours self-pair the favoured channel for each is colour-spin-locked (CSL) pseudoisotropic pairing. However, we find that when the up and down quarks undergo 2SC pairing, they induce a colour chemical potential that disfavours the CSL phase. The strange quarks then self-pair in a 'polar' channel that breaks rotational invariance, although the CSL phase may survive in a narrow range of densities
Superconducting current generators
International Nuclear Information System (INIS)
Genevey, P.
1970-01-01
After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr
Materials for superconducting cavities
International Nuclear Information System (INIS)
Bonin, B.
1996-01-01
The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)
Today's markets for superconductivity
International Nuclear Information System (INIS)
Anon.
1988-01-01
The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials
Gambling with Superconducting Fluctuations
Foltyn, Marek; Zgirski, Maciej
2015-08-01
Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.
Superconducting cosmic strings
International Nuclear Information System (INIS)
Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.
1986-01-01
Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources
Superconducting Electronic Film Structures
1991-02-14
Segmuller, A., Cooper, E.I., Chisholm, M.F., Gupta, A. Shinde, S., and Laibowitz, R.B. Lanthanum gallate substrates for epitaxial high-T superconducting thin...M. F. Chisholm, A. Gupta, S. Shinde, and R. B. Laibowitz, " Lanthanum Gallate Substrates for Epitaxial High-T c Superconducting Thin Films," Appl...G. Forrester and J. Talvacchio, " Lanthanum Copper Oxide Buffer Layers for Growth of High-T c Superconductor Films," Disclosure No. RDS 90-065, filed
Technology of RF superconductivity
International Nuclear Information System (INIS)
Anon.
1995-01-01
This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams
Superconducting magnetic quadrupole
Energy Technology Data Exchange (ETDEWEB)
Kim, J.W.; Shepard, K.W.; Nolen, J.A.
1995-08-01
A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.
Superconductivity without inversion symmetry in CePt3Si
International Nuclear Information System (INIS)
Frigeri, P.A.; Agterberg, D.F.; Koga, A.; Sigrist, M.
2005-01-01
Based on symmetry arguments by Anderson, the following conditions are necessary for the formation of Cooper pairs: spin-singlet pairing relies on time-reversal symmetry, while spin-triplet pairing requires parity in addition. The rather general formulation of this rule has led to the common belief that the lack of an inversion center in a material would prevent spin-triplet pairing indiscriminately. In this presentation, we discuss symmetry aspects of superconductivity in a class of systems without inversion symmetry which is connected with spin-orbit coupling. We can show that, not only spin singlet pairing, but also certain spin triplet states remain unaffected by the loss of inversion symmetry. Moreover, the absence of an inversion center reduces the effect of paramagnetic limiting for spin-singlet pairing states in an external magnetic field. Based on this symmetry analysis, we examine the recently discovered heavy Fermion superconductor CePt 3 Si, where a missing inversion plane leads to the well-known Rashba-type of spin-orbit coupling. In particular, the problem of the pairing symmetry will be addressed as well as several properties of the superconducting phase which appears close to a quantum phase transition between a paramagnetic and antiferromagnetic phase. The same kind of analysis will also be done for another example UIr
Quantum memristor in a superconducting circuit
Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique
Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.
Superconducting nano-strip particle detectors
International Nuclear Information System (INIS)
Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M
2015-01-01
We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)
Spin-orbit scattering in superconducting nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)
2017-06-15
We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A Superconducting Dual-Channel Photonic Switch.
Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan
2018-06-05
The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ac-driven vortex-antivortex dynamics in nanostructured superconductor-ferromagnetic hybrids
Energy Technology Data Exchange (ETDEWEB)
Lima, Clessio L.S., E-mail: clsl@df.ufpe.br [Nucleo de Tecnologia, Centro Academico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru-PE (Brazil); Souza Silva, Clecio C. de; Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil)
2012-09-15
The dynamics of ac-driven vortices and antivortices in a superconducting film interacting with an array of magnetic dipoles on top is investigated via hybrid molecular dynamics-Monte Carlo simulations. The dipole array considered in this study is capable to stabilize in equilibrium vortex-antivortex pairs. The appearance of a net electric field out of the ac excitation demonstrates that this system behaves as a voltage rectifier. Because of the asymmetric nature of the effective pinning potential generated by the dipole array, the ac-driven vortices and antivortices are ratcheted in opposite directions, thereby contributing additively to the observed net voltage. In addition, for high frequency values, the dc electric field-ac amplitude curves present a series of steps. A careful analysis of the time series of the electric field and number of vortex-antivortex (v-av) pairs reveals that these steps are related to mode-locking between the drive frequency and the number of v-av creation-annihilation events.
Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity
Directory of Open Access Journals (Sweden)
A. Di Bernardo
2015-11-01
Full Text Available In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux—the diamagnetic Meissner effect—from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic or attract (paramagnetic external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.
The role of local repulsion in superconductivity in the Hubbard-Holstein model
Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo
2017-01-01
We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
Pairing phase transition and thermodynamical quantities in 148,149Sm
International Nuclear Information System (INIS)
Razavi, R.; Behkami, A.N.; Dehghani, V.
2014-01-01
The nuclear level densities and entropies in 148,149 Sm have been calculated in the framework of the superconducting theory that includes modified nuclear pairing gap. For modified pairing gap parameter the smooth transition from the BCS to the Fermi type distributions is used. By applying modified pairing gap, the extracted S-shaped heat capacity as a function of nuclear temperature exhibits a physical and smoother behavior instead of the singular behavior predicted by the BCS equations at critical temperature
Dynamical Cooper pairing in non-equilibrium electron-phonon systems
Energy Technology Data Exchange (ETDEWEB)
Knap, Michael [Technical University of Munich (Germany); Harvard University (United States); Babadi, Mehrtash; Refael, Gil [Caltech (United States); Martin, Ivar [Argonne National Laboratory (United States); Demler, Eugene [Harvard University (United States)
2016-07-01
Ultrafast laser pulses have been used to manipulate complex quantum materials and to induce dynamical phase transitions. One of the most striking examples is the transient enhancement of superconductivity in several classes of materials upon irradiating them with high intensity pulses of terahertz light. Motivated by these experiments we analyze the Cooper pairing instabilities in non-equilibrium electron-phonon systems. We demonstrate that the light induced non-equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We analyze the competition between these effects and show that in a broad range of parameters the dynamic enhancement of Cooper pair formation dominates over the increase in the scattering rate. This opens the possibility of transient light induced superconductivity at temperatures that are considerably higher than the equilibrium transition temperatures. Our results pave new pathways for engineering high-temperature light-induced superconducting states.
Superconductivity and magnet technology
International Nuclear Information System (INIS)
Lubell, M.S.
1975-01-01
The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described
High temperature interface superconductivity
International Nuclear Information System (INIS)
Gozar, A.; Bozovic, I.
2016-01-01
Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.
ISR Superconducting Quadrupoles
1977-01-01
Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.
Forecasting of superconducting compounds
International Nuclear Information System (INIS)
Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.
1981-01-01
In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning
Superconducting Super Collider project
International Nuclear Information System (INIS)
Perl, M.L.
1986-04-01
The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs
Checking BEBC superconducting magnet
CERN PhotoLab
1974-01-01
The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.
Niobium superconducting cavity
CERN PhotoLab
1980-01-01
This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.
International Nuclear Information System (INIS)
1993-06-01
This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design
Patrice Loiez
1999-01-01
This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.
Electrical Conduction and Superconductivity
Indian Academy of Sciences (India)
When an electric field is applied, this electron can be lifted to this higher energy ... By such a virtual process two electrons .... using superconducting coils has come to be a reality. ... nance imaging techniques used in medical diagnostics. Com ...
Superconducting magnets for HERA
International Nuclear Information System (INIS)
Wolff, S.
1987-01-01
The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets
1995-01-01
Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.
Gossamer superconductivity, new paradigm?
Energy Technology Data Exchange (ETDEWEB)
Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)
2006-01-01
We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Superconductivity : Controlling magnetism
Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.
Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the
High-temperature superconductivity
International Nuclear Information System (INIS)
Lynn, J.W.
1990-01-01
This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research
Magnetic levitation and superconductivity
International Nuclear Information System (INIS)
Albrecht, C.
1989-01-01
The paper explains the impressive advances made in the development of superconducting magnets, in cryogenic engineering, and in the development of drive and vehicle concepts in Japan in the period following termination of West German development work for the electrodynamical system (MLU 001, MLU 002). The potentials engineering due to the development of high-Tc superconductors are discussed. (orig./MM) [de
Energy Technology Data Exchange (ETDEWEB)
Ciovati, G [Jefferson Lab (United States)
2014-07-01
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.
Energy Technology Data Exchange (ETDEWEB)
Ciovati, Gianluigi [JLAB
2015-02-01
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.
Quenching of superconductivity in disordered thin films by phase fluctuations
International Nuclear Information System (INIS)
Hebard, A.F.; Palaanen, M.A.
1992-01-01
The amplitude Ψ 0 and phase Φ of the superconducting order parameter in thin-film systems are affected differently by disorder and dimensionality. With increasing disorder superconducting long range order is quenched in sufficiently thin films by physical processes driven by phase fluctuations. This occurs at both the zero-field vortex-antivortex unbinding transition and at the zero-temperature magnetic-field-tuned superconducting-insulating transition. At both of these transitions Ψ 0 is finite and constant, vanishing only when temperature, disorder, and/or magnetic field are increased further. Experimental results on amorphous-composite InO x films are presented to illustrate these points and appropriate comparisons are made to other experimental systems. (orig.)
Towards inducing superconductivity into graphene
Efetov, Dmitri K.
dependent effective Debey temperature - the so-called Bloch-Gruneisen temperature theta BG. We also probe the transport properties of the high energy sub-bands in bilayer graphene by electrolyte gating. Furthermore we demonstrate that electrolyte gates can be used to drive intercalation reactions in graphite and present an all optical study of the reaction kinetics during the creation of the graphene derived graphite intercalation compound LiC 6, and show the general applicability of the electrolyte gates to other 2-dimensional materials such as thin films of complex oxides, where we demonstrate gating dependent conductance changes in the spin-orbit Mott insulator Sr 2IrO4. Another, entirely different approach to induce superconducting correlations into graphene is by bringing it into proximity to a superconductor. Although not intrinsic to graphene, Cooper pairs can leak in from the superconductor and exist in graphene in the form of phase-coherent electron-hole states, the so-called Andreev states. Here we demonstrate a new way of fabricating highly transparent graphene/superconductor junctions by vertical stacking of graphene and the type-II van der Waals superconductor NbSe2. Due to NbSe2's high upper critical field of Hc2=4T we are able to test a long proposed and yet not well understood regime, where proximity effect and quantum Hall effect coexist.
Superconducting materials for large scale applications
Energy Technology Data Exchange (ETDEWEB)
Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.
2004-05-06
Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.
Deenergizing method of superconducting magnets for Maglev in an emergency
Energy Technology Data Exchange (ETDEWEB)
Kishikawa, Akihiko [Railway Technical Research Inst., Tokyo (Japan); Nemoto, Kaoru [Railway Technical Research Inst., Tokyo (Japan)
1996-12-31
The running stability of the superconducting magnets (SCMs) mounted on the JR Maglev vehicle has been confirmed through many researches and actual running tests. So we could confirm that the high performance of our SCMs during the last few years, but we must bear in mind that the SCM which consists of the superconducting wire has the possibility of changing into normal resistive state from superconducting state. If one of the pair SCMs normalizes, a huge lateral force on one side of a bogie will occur suddenly and push the vehicle toward the sidewall of the guideway. This paper describes the method that reduces this huge force acting on one side of a bogie in an SCM accident. (orig.)
ISTS of Fe adatoms in contact to superconducting Ta
Energy Technology Data Exchange (ETDEWEB)
Kamlapure, Anand; Cornils, Lasse; Wiebe, Jens; Wiesendanger, Roland [Department of Physics, Hamburg University, Hamburg (Germany); Zhou, Lihui [Department of Physics, Hamburg University, Hamburg (Germany); Max-Planck Institute for Solid State-Research, Stuttgart (Germany); Khajetoorians, Alexander A. [Department of Physics, Hamburg University, Hamburg (Germany); Institute for Molecules and Materials, Radboud University, Nijmegen (Netherlands)
2015-07-01
Recent local scale investigations of the competition of superconductivity and magnetism in molecular systems revealed rich physics associated with a quantum phase transition. Here, we experimentally study individual Fe atoms adsorbed on a reconstructed surface of superconducting Ta by inelastic scanning tunneling spectroscopy (ISTS) at a temperature of 1 K and as a function of magnetic field of strength up to 3 T perpendicular to the surface. We observe strong inelastic excitations at three different adsorption sites of the Fe adatoms. The majority site shows a sharp step around 2 meV which is almost independent of the magnetic field. The other two sites exhibit excitations around 1 meV and 4 meV which have a weak magnetic field dependence indicating the magnetic origin of this excitation. In all three cases the superconducting energy gap and coherence peaks are preserved at zero magnetic field indicating very weak coupling between the magnetic moment and the cooper pairs.
d-wave superconductivity in the frustrated two-dimensional periodic Anderson model
Directory of Open Access Journals (Sweden)
Wei Wu
2015-02-01
Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.
Pair breaking and charge relaxation in superconductors
International Nuclear Information System (INIS)
Nielson, J.B.; Pethick, C.J.; Rammer, J.; Smith, H.
1982-01-01
We present a general formalism based on the quasiclassical Green's function for calculating charge imbalance in nonequilibrium superconductors. Our discussion is sufficiently general that it applies at arbitrary temperatures, and under conditions when the width of quasiparticle states are appreciable due to pair breaking processes, and when strong coupling effects are significant. As a first application we demonstrate in detail how in the limit of smallpair breaking and for a weak coupling superconductor the collision term in the formalism reduces to the one in the quasiparticle Boltzmann equation. We next treat the case of charge imbalance generated by tunnel injection, with pair breaking by phonons and magnetic impurities. Over the range of temperatures investigated exerimentally to date, the calculated charge imbalance is rather close to that evaluated using the Boltzmann equation, even if pair braeking is so strong as almost to destroy superconductivity. Finally we consider charge imbalance generated by the combined influence of a supercurrent and a temperature gradient. We give calculations for a dirty superconductor with scattering by phonons as the pair breaking mechanism, and the results give a reasonable account of the experimental data of Clarke, Fjordboge, and Lindelof. We carry out calculations for the case of impurity scattering along which are valid not only in the clean and dirty limits, but also for intermediate situations. These enable us to see how the large contribution to the charge imbalance found for energies close to the gap edge in the clean case is reduced with increasing impurity scattering
Superconducting proximity effect in topological materials
Reeg, Christopher R.
In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.
Power supply system for the superconducting outsert of the CHMFL hybrid magnet
Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.
2017-12-01
The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.
Superconductivity and Competing Ordered Phase in RuPn (Pn = As, P)
Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Yamamoto, Ayako; Takagi, Hidenori
2011-03-01
Unconventional superconductivity likely manifests itself when some competing electronic phases are suppressed down to zero temperature such as cuprates and iron-pnictide superconductors. Therefore, the correlated metallic state neighboring a competing electronic ordering can be a promising playground for unconventional superconductivity. Here we report superconductivity emerging adjacent to electronically ordered phases of RuPn (Pn = As, P). We found that RuAs(P) exhibits phase transitions at 240 (265) K, which is discerned as a drop of magnetic susceptibility or a resistivity upturn. Such anomalies can be suppressed by substituting Rh to the Ru site. Accompanied by the disappearance of the electronic order, superconductivity was found to emerge below 1.8 K and 3.8 K for RuAs and RuP, respectively. The superconductivity in Rh substituted RuPn, which neighbors a competing electronic order, might exhibit an exotic pairing state as seen in the unconventional superconductors known to date.
Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system
International Nuclear Information System (INIS)
Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.
1989-03-01
The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs
The superconducting magnet system for the Tokamak Physics Experiment
International Nuclear Information System (INIS)
Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.; O'Connor, T.G.; Slack, D.S.; Wong, R.L.; Zbasnik, J.P.; Schultz, J.H.; Diatchenko, N.; Montgomery, D.B.
1994-01-01
The superconducting magnet system for the Tokamak Physics eXperiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three pairs of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (Nb 3 Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper. The majority of the design and all fabrication of the superconducting magnet system will be ,accomplished by industry, which will shortly be taking over the preliminary design. The magnet system is expected to be completed in early 2000
Lightwave-driven quasiparticle collisions on a sub-cycle timescale
Langer, F.; Hohenleutner, M.; Schmid, C.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-01-01
Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. PMID:27172045
Single-particle spectra and magnetic field effects within precursor superconductivity
International Nuclear Information System (INIS)
Pieri, P.; Pisani, L.; Strinati, G.C.; Perali, A.
2004-01-01
We study the single-particle spectra below the superconducting critical temperature from weak to strong coupling within a precursor superconductivity scenario. The spectral-weight function is obtained from a self-energy that includes pairing-fluctuations within a continuum model representing the hot spots of the Brillouin zone. The effects of strong magnetic fields on the pseudogap temperature are also discussed within the same scenario
The Rashba spin-orbit coupling for superconductivity in oxide interfaces
Energy Technology Data Exchange (ETDEWEB)
Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)
2014-07-01
We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.
Secure pairing with biometrics
Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.
Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.
2011-01-01
Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and
International Nuclear Information System (INIS)
Balantekin, A. B.; Pehlivan, Y.
2007-01-01
We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...
Two-fluid model of the superconductivity in the BCS's theory
International Nuclear Information System (INIS)
Rangelov, J.
1977-01-01
The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively
Pairing-bag excitations in small-coherence-length superconductors
International Nuclear Information System (INIS)
Bishop, A.R.; Lomdahl, P.S.; Schrieffer, J.R.; Trugman, S.A.
1988-01-01
Localized baglike solutions in the pairing theory of superconductivity are studied. Starting from the Bogoliubov--de Gennes equations on a two-dimensional square lattice for half-filled negative-U Hubbard model, cigar- and star-shaped bags are numerically obtained, inside of which the order parameter is reduced, self-consistently trapping an added quasiparticle. These nonlinear excitations are important when the coherence length is small as for the new high-temperature superconductors. Several experimental consequences are discussed
Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.
Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio
2015-09-08
The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.
Pseudo-Coulomb potential in singlet superconductivity
International Nuclear Information System (INIS)
Daemen, L.L.; Overhauser, A.W.
1988-01-01
Reduction of the screened Coulomb potential parameter μ to μ/sup */ = μ/[1+μ ln(E/sub F//(h/2π)ω/sub D/)] is related to the pair correlation function at r = 0. This correlation function is calculated for both the simple Cooper-pair problem and standard Bardeen-Cooper-Schrieffer (BCS) theory by use of a two-square-well model (with λ and μ describing the attraction and repulsion). Results are compared with values obtained for a one-square-well model (having the suitable net attraction, e.g., λ-μ/sup */ in the BCS case). For the BCS case, the ''true'' pair correlation at r = 0 is reduced by a factor (μ/sup *//μ) 2 relative to the fictitious (one-square-well) value (even though Δ is the same for both models). The reduction factor is typically ≅(1/25. It follows that any short-range attractive contribution to superconducting pairing will suffer a reduction similar to that for the Coulomb repulsion
Field-induced magnetic instability within a superconducting condensate
DEFF Research Database (Denmark)
Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis
2017-01-01
The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...
Complex envelope control of pulsed accelerating fields in superconducting cavities
Czarski, T
2010-01-01
A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...
2017 Gordon Conference on Superconductivity
Energy Technology Data Exchange (ETDEWEB)
Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)
2017-11-14
The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.
Vector superconductivity in cosmic strings
International Nuclear Information System (INIS)
Dvali, G.R.; Mahajan, S.M.
1992-03-01
We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs
Bec Model of HIGH-Tc Superconductivity in Layered Cuprates
Lomnitz, M.; Villarreal, C.; de Llano, M.
2013-11-01
High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.
Superconducting Accelerator Magnets
Mess, K H; Wolff, S
1996-01-01
The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...
Infrared Quenched Photoinduced Superconductivity
Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.
1996-03-01
Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.
Superconductivity an introduction
Kleiner, Reinhold
2016-01-01
The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...
Variable temperature superconducting microscope
Cheng, Bo; Yeh, W. J.
2000-03-01
We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.
International Nuclear Information System (INIS)
Elsel, W.
1986-01-01
The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Superconductivity in Chevrel phases
International Nuclear Information System (INIS)
Fischer, O.; Seeber, B.
1979-01-01
In the last years several ternary superconductors have been discovered, which possess unusual physical properties. Among them the molybdenum chalcogenides, which are often called Chevrel phases, have a special position. Some of these compounds have very high critical fields, which is of special interest for a technical application. In these substances the coexistence of magnetic ordering and superconductivity has been found for the first time, too. Recently it has become possible to prepare new compounds, which are interesting for superconductivity, by the appropriate coalescence of Mo 6 clusters. In the case of Tl 2 Mo 6 Se 6 (Tsub(c) = 3K) this development leads to a quasi-one-dimensional metallic system. (orig.)
Metastable superconducting alloys
International Nuclear Information System (INIS)
Johnson, W.L.
1978-07-01
The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized
Superconducting frustration bit
International Nuclear Information System (INIS)
Tanaka, Y.
2014-01-01
Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible
Cooper pair splitters beyond the Coulomb blockade regime
Energy Technology Data Exchange (ETDEWEB)
Amitai, Ehud; Tiwari, Rakesh P.; Nigg, Simon E. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Walter, Stefan [Institute for Theoretical Physics, University Erlangen Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany); Schmidt, Thomas L. [Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg)
2016-07-01
We consider the setup of a conventional s-wave Cooper pair splitter. However, we consider the charging energies in the quantum dots to be finite and smaller than the superconducting gap. We find analytically that at low energies the superconductor mediates an inter-dot tunneling term, the spin symmetry of which is influenced by a finite Zeeman field. This effect, together with an electrical tuning scheme of the quantum dot levels, can be used to engineer a non local triplet state on the two quantum dots, thereby extending the non-local state engineering capabilities of the Cooper pair splitter system.
Stabilized superconducting materials and fabrication process
International Nuclear Information System (INIS)
Chevallier, B.; Dance, J.M.; Etourneau, J.; Lozano, L.; Tressaud, A.; Tournier, R.; Sulpice, A.; Chaussy, J.; Lejay, P.
1989-01-01
Superconducting ceramics are fluorinated at a temperature ≤ 120 0 C. Are also claimed new superconducting materials with a fluorine concentration gradient decreasing from the surface to the core. Superconductivity is stabilized and/or improved [fr
Superconductivity in MgB{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics
2011-07-01
We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)
Unconventional superconductivity near inhomogeneities
International Nuclear Information System (INIS)
Poenicke, A.F.
2008-01-01
After the presentation of a quasi-classical theory the specific heat of Sr 2 RuO 4 is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO 2 as example, and an interface model. (HSI)
Unconventional superconductivity near inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Poenicke, A F
2008-01-25
After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)
International Nuclear Information System (INIS)
Mueller, H.G.
1989-01-01
This general paper deals with the advantages which may result from the use of ceramic high-temperature superconductors. The use of these new superconductors for generators and electric motors for ship propulsion is regarded as a promising potential defense application. Furthermore, SMES (Superconducting Magnetic Energy Storage) can be used as a 'power compressor' for future high-performance weapon systems such as electromagnetic cannons, high-energy lasers, and high power microwaves. (MM) [de
Advanced superconducting materials
International Nuclear Information System (INIS)
Fluekiger, R.
1983-11-01
The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo 6 S 8 are compared to those of the most advanced practical conductors based on alloyed by Nb 3 Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.) [de
Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit
1986-01-01
A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..
Superconductivity in power engineering
International Nuclear Information System (INIS)
Chaddah, P.; Dande, Y.D.; Dasannacharya, B.A.; Malik, M.K.; Raghavan, R.V.
1987-01-01
The advantages of low power loss, high magnetic fields and compactness of size of superconducting magnets have generated world-wide interest in using them for MHD generators, Tokamak fusion reactors, energy storage systems etc. With a view to assess the feasibility of using the technology in power engineering in India, the status of the efforts in the country is reviewed and the areas of R and D required are indicated. 13 figures, 15 refs. (author)
Superconducting linear colliders
International Nuclear Information System (INIS)
Anon.
1990-01-01
The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider
Superconducting Ferromagnetic Nanodiamond
Czech Academy of Sciences Publication Activity Database
Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.
2017-01-01
Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016
Superconducting cavities for HERA
International Nuclear Information System (INIS)
Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.
1988-01-01
Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables
Superconducting Panofsky quadrupoles
International Nuclear Information System (INIS)
Harwood, L.H.
1981-01-01
A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described
Cooldown of superconducting magnet strings
International Nuclear Information System (INIS)
Yuecel, A.; Carcagno, R.H.
1995-01-01
A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses
Superconductivity in borides and carbides
International Nuclear Information System (INIS)
Muranaka, Takahiro
2007-01-01
It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)
A superconducting maglev test facility for high speed transport
International Nuclear Information System (INIS)
Rhodes, R.G.; Mulhall, B.E.
1976-01-01
A 550 m long straight track for research into magnetically levitated vehicles has been constructed at the University of Warwick. The flat guideway comprises two strips of aluminium, interacting with the vehicle borne superconducting magnets to produce both lift and guidance. For propulsion a petrol driven winch is provided, though it is to be replaced later by a linear electric motor. Problems of engineering cryostats for magnetic levitation are briefly discussed. (author)
Superconducting energy storage magnet
International Nuclear Information System (INIS)
Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.
1986-01-01
A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure
Magnetically leviated superconducting bearing
Weinberger, Bernard R.; Lynds, Jr., Lahmer
1993-01-01
A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.
Superconducting multi-cell trapped mode deflecting cavity
Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander
2017-10-10
A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.
Phonon-Mediated Quasiparticle Poisoning of Superconducting Microwave Resonators
Patel, U.; Pechenezhskiy, Ivan V.; Plourde, B. L. T.; Vavilov, M. G.; McDermott, R.
2016-01-01
Nonequilibrium quasiparticles represent a significant source of decoherence in superconducting quantum circuits. Here we investigate the mechanism of quasiparticle poisoning in devices subjected to local quasiparticle injection. We find that quasiparticle poisoning is dominated by the propagation of pair-breaking phonons across the chip. We characterize the energy dependence of the timescale for quasiparticle poisoning. Finally, we observe that incorporation of extensive normal metal quasipar...
Superconductivity in graphite intercalation compounds
Energy Technology Data Exchange (ETDEWEB)
Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)
2015-07-15
Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.
Superconductivity in graphite intercalation compounds
International Nuclear Information System (INIS)
Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark
2015-01-01
Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition
Korea's developmental program for superconductivity
Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul
1995-04-01
Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.
The development of superconducting equipment
Ueda, T; Hiue, H
2003-01-01
Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)
Superconducting magnet development in Japan
International Nuclear Information System (INIS)
Yasukochi, K.
1983-01-01
The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration
Superconducting Nonlinear Kinetic Inductance Devices
National Aeronautics and Space Administration — Superconducting quantum interference devices, or SQUIDs, are by far the most sensitive magnetometers available, but two issues limit their commercial potential:...
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
Full-switching FSF-type superconducting spin-triplet magnetic random access memory element
Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.
2017-11-01
In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.
Pairing and low temperature properties of 2 D Fermi-systems with attraction between particles
International Nuclear Information System (INIS)
Gorbar, E.V.; Gusynin, V.P.; Loktev, V.M.
1992-01-01
Proceeding from microscopic model Hamiltonian for the system of Fermi-particles with attraction the effective Lagrangian, admitting the analysis of its superconducting properties at arbitrary fermion concentration, is obtained.Exact solution for gap and chemical potential makes it possible to trace from local pair situation to Cooper pairing. The crucial parameter discriminating between the regions of exotic and normal superconducting behaviour is show to be that of the energy of the bound fermion state, which, however, rapidly disappears with fermion density increasing. The solutions of the equations for the case of finite temperatures are analysed. (author). 42 refs
Bosonic excitations and electron pairing in an electron-doped cuprate superconductor
Wang, M. C.; Yu, H. S.; Xiong, J.; Yang, Y.-F.; Luo, S. N.; Jin, K.; Qi, J.
2018-04-01
By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4 ±δ , we discern a bosonic mode of electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature. Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging below a critical temperature T† larger than Tc. Our work may help to establish a quantitative relation between bosonic excitations and superconducting pairing in electron-doped cuprates.
Probing the unconventional superconducting state of LiFeAs by quasiparticle interference.
Hänke, Torben; Sykora, Steffen; Schlegel, Ronny; Baumann, Danny; Harnagea, Luminita; Wurmehl, Sabine; Daghofer, Maria; Büchner, Bernd; van den Brink, Jeroen; Hess, Christian
2012-03-23
A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)∼18 K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).
Phenomenological realism, superconductivity and quantum mechanics
International Nuclear Information System (INIS)
Shomar, T.L.E.
1998-01-01
The central aim of this thesis is to present a new kind of realism that is driven not from the traditional realism/anti-realism debate but from the practice of physicists. The usual debate focuses on discussions about the truth of theories and their fit with nature, while the real practices of the scientists are forgotten. The position I shall defend is called 'phenomenological realism': theories are merely tools to construct other theories and models, including phenomenological models; phenomenological models are the vehicles of representation. The realist doctrine was recently undermined by the argument from the pessimistic meta-induction, also known as the argument from scientific revolutions. I argue that phenomenological realism is a new kind of scientific realism which can overcome the problem generated by the argument from scientific revolutions, and which depend on the scientific practice. The realist tried to overcome this problem by suggesting various types of theory dichotomy. I claim that different types of dichotomy presented by realists did not overcome the problem, these dichotomies cut through theory vertically. I argue for a different kind of dichotomy between high level theoretical abstractions and low-level theoretical representations. I claim that theoretical work in physics have two distinct types depending on the way they are built these are: theoretical models which built depending on a top-down approach and phenomenological models which are built depending on a bottom-up approach, this dichotomy cuts the division along a horizontal line between low and high level theory. I present two case studies. One from superconductivity where I contrast the BCS theory of superconductivity with the phenomenological model of Landau and Ginzburg. I show how in that field of physics the historical developments favoured phenomenological models over high-level theoretical abstraction. I show how the BCS theory of superconductivity was constructed, and why it
Process for producing clad superconductive materials
International Nuclear Information System (INIS)
Cass, R.B.; Ott, K.C.; Peterson, D.E.
1992-01-01
This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ
Perturbation theory of the periodic Anderson lattice and superconductivity
International Nuclear Information System (INIS)
Geertsuma, W.
1988-01-01
In this paper the author develops a perturbation calculation of the second and fourth order interparticle interaction in band states, based on the Periodic Anderson Lattice. The author shows that 4th order interparticle interactions giving rise to the well known Kondo effect vanish in the superconducting ground state. This term survives in the presence of a magnetic field. Pair excitations can only give rise to an appreciable attractive contribution when the d states are less than half filled and the pair energy is near the Fermi level. The only important attractive interaction comes from the normal fourth order terms
Microscopic theory of coexistence of superconductivity and antiferromagnetism
International Nuclear Information System (INIS)
Ashkenazi, J.; Kuper, C.G.; Ron, A.
1983-01-01
A theory of the coexistence of superconductivity and antiferromagnetism is presented. We study the role of the ''diagonal'' exchange coupling between magnetic ions and conduction electrons, using Eliashberg's formalism. This coupling generates a spatial displacement of the Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the exchange integral and the staggered magnetization. The theory agrees well with experiment for Dy/sub 1.2/Mo 6 S 8 and Tb/sub 1.2/Mo 6 S 8
Renormalization group approach to a p-wave superconducting model
International Nuclear Information System (INIS)
Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron
2014-01-01
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.
Zero-bias conductance quantization in a normal / superconducting junction of nano wire
International Nuclear Information System (INIS)
Asano, Yasuhiro; Tanaka, Yukio
2012-01-01
We discuss a strong relationship between Majorana fermions and odd-frequency Cooper pairs which appear at a disordered normal nano wire attached to a topologically nontrivial superconducting one. The zero-bias differential conductance in a normal / superconducting nano wire junctions is quantized at 2e 2 /h irrespective of degree of disorder, length of disordered segment, and random realization of disordered potential. Such behaviors are exactly the same as those in the anomalous proximity effect of p x -wave spin-triplet superconductors. We show that odd-frequency Cooper pairs assist the unusual transport properties.
International Nuclear Information System (INIS)
Cox, D.L.
1995-01-01
This is a progress report for the DOE project covering the period 2/15/94 to 2/14/95. The PI had a fruitful sabbatical during this period, and had some important new results, particularly in the area of new phenomenology for heavy fermion superconductivity. Significant new research accomplishments are in the area of odd-in-time-reversal pairing states/staggered superconductivity, the two-channel Kondo lattice, and a general model for Ce impurities which admits one-, two-, and three-channel Kondo effects. Papers submitted touch on these areas: staggered superconductivity - a new phenomenology for UPt 3 ; theory of the two-channel Kondo lattice in infinite dimensions; general model of a Ce 3+ impurity. Other work was done in the areas: Knight shift in heavy fermion alloys and compounds; symmetry analysis of singular pairing correlations for the two-channel Kondo impurity model
Unconventional superconductivity in Sr{sub 2}RuO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Liu, Ying [Department of Physics and Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Mao, Zhi-Qiang [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States)
2015-07-15
Highlights: • Constraints on and experimental support to unconventional superconductivity in Sr{sub 2}RuO{sub 4}. • Phase-sensitive determination of the pairing symmetry in Sr{sub 2}RuO{sub 4}. • Response of superconductivity to mechanical perturbations. • Superconductivity in non-bulk Sr{sub 2}RuO{sub 4}. • Unresolved issues and outlook in Sr{sub 2}RuO{sub 4} research. - Abstract: Sr{sub 2}RuO{sub 4}, featuring a layered perovskite crystalline and quasi-two-dimensional electronic structure, was first synthesized in 1959. Unconventional, p-wave pairing was predicted for Sr{sub 2}RuO{sub 4} by Rice and Sigrist and Baskaran shortly after superconductivity in this material was discovered in 1994. Experimental evidence for unconventional superconductivity in Sr{sub 2}RuO{sub 4} has been accumulating in the past two decades and reviewed previously. In this article, we will first discuss constraints on the pairing symmetry of superconductivity in Sr{sub 2}RuO{sub 4} and summarize experimental evidence supporting the unconventional pairing symmetry in this material. We will then present several aspects of the experimental determination of the unconventional superconductivity in Sr{sub 2}RuO{sub 4} in some detail. In particular, we will discuss the phase-sensitive measurements that have played an important role in the determination of the pairing symmetry in Sr{sub 2}RuO{sub 4}. The responses of superconductivity to the mechanical perturbations and their implications on the mechanism of superconductivity will be discussed. A brief survey of various non-bulk Sr{sub 2}RuO{sub 4} will also be included to illustrate the many unusual features resulted from the unconventional nature of superconductivity in this material system. Finally, we will discuss some outstanding unresolved issues on Sr{sub 2}RuO{sub 4} and provide an outlook of the future work on Sr{sub 2}RuO{sub 4}.
Development of pair distribution function analysis
International Nuclear Information System (INIS)
Vondreele, R.; Billinge, S.; Kwei, G.; Lawson, A.
1996-01-01
This is the final report of a 3-year LDRD project at LANL. It has become more and more evident that structural coherence in the CuO 2 planes of high-T c superconducting materials over some intermediate length scale (nm range) is important to superconductivity. In recent years, the pair distribution function (PDF) analysis of powder diffraction data has been developed for extracting structural information on these length scales. This project sought to expand and develop this technique, use it to analyze neutron powder diffraction data, and apply it to problems. In particular, interest is in the area of high-T c superconductors, although we planned to extend the study to the closely related perovskite ferroelectric materials andother materials where the local structure affects the properties where detailed knowledge of the local and intermediate range structure is important. In addition, we planned to carry out single crystal experiments to look for diffuse scattering. This information augments the information from the PDF
Heavy-ion superconducting linacs
International Nuclear Information System (INIS)
Delayen, J.R.
1989-01-01
This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs
Heavy-ion superconducting linacs
Energy Technology Data Exchange (ETDEWEB)
Delayen, J.R.
1989-01-01
This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.
Meissner effect in superconducting microtraps
Cano, Daniel
2009-01-01
This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the...
Superconducting magnet for 'ML-100'
Energy Technology Data Exchange (ETDEWEB)
Saito, R; Fujinaga, T; Tada, N; Kimura, H
1974-07-01
A magneticaly levitated experimental vehicle (Ml-100) was designed and constructed in commemoration of the centenary of the Japanese National Railways. For magnetic levitation the vehicle is provided with two superconducting magnets. In the test operation of the vehicle, these superconducting magnets showed stable performance in levitating vehicle body.
Superconducting bearings for flywheel applications
Energy Technology Data Exchange (ETDEWEB)
Abrahamsen, Asger Bech
2001-05-01
A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)
Superconducting bearings for flywheel applications
DEFF Research Database (Denmark)
Abrahamsen, A.B.
2001-01-01
A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...
Superconducting Qubit Optical Transducer (SQOT)
2015-08-05
parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated
The Danish Superconducting Cable Project
DEFF Research Database (Denmark)
Tønnesen, Ole
1997-01-01
The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...
the tj model and superconductivity
African Journals Online (AJOL)
DJFLEX
Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).
Superconducting cavities for beauty factories
International Nuclear Information System (INIS)
Lengeler, H.
1992-01-01
The possibilities and merits of superconducting accelerating cavities for Beauty-factories are considered. There exist already large sc systems of size and frequency comparable to the ones needed for Beauty-factories. Their status and operation experience is discussed. A comparison of normal conducting and superconducting systems is done for two typical Beauty-factory rings
Transport through hybrid superconducting/normal nanostructures
Energy Technology Data Exchange (ETDEWEB)
Futterer, David
2013-01-29
We mainly investigate transport through interacting quantum dots proximized by superconductors. For this purpose we extend an existing theory to describe transport through proximized quantum dots coupled to normal and superconducting leads. It allows us to study the influence of a strong Coulomb interaction on Andreev currents and Josephson currents. This is a particularly interesting topic because it combines two competing properties: in superconductors Cooper pairs are formed by two electrons which experience an attractive interaction while two electrons located on a quantum dot repel each other due to the Coulomb interaction. It seems at first glance that transport processes involving Cooper pairs should be suppressed because of the two competing interactions. However, it is possible to proximize the dot in nonequilibrium situations. At first, we study a setup composed of a quantum dot coupled to one normal, one ferromagnetic, and one superconducting lead in the limit of an infinitely-large superconducting gap. Within this limit the coupling between dot and superconductor is described exactly by the presented theory. It leads to the formation of Andreev-bound states (ABS) and an additional bias scheme opens in which a pure spin current, i.e. a spin current with a vanishing associated charge current, can be generated. In a second work, starting from the infinite-gap limit, we perform a systematic expansion of the superconducting gap around infinity and investigate Andreev currents and Josephson currents. This allows us to estimate the validity of infinite-gap calculations for real systems in which the superconducting gap is usually a rather small quantity. We find indications that a finite gap renormalizes the ABS and propose a resummation approach to explore the finite-gap ABS. Despite the renormalization effects the modifications of transport by finite gaps are rather small. This result lets us conclude that the infinite-gap calculation is a valuable tool to
Transport through hybrid superconducting/normal nanostructures
International Nuclear Information System (INIS)
Futterer, David
2013-01-01
We mainly investigate transport through interacting quantum dots proximized by superconductors. For this purpose we extend an existing theory to describe transport through proximized quantum dots coupled to normal and superconducting leads. It allows us to study the influence of a strong Coulomb interaction on Andreev currents and Josephson currents. This is a particularly interesting topic because it combines two competing properties: in superconductors Cooper pairs are formed by two electrons which experience an attractive interaction while two electrons located on a quantum dot repel each other due to the Coulomb interaction. It seems at first glance that transport processes involving Cooper pairs should be suppressed because of the two competing interactions. However, it is possible to proximize the dot in nonequilibrium situations. At first, we study a setup composed of a quantum dot coupled to one normal, one ferromagnetic, and one superconducting lead in the limit of an infinitely-large superconducting gap. Within this limit the coupling between dot and superconductor is described exactly by the presented theory. It leads to the formation of Andreev-bound states (ABS) and an additional bias scheme opens in which a pure spin current, i.e. a spin current with a vanishing associated charge current, can be generated. In a second work, starting from the infinite-gap limit, we perform a systematic expansion of the superconducting gap around infinity and investigate Andreev currents and Josephson currents. This allows us to estimate the validity of infinite-gap calculations for real systems in which the superconducting gap is usually a rather small quantity. We find indications that a finite gap renormalizes the ABS and propose a resummation approach to explore the finite-gap ABS. Despite the renormalization effects the modifications of transport by finite gaps are rather small. This result lets us conclude that the infinite-gap calculation is a valuable tool to
A superconducting magnetic gear
International Nuclear Information System (INIS)
Campbell, A M
2016-01-01
A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844–46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further. (paper)
Superconductivity at the industrial scale
International Nuclear Information System (INIS)
Tixador, P.; Lebrun, Ph.
2011-01-01
The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)
Japan. Superconductivity for Smart Grids
Energy Technology Data Exchange (ETDEWEB)
Hayakawa, K.
2012-11-15
Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)
Three-terminal superconducting devices
International Nuclear Information System (INIS)
Gallagher, W.J.
1985-01-01
The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions
Effect of superconducting correlation on the localization of quasiparticles in low dimensions
International Nuclear Information System (INIS)
Xiang, T.
1995-01-01
Localization lengths of superconducting quasiparticles λ s are evaluated and compared with the corresponding normal-state values λ n in one-dimensional (1D) and two-dimensional lattices. The effect of superconducting correlation on the localization of quasiparticles is generally stronger in an off-site pairing state than in an on-site pairing state. The modification of superconducting correlation to λ is strongly correlated with the density of states (DOS) of superconducting quasiparticles. λ s drops within the energy gap but is largely enhanced around energies where DOS peaks appear. For a gapless pairing state in 1D or a d-wave pairing state in 2D, λ s /λ n at the Fermi energy E F is of order 1 and determined purely by the value of gap parameter not by the random potential. For the d-wave pairing state, the localization effect is largely weakened compared with the corresponding normal state and quasiparticles with energies close to E F are more strongly localized than other low-energy quasiparticles
[Paired kidneys in transplant].
Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús
2009-02-01
Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.
Review of superconducting linacs
International Nuclear Information System (INIS)
Bollinger, L.M.
1992-01-01
This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs
A superconducting electron spectrometer
International Nuclear Information System (INIS)
Guttormsen, M.; Huebel, H.; Grumbkow, A. von
1983-03-01
The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)
Schmidt, F.
1980-11-01
The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.
Superconductivity in nanostructured lead
Lungu, Anca; Bleiweiss, Michael; Amirzadeh, Jafar; Saygi, Salih; Dimofte, Andreea; Yin, Ming; Iqbal, Zafar; Datta, Timir
2001-01-01
Three-dimensional nanoscale structures of lead were fabricated by electrodeposition of pure lead into artificial porous opal. The size of the metallic regions was comparable to the superconducting coherence length of bulk lead. Tc as high as 7.36 K was observed, also d Tc/d H was 2.7 times smaller than in bulk lead. Many of the characteristics of these differ from bulk lead, a type I superconductor. Irreversibility line and magnetic relaxation rates ( S) were also studied. S( T) displayed two maxima, with a peak value about 10 times smaller than that of typical high- Tc superconductors.
Remarks on superconductive networks
International Nuclear Information System (INIS)
Dominguez, D.; Lopez, A.R.N.; Simonin, J.M.
1989-01-01
Some remarks on the determination of the normal-superconductor phase boundary in random superconductive networks are made. A recently reported work by Soukoulis, Grest and Li which introduces weak links between nodes as these are removed in the site percolation problem is discussed. By the analysis of two simple geometries, it is shown that this procedure introduces spurious effects which mask the physical properties of the system. These affect in particular the field slope critical index and the sharpness of the normal-superconductor boundary. (Author)
Superconducting magnet cooling system
Vander Arend, Peter C.; Fowler, William B.
1977-01-01
A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.
Introduction to superconductivity
Rose-Innes, A C
1978-01-01
Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both
Superconductivity in nanowires
Bezryadin, Alexey
2012-01-01
The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i
Superconductivity at disordered interfaces
International Nuclear Information System (INIS)
Simanek, E.
1979-01-01
The increase of the superconducting transition temperature Tsub(c) due to the tunneling of conduction electrons into negative-u centers at a disordered metal-semiconductor interface is calculated. The strong dependence of the experimental increase of Tsub(c) on the Fermi energy of the metal is accounted for by the polaronic reduction of the tunneling matrix elements. The latter reduction is dynamically suppressed by the decreasing lifetime of the localized state as Esub(F) increases. The theoretical enhancement is sufficiently strong to explain the increase of Tsub(c) observed in eutectic alloys. (author)
New theory of superconductivity
International Nuclear Information System (INIS)
Bell, A.B.; Bell, D.M.
1978-01-01
Based on three earlier papers which treat electromagnetic, elastogravitational, and radiant-nonradiant thermal phenomena in terms of six types of electric or nonelectric charges, the authors classify states of matter as hyperefficient, efficient, semiefficient, and hypoefficient in transmitting a particular type of charge, by means of a generalization of Ohm's law to two or three dimensions. Conventional states of matter (solid, liquid, gas, vacuum) are associated with torsional (gravitational) charges. Applications are made to electric superconductivity of crystals at elevated temperatures, and to frequency shift
AGS superconducting bending magnets
International Nuclear Information System (INIS)
Robins, K.E.; Sampson, W.B.; McInturff, A.D.; Dahl, P.F.; Abbatiello, F.; Aggus, J.; Bamberger, J.; Brown, D.; Damm, R.; Kassner, D.; Lasky, C.; Schlafke, A.
1976-01-01
Four large aperture superconducting bending magnets are being built for use in the experimental beams at the AGS. Each of these magnets is 2.5 m long and has a room temperature aperture of 20 cm. The magnets are similar in design to the dipoles being developed for ISABELLE and employ a low temperature iron core. Results are presented on the ''training'' behavior of the magnets and a comparison will be made with the smaller aperture versions of this design. The magnet field measurements include end fields and leakage fields as well as the harmonic components of the straight section of the magnet
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Stabilized superconductive wires
International Nuclear Information System (INIS)
Randall, R.N.; Wong, J.
1976-01-01
A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ
International Nuclear Information System (INIS)
Schmidt, F.
1980-01-01
The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de
Nonlinearity in superconductivity and Josephson junctions
International Nuclear Information System (INIS)
Lazarides, N.
1995-01-01
Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs
Superatom representation of high-TC superconductivity
International Nuclear Information System (INIS)
Panas, Itai
2012-01-01
A “super-atom” conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T C superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C 60 molecules in K 3 C 60 , and the Mo 6 S 8 2- clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T C superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated “self-coherent entanglement” of super-atom states. A Hückel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential μ BEC for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T C in terms of the Neél temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum “electron correlation entropy” at the expense of non-local phase rigidity.
Modern high-temperature superconductivity
International Nuclear Information System (INIS)
Ching Wu Chu
1988-01-01
Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs
Superconducting cavity driving with FPGA controller
Energy Technology Data Exchange (ETDEWEB)
Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland); Simrock, S.; Brand, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chase, B.; Carcagno, R.; Cancelo, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Koeth, T.W. [Rutgers - the State Univ. of New Jersey, NJ (United States)
2006-07-01
The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)
Superconducting cavity driving with FPGA controller
International Nuclear Information System (INIS)
Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S.; Simrock, S.; Brand, A.; Chase, B.; Carcagno, R.; Cancelo, G.; Koeth, T.W.
2006-01-01
The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)
Color superconductivity in dense quark matter
International Nuclear Information System (INIS)
Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schaefer, Thomas
2008-01-01
Matter at high density and low temperature is expected to be a color superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can be used, even at more moderate densities, to describe its physical properties. At lower densities the CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and comparison with the competing alternative phases, which may break translation and/or rotation invariance, is done using phenomenological models. We review the calculations that underlie these results and then discuss transport properties of several color-superconducting phases and their consequences for signatures of color superconductivity in neutron stars.
Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.
2017-05-01
In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.
Concurrence of superconductivity and structure transition in Weyl semimetal TaP under pressure
Energy Technology Data Exchange (ETDEWEB)
Li, Yufeng; Zhou, Yonghui; Guo, Zhaopeng; Han, Fei; Chen, Xuliang; Lu, Pengchao; Wang, Xuefei; An, Chao; Zhou, Ying; Xing, Jie; Du, Guan; Zhu, Xiyu; Yang, Huan; Sun, Jian; Yang, Zhaorong; Yang, Wenge; Mao, Ho-Kwang; Zhang, Yuheng; Wen, Hai-Hu
2017-12-01
Weyl semimetal defines a material with three-dimensional Dirac cones, which appear in pair due to the breaking of spatial inversion or time reversal symmetry. Superconductivity is the state of quantum condensation of paired electrons. Turning a Weyl semimetal into superconducting state is very important in having some unprecedented discoveries. In this work, by doing resistive measurements on a recently recognized Weyl semimetal TaP under pressures up to about 100 GPa, we show the concurrence of superconductivity and a structure transition at about 70 GPa. It is found that the superconductivity becomes more pronounced when decreasing pressure and retains when the pressure is completely released. High-pressure x-ray diffraction measurements also confirm the structure phase transition from I41md to P-6m2 at about 70 GPa. More importantly, ab-initial calculations reveal that the P-6m2 phase is a new Weyl semimetal phase and has only one set of Weyl points at the same energy level. Our discovery of superconductivity in TaP by high pressure will stimulate investigations on superconductivity and Majorana fermions in Weyl semimetals.
Connections between magnetism and superconductivity in UBe13 doped with thorium or boron
International Nuclear Information System (INIS)
Heffner, R.H.; Ott, H.R.; Schenck, A.; Mydosh, J.A.; MacLaughlin, D.E.
1991-06-01
Magnetism and superconductivity appear to be intimately connected in the heavy electron (HE) superconductors. For example, it has been conjectured but not proven that the exchange of antiferromagnetic spin fluctuations are responsible for pairing in HE superconductors. In this paper we review recent results in U 1-x Th x Be 13 , where specific heat, lower critical field and zero-field μSR measurements reveal another second-order phase transition to a state which possesses small-moment magnetic correlations for 0.019 ≤ x ≤ 0.043. We present a new phase diagram for (U,Th)Be 13 which indicates that the superconducting and magnetic order parameters are closely coupled. A discussion of the nature of the lower phase is presented, including the consideration of a possible magnetic superconducting state. When UBe 13 is doped with B (UBe 12.97 B 0.03 ) the Kondo temperature is decreased and the specific heat jump at the superconducting transition temperature is significantly enhanced. However, μSR measurements reveal no magnetic signature in UBe 12.97 B 0.03 , unlike the case for Th doping. The correlation between changes in the Kondo temperature and changes in the superconducting properties induced by B doping provide evidence for the importance of magnetic excitations in the superconducting pairing interaction in UBe 13
Quantum heat engine with coupled superconducting resonators
DEFF Research Database (Denmark)
Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.
2017-01-01
the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....
Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212
He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun
2015-03-01
Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.
Overview on superconducting photoinjectors
Arnold, A
2011-01-01
The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...
Superconducting composites materials
International Nuclear Information System (INIS)
Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.
1991-01-01
The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr
Superconducting magnetic energy storage
International Nuclear Information System (INIS)
Rogers, J.D.; Boenig, H.J.
1978-01-01
Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed
Lightweight superconducting alternators
International Nuclear Information System (INIS)
Keim, T.A.
1988-01-01
One of the most efficient and most lightweight means of converting high-temperature heat energy to electricity is a turboalternator set. Turboalternators are potentially important components of burst-mode power systems, either chemical or nuclear powered. Also, they are probable key components in future electric propulsion systems. Existing examples of multimegawatt turbomachines have been optimized for a variety of aerospace uses, ranging from aircraft propulsion to rocket engine fuel pump drives. There is no corresponding history of multimegawatt alternators built to aerospace standards of mass, performance, and reliability. This paper discusses one of the few such development efforts presently in progress, and gives an indication of possible future potential. In large power ratings, superconducting generators offer substantial power density, specific weight, and efficiency advantages over competing technologies. A program at GE has led to the construction of a lightweight high-voltage 20-MW generator with a superconducting field winding. The first part of this paper describes the design of the generator. The second projects the capabilities of the generator to other ratings
Superconducting magnet for MAGLEV
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Fumio; Miyairi,; Komei,; Goto, Fumihiko [Hitachi, Ltd., Tokyo, (Japan)
1989-07-25
In the superconducting magnet for MAGLEV , the magnet itself travels. It is, therefore, important to know the dynamic behavior which accompanies the traveling; and for the designing of a superconducting magnet, analysis of mechanical characteristics as well as electromagnetic characteristics is required. This is a report on the recent analyzing technology of mechanical characteristics by CAE(Computer Aided Engineering). The analysis is conducted by an on-line system of finite element method. Most important for the analysis are that the analysis model is appropriate and that basic data coincide with the actual condition. Recent analysis results are as follows. Equivalent rigidity of coils can be calculated by an analysis model and the calculated value agrees with the experiment value. Structure of the internal drum can be optimized with the parameter of deformation or stress. Analysis result of a load supporting material agrees with the experiment value when a correction coefficient (0.5) is introduced to the elastic modulus of FRP. 2 refs., 10 figs.
Superconducting Magnets for Accelerators
Brianti, G.; Tortschanoff, T.
1993-03-01
This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.
Additive Manufactured Superconducting Cavities
Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan
Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.
Superconductivity and future accelerators
International Nuclear Information System (INIS)
Danby, G.T.; Jackson, J.W.
1963-01-01
For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding
Superconducting current transducer
International Nuclear Information System (INIS)
Kuchnir, M.; Ozelis, J.P.
1990-10-01
The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs
Quasiparticle dynamics in superconducting tunnel junctions
International Nuclear Information System (INIS)
Kozorezov, A.G.; Brammertz, G.; Hijmering, R.A.; Wigmore, J.K.; Peacock, A.; Martin, D.; Verhoeve, P.; Golubov, A.A.; Rogalla, H.
2006-01-01
Superconducting Tunnel Junctions (STJs) used as single photon detectors possess extreme sensitivity and excellent resolving power. However, like many other cryogenic detectors they operate under extremely non-equilibrium conditions. In order to understand the physics of the non-equilibrium, non-stationary state, to interpret experimental data adequately, and to optimize the STJs unique performance, it is necessary to use a fully kinetic approach. We have developed the detailed theory of interactions between quasiparticles (qps) and the two types of phonons, sub-gap and pair-breaking, in STJ photon detectors. We discuss the results of extensive sets of experiments to study the non-equilibrium state in Al-based STJs. For the first time we are capable of explaining all available data systematically using a single set of parameters determined from STJ diagnostics and independent experiments
Vortex dynamics in superconducting transition edge sensors
Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.
2018-02-01
The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.
Formation energies of local pairs in fullerene isomer mixtures
International Nuclear Information System (INIS)
Solecki, J.
1996-01-01
It is well-known that the alkali metal-doped fullerides are superconductors of type II. There were so far many trials to explain the pairing mechanism in the superconducting fullerides. A description of the superconducting mechanism in terms of the so-called local pair model has been proposed in this note. A purely electronic interaction was also considered within the resonating valence bond model (RVB). In fact, other models were not able to explain exactly why superconductivity appears for the stoichiometry of A 3 C 60 in the alkali metal-doped fullerides. An exception of this rule is, e.g., Ca 5 C 60 which is a superconductor with T c = 8.4 K. However, measurements show that electronic structures near the Fermi level of the A 3 C 60 (A = K, Rb) as well as the Ca 5 C 60 superconductors are remarkably similar although their charge carriers form energy bands of different character. Therefore, the results obtained for the stoichiometry A 3 C 60 can roughly refer to the Ca 5 C 60 case as well. (orig.)
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V
2015-07-03
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Possibility of Cooper-pair formation controlled by multi-terminal spin injection
Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.
2018-03-01
A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...