WorldWideScience

Sample records for driven neutron assembly

  1. Physics study of D-D/D-T neutron driven experimental subcritical assembly

    International Nuclear Information System (INIS)

    Sinha, Amar

    2015-01-01

    An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)

  2. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  3. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  4. Accelerator driven assembly

    Energy Technology Data Exchange (ETDEWEB)

    Balderas, J.; Cappiello, M.; Cummings, C.E.; Davidson, R. [and others

    1997-01-01

    This report addresses a Los Alamos National Laboratory (LANL) proposal to build a pulsed neutron source for simulating nuclear-weapons effects. A point design for the pulsed neutron facility was initiated early in FY94 after hosting a Defense Nuclear Agency (DNA) panel review and after subsequently visiting several potential clients and users. The technical and facility designs contained herein fulfill the Statement of Work (SOW) agreed upon by LANL and DNA. However, our point designs and parametric studies identify a unique, cost-effective, above-ground capability for neutron nuclear-weapons-effects studies at threat levels. This capability builds on existing capital installations and infrastructure at LANL. We believe that it is appropriate for us, together with the DNA, to return to the user community and ask for their comments and critiques. We also realize that the requirements of last year have changed significantly. Therefore, the present report is a `working document` that may be revised where feasible as we learn more about the most recent Department of Defense (DoD) and Department of Energy (DOE) needs.

  5. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  6. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  7. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    International Nuclear Information System (INIS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-01-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system

  8. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Butler, G.; Cappiello, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  9. Some neutronics of innovative subcritical assembly with fast neutron spectrum

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.

    2013-01-01

    Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc

  10. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  11. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  12. The MARVEL assembly for neutron multiplication

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw

    2013-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (keff=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication.

  13. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  14. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  15. The MARVEL assembly for neutron multiplication.

    Science.gov (United States)

    Chichester, David L; Kinlaw, Mathew T

    2013-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (k(eff)=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  17. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  18. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  19. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  20. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj

    2015-05-01

    Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.

  1. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Root, Margaret A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Belian, Anthony P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  2. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  3. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  4. Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies

    Science.gov (United States)

    Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew

    2017-09-01

    Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.

  5. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  6. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  7. Physics analyses of an accelerator-driven sub-critical assembly

    Science.gov (United States)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  8. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II: pulsed neutron source

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M.Y.A.; Rabiti, C.

    2008-01-01

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a 3 He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment

  9. Neutronics assessment of thorium-based fuel assembly in SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    Highlights: • A novel thorium-based fuel assembly for SCWR has been introduced and investigated. • Neutronic properties of three thorium fuels have been studied, compared with UO 2 fuel. • The thorium-based fuel has advantages on fuel utilization and lower MAs generation. -- Abstract: Aiming to take advantage of neutron spectrum of SCWR, a novel thorium-based fuel assembly for SCWR is introduced in this paper. The neutronic characteristics of the introduced fuel assembly with three different thorium fuel types have been investigated using the “dragon” codes. The parameters in different working conditions, such as infinite multiplication factors, radial power peaking factor, temperature coefficient of reactivity and their relation with the operation period have been assessed by comparing with conventional uranium assembly. Moreover, the moderator-to-fuel ratio (MFR) was changed in order to investigate its influence on the neutronic characteristics of fuel assembly. Results show that the thorium-based fuel has advantages on both efficient fuel utilization and lower minor actinide generation, with some similar neutronic properties to the uranium fuel

  10. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  11. Cylindrical IEC neutron source design for driven research reactor operation

    International Nuclear Information System (INIS)

    Miley, G.H.; Ulmen, B.; Amadio, G.; Leon, H.; Hora, H.

    2009-01-01

    A resurgence in nuclear power use is now underway worldwide. However, due many university research reactors shutdown, they must rely on using subcritical assemblies which employs a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The source is inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory. (author)

  12. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  13. Plasma driven neutron/gamma generator

    Science.gov (United States)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  14. A portable measurement system for subcriticality measurements by the Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1987-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the 252 Cf-source-driven neutron noise analysis method. 8 refs

  15. Theoretical and Experimental Research in Neutron Spectra and Nuclear Waste Transmutation on Fast Subcritical Assembly with MOX Fuel

    Science.gov (United States)

    Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.

    2003-07-01

    The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.

  16. Self-powered neutron flux detector assembly

    International Nuclear Information System (INIS)

    Allan, C.J.; McIntyre, I.L.

    1980-01-01

    A self-powered neutron flux detector has both the central emitter electrode and its surrounding collector electrode made of inconel 600. The lead cables may also be made of inconel. Other nickel alloys, or iron, nickel, titamium, chromium, zirconium or their alloys may also be used for the electrodes

  17. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  18. Nuclear fuel assembly for fast neutron reactors

    International Nuclear Information System (INIS)

    Ilyunin, V.G.; Murogov, V.M.; Troyanov, M.F.; Rinejskij, A.A.; Ustinov, G.G.; Shmelev, A.N.

    1982-01-01

    The fuel assembly of a fast reactor consists of fuel elements comprising sections with fissionable and breeding material and tubes with hollows designed for entrapping gaseous fission products. Tubes joining up to the said sections are divided in a middle and a peripheral group such that at least one of the tube groups is placed in the space behind the coolant inlet ports. The configuration above allows reducing internal overpressure in the fuel assembly, thus reducing the volume of necessary structural elements in the core. (J.B.)

  19. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  20. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  1. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  2. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  3. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  4. Benchmark experiment on vanadium assembly with D-T neutrons. Leakage neutron spectrum measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kokooo; Murata, I.; Nakano, D.; Takahashi, A. [Osaka Univ., Suita (Japan); Maekawa, F.; Ikeda, Y.

    1998-03-01

    The fusion neutronics benchmark experiments have been done for vanadium and vanadium alloy by using the slab assembly and time-of-flight (TOF) method. The leakage neutron spectra were measured from 50 keV to 15 MeV and comparison were done with MCNP-4A calculations which was made by using evaluated nuclear data of JENDL-3.2, JENDL-Fusion File and FENDL/E-1.0. (author)

  5. Neutron Transport Methods for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Nicholas Tsoulfanidis; Elmer Lewis

    2005-01-01

    The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube

  6. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  7. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-01-01

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1

  8. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  9. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  10. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  11. Evaluation of moderator assemblies for use in an accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Woollard, J.E.; Blue, T.E.; Gupta, N.; Gahbauer, R.A.

    1998-01-01

    The neutron fields produced by several moderator assemblies were evaluated using both in-phantom and in-air neutron field assessment parameters. The parameters were used to determine the best moderator assembly, from among those evaluated, for use in the accelerator-based neutron source for boron neutron capture therapy. For a 10-mA proton beam current and the specified treatment parameters, a moderator assembly consisting of a BeO moderator and a Li 2 CO 3 reflector was found to be the best moderator assembly whether the comparison was based on in-phantom or in-air neutron field assessment parameters. However, the parameters were discordant regarding the moderator thickness. The in-phantom neutron field assessment parameters predict 20 cm of BeO as the best moderator thickness, whereas the in-air neutron field assessment parameters predict 25 cm of BeO as the best moderator thickness

  12. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Study on neutron streaming effect in large fast critical assembly

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamaoka, Mitsuaki; Sakurai, Shungo; Tanimoto, Koichi; Abe, Yuhei

    1981-03-01

    A cell calculation method taking into account the neutron leakage from a cell and a transport calculation method treating the neutron streaming have been developed, and their applicability has been investigated. In the cell calculation method, the neutron leakage in the perpendicular direction to plates was treated by introducing an albedo collision probability which is a first-flight collision probability incorporating albedos at cell boundaries, and that in the parallel direction was treated by the pseudo absorption method. The use of the albedo collision probability made it possible to calculate the flux tilt in a cell exactly. This cell calculation method was applied to two slab models where fuel drawers were stacked in perpendicular and parallel directions to plates. Cell averaged cross sections calculated by the proposed method agreed well with those obtained from exact transport calculations treating the plate-wise heterogeneity, while the infinite cell calculation and the conventional pseudo absorption method produced about 2% errors in the cell-averaged cross sections. The cell-averaging procedure for control-rod channels was also proposed, and this method was applied to the calculation of control-rod worths and control-rod position worths. A transport calculation method based on the response matrix method has been proposed to treat the neutron streaming in fast critical assemblies directly. A response matrix code in two dimensional XY geometry RES2D was made. The accuracy of response matrices obtained from the RES2D code was checked by applying it to a slab cell and by comparing cell-averaged cross sections and k-infinity with those from a reference cell calculation based on the collision probability. The agreement of the results was good, and it was found that the response matrix method is very promising for the treatment of the neutron streaming in fast critical assemblies. (author)

  14. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor, k/sub eff/ has been satisfactorily determined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments and the development of theoretical methods to predict the experimental observables

  15. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    International Nuclear Information System (INIS)

    Favalli, Andrea; Roth, Markus

    2015-01-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  16. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  17. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  18. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  19. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  20. Evaluation of neutron flux in the Pool Critical Assembly

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ruddy, F.H.; Gold, R.; Kellogg, L.S.; Roberts, J.H.

    1984-09-01

    A recently completed series of experiments in the Pool Critical Assembly (PCA) at Oak Ridge National Laboratory (ORNL) provided extensive neutron flux characterization of a mockup pressure vessel configuration. Considerable effort has been made to understand the uncertainties of the various measurements made in the PCA and to resolve discrepancies in the data. Additional measurements are available for similar configurations in the Oak Ridge Reactor-Poolside Facility (ORR-PSF) at ORNL and in the NESDIP facility in the UK. Comparisons of these results, together with associated neutron field calculations, enable a better evaluation of the actual uncertainties and realistic limits of accuracy to be assessed. Such assessments are especially valuable when the accuracy improvements of benchmark referencing are to be included and extrapolations to new configurations are made

  1. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  2. Neutron Fluence Evaluation using an Am-Be Neutron Sources Assembly and P ADC Detectors

    International Nuclear Information System (INIS)

    Seddik, U.

    2008-01-01

    An assembly of four 241 Am-Be sources has been constructed at Nuclear Reactions Unit (NRU) of Nuclear Research Center (NRU) to perform analysis of different materials using thermal and fast neutrons. In the present paper, we measure the value of transmittance (T) in percentage of etched CR-39 detectors using a spectrophotometer at different neutron fluences ,to relate the transmittance of the detector with the neutron fluence values. The exposed samples to neutrons with accumulated fluence of order between 10 10 and 10 12 cm -2 were etched for 15 time intervals between 10-600 min in 6.25 N NaOH at 70 degree C. The etched samples were analyzed using Tech 8500 II spectrophotometer. A trend of the sample transmission and the etching time is observed which is different for each fluence value. A linear relation between the transmittance decay constant and the neutron fluence is observed which could be used as a calibration to determine unknown neutron fluence

  3. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  4. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Stevanato, L.; Bonesso, I.; Turato, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2016-09-11

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  5. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    International Nuclear Information System (INIS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-01-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  6. Effect of blanket assembly shuffling on LMR neutronic performance

    International Nuclear Information System (INIS)

    Khalil, H.; Fujita, E.K.

    1987-01-01

    Neutronic analyses of advanced liquid-metal reactors (LMRs) have generally been performed with assemblies in different batches scatter-loaded but not shuffled among the core lattice positions between cycles. While this refueling approach minimizes refueling time, significant improvements in thermal performance are believed to be achievable by blanket assembly shuffling. These improvements, attributable to mitigation of the early-life overcooling of the blankets, include reductions in peak clad temperatures and in the temperature gradients responsible for thermal striping. Here the authors summarize results of a study performed to: (1) assess whether the anticipated gains in thermal performance can be realized without sacrificing core neutronic performance, particularly the burnup reactivity swing rho/sub bu/, which determines the rod ejection worth; (2) determine the effect of various blanket shuffling operations on reactor performance; and (3) determine whether shuffling strategies developed for an equilibrium (plutonium-fueled) core can be applied during the transition from an initial uranium-fueled core as is being considered in the US advanced LMR program

  7. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  8. Design and analysis of nuclear battery driven by the external neutron source

    International Nuclear Information System (INIS)

    Wang, Sanbing; He, Chaohui

    2014-01-01

    Highlights: • A new type of space nuclear power called NBDEx is investigated. • NBDEx with 252 Cf has better performance than RTG with similar structure. • Its thermal power gets great improvement with increment of fuel enrichment. • The service life of NBDEx is about 2.96 year. • The launch abortion accident analysis fully demonstrates the advantage of NBDEx. - Abstract: Based on the theory of ADS (Accelerator Driven Subcritical reactor), a new type of nuclear battery was investigated, which was composed of a subcritical fission module and an isotope neutron source, called NBDEx (Nuclear Battery Driven by External neutron source). According to the structure of GPHS-RTG (General Purpose Heat Source Radioisotope Thermoelectric Generator), the fuel cell model and fuel assembly model of NBDEx were set up, and then their performances were analyzed with MCNP code. From these results, it was found that the power and power density of NBDEx were almost six times higher than the RTG’s. For fully demonstrating the advantage of NBDEx, the analysis of its impact factors was performed with MCNP code, and its lifetime was also calculated using the Origen code. These results verified that NBDEx was more suitable for the space missions than RTG

  9. Laser driven compression and neutron generation with spherical shell targets

    International Nuclear Information System (INIS)

    Campbell, P.M.; Hammerling, P.; Johnson, R.R.; Kubis, J.J.; Mayer, F.J.

    1977-01-01

    Laser-driven implosion experiments using DT-gas-filled spherical glass-shell targets are described. Neutron yields to 5 x 10 7 are produced from implosions of small ( -- 55 μm-diameter) targets spherically illuminated with an on-target laser power of 0.4 terawatt. Nuclear reaction product diagnostics, X-ray pinhole photographs, fast-ion spectra and X-ray measurements are used in conjunction with hydrodynamic computer code simulations to investigate the implosion phenomenology as well as the target corona evolution. Simulations using completely classical effects are not able to describe the full range of experimental data. Electron or radiation preheating may be required to explain some implosion measurements. (auth.)

  10. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables

  11. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  12. Development of In-pile Plug Assembly and Primary Shutter for Cold Neutron Guide System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Won; Cho, Yeong Garp; Ryu, Jeong Soo; Lee, Jung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This report describes the mechanical design, fabrication, and installation procedure of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. A special tool and procedure for a replacement of in-pile plug and guide cassette is also presented with the interface condition in the reactor hall.

  13. Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions

    Science.gov (United States)

    Lebedev, V. T.; Szhogina, A. A.; Suyasova, M. V.

    2018-03-01

    Recent results on structural studies of aqueous solutions of water-soluble derivatives of endofullerenes encapsulating 4f- and 3d-elements have been presented. Neutron small angle scattering experiments allowed recognize subtle features of fullerenols assembly as dependent on chemical nature (atomic number) of interior atom, pH-factor and temperature of solutions. It was observed a fractal-type fullerenols’ ordering at the scale of correlation radii ∼ 10-20 nm when molecules with iron atoms are integrated into branched structures at low concentrations (C ≤ 1 % wt.) and organized into globular aggregates at higher amounts (C > 1 % wt.). On the other hand, for Lanthanides captured in carbon cages the supramolecular structures are mostly globular and have larger gyration radii ∼ 30 nm. They demonstrated a good stability in acidic (pH ∼ 3) and neutral (pH ∼ 7) media that is important for forthcoming medical applications.

  14. Fuel-assembly vibration-induced neutron noise in PWRs

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Renier, J.P.

    1983-01-01

    Space-dependent reactor kinetics calculations were performed to interpret observed increases in the amplitude of pressurized water reactor (PWR), ex-core neutron detector noise with increasing fuel burnup and correspondingly decreasing soluble boron concentration. These noise amplitude increases have occurred at both low frequencies (< 1.0 Hz) and in the 2.0- to 4.0-Hz frequency range. The noise amplitude increases in the 2.0- to 4.0-Hz frequency range have usually been accompanied by a decrease in the fundamental mode fuel assembly resonant frequency from 3.5 to 2.5 Hz over a fuel cycle, which has also been attributed to grid spacer spring relaxation

  15. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  16. A portable measurement system for subcriticality measurements by the CF-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1988-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. The /sup 252/Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor of a configuration of fissile material requires measurement of the frequency-dependent cross-power spectral density (CPSD), G/sub 23/(ω), between a pair of detectors (Nos. 2 and 3) located in or near the fissile material and CPSDs G/sub 12/(ω) and G/sub 13/(ω) between these same detectors and a source of neutrons emanating from an ionization chamber (No. 1) containing /sup 252/Cf, also positioned in or near the fissile material. The auto-power spectral density (APSD), G/sub 11/(ω), of the source is also required. A particular ratio of spectral densities, G/sub 12//sup */G/sub 13//G/sub 11/G/sub 23/ (/sup */ denotes complex conjugation), is then formed. This ratio is related to the subcritical neutron multiplication factor and is independent of detector efficiencies

  17. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  18. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  19. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2009-01-01

    A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis

  20. Neutron noise measurements at the Delphi subcritical assembly

    International Nuclear Information System (INIS)

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-01-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  1. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  2. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: jonathan_mueller@ncsu.edu; Mattingly, J.

    2016-07-21

    There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron–neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% {sup 239}Pu and 6% {sup 240}Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron–neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron–neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.

  3. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    Todt, W.H.; Playfoot, K.C.

    1979-01-01

    Disclosed is a self-powered in-core neutron detector assembly in which a plurality of longitudinally extending self-powered detectors have neutron responsive active portions spaced along a longitudinal path. A low neutron absorptive extension extends from the active portions of the spaced active portions of the detectors in symmetrical longitudinal relationship with the spaced active detector portions of each succeeding detector. The detector extension terminates with the detector assembly to provide a uniform perturbation characteristic over the entire assembly length

  4. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  5. Setting planned leadtimes in customer-order-driven assembly systems

    NARCIS (Netherlands)

    Atan, Z.; Kok, de A.G.; Dellaert, N.P.; Janssen, F.B.S.L.P.; Boxel, van R.

    2016-01-01

    We study an assembly system with a number of parallel multistage processes feeding a multistage final assembly process. Each stage has a stochastic throughput time. We assume that the system is controlled by planned leadtimes at each stage. From these planned leadtimes the start and due times of all

  6. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  7. Evaluation of the U-Pu residual mass from spent fuel assemblies with passive and active neutronic methods

    International Nuclear Information System (INIS)

    Bignan, G.; Martin-Deidier, L.

    1991-01-01

    The interpretation of passive and active neutronic measurements to evaluate the U-Pu residual mass in spent fuel assemblies is presented as follows: passive neutron measurements are well correlated to the plutonium mass, active neutron measurements give information linked to the fissile mass content of the assembly ( 235 U + 239 Pu + 241 Pu) and, using the passive neutron measurement, lead to the 235 U mass content of the assemblies

  8. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  9. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  10. The design and analysis of integral assembly experiments for CTR neutronics

    International Nuclear Information System (INIS)

    Beynon, T.D.; Curtis, R.H.; Lambert, C.

    1978-01-01

    The use of simple-geometry integral assemblies of lithium metal or lithium compounds for the study of the neutronics of various CTR designs is considered and four recent experiments are analysed. The relatively long mean free path of neutrons in these assemblies produces significantly different design problems from those encountered in similar experiments for fission reactor design. By considering sensitivity profiles for various parameters it is suggested that experiments can be designed to be optimised for data adjustments. (author)

  11. Measurements of time dependent energy spectra of neutrons in a small graphite assembly

    International Nuclear Information System (INIS)

    Fujita, Yoshiaki; Sakamoto, Shigeyasu; Aizawa, Otohiko; Takahashi, Akito; Sumita, Kenji.

    1975-01-01

    The time-dependent energy spectra of neutrons have been measured in a small 30x30x30 cm 3 graphite assembly by means of the linac-chopper method, with a view to establishing experimental evidence that there is no asymptotic spectrum in such a small assembly, and in order to study the non-asymptotic behavior of neutrons. The arrangement of a polyethylene pre-moderator adjacent to the assembly made the measurements possible with the improvement obtained thereby of the neutron counting statistics. It was indicated from calculation that the presence of the pre-moderator had little effect - at least above the Bragg cut-off energy - on the evolution in time of the energy spectra of neutrons in the graphite assembly. The experimental results indicated very probable disappearance of asymptotic spectra, and revealed significant enhancement of trapping at Bragg energies with the lapse of time. This is consistent with the results of pulsed neutron experiments in small assemblies conducted by Takahashi et al., and falls in line with de Saussure's approximation. The spectra in the graphite assembly showed significant space dependence, the spectra becoming harder with increasing distance from the pre-moderator. This hardening may be attributed to the relatively faster propagation of higher energy neutrons. (auth.)

  12. Unfolding of neutron spectra from Godiva type critical assemblies

    International Nuclear Information System (INIS)

    Harvey, J.T.; Meason, J.L.; Wright, H.L.

    1976-01-01

    The results from three experiments conducted at the White Sands Missile Range Fast Burst Reactor Facility are discussed. The experiments were designed to measure the ''free-field'' neutron leakage spectrum and the neutron spectra from mildly perturbed environments. SAND-II was used to calculate the neutron spectrum utilizing several different trial input spectra for each experiment. Comparisons are made between the unfolded neutron spectrum for each trial input on the basis of the following parameters: average neutron energy (above 10 KeV), integral fluence (above 10 KeV), spectral index and the hardness parameter, phi/sub eq//phi

  13. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  14. Neutron pulse propagation in natural UO sub(2) subcritical assembly moderated by heavy water

    International Nuclear Information System (INIS)

    Prado Souza, R.M.G. do.

    1976-01-01

    Short neutron bursts are fed to the graphite base of CAPITU, a D sub(2)O - natural uranium subcritical assembly. Due to the dispersive properties of the media the wave -components of the neutron pulses are attenuated and phase shifted along the axial direction. The experimental impulse response is Fourier transformed to yield the system's dispersion law, a relationship connecting the neutron diffusion parameters and the inverse complex relaxation length K (ω). The experimental results for five assemblies studied in CAPITU are compared with the theoretical dispersion law obtained from the two group diffusion theory. (author)

  15. Accelerator driven neutron sources in Korea. Current and future

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho

    2008-01-01

    The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)

  16. Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh, M. [Nuclear Science and Technology Research Institute, AEOI, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Feghhi, S.A.H., E-mail: a_feghhi@sbu.ac.ir [Department of Radiation Application, Shahid Beheshti University, G.C., Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute, AEOI, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2013-09-15

    Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ{sup †}) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ{sup †}) and importance weighted neutron generation time (Λ{sup †}) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ{sup †} is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function.

  17. Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors

    International Nuclear Information System (INIS)

    Hassanzadeh, M.; Feghhi, S.A.H.; Khalafi, H.

    2013-01-01

    Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ † ) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ † ) and importance weighted neutron generation time (Λ † ) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ † is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function

  18. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  19. Highly Compact Accelerator-Driven Subcritical Assembly for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Jasmina Vujic; William Kastenberg; Ehud Greenspan; Ka-Ngo Leung

    2006-01-01

    A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to ∼1012 D-D n/s. This source intensity is an order of magnitude too small for Boron Neutron Capture Therapy (BNCT) applications. The objective of this project is to assess the feasibility of using a small, safe and inexpensive subcritical fission assembly to multiply the fusion neutrons by a factor of (ge)30. The overall design objective is to get a treatment time for deep seated rain tumors that does not significantly increase beyond one hour when the effective multiplication factor of the SCM is k eff = 0.98. There are two major parts to this study: the optimization of the Sub-Critical Multiplier (SCM) and the optimization of the Beam Shaping Assembly (BSA), including the reflector for both subsystems. The SCM optimization objective is to maximize the current of neutrons that leak out from the SCM in the direction of the patient, without exceeding the maximum permissible k eff . Minimizing the required uranium inventory is another objective. SCM design variables considered include the uranium enrichment level in the range not exceeding 20% 235U (for proliferation concerns), SCM geometry and dimensions, fuel thickness and moderator thickness. The objective of the BSA optimization is to maximize the tumor dose rate using the optimal SCM while maintaining a tumor-to-normal tissue dose ratio of at least 20 to 12.5 (corresponding to the tumor control dose and to the healthy tissue dose limit). The BSA design variables include its shape, dimensions and composition. The reflector optimization is, in fact, an integral part of the SCM optimization and of the BSA optimization. The reflector design variables are composition and thickness. The study concludes that it is not quite feasible to achieve the project objective. Nevertheless, it appears feasible to develop a

  20. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  1. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  2. Project of new tandem-driven neutron facility in Slovakia

    International Nuclear Information System (INIS)

    Strisovska, Jana

    2014-01-01

    New neutron laboratory based on Pelletron R Accelerator with terminal voltage of 2 MV is under construction at the Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. The accelerator will be employed as a tunable source of monoenergetic fast neutrons. Using of deuterium and in the future also tritium gas cells is foreseen. These cells will allow to produce fast neutrons with various energies via 2 H(d,n) 3 He and 3 H(p,n) 3 He nuclear reactions. Physics program of new laboratory will be focused on nuclear structure studied via inelastic neutron scattering with gamma ray detection, especially for light singly-closed shell nuclei. Fission cross section measurement and fission gamma rays studies will be performed. Development and testing of neutron detectors, as integral part of future project ALLEGRO, i.e., the demonstrator of fast nuclear reactor cooled with helium gas, is planned. Parallel to neutron program, beams of charged particles will be used for studies of resonant nuclear astrophysics reactions. Start of operation of the laboratory is foreseen in 2015. In the talk, current status, physics program and details of the facility will be presented. (authors)

  3. Neutronics design of accelerator-driven system for power flattening and beam current reduction

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Iwanaga, Kohei; Tsujimoto, Kazufumi; Kurata, Yuji; Oigawa, Hiroyuki; Iwasaki, Tomohiko

    2008-01-01

    In the present neutronics design of the Accelerator-Driven System (ADS) cooled by lead-bismuth eutectic (LBE), we investigated several methods to reduce the power peak and beam current, and estimated the temperature reductions of the cladding tube and beam window from the conventional design. The methods are adjustment of inert matrix ratio in fuel in each burn-up cycle, multiregion design in terms of pin radius or inert matrix content, and modification of the level of the beam window position and the height of the central fuel assemblies. As a result, we optimized the ADS combined with the adjustment of the inert matrix ratio in each burn-up cycle, multiregion design in terms of inert matrix content and deepened window level. The maximum temperatures of the optimized ADS at the surface of the cladding tube and the beam window were reduced by 91 and 38degC, respectively. The maximum beam current was improved from 20.3 to 15.6 mA. (author)

  4. Accelerator-driven assembly for plutonium transformation (ADAPT)

    Science.gov (United States)

    Tuyle, Greorgy J. Van; Todosow, Michael; Powell, James; Schweitzer, Donald

    1995-01-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the U.S. and Russia. The highly fissle plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90%), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reativity feedbacks often associated with plutonium fuel.

  5. Fuel assembly inspection by three-dimensional neutron radiography

    International Nuclear Information System (INIS)

    Lapinski, N.P.; Reimann, K.J.; Berger, H.

    1979-01-01

    Radiographic inspection of complex objects such as fuel subassemblies often presents problems because superimposition of images at different depths in the object complicates interpretation. One method for obtaining and displaying three-dimensional neutron radiographic images in multiple-film laminagraphy; a series of radiographs generated at different angular orientations are superimposed to provide focussed images of any object plane. In the present work multiple-film neutron laminagraphs were generated using direct and indirect exposure techniques, with neutrons in thermal, epithermal, and fast energy ranges

  6. New applications of laser-driven neutron sources in the car industry

    International Nuclear Information System (INIS)

    Kakeno, Mitsutaka

    2015-01-01

    New applications of LDNS (Laser-Driven Neutron Sources) are described. One of them is ib-DATA (in-beam Double Activation Tracer Analysis) with which we can measure mean drift velocity and mass flow rate in a variety of fluid. In ib-DATA, LDNS with very light and compact beam-head will be constructed to shoot pulsed neutrons into the fluid in pinpoint. (author)

  7. Neutronic characteristics of linear-assembly breed-and-burn reactors

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2012-01-01

    Highlights: ► Simple models used to characterize general behavior of linear-assembly B and B reactors. ► Diffusion theory model developed to explain axial distributions, height vs. reactivity. ► Neutron excess concept reformulated to include linear-assembly B and B reactors. ► Designed model of B and B reactor started using melt-refined B and B reactor used fuel. ► Computed doubling time of fuel cycle requiring no chemical separations. - Abstract: Linear-assembly breed-and-burn (B and B) reactors are B and B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B and B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B and B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B and B reactors is extended to apply to linear-assembly B and B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B and B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B and B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which

  8. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  9. Analysis of the Photoneutron Yield and Thermal Neutron Flux in an Unreflected Electron Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Dale, Gregory E.; Gahl, John M.

    2005-01-01

    There are several potential uses for a high-flux thermal neutron source in both industrial and clinical applications. The viable commercial implementation of these applications requires a low-cost, high-flux thermal neutron generator suitable for installation in industrial and clinical environments. This paper describes the Monte Carlo for N-Particle modeling results of a high-flux thermal neutron source driven with an electron accelerator. An electron linear accelerator (linac), fitted with a standard X-ray converter, can produce high neutron yields in materials with low photonuclear threshold energies, such as D and 9 Be. Results indicate that a 10-MeV, 10-kW electron linac can produce on the order of 10 12 n/s in a heavy water photoneutron target. The thermal neutron flux in an unreflected heavy water target is calculated to be on the order of 10 10 n.cm -2 .s. The sensitivity of these answers to heavy water purity is also investigated, specifically the dilution of heavy water with light water. It is shown that the peak thermal neutron flux is not adversely effected by dilution up to a light water weight fraction of 35%

  10. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  11. Two level calculation of assembly neutronic data libraries; Schema de calcul de bibliotheques a deux niveaux

    Energy Technology Data Exchange (ETDEWEB)

    Benomar, M

    1998-09-01

    The neutronic modeling of a nuclear reactor core requires 2 steps. The first step that is called transport calculation, is an accurate modeling of each type of assemblies put in a simple configuration. APOLLO2, a French neutronic code is used. This step allows the constitution of assembly data libraries. The second step represents the computing of the whole core by the diffusion theory and by using the data libraries defined in the first step. This work is dedicated to the improvement of the first step by allowing both a 172 group energy meshing and a two-dimension spatial processing. (A.C.) 7 refs.

  12. Buoyancy-driven flow excursions in fuel assemblies

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-01-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations

  13. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  14. Buoyancy-driven flow excursions in fuel assemblies

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-01-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels

  15. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  16. Investigation of the neutron detection statistics in fast critical assembly BFS-24-1

    International Nuclear Information System (INIS)

    Avramov, A.M.; Tyutyunnikov, P.L.; Mikulski, A.T.; Rafalska, E.; Chwaszczewski, S.; Jablonski, K.

    1974-01-01

    The results of the neutron detection statistics investigation at the fast critical assembly BFS-24-1 are given. The Ross-α measurements were carried out using: digital flash-start unit and 256 channel time analyzer, 10 channel time analyzer, alphameter device. Parallely the measurements using the variable dead time method and zero probability method were performed. The prompt neutron decay constants, the effectiveness of neutron detector and the intensity of external neutron source are determined using the experimental data. The experimental values of prompt neutron decay constant are compared with the calculated ones. The codes used in the calculation are following: one dimensional, diffusion, 26-group code 26-M and EWA-1, one dimensional, multiregion, nonstationary diffusion 3-group code SPECTR, 26-group, diffusion code in buckling approximation, MIXSPECTR. In all codes the 26 group nuclear constants BNAB-26 and BNAB-70 are used. (author)

  17. Radiation effects in materials for accelerator-driven neutron technologies

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.; Daemen, L.L.; Ferguson, P.D.

    1997-01-01

    The materials exposed to the most damaging radiation environments in an SNS (spallation neutron source) are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. The major solid targets in operating SNS's and under consideration for the 1--5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the project target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  18. Neutron transport calculations of some fast critical assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val Penalosa, J A

    1976-07-01

    To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs.

  19. Neutron transport calculations of some fast critical assemblies

    International Nuclear Information System (INIS)

    Martinez-Val Penalosa, J. A.

    1976-01-01

    To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs

  20. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  1. The neutronics of an Accelerator-Driven Energy Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.; Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    1995-10-01

    This study has been focused on an Accelerator-Driven Energy Amplifier, based on the concept proposed by the CERN-group. To analyze the performance of this system the extensive optimization of the core lattice was done, the temperature coefficients of reactivity were investigated, reactivity budget and power distribution were estimated.

  2. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    International Nuclear Information System (INIS)

    Habib, Moinul

    2005-12-01

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design

  3. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Habob, Moinul

    2005-12-15

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design.

  4. Neutron metrology in the fuel assemblies of a material test reactor

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Paardekoper, A.; Polle, A.N.; Freudenreich, W.E.

    1993-08-01

    Results are presented of detailed thermal and fast neutron measurements performed in all fuel and control assemblies of the HFR in Petten. The results give information about deviations of a general shape of vertical thermal and fast fluence rate distributions due to material transitions in the reactor core and different control assembly settings. Further it is demonstrated that the ratio of fast and thermal fluence rate at the various monitor positions in the assemblies give useful information for the (relative) local burn-up of the fuel. (orig.)

  5. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    1981-01-01

    An in-core neutron detector assembly consisting of a number of longitudinally extending self-powered detectors is described. The uniform mechanical structures and materials are placed symmetrically at each active detector portion thus ensuring that local perturbation factors are uniform. (U.K.)

  6. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    De Leeuw-Gierts, G.; De Leeuw, S.; Hansen, G.E.; Helmick, H.H.

    1979-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de L'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  7. Effect of absorption discontinuity on neutron spectra of water assemblies poisoned with non-1/V absorbers

    International Nuclear Information System (INIS)

    Gupta, I.J.; Trikha, S.K.

    1977-01-01

    Calculations are presented of the diffusion of thermal neutrons (2.5 x 10 -4 to 7 x 10 -1 eV) across an absorption discontinuity in a water assembly, consisting of pure water on one side and aqueous solutions of three different non-1/V absorbers on the other, which were obtained by solving the Boltzmann transport equation in the diffusion approximation using the multigroup formalism. The gradual appearance and disappearance of the depletion region in the neutron spectra (caused by the resonance absorption peaks at energies 0.096 and 0.179 eV for samarium and cadmium respectively), as one moves from the pure water assembly to the poisoned water assembly and vice versa, have also been studied. The minimum concentrations of Sm and Cd atoms in water for which the depletion region in the spectra just starts building up are found to be 60 x 10 18 Sm atom cm -3 and 125 x 10 18 Cd atom cm -3 respectively. However no such depletion region is observed in gadolinium-poisoned water assembly. At the boundary, the equilibrium neutron distribution gets disturbed and is re-established to the equilibrium distribution of the second medium at some distance from the interface. The diffusion lengths so calculated from the total neutron density curves are in good agreement with the experimental results of Goddard and Johnson (Nucl. Sci. Eng.; 37:127 (1969)) at various concentrations of Gd and Cd atoms in water. (author)

  8. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    Leeuw-Gierts, G. de; Leeuw, S. de

    1980-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de l'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  9. Investigation of neutron physical features of WWER-440 assembly containing differently enriched pins and Gd burnable poison

    International Nuclear Information System (INIS)

    Nemes, Imre

    2000-01-01

    In this paper different pin-distributions of WWER-440 fuel assembly are examined. Assemblies contain 3 Gd-doped pins (Hungarian design), 6 Gd-doped pins near the assembly corners (Russian design) and differently profiled U5-enrichment in different pins. The main neutron physical characteristics of this assemblies - as the function of burnup - are calculated using HELIOS code. The calculated parameters of different assembly designs are analyzed from the standpoint of fuel cycle economy and refueling design practice. (Authors)

  10. Research on neutron energy spectrum of the beryllium, iron and polyethylene shells assemblies injected by D-T neutron

    International Nuclear Information System (INIS)

    An, Li; Guo, Haiping; Wang, Xinhua

    2009-04-01

    To test a simulation code, the multi-shell assemblies were established, which were made of beryllium stainless steel and polyethylene from the interior to the outer. The symmetry axes are all in the line of the D + beam. The neutron energy spectra above 1 MeV were obtained in medium by the detector of stilbene crystal of φ18 min x 20 mm. The distance between source and the spherical surface was 30 cm and 50 cm. The measurement channels are in the angle 0 degree and 120 degree relative to D + beam direction. The measurement positions are 0 cm, 9.7 cm, 12.8 cm and 17.3 cm away from the center of the assembly in both directions. The spectrum in different positions of the multi-shell assemblies in medium were compared and analyzed. (authors)

  11. Theoretical analysis of time-dependent neutron spectra in bulk assemblies

    International Nuclear Information System (INIS)

    Akimoto, Tadashi; Ogawa, Yuichi; Togawa, Orihiko.

    1988-01-01

    Time-dependent neutron spectra in an iron assembly and in a graphite assembly are obtained with the one-dimensional S N calculation, in order an attempt to investigate the availability of these spectra to the benchmark test by the LINAC-TOF method for evaluation of nuclear data and numerical methods. The group constants are taken from the JAERI FAST SET Version 1, 2 and the ABBN SET. It was demonstrated by a sensitivity test that the time-dependent neutron spectra are sensitive to changes in the inelastic scattering cross section data in the iron assembly and to changes in the elastic scattering cross section data in the graphite assembly. Moreover, it is shown that the time-dependent spectra in the graphite assembly are sensitive to the group structure. Because some information about the neutron transport phenomena which has not been obtained in the stationary spectra is observed in the time-dependent spectra, the availability of the benchmark test based on the time-dependent spectra is indicated from the theoretical analysis. (author)

  12. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    Science.gov (United States)

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Monte Carlo analysis of accelerator-driven systems studies on spallation neutron yield and energy gain

    CERN Document Server

    Hashemi-Nezhad, S R; Westmeier, W; Bamblevski, V P; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Wan, J S; Odoj, R

    2001-01-01

    The neutron yield in the interaction of protons with lead and uranium targets has been studied using the LAHET code system. The dependence of the neutron multiplicity on target dimensions and proton energy has been calculated and the dependence of the energy amplification on the proton energy has been investigated in an accelerator-driven system of a given effective multiplication coefficient. Some of the results are compared with experimental findings and with similar calculations by the DCM/CEM code of Dubna and the FLUKA code system used in CERN. (14 refs).

  14. Study of the neutronic behavior of a fuel assembly with gadolinium of a reactor HPLWR

    International Nuclear Information System (INIS)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L.; Espinosa P, G.

    2012-10-01

    This work presents a neutronic study of a square assembly design of double line of fuel rods, with moderator box to center of the arrangement, for the nuclear reactor cooled with supercritical water, High Performance Light Water Reactor (HPLWR). For the fuel analyses of the reactor HPLWR the neutronic code Helios-2 was used, settling down as the first study on fuel under conditions of supercritical water that has been simulated with this code. The analyzed variables, essentials in the neutronic design of any reactor, were the infinite neutrons multiplication factor (k∞) and the maximum power peaking factor (PPF max ), as well as the reactivity coefficients by the fuel temperature. The k∞ and PPF max values were obtained under conditions in cold (293.6 K) and in hot (to 880.8 K). The tests were realized for a reference fuel assembly design, with 40 fuel rods with enrichments of 4 and 5% of U-235, and considering different concentrations of consumable poison (gadolinium - Gd 2O3 ) in some rods of the same assembly. The obtained results show values k∞ and PPF max minors to the present in the conventional light water reactors. Moreover, the reactivity coefficients by fuel temperature were verified with the purpose of satisfying the safety conditions required in the nuclear reactors. (Author)

  15. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  16. Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.

    2000-01-01

    The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW

  17. Neutron data testing for plutonium isotopes in experiments at fast critical assemblies

    International Nuclear Information System (INIS)

    Bednyakov, S.M.; Dulin, V.A.; Manturov, G.N.; Mozhaev, V.K.; Semenov, M.Yu.; Tsibulya, A.M.

    1996-01-01

    Experimental results on checking neutron data, obtained at the fast critical assemblies, are presented. They constitute sufficiently large collection of data making it possible to test nuclear neutron constants of plutonium isotopes for the new system of group constants BNAB-93. The work contains comparison of the measurement results on average fission cross section ratios and reactivity coefficients ratios for 239,240,241 Pu (to 235 U) with calculational data, obtained on the basis of the new testing system of the BNAB-93 group constants system. 14 refs., 6 figs

  18. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  19. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  20. New shielding material development for compact accelerator-driven neutron source

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-04-01

    Full Text Available The Compact Accelerator-driven Neutron Source (CANS, especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE, PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  1. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA.

  2. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA

  3. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method for the calculation of neutron importance function in fissionable assemblies for all criticality conditions, based on Monte Carlo calculations. The neutron importance function has an important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating the adjoint flux while solving the adjoint weighted transport equation based on deterministic methods. However, in complex geometries these calculations are very complicated. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on the physical concept of neutron importance has been introduced for calculating the neutron importance function in sub-critical, critical and super-critical conditions. For this propose a computer program has been developed. The results of the method have been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries. The correctness of these results has been confirmed for all three criticality conditions. Finally, the efficiency of the method for complex geometries has been shown by the calculation of neutron importance in Miniature Neutron Source Reactor (MNSR) research reactor

  4. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Consistency of neutron cross-section data, S /SUB N/ calculations, and measured tritium production for a 14-MeV neutron-driven sphere of natural lithium deuteride

    International Nuclear Information System (INIS)

    Reupke, W.A.; Davidson, J.N.; Muir, D.W.

    1982-01-01

    The authors present algorithms, describe a computer program, and gives a computational procedure for the statistical consistency analysis of neutron cross-section data, S /SUB N/ calculations, and measured tritium production in 14-MeV neutron-driven integral assemblies. Algorithms presented include a reduced matrix manipulation technique suitable for manygroup, 14-MeV neutron transport calculations. The computer program incorporates these algorithms and is expanded and improved to facilitate analysis of such integral experiments. Details of the computational procedure are given for a natural lithium deuteride experiment performed at the Los Alamos National Laboratory. Results are explained in terms of calculated cross-section sensitivities and uncertainty estimates. They include a downward adjustment of the 7 Li(n,xt) 14-MeV cross section from 328 + or - 22 to 284 + or - 24 mb, which is supported by the trend of recent differential and integral measurements. It is concluded that with appropriate refinements, the techniques of consistency analysis can be usefully applied to the analysis of 14-MeV neutron-driven tritium production integral experiments

  6. Tritium breeding experiments in a fusion blanket assembly using a low-intensity neutron generator

    International Nuclear Information System (INIS)

    Dalton, A.W.; Woodley, H.J.; McGregor, B.J.

    1987-01-01

    Experiments have been carried out to determine the accuracy with which tritium production rates (TPRs) can be measured in a fusion blanket assembly of non-spherical geometry by a non-central low intensity D-T neutron source (2x10 10 neutrons per second). The tritium production was determined for samples of lithium carbonate containing high enrichments of 6 Li(96%) and 7 Li(99.9%). The measured data were used to check the accuracy with which the TPRs could be numerically predicted using current nuclear data and calculational methods. The numerical predictions from tritium production from the 7 Li samples agreed within the experimental errors of the measurements, but 6 Li measurements which differ by more than 20 per cent from the predicted values were observed in the lower half of the assembly

  7. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing.

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...

  8. Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T., E-mail: sharad@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Pethe, S.N., E-mail: sanjay@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Krishnan, R., E-mail: krishnan@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N., E-mail: vnb@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2011-12-15

    For the production of a clinical 15 MeV photon beam, the design of accelerator head assembly has been optimized using Monte Carlo based FLUKA code. The accelerator head assembly consists of e-{gamma} target, flattening filter, primary collimator and an adjustable rectangular secondary collimator. The accelerators used for radiation therapy generate continuous energy gamma rays called Bremsstrahlung (BR) by impinging high energy electrons on high Z materials. The electron accelerators operating above 10 MeV can result in the production of neutrons, mainly due to photo nuclear reaction ({gamma}, n) induced by high energy photons in the accelerator head materials. These neutrons contaminate the therapeutic beam and give a non-negligible contribution to patient dose. The gamma dose and neutron dose equivalent at the patient plane (SSD = 100 cm) were obtained at different field sizes of 0 Multiplication-Sign 0, 10 Multiplication-Sign 10, 20 Multiplication-Sign 20, 30 Multiplication-Sign 30 and 40 Multiplication-Sign 40 cm{sup 2}, respectively. The maximum neutron dose equivalent is observed near the central axis of 30 Multiplication-Sign 30 cm{sup 2} field size. This is 0.71% of the central axis photon dose rate of 0.34 Gy/min at 1 {mu}A electron beam current.

  9. Neutron data for accelerator-driven transmutation technologies. Annual Report 2004/2005

    International Nuclear Information System (INIS)

    Blomgren, J.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oehrn, A.; Oesterlund, M.

    2005-09-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: An article on three-body force effects has been on the top-ten downloading list of Physics Letters B. Uppsala had the largest foreign delegation at the International Conference on Nuclear Data for Science and Technology in Santa Fe, NM, USA, and presented the largest number of papers of all experimental groups. A neutron flux monitor for the new FOI neutron beam facility has been developed, commissioned and taken into regular operation. Within the project, one licentiate exam has been awarded. The new neutron beam facility at TSL has been taken into commercial operation and is now having the largest commercial turnover of all European facilities in the field

  10. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    Science.gov (United States)

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.

  11. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  12. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing

    Science.gov (United States)

    Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

    2002-02-01

    We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n⩾1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

  13. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    OpenAIRE

    Casoli Pierre; Grégoire Gilles; Rousseau Guillaume; Jacquet Xavier; Authier Nicolas

    2016-01-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to streng...

  14. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  15. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  16. Measurement of time-dependent fast neutron energy spectra in a depleted uranium assembly

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-10-01

    Time-dependent neutron energy spectra in the range 0.6 to 6.4 MeV have been measured in a depleted uranium assembly. By selecting windows in the time range 0.9 to 82 ns after the beam pulse, it was possible to observe the change of the neutron energy distributions from spectra of predominantly 4 to 6 MeV neutrons to spectra composed almost entirely of fission neutrons. The measured spectra were compared to a Monte Carlo calculation of the experiment using the ENDF/B-IV data file. At times and energies at which the calculation predicted a fission spectrum, the experiment agreed with the calculation, confirming the accuracy of the neutron spectroscopy system. However, the presence of discrepancies at other times and energies suggested that there are significant inconsistencies in the inelastic cross sections in the 1 to 6 MeV range. The time response generated concurrently with the energy spectra was compared to the Monte Carlo calculation. From this comparison, and from examination of time spectra measured by other workers using 235 U and 237 Np fission detectors, it would appear that there are discrepancies in the ENDF/B-IV cross sections below 1 MeV. The predicted decay rates were too low below and too high above 0.8 MeV

  17. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    Feghhi, S. A. H.; Afarideh, H.; Shahriari, M.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method to calculate neutron importance function in fissionable assemblies for all criticality conditions, using Monte Carlo Method. The neutron importance function has a well important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating adjoint flux through out solving the Adjoint weighted transport equation with deterministic methods. However, in complex geometries these calculations are very difficult. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on physical concept of neutron importance has been introduced for calculating neutron importance function in sub-critical, critical and supercritical conditions. For this means a computer program has been developed. The results of the method has been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries and their correctness has been approved for all three criticality conditions. Ultimately, the efficiency of the method for complex geometries has been shown by calculation of neutron importance in MNSR research reactor

  18. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    Science.gov (United States)

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  19. Experimental Assessment of a New Passive Neutron Multiplication Counter for Partial Defect Verification of LWR Fuel Assemblies

    International Nuclear Information System (INIS)

    LaFleur, A.; Menlove, H.; Park, S.-H.; Lee, S. K.; Oh, J.-M.; Kim, H.-D.

    2015-01-01

    The development of non-destructive assay (NDA) capabilities to improve partial defect verification of spent fuel assemblies is needed to improve the timely detection of the diversion of significant quantities of fissile material. This NDA capability is important to the implementation of integrated safeguards for spent fuel verification by the International Atomic Energy Agency (IAEA) and would improve deterrence of possible diversions by increasing the risk of early detection. A new NDA technique called Passive Neutron Multiplication Counter (PNMC) is currently being developed at Los Alamos National Laboratory (LANL) to improve safeguards measurements of LightWater Reactor (LWR) fuel assemblies. The PNMC uses the ratio of the fast-neutron emission rate to the thermalneutron emission rate to quantify the neutron multiplication of the item. The fast neutrons versus thermal neutrons are measured using fission chambers (FC) that have differential shielding to isolate fast and thermal energies. The fast-neutron emission rate is directly proportional to the neutron multiplication in the spent fuel assembly; whereas, the thermalneutron leakage is suppressed by the fissile material absorption in the assembly. These FCs are already implemented in the basic Self-Interrogation Neutron Resonance Densitometry (SINRD) detector package. Experimental measurements of fresh and spent PWR fuel assemblies were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using a hybrid PNMC and SINRD detector. The results from these measurements provides valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. (author)

  20. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  1. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL

  2. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL.

  3. Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity

    International Nuclear Information System (INIS)

    Kharlampieva, Eugenia; Kozlovskaya, Veronika; Chan, Jennifer; Ankner, John Francis; Tsukruk, Vladimir V.

    2009-01-01

    We apply neutron reflectivity to probe the internal structure of spin-assisted layer-by-layer (LbL) films composed of electrostatically assembled polyelectrolytes. We find that the level of stratification and the degree of layer intermixing can be controlled by varying the type and concentration of salt during LbL assembly. We observe well-defined layer structure in spin-assisted LbL films when deposited from salt-free solutions. These films feature 2-nm-thick bilayers, which are ∼3-fold thicker than those in dipped LbL films assembled under similar conditions. Addition of a 10mM phosphate buffer promotes progressive layer inter-diffusion with increasing distance from the substrate. However, adding 0.1M NaCl to the phosphate buffer solution restores the layer stratification. We also find that spin-assisted LbL films obtained from buffer solutions are more highly stratified as compared to the highly intermixed layers seen in dipped LbL films assembled from buffer. Our results yield new insight into the mechanism of spin-assisted LbL assembly that should prove useful for biotechnological applications.

  4. Radiation-induced segregation in materials: Implications for accelerator-driven neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, R.B.; Song, S. [Loughborough Univ. of Technology (United Kingdom)

    1995-10-01

    This paper reviews exisiting models for radiation-induced segregation to microstrucural interfaces and surfaces. It indicates how the models have been successfully used in the past in neutron irradiation situations and how they may be modified to account for accelerator-driven RIS. The predictions of the models suggest that any impurity with large misfit will suffer RIS and that the effect is heightened as radiation damage increases. The paper suggests methods to utilise the RIS in transmutation technology by dynamically segregating long life nuclides to preferred sites in the microstructure so that subsequent transmutations occur with maximum efficiency.

  5. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  6. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  7. ADS Neutronic Benchmark A New Approach to the Design of Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Carminati, F.; Kadi, Y.

    1997-01-01

    The main parameter characterizing the neutron economy of an accelerator driven subcritical fission device, like the Energy Amplifier (EA), is the factor M by which the source spallation neutrons are multiplied by the fission dominated cascade. A related quantity is the multiplication coefficient K s rc=(M-1)/M, that is the average ratio of the neutron population in two subsequent generations of the source-initiated cascade. Such a factor k s rc, depending on both the properties of the source and of the medium, is in general conceptual and numerically different from the effective criticality factor k e ff, commonly used in reactor theory, which is in fact only relevant to the fundamental mode of the neutron flux distribution, and is independent on the source. The effective criticality factor k e ff is however a meaningful measure of the actual safety characteristics of the device, that is 1-k e ff is a proper gauge of the distance from criticality. In this paper the difference between k e ff is addressed numerically in the case of an externally driven Thorium fuelled and Lead cooled subcritical device representing a simplified version of the Energy Amplifier. It is found that codes or calculations implementing the critical reactor formalism (neutrons are distributed according to a cos-type imposed distribution together with a fission spectrum energy distribution and non-fission multiplication, i. e. n,X n reactions, is not considered explicitly) in order to describe a subcritical device, systematically underestimate the reactivity on the system by about 0.028 in k (∼ 2800 pcm) which implies an error in the estimation of the necessary concentration of ''233U close to 5% which in turn induces an adverse effect on the stability of k during burnup. Finally, the discrepancies arising from the use of different nuclear data libraries are as significant as the effects of using different neutron source approximations and hence also deserve attention. We think that a

  8. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  9. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2009-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  10. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2008-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  11. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    International Nuclear Information System (INIS)

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-01-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW t

  12. Neutronic Design of an Accelerator Driven Sub-Critical Research Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Conceptual design of an accelerator driven sub-critical research reactor (ADSRR), as a new project in the Vinca Institute of Nuclear Sciences, is suggested for support to the Ministry of science, technologies and development of Republic Serbia, Yugoslavia. This paper show initial results of neutronic analyses of the proposed ADSRR carried out by Monte Carlo based MCNP and SHIELD codes. According to the proposal, the ADSRR would be constructed, in a later phase, at high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation, that is under completion in the Vinca Institute. The fuel elements of 80%-enriched uranium dioxide dispersed in aluminium matrix, available in the Vinca Institute, are proposed for the ADSRR core design. The HEU fuel elements are placed in aluminium tubes filled by the 'primary moderator' - light water. These 'fuel tubes' are placed in a square lattice within lead matrix in a stainless steel tank. The lead is used as a 'secondary moderator' in the core and as the axial and radial reflector. Such design of the ADSRR shows that this small low neutron flux system can be used as an experimental 'demonstration' ADS with some neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate or fast neutron spectrum. The proposed experimental ADSRR, beside usage as a valuable research machine in reactor and neutron physics, will contribute to following and developing new nuclear technologies in the country, useful for eventual nuclear power option and nuclear waste incineration in future. (author)

  13. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  14. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  15. Neutron transport study based on assembly modular ray tracing MOC method

    International Nuclear Information System (INIS)

    Tian Chao; Zheng Youqi; Li Yunzhao; Li Shuo; Chai Xiaoming

    2015-01-01

    It is difficulty for the MOC method based on Cell Modular Ray Tracing to deal with the irregular geometry such as the water gap between the PWR lattices. Hence, the neutron transport code NECP-Medlar based on Assembly Modular Ray Tracing is developed. CMFD method is used to accelerate the transport calculation. The numerical results of the 2D C5G7 benchmark and typical PWR lattice prove that NECP-Medlar has an excellent performance in terms of accuracy and efficiency. Besides, NECP-Medlar can describe clearly the flux distribution of the lattice with water gap. (authors)

  16. Measurements of fast neutron spectra in iron, uranium and sodium-iron assemblies

    International Nuclear Information System (INIS)

    Kappler, F.; Pieroni, N.; Rusch, D.; Schmidt, A.; Wattecamps, E.; Werle, H.

    1979-01-01

    Spectrum measurements were performed at the fast subcritical facility SUAK to test nuclear data and computer codes used in fast reactor calculations. In order to obtain a specific and quantitative interpretation of discrepancies between measured and calculated spectrum, homogeneous assemblies consisting of single materials were investigated. The leakage spectrum of iron and uranium cylinders was measured by time-of-flight and proportional counters. Time-dependent leakage spectra were measured by a NE 213 liquid scintillator. It was demonstrated that the investigation of time-dependent spectra is a sensitive test of inelastic scattering cross section data. The effect of an interface on fast neutron spectra was also investigated by measuring space dependent spectra across a sodium-iron interface. The measured spectra of these assemblies are suitable for testing the adequacy of computational approximations and cross section data. (author)

  17. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  18. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  19. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  20. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  1. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    Science.gov (United States)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  2. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    Science.gov (United States)

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  3. Stoichiometric control of multiple different tectons in coordination-driven self-assembly: preparation of fused metallacyclic polygons.

    Science.gov (United States)

    Lee, Junseong; Ghosh, Koushik; Stang, Peter J

    2009-09-02

    We present a general strategy for the synthesis of stable, multicomponent fused polygon complexes in which coordination-driven self-assembly allows for single supramolecular species to be formed from multicomponent self-assembly and the shape of the obtained polygons can be controlled simply by changing the ratio of individual components. The compounds have been characterized by multinuclear NMR spectroscopy and electrospray ionization mass spectrometry.

  4. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity

    International Nuclear Information System (INIS)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Devishvili, A; Toperverg, B P; Zabel, H; Theis-Bröhl, K; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C

    2012-01-01

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole–dipole interaction is rather strong, dominating the collective magnetic properties at room temperature. (paper)

  5. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    Science.gov (United States)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  6. The TARC experiment (PS211): neutron-driven nuclear transmutation by adiabatic resonance crossing

    International Nuclear Information System (INIS)

    Revol, J.P.; Arnould, H.; Bompas, C.A.

    1999-01-01

    The main purpose of the TARC experiment is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS beam line to study how neutrons produced by spallation at relatively high energy (E n ≥1 MeV) slow down quasi adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates of LLFFs 99 Tc, 129 I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99 Tc or 129 I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications. (orig.)

  7. Light-driven self-assembly of hetero-shaped gold nanorods

    Science.gov (United States)

    Liaw, Jiunn-Woei; Chao, Hsueh-Yu; Huang, Cheng-Wei; Kuo, Mao-Kuen

    2018-01-01

    Light-driven self-assembly and coalescence of two nearby hetero-shaped gold nanorods (GNRs) with different lengths are studied theoretically. The optical forces and torques, in terms of Maxwell's stress tensor, upon these GNRs provided by a linearly polarized (LP) plane wave are analyzed using the multiple multipole (MMP) method. Numerical results show that the optical torque dominates their alignments and the optical force their attraction. The most likely outcome of the plasmon-mediated light-matter interaction is wavelength dependent. Three different coalescences of the two GNRs could be induced by a LP light in three different wavelength regimes, respectively. For example, the side-by-side coalescence of two GNRs with radius of 15 nm and different lengths (120 and 240 nm) is induced in water as irradiated by a LP light at 633 nm, the T-shaped one at 1064 nm, and the end-to-end one at 1700 nm. The plasmonic attractive force and heating power densities inside GNRs with different gaps are also studied; the smaller the gap, the larger the attractive force and heating power. The results imply that the plasmonic coalescence and heating of two discrete GNRs may cause the local fusion at the junction of the assembly and the subsequent annealing (even recrystallization). Because the heating makes the two discrete GNRs fused to become a new nanostructure, the plasmonic coalescence of optical manipulation is irreversible.

  8. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.

    Science.gov (United States)

    Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  9. Small angle neutron and x-ray scattering studies of self-assembled nano structured materials

    International Nuclear Information System (INIS)

    Choi, Sung Min

    2009-01-01

    Full text: Small angle neutron and x-ray scattering are very powerful techniques to investigate nano structured materials. In this presentation, examples of nano structured materials investigated by neutron and x-ray scattering will be presented. Part I: The unique anisotropic physical properties of columnar discotic liquid crystals (DLCs) have attracted considerable interest for their potential applications as electronic devices. For many practical applications, however, it is crucial to obtain uniaxially oriented and highly ordered columnar superstructures of DLC molecules covering macroscopic area. Here, we present a simple and straight-forward approach to fabricate uniaxially oriented and highly ordered columnar superstructures of cobalt octa(n-decylthio) porphyrazine (CoS 1 0), a discotic supra-molecule, in bulk and on substrates [1] over a macroscopic length scale, utilizing an applied magnetic field and the interaction of CoS 1 0 with an OTS-functionalized substrate. The details of the oriented and ordered columnar nano-structures are investigated by SANS and GISAXS. Part II: Self-assembly of one-dimensional (1D) nanoparticles with metallic or semiconducting properties into highly ordered superstructures using various interactions has been of great interest as a route towards materials with new functionalities. Here, we report a new phase diagram of negatively charged 1D nanoparticle (cROD) and cationic liposome (CL) complexes in water which exhibit three different highly ordered phases [2]. Small angle neutron and x-ray scattering measurements show that the cROD-CL complexes exhibit three different highly ordered phases, intercalated lamellar, doubly intercalated lamellar and centered rectangular phases, depending on particle curvature and electrostatic interactions. The new phase diagram can be used to understand and design new highly ordered self-assemblies of 1D nanoparticles in soft matter which provide new functionalities. (author)

  10. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1985-01-01

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are (1) variance-to-mean ratio of the counts in a time bin (V/M), (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M), (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the Δk required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding Δks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparison, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change

  11. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1985-01-01

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are: (1) variance-to-mean ratio of the counts in a time bin (V/M); (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M); and (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the Δk required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding Δks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparisons, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change

  12. Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques

    International Nuclear Information System (INIS)

    Szieberth, Máté; Klujber, Gergely; Kloosterman, Jan Leen; Haas, Dick de

    2015-01-01

    Highlights: • Neutron noise measurements were performed at the Delphi subcritical assembly. • Bias in the fitted prompt decay constant was observed due to higher modes. • Spatial dependence of the higher mode was surveyed. • Effect of two different source distributions was investigated. • An estimation of the prompt decay constant is given for the Delphi. - Abstract: The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft University of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean (VTM, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurements also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly

  13. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10{sup 9} n cm{sup -2} s{sup -1} for the integral neutron flux, 2.41 ± 0.01 10{sup 9} n cm{sup -2} s{sup -1} for the thermal neutron flux, 1.09 ± 0.02 10{sup 9} n cm{sup -2} s{sup -1} for intermediate neutron flux and 3.41± 0.02 10{sup 8} n cm{sup -2} s{sup -1} for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  14. Design and fabrication of 4π Clover Detector Array Assembly for gamma-spectroscopy studies using thermal neutrons

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, S.R.; Chaudhari, A.T.; Sabharwal, T.P.; Pathak, Kavindra; Prasad, N.K.; Kinage, L.A.; Biswas, D.C.; Bhagwat, P.V.

    2017-01-01

    Nuclear spectroscopy has been studied earlier from the measurement of prompt gamma rays produced in reactions with thermal neutrons from CIRUS reactor. For studying the prompt γ-spectroscopy using thermal neutrons from Dhruva Reactor, BARC, the development of a dedicated beam line (R-3001) is in progress. In this beam line a detector assembly consisting of Clover Ge detectors will be used. This experimental setup will be utilized to investigate nuclear structure using prompt (n,γ) reactions and also to study the spectroscopy of neutron-rich fission-fragment nuclei

  15. Laser micro-machining of hydrophobic-hydrophilic patterns for fluid driven self-alignment in micro-assembly

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Jorritsma, Mark; Arnaldo del Cerro, D.; Chang, Bo; Liimatainen, Ville; Zhou, Quan; Huis in 't Veld, Bert

    2011-01-01

    Fluid driven self-alignment is a low cost alternative to fast but relatively inaccurate robotic pickand-place assembly of micro-fabricated components. This fluidic self-alignment technique relies on a hydrophobic-hydrophilic pattern on the surface of the receiving substrate, which confines a fluid

  16. Evaluation of Importance of Source Neutrons in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Kim, Yong Hee; Park, Won Seok

    2002-01-01

    An importance function of the external spallation neutrons in ADS (Accelerator-Driven System) is defined to characterize the source multiplication in subcritical blanket. For a model ADS problem, the source importance function is evaluated with the TRANSX/TWODANT code system. In order to assess the impact of the power distribution on the importance function, both homogeneous and heterogeneous cores are analyzed and corresponding source multiplications are compared. Also, based on the source importance function, an optimization of the shape of the proton current is performed from the source multiplication point of view. Additionally, the source importance function is compared with the conventional λ-mode adjoint flux, which is used as an importance function of fission neutrons in the critical reactors. Concerning an issue in the ADS design, i.e., difficulty in reducing the fission power unless the proton current is shut off, a study is performed to minimize the source importance, thereby minimizing the fission power, even when the k-eff value of the core is quite high. (authors)

  17. On the Neutron Kinetics and Control of Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    2004-01-01

    This work addresses fundamental aspects of the time- and space-dependent behavior of an Accelerator-Driven Subcritical Core System (ADS) and presents a paradigm ADS neutron kinetics model that is solved exactly. Thus, this paradigm model can serve for benchmarking two- and/or three-dimensional computational tools. Furthermore, this work also proposes a global optimal control theory framework for the operation and control of an ADS. This framework encompasses conceptually the time- and space-dependent behavior of the ADS coupled neutron kinetics/thermal-hydraulic balance equations and aims at the optimal control of ADS operational objectives, which would include minimization of local flux disturbances, load and source following, etc. Importantly, this new conceptual framework makes no use of a 'fictitious ADS steady state' and yields the correct and complete (i.e., including sources) adjoint equations, without leaving any room for ambiguities. Thus, this new conceptual framework provides a natural basis for developing new computational methods and corresponding verification experiments specifically tailored for the control and operation of ADS

  18. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-driven Convection

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Heger, A., E-mail: laurens.keek@nasa.gov [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Victoria, 3800 (Australia)

    2017-06-20

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  19. Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki

    2004-01-01

    Neutronics design study was performed for lead-bismuth cooled accelerator-driven system (ADS) to transmute minor actinides. Early study for ADS indicated two problems: a large burnup reactivity swing and a significant peaking factor. To solve these problems, effect of design parameters on neutronics characteristics were searched. The design parameters were initial plutonium loading, buffer region between spallation target and core, and zone fuel loading. Parametric survey calculations were performed considering fuel cycle consisting of burnup and recycle. The results showed that burnup reactivity swing depends on the plutonium fraction in the initial fuel loading, and the lead-bismuth buffer region and the two-zone loading were effective for solving the problems. Moreover, an optimum value for the effective multiplication factor was also evaluated using reactivity coefficients. From the result, the maximum allowable value of the effective multiplication factor for a practical ADS can be set at 0.97. Consequently, a new core concept combining the buffer region and the two-zone loading was proposed base on the results of the parametric survey. (author)

  20. An experimental accelerator driven system based on plutonium subcritical assembly and 660 MeV protons accelerator

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Puzynin, I.V.; Sisakyan, A.N.; Polanski, A.

    1999-01-01

    We present a Plutonium Based Energy Amplifier Testing Concept, which employs a plutonium subcritical assembly and a 660 MeV proton accelerator operating in the JINR Laboratory of Nuclear Problems. Fuel designed for the pulsed neutron source IREN (Laboratory of Neutron Physics, JINR) will be adopted for the core of the assembly. To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient K eff ranging between 0.94 and 0.95 and the energetic gain about 20. Accelerated current is in the range of 1-1.6μA

  1. Evaluation of neutron streaming in fast breeder reactor fuel assembly by double heterogeneous modelling

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Takeda, Toshikazu

    1988-01-01

    Neutron streaming in a fast breeder reactor fuel assembly caused by the double heterogeneity structure is estimated by double heterogeneous modelling. The conventional pin cell model, a two-region subassembly model and the exact pin cluster model are used to take into account the streaming effect caused by the pin cell structure and the surrounding wrapper tube structure. The heterogeneity of wrapper tube and its surrounding sodium is explicitly considered. The streaming effect is evaluated based on Benoist's diffusion coefficient. The total streaming effect caused by the double heterogeneity structure of a fuel subassembly is found to be -0.2 % dk/kk' for k eff , which is almost twice that obtained from the conventional pin cell model of -0.1 % dk/kk'. (author)

  2. Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering

    NARCIS (Netherlands)

    Bot, A.; Gilbert, E.P.; Bouwman, W.G.; Sawalha, H.I.M.; Adel, den R.; Garamus, V.M.; Venema, P.; Linden, van der E.; Flöter, E.

    2012-01-01

    Small-angle neutron scattering (SANS) experiments have been performed on self-assembled tubules of sitosterol and oryzanol in triglyceride oils to investigate details of their structure. Alternative organic phases (deuterated and non-deuterated decane, limonene, castor oil and eugenol) were used to

  3. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomic fraction >90 percent was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. We observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  4. Microwave Ion Source and Beam Injection for an Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm 2 and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D + beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  5. Neutron fluctuations in accelerator driven and power reactors via backward master equations

    International Nuclear Information System (INIS)

    Zhifeng Kuang

    2000-05-01

    The transport of neutrons in a reactor is a random process, and thus the number of neutrons in a reactor is a random variable. Fluctuations in the number of neutrons in a reactor can be divided into two categories, namely zero noise and power reactor noise. As the name indicates, they dominate (i.e. are observable) at different power levels. The reasons for their occurrences and utilization are also different. In addition, they are described via different mathematical tools, namely master equations and the Langevin equation, respectively. Zero noise carries information about some nuclear properties such as reactor reactivity. Hence methods such as Feynman- and Rossi-alpha methods have been established to determine the subcritical reactivity of a subcritical system. Such methods received a renewed interest recently with the advent of the so-called accelerator driven systems (ADS). Such systems, intended to be used either for energy production or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those of the traditionally used radioactive sources which were also assumed in the derivation of the Feynman- and Rossi-alpha formulae. Therefore it is necessary to re-derive the Feynman- and Rossi-alpha formulae. Such formulae for ADS have been derived recently but in simpler neutronic models. One subject of this thesis is the extension of such formulae to a more general case in which six groups of delayed neutron precursors are taken into account, and the full joint statistics of the prompt and all delayed groups is included. The involved complexity problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Power reactor noise carries information about parametric perturbation of the system. Langevin technique has been used to extract such information. In such a treatment, zero noise has been neglected. This is a pragmatic

  6. Predicting fissile content of spent nuclear fuel assemblies with the Passive Neutron Albedo Reactivity technique and Monte Carlo code emulation

    International Nuclear Information System (INIS)

    Conlin, Jeremy Lloyd; Tobin, Stephen J.

    2011-01-01

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed. (author)

  7. Monte Carlo studies of accelerator driven systems energy and spatial distribution of neutrons in multiplying and non-multiplying media

    CERN Document Server

    Hashemi-Nezhad, S R; Brandt, R; Krivopustov, M I; Kulakov, B A; Odoj, R; Sosnin, A N; Wan, J S; Westmeier, W

    2002-01-01

    The LAHET code system is used to study the behaviour of the spallation neutrons resulting from the interaction of 2.5 GeV/c protons with a massive lead target within a large (approx 32 m sup 3) lead and graphite moderating environments. The spatial and energy distribution of the neutrons with presence and absence of a fissile material in Accelerator Driven Systems (ADS) are investigated. It is shown that the energy spectra of the neutrons in graphite and lead moderators are very different and such difference is expected to result in noticeable differences in the nuclear waste transmutation abilities of the ADSs that use graphite and lead for neutron moderation and storage.

  8. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov; Menlove, Howard O., E-mail: hmenlove@lanl.gov

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties.

  9. Determination of average fission fraction produced by 14 MeV neutrons in assemblies with large volume of depleted uranium

    International Nuclear Information System (INIS)

    Wang Dalun; Li Benci; Wang Xiuchun; Li Yijun; Zhang Shaohua; He Yongwu

    1991-07-01

    The average fission fraction of 238 U caused by 14 MeV neutrons in assemblies with large volume depleted uranium has been determined. The measured value of p f 238U (R ∞ depleted ) 14 was 0.897 ± 0.036. Measurements were also completed for neutron flux distribution and average fission fraction of 235 U isotope in depleted uranium sphere. Values of p f 238U (R depleted ) have been obtained by using a series of uranium spheres. For a sphere with Φ 600 the p f 23 '8 U (R 300 depleted ) is 0.823 ± 0.041, the density of depleted uranium assembly is 18.8g/cm 3 and total weight of assembly is about 2.8t

  10. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  11. Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Sho [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sekiguchi, Yuichiro [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Kiuchi, Kenta; Shibata, Masaru, E-mail: sho.fujibayashi@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-09-10

    We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.

  12. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  13. Neutronic evaluation of annular fuel rods to assemblies 13 x 13, 14 x 14 and 15 x 15

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Raphael H.M.; Ramos, Mario C.; Velasquez, Carlos E.; Silva, Clarysson A.M. da; Pereira, Cláubia; Costa, Antonella L., E-mail: rapha.galo@hotmail.com, E-mail: marc5663@gmail.com, E-mail: carlosvelcab@hotmail.com, E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Research and development in nuclear reactor field has been proposed a new concept of fuel rod such as annular shape. The design of the annular fuel rods allows the coolant flow through the inner and outer side of it. Such project was proposed as an alternative to the traditional fuel rods used in LWR reactors. This new geometry allows an increase in power density in the reactor core with greater heat transfer from the fuel to the coolant which reduces the temperature in central region of the rod, in which a better configuration and dimension of fuel elements are aimed due to improvement of cooling in possible replacement of PWR traditional rods for annular rods. The aim of this work is to evaluate the neutronic parameters of fuel element with annular fuel rods where three configurations were studied: 13 x 13, 14 x 14 and 15 x 15. The goal is compare the neutronic between the advanced and the standard fuel assembly 16 x 16. In these studies, the external dimension and the moderator to fuel volume ratio (V{sub M}/V{sub F}) of standard 16 x 16 is the same in all annular fuels assemblies. The MCNPX 2.6.0 (Monte Carlo N-Particle eXtended – version 2.6.0) code was used in all simulations. After all procedures, the annular fuel assemblies 13 have obtained greater neutronics parameters and were selected to more neutronics simulations. (author)

  14. Neutronic evaluation of annular fuel rods to assemblies 13 x 13, 14 x 14 and 15 x 15

    International Nuclear Information System (INIS)

    Silva, Raphael H.M.; Ramos, Mario C.; Velasquez, Carlos E.; Silva, Clarysson A.M. da; Pereira, Cláubia; Costa, Antonella L.

    2017-01-01

    Research and development in nuclear reactor field has been proposed a new concept of fuel rod such as annular shape. The design of the annular fuel rods allows the coolant flow through the inner and outer side of it. Such project was proposed as an alternative to the traditional fuel rods used in LWR reactors. This new geometry allows an increase in power density in the reactor core with greater heat transfer from the fuel to the coolant which reduces the temperature in central region of the rod, in which a better configuration and dimension of fuel elements are aimed due to improvement of cooling in possible replacement of PWR traditional rods for annular rods. The aim of this work is to evaluate the neutronic parameters of fuel element with annular fuel rods where three configurations were studied: 13 x 13, 14 x 14 and 15 x 15. The goal is compare the neutronic between the advanced and the standard fuel assembly 16 x 16. In these studies, the external dimension and the moderator to fuel volume ratio (V M /V F ) of standard 16 x 16 is the same in all annular fuels assemblies. The MCNPX 2.6.0 (Monte Carlo N-Particle eXtended – version 2.6.0) code was used in all simulations. After all procedures, the annular fuel assemblies 13 have obtained greater neutronics parameters and were selected to more neutronics simulations. (author)

  15. Neutronic design and analysis on dual-cooled waste transmutation blanket for the fusion driven sub-critical system

    International Nuclear Information System (INIS)

    Zheng Shanliang; Wu Yican; Gao Chunjing; Xu Dezheng; Li Jingjing; Zhu Xiaoxiang

    2004-01-01

    Neutronics design and analysis of dual-cooled multi-functional waste transmutation blanket (DWTB) for the fusion driven sub-critical system (FDS) are performed to ensure the system be able to meet the requirements of fuel-sufficiency and more waste transmutation ratio with low initial loading fuel inventory, which is based on 1-D burn-up calculations with home-developed code Visual BUS and the multi-group (175 neutron groups-42 Gamma groups coupled) data library HENDL1.0/MG (Hybrid Evaluated Nuclear Data Library). (authors)

  16. Colloidal Self-Assembly Driven by Deformability & Near-Critical Phenomena

    NARCIS (Netherlands)

    Evers, C.H.J.|info:eu-repo/dai/nl/338775188

    2016-01-01

    Self-assembly is the spontaneous formation of patterns or structures without human intervention. This thesis aims to increase our understanding of self-assembly. In self-assembly of proteins, the building blocks are very small and complex. Consequently, grasping the basic principles that drive the

  17. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.

    Science.gov (United States)

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  18. Rapid method of calculating the fluence and spectrum of neutrons from a critical assembly and the resulting dose

    International Nuclear Information System (INIS)

    Bessis, J.

    1977-01-01

    The proposed calculation method is unsophisticated but rapid. The first part (computer code CRITIC), which is based on the Fermi age equation, evaluates the number of neutrons per fission emitted from a moderated critical assembly and their energy spectrum. The second part (computer code NARCISSE), which uses the current albedo for concrete, evaluates the product of neutron reflection on the walls and calculates the fluence resulting at any point in the room and its energy distribution by 21 groups. The results obtained are shown to compare satisfactorily with those obtained through the use of a Monte Carlo program

  19. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  20. Fertile assembly for a fast neutron nuclear reactor cooled by liquid sodium, with regulation of the cooling rate

    International Nuclear Information System (INIS)

    Pradal, L.; Berte, M.; Chiarelli, C.

    1985-01-01

    The assembly has a casing in which are arranged the fertile elements, the liquid sodium flowing through the casing along these elements. It includes several apertured diaphragms transverse to the rods to regulate the liquid sodium flow rate. At least one diaphragm, in its central part around its aperture, of a material soluble in liquid sodium, such as copper. The invention applies, more particularly, to fast neutron nuclear reactor having a heterogeneous core. The coolant flow can increase with time to match the increased power generated by the fertile assembly along its life [fr

  1. Ion-temperature measurement of indirectly driven implosions using a geometry-compensated neutron time-of-flight detector

    International Nuclear Information System (INIS)

    Murphy, T.J.; Lerche, R.A.; Bennett, C.; Howe, G.

    1995-01-01

    A geometry-compensated neutron time-of-flight detector has been constructed and used on Nova to measure ion temperatures from indirectly driven implosions with yields between 2.5 and 5x10 9 DD neutrons. The detector, which has an estimated respond time of 250 ps, was located 150 cm from the targets. Due to the long decay time of the scintillator, the time-of-flight signal must be unfolded from the measured detector signal. Several methods for determining the width of the neutron energy spectrum from the data have been developed and give similar results. Scattered x rays continue to be a problem for low yield shots, but should be brought under control with adequate shielding

  2. Ion temperature measurement of indirectly-driven implosions using a geometry-compensated neutron time-of-flight detector

    International Nuclear Information System (INIS)

    Murphy, T.J.; Lerche, R.A.; Bennett, C.; Howe, G.

    1994-05-01

    A geometry-compensated neutron time-of-flight detector has been constructed and used on Nova to measure ion temperatures from indirectly-driven implosions with yields between 2.5 and 5 x 10 9 DD neutrons. The detector, which has an estimated response time of 250 ps, was located 150 cm from the targets. Due to the long decay time of the scintillator, the time-of-flight signal must be unfolded from the measured detector signal. Several methods for determining the width of the neutron energy spectrum from the data have been developed and give similar results. Scattered x rays continue to be a problem for low yield shots, but should be brought under control with adequate shielding

  3. Development opportunities for small and medium scale accelerator driven neutron sources. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-02-01

    Neutron applications in the life sciences will be a rapidly growing research area in the near future, as neutrons can provide unique information on the reaction dynamics of complex biomolecular systems, complementing other analytical techniques such as electron microscopy, X rays and nuclear magnetic resonance. Small and medium power spallation neutron sources will become more important, as many small neutron producing research reactors are being phased out. Recent developments in accelerator technology have made it possible to produce useful neutron fluxes at accelerator facilities suitable for universities and industrial laboratories. In addition to basic research these alternative neutron sources will be important for educational and training purposes. In a wider perspective this technology should make it possible to introduce neutron research and applications to industrial and national research centres in IAEA Member States that are unable to afford a high energy spallation neutron source and have no access to a research reactor

  4. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  5. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  6. Neutronics feasibility of using Gd2O3 particles in VVER-1000 fuel assembly

    International Nuclear Information System (INIS)

    Hoang Van Khanh; Hoang Thanh Phi Hung; Tran Hoai Nam

    2016-01-01

    Neutronics feasibility of using Gd 2 O 3 particles for controlling excess reactivity of VVER-1000 fuel assembly has been investigated. The motivation is that the use of Gd 2 O 3 particles would increase the thermal conductivity of the UO 2 +Gd 2 O 3 fuel pellet which is one of the desirable characteristics for designing future high burnup fuel. The calculation results show that the Gd 2 O 3 particles with the diameter of 60 µm could control the reactivity similarly to that of homogeneous mixture with the same amount of Gd 2 O 3 . The power densities at the fuel pin with Gd 2 O 3 particles increase by about 10-11%, leading to the decrease of the power peak and a slightly flatter power distribution. The power peak appears at the periphery pins at the beginning of burnup process which is decreased by 0.9 % when using Gd 2 O 3 particles. Further work and improvement are being planned to optimize the high power peaking at the beginning of burnup. (author)

  7. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-01-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7 Li(p, n) 7 Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  8. A setup for active neutron analysis of the fissile material content in fuel assemblies of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, A. V.; Kozhin, A. F., E-mail: alexfkozhin@yandex.ru; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    An active neutron method for measuring the residual mass of {sup 235}U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual {sup 235}U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of {sup 238}U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.

  9. In-plant test and evaluation of the neutron collar for verification of PWR fuel assemblies at Resende, Brazil

    International Nuclear Information System (INIS)

    Menlove, H.O.; Marzo, M.A.S.; de Almeida, S.G.; de Almeida, M.C.; Moitta, L.P.M.; Conti, L.F.; de Paiva, J.R.T.

    1985-11-01

    The neutron-coincidence collar has been evaluated for the measurement of pressurized-water reactor (PWR) fuel assemblies at the Fabrica de Elementos Combustiveis plant in Resende, Brazil. This evaluation was part of the cooperative-bilateral-safeguards technical-exchange program between the United States and Brazil. The neutron collar measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron-interrogation source. The extended evaluation took place over a period of 6 months with both scanning and single-zone measurements. The results of the tests gave a coincidence-response standard deviation of 0.7% (sigma = 1.49% for mass) for the active case and 2.5% for the passive case in 1000-s measurement times. The length measurement in the scanning mode was accurate to 0.77%. The accuracies of different calibration methods were evaluated and compared

  10. Experiment and analysis of neutron spectra in a concrete assembly bombarded by 14 MeV neutrons

    International Nuclear Information System (INIS)

    Oishi, Koji; Tomioka, Kazuyuki; Ikeda, Yujiro; Nakamura, Tomoo.

    1988-01-01

    Neutron spectrum in concrete bombarded by 14 MeV neutrons was measured using a miniature NE213 spectrometer and multi-foil activation method. A good agreement between those two experimental methods was obtained within experimental errors. The measured spectrum was compared with calculated ones using two-dimensional transport code DOT3.5 with 125 group structure cross section libraries based on ENDF/B-IV, JENDL-2, and JENDL-3T (the testing version of JENDL-3.) In the D-T neutron peak region, measured and calculated neutron spectra agreed well with each other for those libraries. However, disagreements of about -10 % to +50 % and -30 % to +40 % were obtained in the MeV region and still lower neutron energy range, respectively. As a result, it was concluded that those discrepancies were caused by the overestimation of secondary neutrons emitted by inelastic scattering from O, Si, and/or Ca which were the main components of concrete. (author)

  11. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.

    Science.gov (United States)

    Aldeek, Fadi; Safi, Malak; Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi

    2013-11-26

    Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.

  12. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Blanc, Pauline; Tobin, Stephen J.; Croft, Stephen; Menlove, Howard O.; Swinhoe, M.; Lee, T.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to 235 U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a ∼14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of 3 He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in 238 U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of

  13. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    International Nuclear Information System (INIS)

    Ceder, M.

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  14. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, M

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  15. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  16. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  17. Self-recognition in the coordination driven self-assembly of 2-D polygons.

    Science.gov (United States)

    Addicott, Chris; Das, Neeladri; Stang, Peter J

    2004-08-23

    Self-recognition in the transition-metal-mediated self-assembly of some 2-D polygons is presented. Prolonged heating of two or three organoplatinum reagents with 4,4'-dipyridyl in aqueous acetone results in the predominant formation of a rectangle, triangle, and/or square. All mixtures are characterized with NMR and electrospray ionization mass spectrometry (ESIMS). Despite the potential for ill-defined oligomeric products, these mixed ligand systems prefer to self-assemble into discrete species.

  18. Self-assembly of Hydrazide-based Heterodimers Driven by Hydrogen Bonding and Donor-Acceptor Interaction

    Institute of Scientific and Technical Information of China (English)

    FENG,Dai-Jun; WANG,Peng; LI,Xiao-Qiang; LI,Zhan-Ting

    2006-01-01

    A new series of hydrogen bonding-driven heterodimers have been self-assembled in chloroform from hydrazide-based monomers. Additional intermolecular donor-acceptor interaction between the electron-rich bis(p-phenylene)-34-crown-10 unit and the electron-deficient naphthalene diimide unit has been utilized to increase the stability of the dimmers, and pronounced cooperativity of the two discrete non-covalent forces to stabilize the dimer has been revealed by the quantitative 1H (2D) NMR and UV-Vis experiments.

  19. Direct and quantitative characterization of dynamic ligand exchange between coordination-driven self-assembled supramolecular polygons.

    Science.gov (United States)

    Zheng, Yao-Rong; Stang, Peter J

    2009-03-18

    The direct observation of dynamic ligand exchange between Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable (1)H/(2)D isotope labeling of the pyridyl donors and electrospray ionization mass spectrometry combined with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established on the basis of quantitative mass spectral results. Further investigation has shown that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counteranions.

  20. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  1. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ for the Accelerator Driven Neutron Source

    International Nuclear Information System (INIS)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells, Russell

    2007-01-01

    A high-yield neutron source to screen sea-land cargo containers for shielded Special Nuclear Materials (SNM) has been designed at LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses the D(d,n)3He reaction to create a forward directed neutron beam. Key components are a high-current radio-frequency quadrupole (RFQ) accelerator and a high-power target capable of producing a neutron flux of >107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical design and analysis of the four-module, bolt-together RFQ will be presented here. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mA deuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ modules will consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and the modules. RF connections are made with canted coil spring contacts. A series of 60 water-cooled pi-mode rods provides quadrupole mode stabilization. A set of 80 evenly spaced fixed slug tuners is used for final frequency adjustment and local field perturbation correction

  2. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    Science.gov (United States)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica

  3. 252Cf-source-driven neutron noise measurements of subcriticality for a slab tank containing aqueous Pu-U nitrate

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.; Robinson, R.C.; Seino, H.

    1987-08-01

    In order to study nuclear criticality safety related to the development of fast breeder technology, 252 Cf-source-driven neutron noise analysis measurements were performed with a Pu-U nitrate solution in a slab tank of various heights and thickness varying 11.43 cm to 19.05 cm. The results and conclusions of these experiments are (1) a capability to measure the subcriticality of a multiplying system of slab geometry to a k/sub eff/ as low as 0.7 was demonstrated, (2) calculated neutron multiplication factors agreed with those from the experiments within ∼0.02, and (3) the applicability of the method for plutonium solution systems was demonstrated. This paper describes measurements in which the height of the slab was varied for a fixed thickness and the thickness varied for a fixed height, which are the first applications of this measurement method to slab geometry

  4. Multi-resolution and multi-scale simulation of the thermal hydraulics in fast neutron reactor assemblies

    International Nuclear Information System (INIS)

    Angeli, P.-E.

    2011-01-01

    The present work is devoted to a multi-scale numerical simulation of an assembly of fast neutron reactor. In spite of the rapid growth of the computer power, the fine complete CFD of a such system remains out of reach in a context of research and development. After the determination of the thermalhydraulic behaviour of the assembly at the macroscopic scale, we propose to carry out a local reconstruction of the fine scale information. The complete approach will require a much lower CPU time than the CFD of the entire structure. The macro-scale description is obtained using either the volume averaging formalism in porous media, or an alternative modeling historically developed for the study of fast neutron reactor assemblies. It provides some information used as constraint of a down-scaling problem, through a penalization technique of the local conservation equations. This problem lean on the periodic nature of the structure by integrating periodic boundary conditions for the required microscale fields or their spatial deviation. After validating the methodologies on some model applications, we undertake to perform them on 'industrial' configurations which demonstrate the viability of this multi-scale approach. (author) [fr

  5. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, M; Liu, Y; Nie, L [Purdue University, West Lafayette, Indiana (United States)

    2016-06-15

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics are measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.

  6. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions.

    Science.gov (United States)

    Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang

    2018-05-29

    Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.

  7. Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.

    Science.gov (United States)

    Zhao, Liang; Northrop, Brian H; Stang, Peter J

    2008-09-10

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.

  8. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    Science.gov (United States)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  9. Calibration of time of flight detectors using laser-driven neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Green, A.; Alejo, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [LULI, Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau Cedex (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt,Germany (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institut Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  10. Calibration of time of flight detectors using laser-driven neutron source

    Science.gov (United States)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  11. Calibration of time of flight detectors using laser-driven neutron source

    International Nuclear Information System (INIS)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Green, A.; Alejo, A.; Jung, D.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.

    2015-01-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil

  12. Benchmark experiment on vanadium assembly with D-T neutrons. In-situ measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Kasugai, Yoshimi; Konno, Chikara; Wada, Masayuki; Oyama, Yukio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murata, Isao; Kokooo; Takahashi, Akito

    1998-03-01

    Fusion neutronics benchmark experimental data on vanadium were obtained for neutrons in almost entire energies as well as secondary gamma-rays. Benchmark calculations for the experiment were performed to investigate validity of recent nuclear data files, i.e., JENDL Fusion File, FENDL/E-1.0 and EFF-3. (author)

  13. Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulation

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Perch-Nielsen, Ivan Ryberg; Rodrigo, Peter John

    2007-01-01

    We demonstrate how optical trapping and manipulation can be used to assemble microstructures. The microstructures we show being automatically recognized and manipulated are produced using the two-photon polymerization (2PP) technique with submicron resolution. In this work, we show identical shape...

  14. The Prompt Fission Neutron Spectrum: From Experiment to the Evaluated Data and its Impact on Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rising, Michael Evan [Los Alamos National Laboratory

    2015-06-10

    After a brief introduction concerning nuclear data, prompt fission neutron spectrum (PFNS) evaluations and the limited PFNS covariance data in the ENDF/B-VII library, and the important fact that cross section uncertainties ~ PFNS uncertainties, the author presents background information on the PFNS (experimental data, theoretical models, data evaluation, uncertainty quantification) and discusses the impact on certain well-known critical assemblies with regard to integral quantities, sensitivity analysis, and uncertainty propagation. He sketches recent and ongoing research and concludes with some final thoughts.

  15. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  16. Beam shaping assembly of a D–T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    International Nuclear Information System (INIS)

    Faghihi, F.; Khalili, S.

    2013-01-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D–T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D–T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor. - Highlights: ► An assembly for the D–T neutron source including many regions is given herein. ► Dosimetry simulations in the Snyder head phantom for a deeply-seated tumor are carried out. ► Brief literatures conclusions on the recent BNCT studies are presented herein

  17. Transport theory calculation for a heterogeneous multi-assembly problem by characteristics method with direct neutron path linking technique

    International Nuclear Information System (INIS)

    Kosaka, Shinya; Saji, Etsuro

    2000-01-01

    A characteristics transport theory code, CHAPLET, has been developed for the purpose of making it practical to perform a whole LWR core calculation with the same level of calculational model and accuracy as that of an ordinary single assembly calculation. The characteristics routine employs the CACTUS algorithm for drawing ray tracing lines, which assists the two key features of the flux solution in the CHAPLET code. One is the direct neutron path linking (DNPL) technique which strictly connects angular fluxes at each assembly interface in the flux solution separated between assemblies. Another is to reduce the required memory storage by sharing the data related to ray tracing among assemblies with the same configuration. For faster computation, the coarse mesh rebalance (CMR) method and the Aitken method were incorporated in the code and the combined use of both methods showed the most promising acceleration performance among the trials. In addition, the parallelization of the flux solution was attempted, resulting in a significant reduction in the wall-clock time of the calculation. By all these efforts, coupled with the results of many verification studies, a whole LWR core heterogeneous transport theory calculation finally became practical. CHAPLET is thought to be a useful tool which can produce the reference solutions for analyses of an LWR (author)

  18. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    Science.gov (United States)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  19. Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR

    International Nuclear Information System (INIS)

    Bernal, A.; Roman, J.E.; Miró, R.; Verdú, G.

    2016-01-01

    Highlights: • A method is proposed to solve the eigenvalue problem of the Neutron Diffusion Equation in BWR. • The Neutron Diffusion Equation is discretized with the Finite Volume Method. • The currents are calculated by using a polynomial expansion of the neutron flux. • The current continuity and boundary conditions are defined implicitly to reduce the size of the matrices. • Different structured and unstructured meshes were used to discretize the BWR. - Abstract: The neutron flux spatial distribution in Boiling Water Reactors (BWRs) can be calculated by means of the Neutron Diffusion Equation (NDE), which is a space- and time-dependent differential equation. In steady state conditions, the time derivative terms are zero and this equation is rewritten as an eigenvalue problem. In addition, the spatial partial derivatives terms are transformed into algebraic terms by discretizing the geometry and using numerical methods. As regards the geometrical discretization, BWRs are complex systems containing different components of different geometries and materials, but they are usually modelled as parallelepiped nodes each one containing only one homogenized material to simplify the solution of the NDE. There are several techniques to correct the homogenization in the node, but the most commonly used in BWRs is that based on Assembly Discontinuity Factors (ADFs). As regards numerical methods, the Finite Volume Method (FVM) is feasible and suitable to be applied to the NDE. In this paper, a FVM based on a polynomial expansion method has been used to obtain the matrices of the eigenvalue problem, assuring the accomplishment of the ADFs for a BWR. This eigenvalue problem has been solved by means of the SLEPc library.

  20. Self-assembly of colloidal bands driven by a periodic external field

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, André S.; Araújo, Nuno A. M., E-mail: nmaraujo@fc.ul.pt; Telo da Gama, Margarida M. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa (Portugal)

    2016-01-21

    We study the formation of bands of colloidal particles driven by periodic external fields. Using Brownian dynamics, we determine the dependence of the band width on the strength of the particle interactions and on the intensity and periodicity of the field. We also investigate the switching (field-on) dynamics and the relaxation times as a function of the system parameters. The observed scaling relations were analyzed using a simple dynamic density-functional theory of fluids.

  1. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    International Nuclear Information System (INIS)

    Waata, C.L.

    2006-07-01

    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  2. Biomimetic and Aggregation-Driven Crystallization Route for Room-Temperature Material Synthesis: Growth of β-Ga2O3 Nanoparticles Using Peptide Assemblies as Nanoreactors

    Science.gov (United States)

    Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi

    2008-01-01

    The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413

  3. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    International Nuclear Information System (INIS)

    Tornow, W.; Corse, W.; Crimi, S.; Fox, J.

    2010-01-01

    Two cylindrical LiTaO 3 crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z + and z - cut crystal faces, neutrons were produced via the 2 H(d,n) 3 He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D 2 + ) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10 4 neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  4. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  5. A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation

    Science.gov (United States)

    Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David

    2017-10-01

    A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.

  6. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  7. Neutron reflectivity studies of electric field driven structural transformations of surfactants

    CERN Document Server

    Majewski, J; Burgess, I; Zamlynny, V; Szymanski, G; Lipkowski, J; Satija, S

    2002-01-01

    We employed electrochemical methods together with in situ neutron reflectometry to describe the aggregation of organic surfactant molecules at a solid-liquid interface. The neutron reflectometry allowed us to determine the surface coverage, thickness, roughness and the relative positions of the aggregates. We found that the applied electric field may be used to reversibly manipulate the architecture of the organic molecules: from uniform monolayers to adsorbed hemi-micelles. These studies are expected to provide a new insight into the roles played by entropic and electrostatic forces in complex fluids or biomaterials. (orig.)

  8. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering.

    Science.gov (United States)

    Kahraman, Mehmet; Balz, Ben N; Wachsmann-Hogiu, Sebastian

    2013-05-21

    Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 × 10(11) NPs per mL. A detection limit of approximately 0.5 μg mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.

  9. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    Science.gov (United States)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  10. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    Science.gov (United States)

    Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas

    2016-02-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  11. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    Directory of Open Access Journals (Sweden)

    Casoli Pierre

    2016-01-01

    Full Text Available CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  12. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also

  13. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A. [Los Alamos National Laboratory (LANL); Macfarlane, R E [Los Alamos National Laboratory (LANL); Mosteller, R D [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Frankle, S C [Los Alamos National Laboratory (LANL); Chadwick, M. B. [Los Alamos National Laboratory (LANL); Mcknight, R D [Argonne National Laboratory (ANL); Lell, R M [Argonne National Laboratory (ANL); Palmiotti, G [Idaho National Laboratory (INL); Hiruta, h [Idaho National Laboratory (INL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Arcilla, r [Brookhaven National Laboratory (BNL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Sublet, J C [Culham Science Center, Abington, UK; Trkov, A. [Jozef Stefan Institute, Slovenia; Trumbull, T H [Knolls Atomic Power Laboratory; Dunn, Michael E [ORNL

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical

  14. Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions.

    Science.gov (United States)

    Mackinnon, A J; Kline, J L; Dixit, S N; Glenzer, S H; Edwards, M J; Callahan, D A; Meezan, N B; Haan, S W; Kilkenny, J D; Döppner, T; Farley, D R; Moody, J D; Ralph, J E; MacGowan, B J; Landen, O L; Robey, H F; Boehly, T R; Celliers, P M; Eggert, J H; Krauter, K; Frieders, G; Ross, G F; Hicks, D G; Olson, R E; Weber, S V; Spears, B K; Salmonsen, J D; Michel, P; Divol, L; Hammel, B; Thomas, C A; Clark, D S; Jones, O S; Springer, P T; Cerjan, C J; Collins, G W; Glebov, V Y; Knauer, J P; Sangster, C; Stoeckl, C; McKenty, P; McNaney, J M; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A G; Chandler, G G A; Hahn, K D; Moran, M J; Schneider, M B; Palmer, N E; Bionta, R M; Hartouni, E P; LePape, S; Patel, P K; Izumi, N; Tommasini, R; Bond, E J; Caggiano, J A; Hatarik, R; Grim, G P; Merrill, F E; Fittinghoff, D N; Guler, N; Drury, O; Wilson, D C; Herrmann, H W; Stoeffl, W; Casey, D T; Johnson, M G; Frenje, J A; Petrasso, R D; Zylestra, A; Rinderknecht, H; Kalantar, D H; Dzenitis, J M; Di Nicola, P; Eder, D C; Courdin, W H; Gururangan, G; Burkhart, S C; Friedrich, S; Blueuel, D L; Bernstein, L A; Eckart, M J; Munro, D H; Hatchett, S P; Macphee, A G; Edgell, D H; Bradley, D K; Bell, P M; Glenn, S M; Simanovskaia, N; Barrios, M A; Benedetti, R; Kyrala, G A; Town, R P J; Dewald, E L; Milovich, J L; Widmann, K; Moore, A S; LaCaille, G; Regan, S P; Suter, L J; Felker, B; Ashabranner, R C; Jackson, M C; Prasad, R; Richardson, M J; Kohut, T R; Datte, P S; Krauter, G W; Klingman, J J; Burr, R F; Land, T A; Hermann, M R; Latray, D A; Saunders, R L; Weaver, S; Cohen, S J; Berzins, L; Brass, S G; Palma, E S; Lowe-Webb, R R; McHalle, G N; Arnold, P A; Lagin, L J; Marshall, C D; Brunton, G K; Mathisen, D G; Wood, R D; Cox, J R; Ehrlich, R B; Knittel, K M; Bowers, M W; Zacharias, R A; Young, B K; Holder, J P; Kimbrough, J R; Ma, T; La Fortune, K N; Widmayer, C C; Shaw, M J; Erbert, G V; Jancaitis, K S; DiNicola, J M; Orth, C; Heestand, G; Kirkwood, R; Haynam, C; Wegner, P J; Whitman, P K; Hamza, A; Dzenitis, E G; Wallace, R J; Bhandarkar, S D; Parham, T G; Dylla-Spears, R; Mapoles, E R; Kozioziemski, B J; Sater, J D; Walters, C F; Haid, B J; Fair, J; Nikroo, A; Giraldez, E; Moreno, K; Vanwonterghem, B; Kauffman, R L; Batha, S; Larson, D W; Fortner, R J; Schneider, D H; Lindl, J D; Patterson, R W; Atherton, L J; Moses, E I

    2012-05-25

    The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 μm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).

  15. Modeling and Simulation Monte Carlo by the MCNP code for determining neutron parameters of the nuclear reactor-subcritical assembly in CNSTN

    International Nuclear Information System (INIS)

    Romdhani, Ibtissem

    2014-01-01

    As part of developing its nuclear infrastructure base, the National Science and Technology Center Nuclear (CNSTN) examines the technical feasibility of setting up a new installation of subcritical assembly. Our study focuses on determining the neutron parameters of a nuclear zero power reactor based on Monte Carlo simulation MCNP. The objective of the simulation is to model the installation, determine the effective multiplication factor, and spatial distribution of neutron flux.

  16. Generation of microfluidic flow using an optically assembled and magnetically driven microrotor

    International Nuclear Information System (INIS)

    Köhler, J; Ghadiri, R; Ksouri, S I; Guo, Q; Gurevich, E L; Ostendorf, A

    2014-01-01

    The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4–0.5 µm s −1 achieved with the presented technology. (paper)

  17. Burnable absorber-integrated Guide Thimble (BigT) - 1. Design concepts and neutronic characterization on the fuel assembly benchmarks

    International Nuclear Information System (INIS)

    Yahya, Mohd-Syukri; Yu, Hwanyeal; Kim, Yonghee

    2016-01-01

    This paper presents the conceptual designs of a new burnable absorber (BA) for the pressurized water reactor (PWR), which is named 'Burnable absorber-integrated Guide Thimble' (BigT). The BigT integrates BA materials into standard guide thimble in a PWR fuel assembly. Neutronic sensitivities and practical design considerations of the BigT concept are points of highlight in the first half of the paper. Specifically, the BigT concepts are characterized in view of its BA material and spatial self-shielding variations. In addition, the BigT replaceability requirement, bottom-end design specifications and thermal-hydraulic considerations are also deliberated. Meanwhile, much of the second half of the paper is devoted to demonstrate practical viability of the BigT absorbers via comparative evaluations against the conventional BA technologies in representative 17x17 and 16x16 fuel assembly lattices. For the 17x17 lattice evaluations, all three BigT variants are benchmarked against Westinghouse's existing BA technologies, while in the 16x16 assembly analyses, the BigT designs are compared against traditional integral gadolinia-urania rod design. All analyses clearly show that the BigT absorbers perform as well as the commercial BA technologies in terms of reactivity and power peaking management. In addition, it has been shown that sufficiently high control rod worth can be obtained with the BigT absorbers in place. All neutronic simulations were completed using the Monte Carlo Serpent code with ENDF/B-VII.0 library. (author)

  18. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  19. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  20. Source-jerk method for application on ADS neutronics study The ADS is stated for Accelerator Driven sub-critical System

    CERN Document Server

    Zhu Qing Fu; Li Yi; Xia Pu; Zheng Wu Qing; Zhu Guo Sheng

    2003-01-01

    The paper is concerned in the source-jerk method used to measure the sub-criticality, and the sub-critical experiment facility, which is used for the study on the neutronics of ADS, driven by external neutron source sup 2 sup 5 sup 2 Cf. The effects of the location of neutron source and material buffer where is at the location of the pipe of proton beam and target of fission-product dispersion on the sub-criticality of reactor are studied by source-jerk method

  1. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanraj, S.; Jagadeesh, G., E-mail: jaggie@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-08-15

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  2. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    International Nuclear Information System (INIS)

    Janardhanraj, S.; Jagadeesh, G.

    2016-01-01

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  3. Integral test of International Reactor Dosimetry and Fusion File with Li{sub 2}O assembly and DT neutron source at JAEA/FNS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi, E-mail: sato.satoshi92@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan); Kwon, Saerom; Ohta, Masayuki [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan); Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan)

    2016-11-01

    In order to validate a new library of dosimetry cross section data, International Reactor Dosimetry and Fusion File release 1.0 (IRDFF 1.0), not only for DT neutrons but also for neutrons with energy of less than 14 MeV, we perform an integral test with a Li{sub 2}O rectangular assembly of 60.7 cm in thickness and a DT neutron source at JAEA/FNS. We place a lot of activation foils at depths of 10.1 cm and 30.4 cm for measurements of dosimetry reaction rates in small space along the central axis in the assembly, measure decay gamma-rays from the activation foils with high-purity Ge detectors after the DT neutron irradiation by the foil activation technique, and deduce a variety of dosimetry reaction rates. We calculate the reaction rates by using a Monte Carlo code MCNP5-1.40 and the nuclear data library ENDF/B-VII.1 with the IRDFF-v.1.05 as the response functions for the dosimetry reactions. The calculation results generally show good agreements with the measured ones, and it can be confirmed that most of the data in IRDFF-v.1.05 are valid for the neutron field in the Li{sub 2}O assembly with the DT neutrons.

  4. Stepwise evolution of fuel assembly design toward a sustainable fuel cycle with hard neutron spectrum light water reactors

    International Nuclear Information System (INIS)

    Uchikawa, Sadao; Okubo, Tsutomu; Nakano, Yoshihiro

    2011-01-01

    An advanced LWR with hard neutron spectrum, FLWR, aims at efficient and flexible utilization of nuclear resources by evolving its fuel assembly design keeping the same core configuration. A proposed evolution process of the design toward a sustainable fuel cycle is composed of three stages, the first one based on the LWR fuel cycle infrastructures, the second one for transitioning from the LWR fuel cycle to the FR fuel cycle, and the third one based on the FR fuel cycle infrastructures. For the first stage, a fuel assembly design concept named FLWR/MIX has been developed in which enriched UO 2 fuel rods are arranged in the peripheral region of the assembly, surrounding the MOX fuel rods in the central region. The FLWR/MIX design realizes a breeder type operation under the framework of the LWR-MOX technologies and there experience. A modified FLWR/MIX design with low Pu inventory for the second stage has a potential of high Puf conversion ratio of 1.1 and can contribute to smooth and speedy transition from the LWR fuel cycle to the FR fuel cycle. For the third stage, the FLWR/MIX design is extended into a design with natural UO 2 fuel rods to realize multiple Pu recycling keeping a Puf conversion ratio of around 1.0. (author)

  5. Time-of-flight techniques applied to neutron spectra measurements in fast subcritical assemblies

    International Nuclear Information System (INIS)

    Rotival, Michel

    1975-04-01

    Time-of-flight measurements on Uranium-Graphite assemblies were performed using the BCMN linear accelerator. Methods to provide scalar spectra averaged over a core cell from these experimental results are described [fr

  6. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.ed [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Corse, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crimi, S. [Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458 (United States); Fox, J. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2010-12-21

    Two cylindrical LiTaO{sub 3} crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z{sup +} and z{sup -} cut crystal faces, neutrons were produced via the {sup 2}H(d,n){sup 3}He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D{sub 2}{sup +}) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10{sup 4} neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  7. Correlation function measurement of uranium casting driven by tagged DT neutrons

    International Nuclear Information System (INIS)

    Li Jiansheng; Ye Cenming; Xie Wenxiong; Huang Po; Zeng Liheng; Jin Yu; Xie Qilin; Zhang Yi

    2013-01-01

    Background: In the nuclear disarmament process, the measurement and verification of uranium casting in sealed container are important to process control and treaty implementation. It is a difficult and hot problem to verify uranium casting in a sealed metal container, due to the weak intensity of neutron and gamma rays of uranium. Purpose: We want to measure the correlation functions of different casting in uranium casting verifications. Methods: Two BC501 scintillation detectors are placed outside the tagged neutron cone and in opposite position. The α detector forms the first channel pulse signal, while the two BC501 scintillation detectors form the second and third channel pulse signals. Those three pulsed time series are recorded by high speed acquisition system. The correlation functions between these signals are calculated by the time series. Results: Putting the two BC501 detectors into the tagged neutron cone, the time of flight for the 14 MeV neutron is measured. The FWHM in TOF spectrum is 2.0 ns. Putting the two BC501 detectors outside the tagged neutron cone, the correlation functions measured by high speed acquisition system and MCA are consistent. The spontaneous neutron decay constants of the castings are measured by γ rays. The decay constant of 6.5 kg Pb component is 184 μs -1 . The decay constants of 4 kg and 15 kg HEU casting are 210 μs -1 and 128 μs -1 , respectively. The correlation functions C 12 (τ), C 13 (τ) and C 23 (τ) are acquired. In C 12 (C), the γ ray peak coming from the inelastic reaction of 14-MeV neutrons with the casting is 5.0 ns before the neutron peak of fission chain. This time difference can estimate the casting position in container. The integrations of the C 12 (τ), C 13 (τ) and C 23 (τ) increase with the casting mass. The C 23 (τ) values of Pb component and DU casting are far less than the values of HEU casting. The C 23 (τ) integration of Pb component is 3.0% comparing with 15-kg HEU casting, while the

  8. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    Science.gov (United States)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  9. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  10. Silicon diode measurements for monoenergetic neutrons and critical assemblies (H.P.R.R. and VIPER)

    International Nuclear Information System (INIS)

    Delafield, H.J.; Reading, A.H.

    1981-04-01

    The response of the silicon diode (AEI FNDD1) has been measured for monoenergetic neutrons of mean energies 0.56, 2.00 and 3.68 MeV. Using conversion factors from neutron fluence to kerma (ICRU, 1977) it is shown that the theoretical kerma response in muscle tissue is substantially uniform (+- 20%) over the neutron energy range from 250 keV to 17 MeV. Diode measurements were made at the Health Physics Research Reactor at the Oak Ridge National Laboratory, Tennessee, U.S.A., during the 1979 international intercomparison of nuclear accident dosimetry systems. Measurements of kerma in free air and of the surface absorbed dose on the front surface of a phantom were made with the reactor bare, shielded by 20 cm concrete and by 5 cm steel. Further tests were made at the VIPER reactor at AWRE. These diode measurements, covering a range of neutron spectra, were in good agreement (+- 20%) with measurements made by the threshold detector system. (author)

  11. A new method to measure the U-235 content in fresh LWR fuel assemblies via fast-neutron passive self-interrogation

    Science.gov (United States)

    Menlove, Howard; Belian, Anthony; Geist, William; Rael, Carlos

    2018-01-01

    The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd2O3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate the 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. We have named the system the fast-neutron passive collar (FNPC).

  12. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  13. Sub-channel analysis of LBE-cooled fuel assemblies of accelerator driven systems

    International Nuclear Information System (INIS)

    Cheng, X.; Hwang, D.H.

    2005-01-01

    In the frame of the European PDS-XADS project, two concepts of the sub-critical reactor core cooled by liquid lead-bismuth eutectic (LBE) were proposed. In this paper, the local thermal-hydraulic behavior of both LBE-cooled fuel assemblies was analyzed. For this purpose, the sub-channel analysis code MATRA was selected, and modification was made for its applications to XADS conditions. Compared to the small core concept, the large core concept has a much lower temperatures of coolant, cladding and fuel pins. This enables a short-term realization of the core design using available technologies. The high power density of the small core results in high local temperatures of coolant, cladding and fuel. Both coolant velocity and cladding temperature are such that special attention has to be paid to avoid corrosion and erosion damage of cladding materials. A parametric study shows that under the parameters considered, mixing coefficient has the biggest effect on the coolant temperature distribution, whereas the cladding temperature is strongly affected by the selection of heat transfer correlations. (author)

  14. Flow-driven alignment of carbon nanotubes during floating evaporative self assembly

    Science.gov (United States)

    Berson, Arganthael; Jinkins, Katherine; Chan, Jason; Brady, Gerald; Gronski, Kjerstin; Gopalan, Padma; Evensen, Harold; Arnold, Michael

    2017-11-01

    Individual semi-conducting single-wall carbon nanotubes (s-SWCNTs) exhibit exceptional electronic properties, which makes them promising candidates for the next generation of semi-conductor electronics. In practice, field-effect transistors (FETs) are fabricated from arrays of s-SWCNTs deposited onto a substrate. In order to achieve high electronic performance, the s-SWCNTs in these arrays must be densely packed and well aligned. Floating Evaporative Self Assembly (FESA) is a new deposition technique developed at the UW-Madison that can achieve such high-quality s-SWCNT alignment. For example, it was used to fabricate the first s-SWCNT-based FETs to outperform gallium arsenide and silicon FETs. In FESA, a droplet of ink containing the s-SWCNTs is deposited onto a pool of water. The ink spreads on the water surface towards a substrate that is vertically pulled out of the water. A band of aligned s-SWCNTs is deposited with each drop of ink. High-speed imaging is combined with cross-polarized microscopy to elucidate the mechanisms behind the exceptional alignment of s-SWCNTs. Two key mechanisms are 1) the collection of s-SWCNTs at the ink-water interface and 2) the depinning of the air-ink-substrate contact line. Avenues for scaling up FESA will be presented.

  15. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  16. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2011-07-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has

  17. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    International Nuclear Information System (INIS)

    Pena, C.; Pellacani, F.; Macian Juan, R.; Chiva, S.; Barrachina, T.; Miro, R.

    2011-01-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has been

  18. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, Karel

    2011-01-01

    Roč. 652, č. 1 (2011), s. 90-93 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10480505 Keywords : fuel assembly * spent fuel * track detector Subject RIV: JF - Nuclear Energetics Impact factor: 1.207, year: 2011

  19. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Celik, Cihangir; Isbell, Kimberly McMahan; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2016-01-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6 LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  20. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMahan, Kimberly L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [French Atomic Energy Commission (CEA), Saclay (France); Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Piot, Jerome [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Jacquet, Xavier [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  1. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas

    2016-01-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin "6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  2. Fine 3D neutronic characterization of a gas-cooled fast reactor based on plate-type sub-assemblies

    International Nuclear Information System (INIS)

    Bosq, J. C.; Peneliau, Y.; Rimpault, G.; Vanier, M.

    2006-01-01

    CEA neutronic studies have allowed the definition of a first 2400 MWth reference gas-cooled fast reactor core using plate-type sub-assemblies, for which the main neutronic characteristics were calculated by the so-called ERANOS 'design calculation scheme' relying on several method approximations. The last stage has consisted in a new refine characterization, using the reference calculation scheme, in order to confirm the impact of the approximations of the design route. A first core lay-out taking into account control rods was proposed and the reactivity penalty due to the control rod introduction in this hexagonal core lay-out was quantified. A new adjusted core was defined with an increase of the plutonium content. This leads to a significant decrease of the breeding gain which needs to be recovered in future design evolutions in order to achieve the self breeding goal. Finally, the safety criteria associated to the control rods were calculated with a first estimation of the uncertainties. All these criteria are respected, even if the safety analysis of GFR concepts and the determination of these uncertainties should be further studied and improved. (authors)

  3. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  4. Evaluation of the criticality constant from Pulsed Neutron Source measurements in the Yalina-Booster subcritical assembly

    International Nuclear Information System (INIS)

    Bécares, V.; Villamarín, D.; Fernández-Ordóñez, M.; González-Romero, E.M.; Berglöf, C.; Bournos, V.; Fokov, Y.; Mazanik, S.; Serafimovich, I.

    2013-01-01

    Highlights: ► New methodology proposed to determine the reactivity of subcritical systems. ► Methodology tested in PNS experiments at the Yalina-Booster subcritical assembly. ► The area-ratio and the prompt decay constant methods have been used for validation. ► The absolute reactivity of the system is determined in spite of large spatial effects. - Abstract: The prompt decay constant method and the area-ratio (Sjöstrand) method constitute the reference techniques for measuring the reactivity of a subcritical system using Pulsed Neutron Source experiments (PNS). However, different experiments have shown that in many cases it is necessary to apply corrections to the experimental results in order to take into account spectral and spatial effects. In these cases, the approach usually followed is to develop different specific correction procedures for each method. In this work we discuss the validity of prompt decay constant method and the area-ratio method in the Yalina-Booster subcritical assembly and propose a general correction procedure based on Monte Carlo simulations

  5. Characterization of the Caliban and Prospero Critical Assemblies Neutron Spectra for Integral Measurements Experiments

    Science.gov (United States)

    Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.

    2014-04-01

    Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.

  6. Advanced plutonium assembly (apa): evolution of the concept, neutron and thermal-mechanic constraints

    International Nuclear Information System (INIS)

    Porta, J.; Gastaldi, B.; Krakowiak-Aillaud, C.; Buffe, L.

    2002-01-01

    The APA concept was developed with the aim of increasing the PWR capacity to burn plutonium emerging from the recycling of irradiated fuels in the French park of nuclear power plants. At first, a concept using annular pins was optimised to allow a good consumption of plutonium while preserving an acceptable neutron control. To cope with the technological problems and those posed by the manufacture of these annular pins, an alternative concept is presented here. It poses as initial conditions the conservation of both the plutonium balance and the respect of the reactivity control. (authors)

  7. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  8. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Neutron spectra measurement and calculations using data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in iron benchmark assemblies

    Science.gov (United States)

    Jansky, Bohumil; Rejchrt, Jiri; Novak, Evzen; Losa, Evzen; Blokhin, Anatoly I.; Mitenkova, Elena

    2017-09-01

    The leakage neutron spectra measurements have been done on benchmark spherical assemblies - iron spheres with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of iron sphere. The proton recoil method was used for neutron spectra measurement using spherical hydrogen proportional counters with diameter of 4 cm and with pressure of 400 and 1000 kPa. The neutron energy range of spectrometer is from 0.1 to 1.3 MeV. This energy interval represents about 85 % of all leakage neutrons from Fe sphere of diameter 50 cm and about of 74% for Fe sphere of diameter 100 cm. The adequate MCNP neutron spectra calculations based on data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 were done. Two calculations were done with CIELO library. The first one used data for all Fe-isotopes from CIELO and the second one (CIELO-56) used only Fe-56 data from CIELO and data for other Fe isotopes were from ENDF/B-VII.1. The energy structure used for calculations and measurements was 40 gpd (groups per decade) and 200 gpd. Structure 200 gpd represents lethargy step about of 1%. This relatively fine energy structure enables to analyze the Fe resonance neutron energy structure. The evaluated cross section data of Fe were validated on comparisons between the calculated and experimental spectra.

  10. Preliminary design and neutronic analysis of a laser fusion driven actinide waste burning hybrid reactor

    International Nuclear Information System (INIS)

    Berwald, D.H.; Duderstadt, J.J.

    1979-01-01

    The laser fusion driven actinide waste burner (LDAB) system investigated uses partitioned fission power reactor generated actinide wastes dissolved in a molten tin alloy as feed material (or fuel). A novel fuel processing concept based on the high-temperature precipitation of ''actinide--nitrides'' from a liquid tin solution is proposed. This concept will allow for fission product removal to be performed entirely within the device at high burnup. No attempt has been made to optimize this system, but potential performance is impressive. The equilibrium LDAB design consumes 7.6 MT/y of actinide waste. This corresponds to the waste output from 136 light water reactors [1000 MW (electric)]. The mean life of an actinide atom in the LDAB is only 4.5 y; and actinides, once charged to the LDAB, might be reprocessed fewer times during irradiation than in previously proposed systems

  11. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility

  12. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  13. Neutronics optimization of LiPb-He dual-cooled fuel breeding blanket for the fusion-driven sub-critical system

    International Nuclear Information System (INIS)

    Zheng Shanliang; Wu Yican

    2002-01-01

    The concept of the liquid Li 17 Pb 83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR > 1.05) and annual output of 100 kg or more fissile 239 Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimized calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio (Br = Tbr + Fbr) is listed corresponding to different cases

  14. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    Science.gov (United States)

    Gatu Johnson, M.; Frenje, J.; Lahmann, B.; Seguin, F.; Petrasso, R.; Appelbe, B.; Chittenden, J.; Walsh, C.; Delettrez, J.; Igumenshchev, I.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Grimble, W.; Marshall, F.; Michel, T.; Stoeckl, C.; Haines, B. M.; Zylstra, A. B.

    2017-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by e.g. engineering features or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation, we report on OMEGA experiments with intentional drive asymmetry designed for testing the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The measurements are contrasted to CHIMERA, RAGE and ASTER simulations, providing insight into implosion dynamics and the relative importance of laser drive non-uniformity, stalk and offset as sources of asymmetry. The results highlight the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by the U.S. DOE, NLUF and LLE.

  15. Desain Beam Shaping Assembly (BSA berbasis D-D Neutron Generator 2,45 MeV untuk Uji Fasilitas BNCT

    Directory of Open Access Journals (Sweden)

    Desman P. Gulo

    2015-12-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield from Neutron Generator (NG by PSTA-BATAN Yogyakarta is 2.55×1011 n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 109 n/cm2s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF2 and A1F3. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×108 n/cm2/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.

  16. Evaluation of the harmonics and neutronic coupling in the sub-cores of the Brazilian `RESUCO` subcritical assembly; Avaliacoes dos harmonicos e do acoplamento neutronico entre dois subnucleos do conjunto subcritico `RESUCO`

    Energy Technology Data Exchange (ETDEWEB)

    Aquino Bezerra, A.F. de

    1991-05-01

    The present study evaluates the importance of the harmonic components in the thermal neutron flux distribution and evaluates as well the separation required for attaining neutronic decoupling in sub-cores in subcritical assemblies. The theoretical results are compared to experimental ones performed at the Brazilian natural uranium, light water RESUCO subcritical assembly. It is observed that the harmonics have a very important contributions to neutron flux. Furthermore, the neutronic decoupling is attained with the removal of five rows of fuel elements, corresponding to 27,5 cm of light water. (F.E.). 23 refs, 18 figs, 9 tabs.

  17. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Isbell, Kimberly McMahan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Gagnier, Emmanuel [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Authier, Nicolas [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Piot, Jerome [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Jacquet, Xavier [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Rousseau, Guillaume [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  18. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    Energy Technology Data Exchange (ETDEWEB)

    Palmese, A.; et al.

    2017-11-09

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, with $i$-band S\\'ersic index $n=4.0$ and low asymmetry ($A=0.04\\pm 0.01$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} \\times 10^{-6} {\\rm yr}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $0.038^{+0.004}_{-0.022}$, as opposed to $\\sim 0.5$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $t_{\\rm mer}\\lesssim 200~{\\rm Myr}$ prior to the BNS coalescence.

  19. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    Science.gov (United States)

    Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M.; Tucker, D.; Brout, D.; Banerji, M.; Bechtol, K.; Diehl, H. T.; Fruchter, A.; García-Bellido, J.; Herner, K.; Levan, A. J.; Li, T. S.; Lidman, C.; Misra, K.; Sako, M.; Scolnic, D.; Smith, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Neilsen, E.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schindler, R.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Walker, A. R.; Weller, J.; Zhang, Y.; Zuntz, J.

    2017-11-01

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an I-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as {R}{NSM}{gal}={5.7}-3.3+0.57× {10}-6{{yr}}-1. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is {0.038}-0.022+0.004, as opposed to ˜0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer ≲ 200 Myr prior to the BNS coalescence.

  20. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  1. Nuclear fission sustainability with subcritical reactors driven by external neutron sources

    International Nuclear Information System (INIS)

    Lafuente, A.; Piera, M.

    2011-01-01

    Although nuclear breeder reactors are a promising way to enhance the potential energy currently retrievable from the Uranium reserves, they still have disadvantages because of their safety features (i.e. poor stabilizing mechanisms) and the security of their fuel cycle (diversion of Pu for non-civilian purposes). Loading natural nuclear fuels to a reactor and completely burning them without reprocessing would be ideal, however, this is not possible in critical reactors due to the limitations imposed by the maximum achievable burn-up. An alternative option to attain very high percentages of nuclear natural materials exploitation, while meeting other objectives of Nuclear Sustainability, could consist of using externally-driven subcritical reactors to reach the desired high burn-ups (of the order of 30% and more) without reprocessing. Such scheme would lead to an efficient exploitation of the available raw material, without any risk of proliferation. Exploring this type of reactor concept, this paper analyzes the different ways to accomplish this goal while identifying potential setbacks.

  2. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  3. Neutronics benchmark of a MOX assembly with near-weapons-grade plutonium

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Fisher, S.E.

    1998-01-01

    One of the proposed ways to dispose of surplus weapons-grade plutonium (Pu) is to irradiate the high-fissile material in light-water reactors in order to reduce the Pu enrichment to the level of spent fuels from commercial reactors. Considerable experience has been accumulated about the behavior of mixed-oxide (MOX) uranium and plutonium fuels for plutonium recycling in commercial reactors, but the experience is related to Pu enrichments typical of spent fuels quite below the values of weapons-grade plutonium. Important decisions related to the kind of reactors to be used for the disposition of the plutonium are going to be based on calculations, so the validation of computational algorithms related to all aspects of the fuel cycle (power distributions, isotopics as function of the burnup, etc.), for weapons-grade isotopics is very important. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad cities boiling-water reactor (BWR) is the most recent US destructive examination. This effort involved the irradiation of five MOX assemblies using 80 and 90% fissile plutonium. These benchmark data were gathered by General Electric under the sponsorship of the Electric Power Research Institute. It is emphasized, however, that global parameters are not the focus of this benchmark, since the five bundles containing MOX fuels did not significantly affect the overall core performance. However, since the primary objective of this work is to compare against measured post-irradiation assembly data, the term benchmark is applied here. One important reason for performing the benchmark on Quad Cities irradiation is that the fissile blends (up to 90%) are higher than reactor-grade and, quite close to, weapons-grade isotopics

  4. Novel thermosyphon driven hydrothermal flow-through cell for in situ and time resolved neutron diffraction studies

    International Nuclear Information System (INIS)

    Xia, Fang; Qian, Gujie; Etschmann, Barbara; University of Adelaide, South Australia, Australia; University of Adelaide, South Australia, Australia; Studer, Andrew; Olsen, Scott

    2009-01-01

    Full text: A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 m L and can work at up to 300 degree Centigrade under autogeneous vapour pressures (-85 bar). The fluid flow is driven by thermosyphon which is realized by the proper design of temperature difference around the closed loop[1,2). The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti/Zr alloy. We have successfully commissioned the cell on Australia's new high intensity powder diffractometer WOMBAT in ANSTO, using a simple transformation reaction from leucite (KAISi 2 O 6 ) to analcime (NaAISi 2 O 6H2O ) and then back from analcime to leucite. The demonstration proved that the cell is an excellent tool for probing hydrothermal phase transformations. By collecting diffraction data every 5 min, it was clearly seen that leucite was progressively transformed to analcime in a NaCI solution, and the produced analcime was progressively transformed back to leucite in a K 2 CO 3 solution.

  5. (n,xn cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    Directory of Open Access Journals (Sweden)

    Bielewicz Marcin

    2017-01-01

    Full Text Available Study of the deep subcritical systems (QUINTA using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW. The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON. We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn reactions in yttrium (Y-89 foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn cross section measurements were carried out at The Svedberg laboratory (TSL in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  6. In situ and real-time small-angle neutron scattering studies of living anionic polymerization process and polymerization-induced self-assembly of block copolymers

    International Nuclear Information System (INIS)

    Tanaka, H.; Yamauchi, K.; Hasegawa, H.; Miyamoto, N.; Koizumi, S.; Hashimoto, T.

    2006-01-01

    We have studied a simultaneous living anionic polymerization process of isoprene and deuterated styrene in deuterated benzene with sec-buthyl lithium as an initiator into polyisoprene-block-poly(styrene-d 8 ) and the polymerization-induced self-assembling process. This polymerization-induced self-assembling process was directly observed by an in situ and real-time small-angle neutron scattering (SANS) experiment. The time-resolved SANS studies enabled us to explore a time evolution of hierarchical structures induced by a time evolution of the primary structure (linear sequential connection of two monomers)

  7. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II.

    Science.gov (United States)

    Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina

    2017-07-18

    In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.

  8. Resonance self-shielding effect analysis of neutron data libraries applied for the dual-cooled waste transmutation blanket of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Liu Haibo; Wu Yican; Zheng Shanliang; Zhang Chunzao

    2004-01-01

    Based on the Fusion-Driven Subcritical System (FDS-I), the 25 groups, 175 groups and 620 groups neutron nuclear data libraries with/without resonance self-shielding correction are made with the Njoy and Transx codes, and the K eff and reaction rates are calculated with the Anisn code. The conclusion indicates that the resonance self-shielding effect affects the reaction rates strongly. (authors)

  9. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [ORNL; Isbell, Kimberly McMahan [ORNL; Lee, Yi-kang [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Piot, Jerome [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Jacquet, Xavier [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Reynolds, Kevin H. [Y-12 National Security Complex

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  10. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  11. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  12. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Self-assembly behavior of discotic liquid crystals studied by neutron and X-ray scattering

    International Nuclear Information System (INIS)

    Kim, Hyo Sik

    2011-02-01

    We investigate both thermotropic and lyotropic phase behaviors in DLC molecules with detailed structural analysis which was performed by scattering methods such as small angle neutron scattering (SANS) and grazing incidence x-ray scattering (GIXS) techniques. First, for the study of thermotropic phase behavior in DLC, uniaxially oriented and well-ordered cobalt octa(n-decylthio)porphyrazine (CoS10) molecules in thin-film was used as a model molecule. Second, the lyotropic phase behavior in DLC was studied using model system, hexa-n-dodecyl-hexa-peri-hexabenzocoronene (HBC-C12) in organic solvent (p-xylene). The method for uniaxially oriented and highly ordered columnar superstructure of CoS10 on a large area of substrate (3 cm x 3 cm) has been developed by using applied magnetic field (ca. 1.0 T) and surface interaction simultaneously. When spin-coated CoS10 thin film on an OTS-functionalized silicon substrate was cooled from its isotropic phase to liquid crystalline phase in the presence of an applied magnetic field, the CoS10 formed uniaxially oriented and 'edge-on' arrangement of columnar superstructures with their columnar directors perpendicular to the applied magnetic field. Grazing incidence x-ray scattering (GIXS) measurements showed that CoS10 columns form rectangular columnar packing with a tilted arrangement against the columnar axis (ca. 40 .deg.) in columns. The effects of film thickness on the columnar packing structure in supported thin-films of CoS10 have been investigated by the GISAXS technique, with magnetically aligned CoS10 films on OTS-functionalized substrates used as model systems. CoS10 columnar superstructures in thin-films with thicknesses ranging from 49 nm to 845 nm were uniaxially oriented with 'edge-on' arrangement using magnetic field and surface interaction. The orientational ordering of the columnar packing in the plane perpendicular to the applied magnetic field is strongly dependent on the film thickness. While it is damped by

  14. OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX

    Directory of Open Access Journals (Sweden)

    I Made Ardana

    2017-10-01

    OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL. Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya

  15. The axial power distribution validation of the SCWR fuel assembly with coupled neutronics-thermal hydraulics method

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xi [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Xiao, Zejun, E-mail: fabulous_2012@sina.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yan, Xiao; Li, Yongliang; Huang, Yanping [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China)

    2013-05-15

    Highlights: ► CFX and MCNP codes are suitable to calculate the axial power profile of the FA. ► The partition method in the calculation will affect the final result. ► The density feedback has little effect on the axial power profile of CSR1000 FA. -- Abstract: SCWR (super critical water reactor) is one of the IV generation nuclear reactors in the world. In a typical SCWR the water enters the reactor from the cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change in temperature, there is a huge density change of the water along the axial direction of the fuel assembly (FA), which will affect the moderating power of the water. So the axial power distribution of the SCWR FA could be different from the traditional PWR FA.In this paper, it is the first time that the thermal hydraulics code CFX and neutronics code MCNP are used to analyze the axial power distribution of the SCWR FA. First, the factors in the coupled method which could affect the result are analyzed such as the initialization value or the partition method especially in the MCNP code. Then the axial power distribution of the Europe HPLWR FA is obtained by the coupled method with the two codes and the result is compared with that obtained by Waata and Reiss. There is a good agreement among the three kinds of results. At last, this method is used to calculate the axial power distribution of the Chinese SCWR (CSR1000) FA. It is found the axial power profile of the CSR1000 FA is not so sensitive to the change of the moderator density.

  16. A symmetry-controlled and face-driven approach for the assembly of cerium-based molecular polyhedra.

    Science.gov (United States)

    Liu, Yang; Lin, Zhihua; He, Cheng; Zhao, Liang; Duan, Chunying

    2010-12-14

    A well-defined Ce-based molecular tetrahedron and a cube-like architecture were achieved via self-assembly by incorporating NOO tridentate chelators into the rationally designed ligands with C(3) or C(2v) symmetries, respectively.

  17. Research on amplification multiple of source neutron number for ADS

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qingbiao; Ding Dazhao

    1998-01-01

    NJOY-91.91 and MILER code systems was applied to process and generate 44 group cross sections in AMPX master library format from CENDL-2 and ENDF/B-6. It is important an ADS (Accelerator-Driven System) assembly spectrum is used as the weighting spectrum for generating multi-group constants. Amplification multiples of source neutron number for several fast assemblies were calculated

  18. Experimental measurement of nuclear heating in a graphite-cantered assembly in deuterium-tritium neutron environment for the validation of data and calculation

    International Nuclear Information System (INIS)

    Kumar, A.; Youssef, M.; Abdou, M.A.

    1998-01-01

    Within the framework of the ITER Task T-218 entitled 'Shielding Blanket Neutronics Experiments', nuclear heating measurements were conducted jointly by the USA and Japan using a micro calorimetric technique in a graphite-cantered assembly. An accelerator-based D-T neutron source at JAERI was used to provide a mixed neutron and photon field. The first measurements related to direct micro calorimetric measurements in individual graphite probes along the axis. In the second set, the first graphite probe was replaced, one by one, by single probes of beryllium, aluminum, silicon, silicon carbide, titanium, vanadium, chromium, iron, stainless steel 316, nickel, copper, zirconium, niobium, molybdenum, tungsten. Analysis of the measurements has been carried out using Monte Carlo code MCNP with FENDL-1, ENDF/B-VI and MCPLIB nuclear data libraries. A comparison of calculations (C) and experiments (E) shows a C/E ratio lying in a C/E band extending from 0.9 to 1.2 for beryllium, graphite, copper, chromium, iron, nickel, 316 stainless steel, titanium, vanadium, molybdenum, niobium and tungsten. However, larger deviations from unity are seen for C/E values for silicon, zirconium, and aluminum. Though FENDL-1 and ENDF/B-VI libraries provide very close nuclear heating rates for most of the probe materials, significant divergences are seen for silicon, silicon carbide, aluminum, titanium, zirconium, niobium, and molybdenum. The divergences are traceable to differences in neutron kerma factors as well as gamma production cross-sections of these materials. (orig.)

  19. NE213/BC501A scintillator−lightguide assembly response to 241Am−Be neutrons: An MCNPX−PHOTRACK hybrid code simulation

    International Nuclear Information System (INIS)

    Tajik, M.; Ghal-Eh, N.; Etaati, G.R.; Afarideh, H.

    2014-01-01

    The response of an NE213 (or its BICRON equivalent, BC501A) scintillator attached to different sizes of polished/painted lightguides when exposed to 241 Am–Be neutrons has been simulated. This kind of simulation basically needs both particle and light transports: the transport of neutrons and neutron-induced charged particles such as alphas, protons, carbon nuclei and so on has been undertaken using MCNPX whilst the scintillation light transport has been performed with PHOTRACK codes. The comparison between simulated and experimental response functions of NE213 attached to different sizes of polished/painted lightguides and also the influence of length/covering of lightguide on the detection efficiency and uniformity of the scintillator–lightguide assembly response have been studied. - Highlights: • The response of NE213 scintillator with/without lightguides to Am–Be neutrons has been simulated. • The MCNPX–PHOTRACK code has been used for simulation studies in order to model radio-optical properties. • The measured and simulated spectra for an NE213 scintillator exposed to Am–Be source represent a good agreement

  20. APA: U free Pu pin in a heterogeneous assembly to improve Pu loading in a PWR - neutronic, thermo-hydraulic and manufacturing studies

    International Nuclear Information System (INIS)

    Porta, J.; Puill, A.; Bauer, M.; Matheron, P.

    1999-01-01

    After having presented the specific context of France with respect to the fuel cycle and reprocessing, the problem of plutonium fuel utilization is posed. If one of the solutions, a pressurized water reactor (PWR) with an increased moderation ratio seems possible, it entails making excessive changes to the reactor, the control systems, and the general architecture of the steam supply system. Another solution consists in modifying the fuel itself so as to eliminate conversion on 238 U by using plutonium (Pu) in a neutronically inert matrix. However, the disadvantage of this type of fuel is that it has very low Doppler and draining coefficients and a very small delayed neutron fraction. To enable using these fuels, a heterogeneous assembly has to be defined, in which standard UO 2 rods provide the physical properties required to ensure acceptable safety coefficients. (author)

  1. A Qualitative Analysis of the Neutron Population in Fresh and Spent Fuel Assemblies during Simulated Interrogation using the Differential Die-Away Technique

    International Nuclear Information System (INIS)

    Lundkvista, Niklas; Goodsell, Alison V.; Grapea, Sophie; Hendricksb, John S.; Henzlb, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-01-01

    Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is being considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.

  2. Neutron Generators for Spent Fuel Assay

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard A.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  3. High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule.

    Science.gov (United States)

    Liu, Simin; Gibb, Bruce C

    2008-08-28

    High definition self-assemblies, those that possess order at the molecular level, are most commonly made from subunits possessing metals and metal coordination sites, or groups capable of partaking in hydrogen bonding. In other words, enthalpy is the driving force behind the free energy of assembly. The hydrophobic effect engenders the possibility of (nominally) relying not on enthalpy but entropy to drive assembly. Towards this idea, we describe how template molecules can trigger the dimerization of a cavitand in aqueous solution, and in doing so are encapsulated within the resulting capsule. Although not held together by (enthalpically) strong and directional non-covalent forces, these capsules possess considerable thermodynamic and kinetic stability. As a result, they display unusual and even unique properties. We discuss some of these, including the use of the capsule as a nanoscale reaction chamber and how they can bring about the separation of hydrocarbon gases.

  4. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  5. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  6. Experimental verification of neutron phenomenology in lead and transmutation by adiabatic resonance crossing in accelerator driven systems

    CERN Document Server

    Arnould, H; Del Moral, R; Lacoste, V; Vlachoudis, V; Aleixandre, J; Bueno, J; Cerro, E; González, O; Tamarit, J; Andriamonje, Samuel A; Brozzi, Delecurgo; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Dumps, Ludwig; Gelès, C; Goulas, I; Fernández, R; Kadi, Y; Klapisch, Robert; Oropesa, J; Placci, Alfredo; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Saldaña, F; Embid, M; Gálvez, J; López, C; Pérez-Enciso, E; Poza, M; Sirvent, C; Vieira, S L; Abánades, A; García, J; Martínez-Val, J M; Perlado, M; González, E; Hussonnois, M; Le Naour, C; Trubert, D; Belle, E; Giorni, A; Heuer, R D; Loiseaux, J M; Méplan, O; Nifenecker, H; Schussler, F; Viano, J B; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Karaiskos, P; Sakelliou, L; Kokkas, P; Pavlopoulos, P; Eleftheriadis, C; Kitis, G; Papadopoulos, I M; Savvidis, E; Tzima, A; Zioutas, Konstantin; Díez, S; Pérez-Navarro, A

    1999-01-01

    Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (17 refs).

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  8. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  9. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    Science.gov (United States)

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The Pulsed Neutron Technique Applied to Fast Non-Multiplying Assemblies; Application de la Methode des Neutrons Pulses aux Assemblages Non Multiplicateurs a Neutrons Rapides; Primenenie metoda impul'snykh nejtronov pri izuchenii povedeniya bystrykh nejtronov v nerazmnozhayushchikh sborkakh; Aplicacion de la Tecnica de los Neutrones Pulsados a Conjuntos Rapidos de Materiales No Multiplicadores

    Energy Technology Data Exchange (ETDEWEB)

    Beghian, L. E.; Wilensky, S. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1965-10-15

    A nanosecond pulsed Van de Graaff accelerator has been used to study the behaviour of fast neutrons in non-multiplying metal assemblies. A pulsed neutron source technique has been utilized to measure fast non-elastic cross-sections for iron. The method employed is similar to that used to measure absorption cross-sections in thermal assemblies, with the exception that the fast decay times are of the order of nanoseconds rather than microseconds. Nanosecond bursts of monoenergetic neutrons are injected into various size iron assemblies. The neutron flux in these assemblies is observed to decay exponentially with a characteristic decay constant. The decay constant is composed of a sum of terms which represent neutron loss due to leakage and energy degradation. Energy degradation represents a neutron loss since a biased neutron detector is used. The removal term due to elastic and nonelastic scattering can be determined by measuring the decay constant as a function of assembly size. A theoretical development is presented for calculating the fraction that the elastic scattering contributes to the removal term, hence the non-elastic cross-section can be determined. The theoretical treatment for calculating the elastic contribution has been verified experimentally. The non-elastic cross-section for iron has been measured by this technique for primary neutron energies between 0.8 and 1.5 MeV. The pulsed source technique described above has been used to measure decay constants for lead slabs. The experiment approximates the assumptions which are generally made when solving the time-dependent Boltzmann transport equation (i.e. one-dimension, one-velocity). Decay constants have been measured for 28 in x 32 in lead slabs of 2, 4, 6 and 8-in thickness. The results, after being corrected for energy degradation and finite assembly, are compared with the approximate solutions of the Boltzmann transport equation. (author) [French] Les auteurs ont utilise un accelerateur Van de

  11. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo₂(O₂C-)₄-based metal–organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo–Mo clusters acting as nodes to give 13 molecular architectures, termed metal–organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo–Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  12. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers.

    Science.gov (United States)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  13. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  14. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  15. Geometry directed self-selection in the coordination-driven self-assembly of irregular supramolecular polygons.

    Science.gov (United States)

    Zheng, Yao-Rong; Northrop, Brian H; Yang, Hai-Bo; Zhao, Liang; Stang, Peter J

    2009-05-01

    The self-assembly of irregular metallo-supramolecular hexagons and parallelograms has been achieved in a self-selective manner upon mixing 120 degrees unsymmetrical dipyridyl ligands with 60 degrees or 120 degrees organoplatinum acceptors in a 1:1 ratio. The polygons have been characterized using (31)P and (1)H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) as well as X-ray crystallography. Geometric features of the molecular subunits direct the self-selection process, which is supported by molecular force field computations.

  16. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly.

    Science.gov (United States)

    Kunstler, Georges; Lavergne, Sébastien; Courbaud, Benoît; Thuiller, Wilfried; Vieilledent, Ghislain; Zimmermann, Niklaus E; Kattge, Jens; Coomes, David A

    2012-08-01

    The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view. © 2012 Blackwell Publishing Ltd/CNRS.

  17. Smart Sensing Methodology for Object Identification Using Circularly Polarized Luminescence from Coordination-Driven Self-Assembly.

    Science.gov (United States)

    Imai, Yuki; Nakano, Yuka; Kawai, Tsuyoshi; Yuasa, Junpei

    2018-05-21

    This work demonstrates a potential use of circularly polarized luminescence for object identification methodology in a sensor application. Towards this aim, we have developed new luminescence probes using pyrene derivatives as sensor luminophores. The probes [(R,R)- and (S,S)-Im2Py] contain two chiral imidazole moieties at 1,6-positions through ethynyl spacers (the angle between the spacers is close to 180°). The probe molecules spontaneously self-assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination preference (e.g., Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) in the absence of metal ions. However, [(R,R)- and (S,S)-Im2Py] begins to exhibit intense chiroptical activity (CD and CPL) upon self-assembly with Zn2+ ions. The unique chiroptical properties of [(R,R)- and (S,S)-Im2Py] with chemical stimuli-responsibility are capable of demonstrating the new sensing methodology using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non-target species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  19. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.

    Directory of Open Access Journals (Sweden)

    Jason M van Rooyen

    Full Text Available In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.

  20. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  1. Proposal on the accelerator driven molten-salt reactor (ATW concept) benchmark calculations. (STAGE 1 - without an external neutron source)

    International Nuclear Information System (INIS)

    Svarny, J.; Mikolas, P.

    1999-01-01

    The first stage of ATW neutronic benchmark (without an external source), based on the simple modelling of two component concept is presented. The simple model of two component concept of the ATW (graphite + molten salt system) was found. The main purpose of this benchmark is not only to provide the basic characteristics of given ADS but also to test codes in calculations of the rate of transmutation waste and to evaluate basic kinetics parameters and reactivity effects. (author)

  2. Research on pinches driven by Speed-2 generator: Hard X-ray and neutron emission in plasma focus configuration

    Energy Technology Data Exchange (ETDEWEB)

    Soto, L.; Moreno, J.; Silva, P.; Sylvester, G.; Zambra, M.; Pavez, C. [Comision Chilena de Energia Nuclear, Santiago (Chile); Pavez, C. [Universidad de Concepcion (Chile); Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Castillo, F. [Insitituto de Ciencias Nucleares, UNAM (Mexico); Kies, W. [Heinrich-Heine-Univ., Dusseldorf (Germany)

    2004-07-01

    Speed-2 is a generator based on Marx technology and was designed in the University of Dusseldorf. Speed-2 consists on 40 +/- Marx modules connected in parallel (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt {approx} 10{sup 13} A/s). Currently Speed-2 is operating at CCHEN (Chilean nuclear energy commission), being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in Speed-2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from Speed-2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kilo- to mega-amperes, using the Speed-2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration operating in deuterium in order to characterize the neutron emission and the hard X-ray production. Silver activation counters, plastics CR39 and scintillator-photomultiplier detectors are used to characterize the neutron emission. Images of metallic plates with different thickness are obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize an effective energy of the hard X-ray outside of the discharge. (authors)

  3. Evaluation of the 252Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1987-01-01

    The 252 Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing 252 Cf of adequate intensity for these measurements. These three considerations are discussed

  4. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States); Dulla, Sandra; Ravetto, Piero [Politecnico di Torino (Italy)

    2011-07-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  5. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2011-01-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  6. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  7. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  8. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liang; Wang, Meijing; Jia, Xiangmeng; Chen, Wei; Qian, Hujun; He, Feng

    2018-02-28

    Two-dimensional (2-D) micro- and nano- architectures are attractive because of their unique properties caused by their ultrathin and flat morphologies. However, the formation of 2-D supramolecular highly symmetrical structures with considerable control is still a major challenge. Here, we presented a simple approach for the preparation of regular and homogeneous 2-D fluorescent square noncrystallization micelles with conjugated diblock copolymers PPV12-b-P2VPn through a process of dissolving-cooling-aging. The scale of the formed micelles could be controlled by the ratio of PPV/P2VP blocks and the concentration of the solution. The forming process of the platelet square micelles was analyzed by UV-Vis, DLS and SLS, while the molecular arrangement was characterized by GIXD. The results revealed that the micelles of PPV12-b-P2VPn initially form 1-D structures and then grow into 2-D structures in solution, and the growth is driven by intermolecular π-π interactions with the PPV12 blocks. The formation of 2-D square micelles is induced by herringbone arrangement of the molecules, which is closely related to the presence of the branched alkyl chains attached to conjugated PPV12 cores.

  9. Dry powder inhaler formulation of lipid-polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles.

    Science.gov (United States)

    Yang, Yue; Cheow, Wean Sin; Hadinoto, Kunn

    2012-09-15

    Lipid-polymer hybrid nanoparticles have emerged as promising nanoscale carriers of therapeutics as they combine the attractive characteristics of liposomes and polymers. Herein we develop dry powder inhaler (DPI) formulation of hybrid nanoparticles composed of poly(lactic-co-glycolic acid) and soybean lecithin as the polymer and lipid constituents, respectively. The hybrid nanoparticles are transformed into inhalable microscale nanocomposite structures by a novel technique based on electrostatically-driven adsorption of nanoparticles onto polysaccharide carrier particles, which eliminates the drawbacks of conventional techniques based on controlled drying (e.g. nanoparticle-specific formulation, low yield). First, we engineer polysaccharide carrier particles made up of chitosan cross-linked with tripolyphosphate and dextran sulphate to exhibit the desired aerosolization characteristics and physical robustness. Second, we investigate the effects of nanoparticle to carrier mass ratio and salt inclusion on the adsorption efficiency, in terms of the nanoparticle loading and yield, from which the optimal formulation is determined. Desorption of the nanoparticles from the carrier particles in phosphate buffer saline is also examined. Lastly, we characterize aerosolization efficiency of the nanocomposite product in vitro, where the emitted dose and respirable fraction are found to be comparable to the values of conventional DPI formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  11. Measurement of the high-energy neutron flux on the surface of the natural uranium target assembly QUINTA irradiated by deuterons of 4- and 8-GeV energy

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.A.; Chilap, V.

    2014-01-01

    Experiments with a natural uranium target assembly QUINTA exposed to 4- and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The 129 I, 232 Th, 233 U, 235 U, nat U, 237 Np, 238 Pu, 239 Pu and 241 Am radioactive samples were installed on the surface of the QUINTA set-up and irradiated with secondary neutrons. The neutron flux through the RA samples was monitored by Al foils. The reaction rates of 27 Al(n, y 1 ) 24 Na, 27 Al(n, y 2 ) 22 Na and 27 Al(n, y 3 ) 7 Be reactions with the effective threshold energies of 5, 27 and 119 MeV were measured at both 4- and 8-GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for energy of 4- or 8-GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with MCNPX2.7 and MARS15 codes.

  12. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  13. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d'Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de

    2011-01-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  14. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  15. Analysis of fuel management in the KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Zhaopeng, E-mail: zzhong@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-05-15

    Research highlights: > Fuel management of KIPT ADS was analyzed. > Core arrangement was shuffled in stage wise. > New fuel assemblies was added into core periodically. > Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is {approx}360 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  16. Analysis of fuel management in the KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Gohar, Yousry; Talamo, Alberto

    2011-01-01

    Research highlights: → Fuel management of KIPT ADS was analyzed. → Core arrangement was shuffled in stage wise. → New fuel assemblies was added into core periodically. → Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is ∼360 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  17. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  18. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  19. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  20. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  1. Study of the neutronic behavior of a fuel assembly with gadolinium of a reactor HPLWR; Estudio del comportamiento neutronico de un ensamble combustible con gadolinia de un reactor HPLWR

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    This work presents a neutronic study of a square assembly design of double line of fuel rods, with moderator box to center of the arrangement, for the nuclear reactor cooled with supercritical water, High Performance Light Water Reactor (HPLWR). For the fuel analyses of the reactor HPLWR the neutronic code Helios-2 was used, settling down as the first study on fuel under conditions of supercritical water that has been simulated with this code. The analyzed variables, essentials in the neutronic design of any reactor, were the infinite neutrons multiplication factor (k{infinity}) and the maximum power peaking factor (PPF{sub max}), as well as the reactivity coefficients by the fuel temperature. The k{infinity} and PPF{sub max} values were obtained under conditions in cold (293.6 K) and in hot (to 880.8 K). The tests were realized for a reference fuel assembly design, with 40 fuel rods with enrichments of 4 and 5% of U-235, and considering different concentrations of consumable poison (gadolinium - Gd{sub 2O3}) in some rods of the same assembly. The obtained results show values k{infinity} and PPF{sub max} minors to the present in the conventional light water reactors. Moreover, the reactivity coefficients by fuel temperature were verified with the purpose of satisfying the safety conditions required in the nuclear reactors. (Author)

  2. Development and testing of a deuterium gas target assembly for neutron production via the H-2(d,n)He-3 reaction at a low-energy accelerator facility

    International Nuclear Information System (INIS)

    Feautrier, D.; Smith, D.L.

    1992-03-01

    This report describes the development and testing of a deuterium gas target intended for use at a low-energy accelerator facility to produce neutrons for basic research and various nuclear applications. The principle source reaction is H-2(d,n)He-3. It produces a nearly mono-energetic group of neutrons. However, a lower-energy continuum neutron spectrum is produced by the H-2(d;n,p)H-2 reaction and also by deuterons which strike various components in the target assembly. The present target is designed to achieve the following objectives: (1) minimize unwanted background neutron production from the target assembly, (2) provide a relatively low level of residual long-term activity within the target components, (3) have the capacity to dissipate up to 150 watts of beam power with good target longevity, and (4) possess a relatively modest target mass in order to minimize neutron scattering from the target components. The basic physical principles that have to be considered in designing an accelerator target are discussed and the major engineering features of this particular target design are outlined. The results of initial performance tests on this target are documented and some conclusions concerning the viability of the target design are presented

  3. Processing and analyses of the pulsed-neutron experimental data of the YALINA facility

    International Nuclear Information System (INIS)

    Cao, Y.; Gohar, Y.; Smith, D.; Talamo, A.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: The YALINA subcritical assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus has been utilized to study the physics parameters of accelerator driven systems (ADS) with high intensity Deuterium-Tritium and Deuterium-Deuterium pulsed neutron sources. In particular, with the fast and thermal neutron zones of the YALINA-Booster subcritical assembly, the pulsed neutron experiments have been utilized to evaluate the pulsed neutron methods for determining the reactivity of the subcritical system. In this paper, the pulsed-neutron experiments performed in the YALINA-Booster 1141 configuration with 90% U 235 fuel and 1185 configuration with 36% and 21% U fuel are examined and analized. The Sjo:strand area-ratio method is utilized to determine the reactivities of the subcritical assembly configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from experimental data are shown to be dependent on the detector locations and also on the detector types. The large discrepancies between the reactivity values given by the detectors in the fast neutron zone was reduced by spatial correction methods, and the estimated reactivity after the spatial corrections are almost spatially independent.

  4. Impact of neutron thermal scattering laws on the burn-up analysis of supercritical LWR's fuel assemblies

    International Nuclear Information System (INIS)

    Conti, Andrea

    2011-10-01

    This work is a contribution to the HPLWR2 (High Performance Light Water Reactor Phase 2), a research project having the goal to investigate the technical feasibility of the High Performance Light Water Reactor. The basic idea of the HPLWR is that of an LWR working at supercritical pressure, which would allow heating up the coolant to a temperature of about 500 C without having phase transition and sending the coolant directly to the turbine. One issue aroused by this design, deserving to be addressed by research, is the behaviour of thermal neutrons in supercritical water. At thermal energies, the De Broglie wavelength associated with the neutron is comparable to the interatomic distances in crystals and molecules and the scattering is fully governed by the laws of quantum mechanics, according to which the geometry of the aggregates the nuclei are bound to and their intra- and intermolecular dynamics are of crucial importance. It can be shown that there is a certain mathematical relation between the Fourier-transform of the hydrogen atoms' velocity autocorrelation function and their double-differential scattering cross section. This Fourier-transform, called ''generalized frequency distribution'', can be derived from experimental measurements and, effectively, Bernnat et al. of the Institut fuer Kernenergetik und Energiesysteme of the University of Stuttgart derived the generalized frequency distribution for liquid water on the basis of experimental results of Page and Haywood. Unfortunately there exists no experimental facility nowadays to support a thorough work of this type on supercritical water and therefore the scattering kernel for thermal neutrons in supercritical water is unknown. In criticality calculations involving supercritical water one can turn to one of the thermal scattering kernels available nowadays for hydrogen bound to the H 2 O molecule: for liquid water, for vapour or considering the nuclei of hydrogen as unbound. The third, most naive option

  5. Effects of existing evaluated nuclear data files on neutronics characteristics of the BFS-62-3A critical assembly benchmark model

    International Nuclear Information System (INIS)

    Semenov, Mikhail

    2002-11-01

    This report is continuation of studying of the experiments performed on BFS-62-3A critical assembly in Russia. The objective of work is definition of the cross section uncertainties on reactor neutronics parameters as applied to the hybrid core of the BN-600 reactor of Beloyarskaya NPP. Two-dimensional benchmark model of BFS-62-3A was created specially for these purposes and experimental values were reduced to it. Benchmark characteristics for this assembly are 1) criticality; 2) central fission rate ratios (spectral indices); and 3) fission rate distributions in stainless steel reflector. The effects of nuclear data libraries have been studied by comparing the results calculated using available modern data libraries - ENDF/B-V, ENDF/B-VI, ENDF/B-VI-PT, JENDL-3.2 and ABBN-93. All results were computed by Monte Carlo method with the continuous energy cross-sections. The checking of the cross sections of major isotopes on wide benchmark criticality collection was made. It was shown that ENDF/B-V data underestimate the criticality of fast reactor systems up to 2% Δk. As for the rest data, the difference between each other in criticality for BFS-62-3A is around 0.6% Δk. However, taking into account the results obtained for other fast reactor benchmarks (and steel-reflected also), it may conclude that the difference in criticality calculation results can achieve 1% Δk. This value is in a good agreement with cross section uncertainty evaluated for BN-600 hybrid core (±0.6% Δk). This work is related to the JNC-IPPE Collaboration on Experimental Investigation of Excess Weapons Grade Pu Disposition in BN-600 Reactor Using BFS-2 Facility. (author)

  6. Measurement of 237Np fission rate ratio relative to 235U fission rate in cores with various thermal neutron spectrum at the Kyoto University Critical Assembly

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Iwasaki, Tomohiko; Fujiwara, Daisuke; Kitada, Takanori; Kuroda, Mitsuo; Kohashi, Akio; Kato, Takeshi; Ikeuchi, Yoshitaka

    2000-01-01

    Integral measurements of 237 Np fission rate ratio relative to 235 U fission rate have been performed at Kyoto University Citrical Assembly. The fission rates have been measured using the back-to back type double fission chamber at five thermal cores with different H/ 235 U ratio so that the neutron spectra of the cores were systematically varied. The measured fission rate ratio per atom was 0.00439 to 0.0298, with a typical uncertainty of 2 to 3%. The measured data were compared with the calculated results using SRAC/TWOTRAN and MVP based on JENDL-3.2, which gave the averaged C/E values of 0.93 and 0.95, respectively. Obtained results of C/E using 237 Np cross sections from JENDL-3/2, ENDF/B-VI.5 and JEF2.2 show that the latter two gave smaller results than JENDL-3.2 by about 4%, which clearly reflects the discrepancy in the evaluated cross section among the libraries. This difference arises from both fast fission and resonance region. Although further improvement is recommended, 237 Np fission cross section in JENDL-3.2 is considered to be superior to those in the other libraries and can be adopted for use in design calculations for minor actinide transmutation system using thermal reactors with prediction precision of 237 Np fission rate with in 10%. (author)

  7. Characterization of neutron leakage probability, k /SUB eff/ , and critical core surface mass density of small reactor assemblies through the Trombay criticality formula

    International Nuclear Information System (INIS)

    Kumar, A.; Rao, K.S.; Srinivasan, M.

    1983-01-01

    The Trombay criticality formula (TCF) has been derived by incorporating a number of well-known concepts of criticality physics to enable prediction of changes in critical size or k /SUB eff/ following alterations in geometrical and physical parameters of uniformly reflected small reactor assemblies characterized by large neutron leakage from the core. The variant parameters considered are size, shape, density and diluent concentration of the core, and density and thickness of the reflector. The effect of these changes (except core size) manifests, through sigma /SUB c/ the critical surface mass density of the ''corresponding critical core,'' that sigma, the massto-surface-area ratio of the core,'' is essentially a measure of the product /rho/ extended to nonspherical systems and plays a dominant role in the TCF. The functional dependence of k /SUB eff/ on sigma/sigma /SUB c/ , the system size relative to critical, is expressed in the TCF through two alternative representations, namely the modified Wigner rational form and, an exponential form, which is given

  8. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer

    2016-05-01

    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  9. KIPT accelerator-driven system design and performance

    International Nuclear Information System (INIS)

    Gohar, Y.; Bolshinsky, I.; Karnaukhov, I.

    2015-01-01

    Argonne National Laboratory (ANL) of the US is collaborating with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine to develop and construct a neutron source facility. The facility is planned to produce medical isotopes, train young nuclear professionals, support Ukraine's nuclear industry and provide capability to perform reactor physics, material research, and basic science experiments. It consists of a subcritical assembly with low-enriched uranium fuel driven with an electron accelerator. The target design utilises tungsten or natural uranium for neutron production through photonuclear reactions from the Bremsstrahlung radiation generated by 100-MeV electrons. The accelerator electron beam power is 100 KW. The neutron source intensity, spectrum, and spatial distribution have been studied as a function of the electron beam parameters to maximise the neutron yield and satisfy different engineering requirements. Physics, thermal-hydraulics, and thermal-stress analyses were performed and iterated to maximise the neutron source strength and to minimise the maximum temperature and the thermal stress in the target materials. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with an effective neutron multiplication factor of <0.98. Different fuel and reflector materials are considered for the subcritical assembly design. The mechanical design of the facility has been developed to maximise its utility and minimise the time for replacing the target, fuel, and irradiation cassettes by using simple and efficient procedures. Shielding analyses were performed to define the dose map around the facility during operation as a function of the heavy concrete shield thickness. Safety, reliability and environmental considerations are included in the facility design. The facility is configured to accommodate future design upgrades and new missions. In addition, it has unique features relative to the other international

  10. SPES-BNCT Project Beam Shaping Assembly. State of the Art

    International Nuclear Information System (INIS)

    Ceballos Sanchez, Cesar

    2007-01-01

    The SPES-BNCT project will exploit the intense proton beam provided by the RFQ (30mA, 5MeV), currently under construction at LNL, to yield a neutron source using the 9 Be(p,xn) nuclear reaction. The goal is to setup an accelerator-driven, thermal neutron beam facility, aimed at the Boron Neutron Capture experimental treatment of extended shallow skin melanoma. The neutron energy spectrum is shifted with a beam shaping assembly (BSA) surrounding the target. This device is fully designed with the Monte Carlo simulation code MCNPX, with the purpose of maximizing the thermal neutron component of the beam and focusing it on the irradiation area. (Author)

  11. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  13. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Hiraiwa, Koji; Ueda, Makoto

    1989-01-01

    In a fuel assembly used for a light water cooled reactor such as a BWR type reactor, a water rod is divided axially into an upper outer tube and a lower outer tube by means of a plug disposed from the lower end of a water rod to a position 1/4 - 1/2 of the entire length for the water rod. Inlet apertures and exit apertures for moderators are respectively perforated for the divided outer tube and upper and lower portions. Further, an upper inner tube with less neutron irradiation growing amount than the outer tube is perforated on the plug in the outer tube, while a lower inner tube with greater neutron irradiation growing amount than the outer tube is suspended from the lower surface of the plug in the outer tube. Then, the opening area for the exit apertures disposed to the upper outer tube and the lower outer tube is controlled depending on the difference of the neutron irradiation growing amount between the upper inner tube and the upper outer tube, and the difference of the neutron irradiation growing amount between the lower inner tube and the lower outer tube. This enables effective spectral shift operation and improve the fuel economy. (T.M.)

  15. Status of computational and experimental correlations for Los Alamos fast-neutron critical assemblies; Correlation entre les calculs et les experiences sur les ensembles critiques a neutrons rapides de Los Alamos; Sostoyanie vychislitel'nykh i ehksperimental'nykh korrelyatsij dlya Los-Alamosskoj kriticheskoj sistemy na bystrykh nejtronakh; Conjuntos criticos de neutrones rapidos de Los Alamos; correlacion entre resultados calculados y experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, G E [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1962-03-15

    New assemblies and improved measuring techniques call for periodic review of the status of computation vs. experiment. It is appropriate to emphasize neutron-spectral characterizations because of the particularly elusive problems associated with absolute spectral-index measurement and the need for checks of computation beyond simple critical size. The ever-improving spectral-index measurements in conjunction with increasing precision, both of microscopic data for detector and assembly materials and of computational techniques, produce a gradual clarification of the characteristics of a family of fast-neutron critical assemblies. This family now includes unreflected and thick-uranium-reflected U{sup 233} in spherical geometry. Direct correlations among the experimental data will be presented to indicate the a priori possibilities for successful correlations with computation. Sensitivity of computed spectra and critical sizes to neutron-transport models (transport and linear approximations ) and arithmetic approximations (finite angular segmentations and multi-group representations) will be presented for several typical assemblies to help establish the necessary computational detail. Comparisons between experiment and prediction will include, in addition to spectral indices and critical sizes, neutron lifetimes and delayed-neutron fractions. (author) [French] Du fait de la mise en service de nouveaux reacteurs et de l'amelioration des methodes de mesure, il est necessaire de faire periodiquement la correlation des experiences et des calculs. Il est utile d'insister sur les caracterisations de spectres de neutrons a cause des problemes particulieremen t delicats que pose la mesure absolue de l'indice spectral et de la necessite de verifier les calculs au-dela des simples dimensions critiques. Les mesures constamment ameliorees de l'indice spectral, associees a la precision croissante des donnees microscopiques relatives aux materiaux utilises dans les detecteurs et

  16. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.go [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research - Sosny, National Academy of Sciences of Belarus, 99 Acad. Krasin Str., Minsk 220109 (Belarus)

    2011-05-15

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the {sup 3}He(n,p) reaction rates obtained with the californium neutron source.

  17. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2011-01-01

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the 3 He(n,p) reaction rates obtained with the californium neutron source.

  18. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  20. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  1. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  2. Double beam neutron radiography facility

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1977-09-01

    The DR1 reactor at Risoe is used as a neutron source for neutron radiography. In the double-beam neutron radiography facility a neutron flux of an intensity of 1.4 and 1.8 x 10 6 n. cm -2 . s -1 reaches the object to be radiographed. The transport and exposure container used for neutron radiography of irradiated nuclear fuel rods is described, and the exposure technique and procedure are reviewed. The mode by which single neutron radiographs are assembled and assessed is described. This report will be published in the ''Neutron Radiography Newsletter''. (author)

  3. Analytical and experimental analysis of YALINA-Booster and YALINA-Thermal assemblies

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Mazanik, S.; Khilmanovich, A.; Martsinkevich, B.; Routkovskaya, Ch.; Edchik, I.; Fokov, Y.; Sadovich, S.; Fedorenko, A.; Gohar, Y.; Talamo, A.

    2010-01-01

    Full text: Accelerator Driven Systems (ADS) may play an important role in future nuclear fuel cycles to reduce the longterm radiotoxicity and volume of spent nuclear fuel. It is proposed that ADS will produce energy and incinerate radioactive waste. This technology was called Accelerator Driven Transmutation Technology (ADTT). The most important problems of this technology are monitoring of a reactivity level in on-line regime, a choice of neutron spectrum appropriate for incineration of Minor Actinides (MA) and transmutation of Long Lived Fission Products (LLFP) and etc. Before the designing and construction of an installation it is necessary to carry out R and D to validate codes, nuclear data libraries and other instrumentations. The YALINA facility is designed to study the ADS physics and to investigate the transmutation reaction rates of MA and LLFP. The main objective of the YALINA benchmark is to compare the results from different calculation methods with each other and experimental data. The benchmark is based on the current YALINA facility configuration, which provides the opportunity to verify the prediction capability of the different methods. The experimental data have been obtained in the frame of the ISTC Projects B1341 'Analytical and experimental evaluation of the possibility to create a universal volume source of neutrons in the sub-critical booster assembly with low enrichment uranium fuel driven by a neutron generator' and B1732P 'Analytical and experimental evaluating the possibility of creation of universal volume source of neutrons in the sub-critical booster assembly with low enriched uranium fuel driven by the neutron generator'. In this paper a comparison of the experimental and calculated data obtained for YALINA-Booster subcritical assembly with a fuel of different enrichment and for YALINA-Thermal with a different number of control rods (216, 245 and 280) will be done.

  4. The upgrade of integrity analysis module and the mechanical behavior evaluation for the assembly duct

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Lee, Dong Uk; Kim, Young Il [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    The high neutron fluxes and operating temperatures associated with KALIMER are inducing the important radiation damage phenomena, which can cause significant dimensional changes in the core components of the reactor.The thermo-mechanical analysis of the assembly ducts for KALIMER are mainly performed to evaluate the following items.1) change of reactivity. 2) force at pads on core assemblies. 3) withdrawal force at refueling. 4) loading and refueling deviation of assembly ducts. 5) bowing modes for control assembly. In this report, the model for the evaluation of reactivity change as well as the refueling model and the withdrawl force model are upgraded. And the reactivity change is considered as the most important parameter among the above items. Therefore, the sensitivity analyses mainly associated with reactivity change are carried out. As the results, the pad gap between the assembly ducts preliminary driven for keeping the (-) reactivity change. 9 refs., 24 figs., 2 tabs. (Author)

  5. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  6. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Science.gov (United States)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  7. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99 Mo is the parent isotope of 99m Tc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  8. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  9. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  10. Inherently safe nuclear-driven internal combustion engines

    International Nuclear Information System (INIS)

    Alesso, P.; Chow, Tze-Show; Condit, R.; Heidrich, J.; Pettibone, J.; Streit, R.

    1991-01-01

    A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs

  11. A self-driven temperature and flow rate co-adjustment mechanism based on Shape-Memory-Alloy (SMA) assembly for an adaptive thermal control coldplate module with on-orbit service characteristics

    International Nuclear Information System (INIS)

    Guo, Wei; Li, Yunhua; Li, Yun-Ze; Zhong, Ming-Liang; Wang, Sheng-Nan; Wang, Ji-Xiang; Zhang, Jia-Xun

    2017-01-01

    Highlights: • A self-driven temperature and flow rate co-adjustment mechanism based on SMA assembly is proposed. • An adaptive thermal control coldplate module (TCCM) is introduced. • A testbed is set up to investigate the TCCM adaptive thermal management performances. • The TCCM has the potential for spacecrafts on-orbit services. - Abstract: An adaptive thermal control coldplate module (TCCM) was proposed in this paper to fulfill the requirements of modular thermal control systems for spacecrafts on-orbit services. The TCCM could provide flow rate and temperature co-adjustment by using Shape-Memory-Alloy (SMA) assembly which possesses self-driven abilities. In this paper, the adaptive thermal management mechanism of the TCCM integrated with a single phase mechanically pumped fluid loop (SPMPFL) is described in detail, a verification testbed was established to examine the TCCM dynamic characteristics. Various working conditions such as inlet temperature, flow rate and thermal load disturbances were imposed on the TCCM to inspect its startup and transient performance. It was observed that the TCCM may present robust temperature control results with low overshoot (maximum 16.8%) and small temperature control error (minimum 0.18%), fast time response (minimum 600 s) was also revealed. The results demonstrated that the well-designed TCCM provided effective autonomous flow-rate and temperature co-adjustment operations, which may be a promising candidate for realizing modular level adaptive thermal management for spacecrafts on-orbit services.

  12. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  13. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 He down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  14. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G.; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 Hedown to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semi spherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  15. Perspectives of development of linac-driver for the ITEP neutron generator

    International Nuclear Information System (INIS)

    Kozodaev, A.M.; Vengrov, R.M.; Drozdovskij, A.A.; Kolomiets, A.A.; Orlov, Yu.G.; Raskopin, A.M.; Skachkov, V.S.; Shvedov, O.V.

    1999-01-01

    The perspectives of developing the experimental accelerator-driven neutron generator being made in ITEP are discussed. The ITEP ADS neutron generator consists of the target-blanket assembly and the linear proton accelerator Istra-36. It is projected to introduce superconducting sections in the composition of the neutron generator linac-driven. The application of superconducting resonators allows to increase the particle energy up to 53 MeV at the average beam current 500 μA. The variants of raising the average current up to 5 mA by increasing the HF-system power are considered. The application of magnetohard materials permits to decrease the cost of the bend magnet and its dimensions. To improve the radiation situation it is proposed to use the graphite absorbers of particles [ru

  16. Giant surfactants of poly(ethylene oxide)- b-polystyrene-(molecular nanoparticle): nanoparticle-driven self-assembly with sub-10-nm nanostructures in thin films

    Science.gov (United States)

    Hsu, Chih-Hao; Lin, Zhiwei; Dong, Xue-Hui; Hsieh, I.-Fan; Cheng, Stephen Z. D.

    2014-03-01

    Giant surfactants are built upon precisely attaching shape- and volume-persistent molecular nanoparticles (MNP) to polymeric flexible tails. The unique class of self-assembling materials, giant surfactants, has been demonstrated to form self-assembled ordered nanostructures, and their self-assembly behaviors are remarkably sensitive to primary chemical structures. In this work, two sets of giant surfactants with functionalized MNP attached to diblock copolymer tails were studied in thin films. Carboxylic acid-functionalized [60]fullerene (AC60) tethered with PEO- b-PS (PEO-PS-AC60) represents an ABA' (hydrophilic-hydrophobic-hydrophilic) giant surfactant, and fluoro-functionalized polyhedral oligomeric silsesquioxane (FPOSS) tethered with PEO- b-PS (PEO-PS-FPOSS) represents an ABC (hydrophilic-hydrophobic-omniphobic) one. The dissimilar chemical natures of the MNPs result in different arrangement of MNPs in self-assembled structures, the dispersion of AC60 in PEO domain and the single domain of FPOSS. Moreover, the chemically bonded MNPs could induce the originally disordered small molecular PEO- b-PS to form ordered cylindrical and lamellar structure, as evidenced by TEM and GISAXS, leading to sub-10-nm nanostructures of copolymer in the thin film state.

  17. Assembly tool design

    International Nuclear Information System (INIS)

    Kanamori, Naokazu; Nakahira, Masataka; Ohkawa, Yoshinao; Tada, Eisuke; Seki, Masahiro

    1996-06-01

    The reactor core of the International Thermonuclear Experimental Reactor (ITER) is assembled with a number of large and asymmetric components within a tight tolerance in order to assure the structural integrity for various loads and to provide the tritium confinement. In addition, the assembly procedure should be compatible with remote operation since the core structures will be activated by 14-MeV neutrons once it starts operation and thus personal access will be prohibited. Accordingly, the assembly procedure and tool design are quite essential and should be designed from the beginning to facilitate remote operation. According to the ITER Design Task Agreement, the Japan Atomic Energy Research Institute (JAERI) has performed design study to develop the assembly procedures and associated tool design for the ITER tokamak assembly. This report describes outlines of the assembly tools and the remaining issues obtained in this design study. (author)

  18. Subcritical nuclear assembly

    International Nuclear Information System (INIS)

    Vega C, H. R.

    2014-08-01

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a 239 PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  19. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi.

    1995-01-01

    Burnable poison-incorporating fuel rods of a first group are disposed in a region in adjacent with a water rod having a large diameter (neutron moderator rod) disposed to the central portion of a fuel assembly. Burnable poison-incorporating fuel rods of a second group are disposed to a region other than peripheral zone in adjacent with a channel box and corners positioned at an inner zone, in adjacent with the channel box. The average concentration of burnable poisons of the burnable poison-incorporating fuel rods of the first group is made greater than that of the second group. With such a constitution, when the burnable poisons of the first group are burnt out, the burnable poisons of the second group are also burnt out at the same time. Accordingly, an amount of burnable poisons left unburnt at the final stage of the operation cycle is reduced, to improve the reactivity. This can improve the economical property. (I.N.)

  2. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Bing [Department; Sherman, Benjamin D. [Department; Klug, Christina M. [Center; Nayak, Animesh [Department; Marquard, Seth L. [Department; Liu, Qing [Department; Bullock, R. Morris [Center; Meyer, Thomas J. [Department

    2017-08-31

    We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over a period of several hours with a Faradaic yield of ~90%.

  3. Experimental verification of neutron phenomenology in lead and of transmutation by adiabatic resonance crossing in accelerator driven systems a summary of the TARC project at CERN

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifnecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin

    2001-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (9 refs).

  4. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  5. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    Science.gov (United States)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  6. Compendium on neutron spectra in criticality accident dosimetry

    International Nuclear Information System (INIS)

    Ing, H.

    1978-01-01

    Graphical and tabulated neutron spectra are presented: from selected critical assemblies; from critical solutions; of fission neutrons through shielding; of H 2 O-moderated fission neutrons through shielding; of D 2 O-moderated fission neutrons through shielding; of fission neutrons reflected from various materials; from the D(T, 4 He)n reaction (''14 MeV'' neutrons) through shielding and of ''14 MeV'' neutrons reflected from various materials

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  8. About the possibility of use of different types of targets as a neutron source for subcritical nuclear reactor driven by particle beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, E.F.; Dorokhovich, S.L.; Chusov, I.A. [Obninsk Institute of Nuclear Power Engineering (Russian Federation)

    1995-10-01

    The schemes of jet gas and liquid targets as well as the gastargets with a solid phase dispersion are introduced to use to receive the neutrons admitted to a subcritical reactor core. The possible variants of target position in the reactor are considered, target characteristics are calculated. The authors pay a great attention to the estimation of radioactive products yield receiving due to the interaction of the beam with the target.

  9. The role of strain-driven in migration in the growth of self-assembled InAs quantum dots on InP

    CERN Document Server

    Yoon, S H; Lee, T W; Hwang, H D; Yoon, E J; Kim, Y D

    1999-01-01

    Self-assembled InAs quantum dots (SAQDs) were grown on InP by metalorganic chemical vapor deposition. The amount of excess InAs and the aspect ratio of the SAQD increased with temperature and V/III ratio. It is explained that the As/P exchange reaction at the surface played an important role in the kinetics of SAQD formation. Insertion of a lattice-matched InGaAs buffer layer suppressed the excess InAs formation, and lowered the aspect ratio. Moreover, the dots formed on InGaAs buffer layers were faceted, whereas those on InP were hemispherical, confirming the effect of the As/P exchange reaction. The shape of InAs quantum dots on InGaAs buffer layers was a truncated pyramid with four [136] facets and base edges parallel to directions.

  10. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    International Nuclear Information System (INIS)

    Zhu, Yuanmin; Liu, Ruirui; Zhan, Qian; Chang, Wei Sea; Yu, Rong; Wei, Tzu-Chiao; He, Jr-Hau; Chu, Ying-Hao

    2015-01-01

    Heteroepitaxial ZnO and SrRuO 3 were grown on SrTiO 3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO 3 pillars was observed, with the growth direction changing from [111] SRO to [011] SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO 3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO 3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices

  11. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    KAUST Repository

    Zhu, Yuanmin; Chang, Wei Sea; Yu, Rong; Liu, Ruirui; Wei, Tzu-Chiao; He, Jr-Hau; Chu, Ying-Hao; Zhan, Qian

    2015-01-01

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111]SRO to [011]SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  12. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    KAUST Repository

    Zhu, Yuanmin

    2015-11-09

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111]SRO to [011]SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  13. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO{sub 3} heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuanmin; Liu, Ruirui; Zhan, Qian, E-mail: qzhan@mater.ustb.edu.cn [Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Chang, Wei Sea [School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor 47500 (Malaysia); Yu, Rong [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wei, Tzu-Chiao [Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); He, Jr-Hau [Electrical Engineering Program, King Abdullah University of Science & Technology (Saudi Arabia); Chu, Ying-Hao [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 105, Taiwan (China)

    2015-11-09

    Heteroepitaxial ZnO and SrRuO{sub 3} were grown on SrTiO{sub 3} (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO{sub 3} pillars was observed, with the growth direction changing from [111]{sub SRO} to [011]{sub SRO} as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO{sub 3} substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO{sub 3} and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  14. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhu-Qing, E-mail: zqgao2008@163.com [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Li, Hong-Jin [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, Qing-Hua [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Kirillov, Alexander M. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon (Portugal)

    2016-09-15

    Four new crystalline solids, namely [Co{sub 2}(µ{sub 2}-5-Clnic){sub 2}(µ{sub 3}-5-Clnic){sub 2}(µ{sub 2}-H{sub 2}O)]{sub n} (1), [Co(5-Clnic){sub 2}(H{sub 2}O){sub 4}]·2(5-ClnicH) (2), [Pb(µ{sub 2}-5-Clnic){sub 2}(phen)]{sub n} (3), and [Cd(5-Clnic){sub 2}(phen){sub 2}]·3H{sub 2}O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1–4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed. - Graphical abstract: A new series of crystalline solids was self-assembled and fully characterized; their structural, topological, luminescent and magnetic features were investigated. Display Omitted.

  15. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  16. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji

  17. Neutron and proton transmutation-activation cross section libraries to 150 MeV for application in accelerator-driven systems and radioactive ion beam target-design studies

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.; MacFarlane, R.E.; Mashnik, S.; Wilson, W.B.

    1998-05-01

    New transmutation-activation nuclear data libraries for neutrons and protons up to 150 MeV have been created. These data are important for simulation calculations of radioactivity, and transmutation, in accelerator-driven systems such as the production of tritium (APT) and the transmutation of waste (ATW). They can also be used to obtain cross section predictions for the production of proton-rich isotopes in (p,xn) reactions, for radioactive ion beam (RIB) target-design studies. The nuclear data in these libraries stem from two sources: for neutrons below 20 MeV, we use data from the European activation and transmutation file, EAF97; For neutrons above 20 MeV and for protons at all energies we have isotope production cross sections with the nuclear model code HMS-ALICE. This code applies the Monte Carlo Hybrid Simulation theory, and the Weisskopf-Ewing theory, to calculate cross sections. In a few cases, the HMS-ALICE results were replaced by those calculated using the GNASH code for the Los Alamos LA150 transport library. The resulting two libraries, AF150.N and AF150.P, consist of 766 nuclides each and are represented in the ENDF6-format. An outline is given of the new representation of the data. The libraries have been checked with ENDF6 preprocessing tools and have been processed with NJOY into libraries for the Los Alamos transmutation/radioactivity code CINDER. Numerous benchmark figures are presented for proton-induced excitation functions of various isotopes compared with measurements. Such comparisons are useful for validation purposes, and for assessing the accuracy of the evaluated data. These evaluated libraries are available on the WWW at: http://t2.lanl.gov/. 21 refs

  18. Recent advances in neutron tomography

    International Nuclear Information System (INIS)

    McFarland, E.; Massachusetts Inst. of Technology, Cambridge, MA; Lanza, R.

    1993-01-01

    Neutron imaging has been shown to be an excellent imaging tool for many nondestructive evaluation applications. Significantly improved contrast over X-ray images is possible for materials commonly found in engineering assemblies. The major limitations have been the neutron source and detection. A low cost, position sensitive neutron tomography detector system has been designed and built based on an electro-optical detector system using a LiF-ZnS scintillator screen and a cooled charge coupled device. This detector system can be used for neutron radiography as well as two and three-dimensional neutron tomography. Calculated performance of the system predicted near-quantum efficiency for position sensitive neutron detection. Experimental data was recently taken using this system at McClellan Air Force Base, Air Logistics Center, Sacramento, CA. With increased availability of low cost neutron sources and advanced image processing, neutron tomography will become an increasingly important nondestructive imaging method

  19. Comparison of fast neutron spectra in graphite and FLINA salt inserted in well-defined core assembled in LR-0 reactor

    International Nuclear Information System (INIS)

    Košťál, Michal; Veškrna, Martin; Cvachovec, František; Jánský, Bohumil; Novák, Evžen; Rypar, Vojtěch; Milčák, Ján; Losa, Evžen; Mravec, Filip; Matěj, Zdeněk; Rejchrt, Jiří; Forget, Benoit; Harper, Sterling

    2015-01-01

    Highlights: • Neutron spectra measured in graphite and LiF + NaF. • Comparison of calculated and measured neutron spectra. • Effect of 19F on variation between various library calculated spectra. - Abstract: The present paper aims to compare the calculated and measured spectra after insertion of candidate materials for the Molten salt reactor/Fluoride cooled high temperature reactor system concept into the LR-0 reactor. The calculation is realized with MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Additionally, comparisons between the slowing down power of each media were performed. The slowing down properties are important parameters affecting the thickness of moderator media in a reactor

  20. CMV-Promoter Driven Codon-Optimized Expression Alters the Assembly Type and Morphology of a Reconstituted HERV-K(HML-2

    Directory of Open Access Journals (Sweden)

    Oliver Hohn

    2014-11-01

    Full Text Available The HERV-K(HML-2 family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations.

  1. CMV-promoter driven codon-optimized expression alters the assembly type and morphology of a reconstituted HERV-K(HML-2).

    Science.gov (United States)

    Hohn, Oliver; Hanke, Kirsten; Lausch, Veronika; Zimmermann, Anja; Mostafa, Saeed; Bannert, Norbert

    2014-11-11

    The HERV-K(HML-2) family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM) and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations.

  2. Coordination-driven self-assembly of a novel carbonato-bridged heteromolecular neutral nickel(II) triangle by atmospheric CO2 fixation.

    Science.gov (United States)

    Mukherjee, Pampa; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh

    2008-09-01

    Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, [Ni(salmeNH) 2], and one of the possible intermediate species, [Ni(salmeNH 2) 2(NCS) 2], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10 (-4).

  3. Self-Assembly Template Driven 3D Inverse Opal Microspheres Functionalized with Catalyst Nanoparticles Enabling a Highly Efficient Chemical Sensing Platform.

    Science.gov (United States)

    Wang, Tianshuang; Can, Inci; Zhang, Sufang; He, Junming; Sun, Peng; Liu, Fangmeng; Lu, Geyu

    2018-02-14

    The design of semiconductor metal oxides (SMOs) with well-ordered porous structure has attracted tremendous attention owing to their larger specific surface area. Herein, three-dimensional inverse opal In 2 O 3 microspheres (3D-IO In 2 O 3 MSs) were fabricated through one-step ultrasonic spray pyrolysis (USP) which employed self-assembly sulfonated polystyrene (S-PS) spheres as a sacrificial template. The spherical pores observed in the 3D-IO In 2 O 3 MSs had diameters of about 4 and 80 nm. Subsequently, the catalytic palladium oxide nanoparticles (PdO NPs) were loaded on 3D-IO In 2 O 3 MSs via a simple impregnation method, and their gas sensing properties were investigated. In a comparison with pristine 3D-IO In 2 O 3 MSs, the 3D-IO PdO@In 2 O 3 MSs exhibited a 3.9 times higher response (R air /R gas = 50.9) to 100 ppm acetone at 250 °C and a good acetone selectivity. The detection limit for acetone could extend down to ppb level. Furthermore, the 3D-IO PdO@In 2 O 3 MSs-based sensor also possess good long-term stability. The extraordinary sensing performance can be attributed to the novel 3D periodic porous structure, highly three-dimensional interconnection, larger specific surface area, size-tunable (meso- and macroscale) bimodal pores, and PdO NP catalysts.

  4. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies.

    Science.gov (United States)

    Angelova, Miglena I; Bitbol, Anne-Florence; Seigneuret, Michel; Staneva, Galya; Kodama, Atsuji; Sakuma, Yuka; Kawakatsu, Toshihiro; Imai, Masayuki; Puff, Nicolas

    2018-03-06

    Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Fusion neutron detector calibration using a table-top laser generated plasma neutron source

    International Nuclear Information System (INIS)

    Hartke, R.; Symes, D.R.; Buersgens, F.; Ruggles, L.E.; Porter, J.L.; Ditmire, T.

    2005-01-01

    Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV

  6. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  7. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  8. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  9. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, C [Institut Lauer-Langevin, Grenoble (France); Dhar, S K [TIFR, Mumbai (India); Kulkarni, R [TIFR, Mumbai (India); Provino, A [Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States); Paudyal, Durga [Ames Lab., Ames, IA (United States); Manfrinetti, Pietro [Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States); Gschneidner, Karl A [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2014-08-14

    The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

  10. Storage method for spent fuel assembly

    International Nuclear Information System (INIS)

    Tajiri, Hiroshi.

    1992-01-01

    In the present invention, spent fuel assemblies are arranged at a dense pitch in a storage rack by suppressing the reactivity of the assemblies, to increase storage capacity for the spent fuel assemblies. That is, neutron absorbers are filled in the cladding tube of an absorbing rod, and the diameter thereof is substantially equal with that of a fuel rod. A great amount of the absorbing rods are arranged at the outer circumference of the fuel assembly. Then, they are fixed integrally to the fuel assembly and stored in a storage rack. In this case, the storage rack may be constituted only with angle materials which are inexpensive and installed simply. With such a constitution, in the fuel assembly having absorbing rods wound therearound, neutrons are absorbed by absorbing rods and the reactivity is lowered. Accordingly, the assembly arrangement pitch in the storage rack can be made dense. As a result, the storage capacity for the assemblies is increased. (I.S.)

  11. Gamma counter shutter assembly

    International Nuclear Information System (INIS)

    Aday, R.W. Jr.; Barber, D.G.

    1976-01-01

    A shutter assembly for a radioactivity measuring apparatus is described having a sample counting chamber, the assembly having a bulky solid lead cylinder with a sample access port extending therethrough for alignment with the sample chamber. The cylinder is rotated by a Geneva wheel arrangement having a drive wheel with a plurality of equi-angularly disposed pins perpendicular to the surface thereof engaging radially extending open-ended slots in a driven wheel secured to the lead cylinder for concurrent rotation therewith. The drive wheel is rotated at a constant speed with the driven wheel accelerating as a pin traverses the slot from the open end toward the driven wheel center and then decelerating as the pin traverses the reverse direction to provide precise positioning with adjacent pins engaging the open ends of adjacent slots in the stop position of the cylinder. 8 Claims, 3 Drawing Figures

  12. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  13. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  14. Neutron spectrum measurement by TOF

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1982-01-01

    The TOF experiments by using various facilities are described. The steady neutron spectra in light water which contains non-1/V absorbing materials were measured by the TOF method at a LINAC facility. The results were compared with the calculations based on the Koppel-Haywood model and two others. The leakage neutron spectra from a heavy-water assembly were measured and compared with model calculations. The time-dependent energy spectra in a small graphite assembly were measured. For this measurement, a chopper system was also used. The two-region calculation explains the spectrum just after the neutron burst. The time-dependent spectra in a small Be assembly and in an assembly of coolant-moderator containing hydrogen were also measured. The calculations based on various models are in progress. The TOF experiments at the reactor-chopper facility were carried out for measuring the total cross sections of crystalline moderators, the thermal neutron total cross section of high temperature beryllium, the thermal neutron total cross sections of granular lead and high temperature liquid lead, and the angle-dependent scattering spectra. A pseudo-chopper was designed and constructed. The spectra of the neutron field for medical use were measured by the chopper-TOF system. The thermal neutron total cross sections of Fe, Zr, Nb and Mg were measured, and the results were compared with the calculations by THRUSH and UNCLE-TOM codes. The random-trigger TOF experiments were made by using Cf-252. (Kato, T.)

  15. Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa

    International Nuclear Information System (INIS)

    Salmon, Philip S; Drewitt, James W E; Whittaker, Dean A J; Zeidler, Anita; Wezka, Kamil; Bull, Craig L; Tucker, Matthew G; Wilding, Martin C; Guthrie, Malcolm; Marrocchelli, Dario

    2012-01-01

    The structure of GeO 2 glass was investigated at pressures up to 17.5(5) GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks. Calibration curves, which are important for neutron diffraction work on disordered materials, were constructed for pressure as a function of applied load for both single and double toroid anvil geometries. The diffraction data are compared to new molecular-dynamics simulations made using transferrable interaction potentials that include dipole-polarization effects. The results, when taken together with those from other experimental methods, are consistent with four densification mechanisms. The first, at pressures up to ≃ 5 GPa, is associated with a reorganization of GeO 4 units. The second, extending over the range from ≃ 5 to 10 GPa, corresponds to a regime where GeO 4 units are replaced predominantly by GeO 5 units. In the third, as the pressure increases beyond ∼10 GPa, appreciable concentrations of GeO 6 units begin to form and there is a decrease in the rate of change of the intermediate-range order as measured by the pressure dependence of the position of the first sharp diffraction peak. In the fourth, at about 30 GPa, the transformation to a predominantly octahedral glass is achieved and further densification proceeds via compression of the Ge-O bonds. The observed changes in the measured diffraction patterns for GeO 2 occur at similar dimensionless number densities to those found for SiO 2 , indicating similar densification mechanisms for both glasses. This implies a regime from about 15 to 24 GPa where SiO 4 units are replaced predominantly by SiO 5 units, and a regime beyond ∼24 GPa where appreciable concentrations of SiO 6 units begin to form.

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  17. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on 14 N, 181 Ta, 232 Th, 238 U and 239 Pu; Prompt fission spectra for 232 Th, 235 U, 238 U and 239 Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus

  18. Accelerator-driven system design concept for disposing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gohar, Y.; Cao, Y.; Kellogg, R.; Merzari, E.

    2015-01-01

    At present, the US SNF (Spent Nuclear Fuel) inventory is growing by about 2,000 metric tonnes (MT) per year from the current operating nuclear power plants to reach about 70,000 MT by 2015. This SNF inventory contains about 1% transuranics (700 MT), which has about 115 MT of minor actinides. Accelerator-driven systems utilising proton accelerators with neutron spallation targets and subcritical blankets can be utilised for transmuting these transuranics, simultaneously generating carbon free energy, and significantly reducing the capacity of the required geological repository storage facility for the spent nuclear fuels. A fraction of the SNF plutonium can be used as a MOX fuel in the current/future thermal power reactors and as a starting fuel for future fast power reactors. The uranium of the spent nuclear fuel can be recycled for use in future nuclear power plants. This paper shows that only four to five accelerator-driven systems operating for less than 33 full power years can dispose of the US SNF inventory expected by 2015. In addition, a significant fraction of the long-lived fission products will be transmuted at the same time. Each system consists of a proton accelerator with a neutron spallation target and a subcritical assembly. The accelerator beam parameters are 1 GeV protons and 25 MW beam power, which produce 3 GWt in the subcritical assembly. A liquid metal (lead or lead-bismuth eutectic) spallation target is selected because of design advantages. This target is located at the centre of the subcritical assembly to maximise the utilisation of spallation neutrons. Because of the high power density in the target material, the target has its own coolant loop, which is independent of the subcritical assembly coolant loop. Mobile fuel forms with transuranic materials without uranium are considered in this work with liquid lead or lead-bismuth eutectic as fuel carrier

  19. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  20. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  1. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  2. The use of computed neutron coincidence counting with time interval analysis for the analysis of Fork-measurements on a fresh MOX-LWR fuel assembly under water

    Energy Technology Data Exchange (ETDEWEB)

    Baeten, P.; Bruggeman, M.; Carchon, R

    1998-06-01

    The objective of this study was to investigate the influence of different important parameters on measurement results for various fork-detectors. Computed Neutron Coincidence Counting (CNCC) with Time Interval Analysis (TIA) was used for this study. The performance of the electronics for the different fork-detectors was studied by investigating the deadtime perturbed zone of the Rossi-alpha distribution in TIA. The measurement revealed anomalies in the performance of the electronics of the IAEA BWR and LANL fork-detector. The IAEA PWR fork-detector functioned well and the deadtime parameter was calculated. The optimal setting for the pre delay was investigated and it was found that a pre delay of 10 micro seconds should be considered as an optimum between excluding from analysis data in the deadtime perturbed zone and keeping a high signal-to-noise ratio. For the shift register electronics used with the fork-detectors, a pre delay of only 4.5 micro seconds was used. The study of the pre delay and the deadtime showed that the calculated triples-rate is strongly dependent on these parameters. An accurate determination of the triple-rate in this type of measurements has proven to be quite difficult and requires proper operation of the electronics, a correct pre delay and an accurate deadtime correction formalism. By varying the boron concentration in water, the change of the decay time of the Rossi-alpha distribution was clearly observed. This change is due to the variation of the thermal multiplication. The variation of this decay time with the boron concentration proves that Boehnel's model for fast neutron multiplication is not valid under these measurement conditions and that a model for fast and thermal multiplication should be used in order to obtain unbiased measurement results. CNCC with TIA has proved to be a valuable tool in which parameter settings can be varied a posterori and the optimal setting can be determined for each measurement. Moreover, the

  3. The use of computed neutron coincidence counting with time interval analysis for the analysis of Fork-measurements on a fresh MOX-LWR fuel assembly under water

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.

    1998-06-01

    The objective of this study was to investigate the influence of different important parameters on measurement results for various fork-detectors. Computed Neutron Coincidence Counting (CNCC) with Time Interval Analysis (TIA) was used for this study. The performance of the electronics for the different fork-detectors was studied by investigating the deadtime perturbed zone of the Rossi-alpha distribution in TIA. The measurement revealed anomalies in the performance of the electronics of the IAEA BWR and LANL fork-detector. The IAEA PWR fork-detector functioned well and the deadtime parameter was calculated. The optimal setting for the pre delay was investigated and it was found that a pre delay of 10 micro seconds should be considered as an optimum between excluding from analysis data in the deadtime perturbed zone and keeping a high signal-to-noise ratio. For the shift register electronics used with the fork-detectors, a pre delay of only 4.5 micro seconds was used. The study of the pre delay and the deadtime showed that the calculated triples-rate is strongly dependent on these parameters. An accurate determination of the triple-rate in this type of measurements has proven to be quite difficult and requires proper operation of the electronics, a correct pre delay and an accurate deadtime correction formalism. By varying the boron concentration in water, the change of the decay time of the Rossi-alpha distribution was clearly observed. This change is due to the variation of the thermal multiplication. The variation of this decay time with the boron concentration proves that Boehnel's model for fast neutron multiplication is not valid under these measurement conditions and that a model for fast and thermal multiplication should be used in order to obtain unbiased measurement results. CNCC with TIA has proved to be a valuable tool in which parameter settings can be varied a posterori and the optimal setting can be determined for each measurement. Moreover, the

  4. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  5. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  6. Study of the moderating effect of salts on the sodium-water reaction on the cleaning of irradiated fuel assemblies from fast neutron reactors, using fluid sodium heat transfer

    International Nuclear Information System (INIS)

    Lacroix, Marie

    2014-01-01

    Within the framework of the development of generation IV reactors one of the research tracks is related to the development of fast neutron reactors using fluid sodium heat transfer. The CEA (French Alternative Energies and Atomic Energy Commission) plans to build a prototype of reactor of this type called 'ASTRID'. To address development requirements for this prototype, research is in progress on the reactor's availability and in particular on the reduction of the washing duration for residual sodium fuel assemblies during their discharge. In fact, because sodium is very reactive with water (presently the only available process), the washing is done, for example, by very gradual addition. A solution currently being studied at the CEA and which is the subject of this thesis report consists of the addition of an aqueous salts solutions to the washing water in order to slow down the kinetic reaction. This doctoral dissertation describes the various salts, which have been evaluated and aims to explain their action mode. (author) [fr

  7. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  8. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  9. Modular nuclear fuel assembly rack

    International Nuclear Information System (INIS)

    Davis, C.J.

    1982-01-01

    A modular nuclear fuel assembly rack constructed of an array of identical cells, each cell constructed of a plurality of identical flanged plates. The unique assembly of the plates into a rigid rack provides a cellular compartment for nuclear fuel assemblies and a cavity between the cells for accepting neutron absorbing materials thus allowing a closely spaced array. The modular rack size can be easily adapted to conform with available storage space. U-shaped flanges at the edges of the plates are nested together at the intersection of four cells in the array. A bar is placed at the intersection to lock the cells together

  10. FMIT Test assemblies. Progress report

    International Nuclear Information System (INIS)

    Nygren, R.E.; Opperman, E.K.

    1978-08-01

    This progress report is a reference document for a number of inter-related tasks supporting the Fusion Materials Irradiation Test (FMIT) Facility being developed by the Hanford Engineering Development Laboratory. The report describes the basic configuration of test assemblies and supporting rationale based on the neutron flux distribution. Perturbed and unperturbed flux profiles are discussed as well as heating rates and cooling requirements

  11. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  12. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Masumi, Ryoji; Ishibashi, Yoko.

    1995-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison-incorporated fuel rods and a spectral shift-type water rod. As the burnable poison for the burnable poison-incorporated fuel rod, a plurality of burnable poison elements each having a different neutron absorption cross section are used. A burnable poison element such as boron having a relatively small neutron absorbing cross section is disposed more in the upper half region than the lower half region of the burnable poison-incorporated fuel rods. In addition, a burnable poison element such as gadolinium having a relatively large neutron absorbing cross section is disposed more in the lower half-region than the upper half region thereof. This can flatten the power distribution in the vertical direction of the fuel assembly and the power distribution in the horizontal direction at the final stage of the operation cycle. (I.N.)

  13. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  14. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    Criticality control of damaged nuclear fuel is one of the key issues in the decommissioning operation of the Fukushima Daiichi Nuclear Power Station accident. The average isotopic composition of spent nuclear fuel as a function of burn-up is required in order to evaluate criticality parameters of the mixture of damaged nuclear fuel with other materials. The NEA Expert Group on Burn-up Credit Criticality (EGBUC) has organised several international benchmarks to assess the accuracy of burn-up calculation methodologies. For BWR fuel, the Phase III-B benchmark, published in 2002, was a remarkable landmark that provided general information on the burn-up properties of BWR spent fuel based on the 8x8 type fuel assembly. Since the publication of the Phase III-B benchmark, all major nuclear data libraries have been revised; in Japan from JENDL-3.2 to JENDL-4, in Europe from JEF-2.2 to JEFF-3.1 and in the US from ENDF/B-VI to ENDF/B-VII.1. Burn-up calculation methodologies have been improved by adopting continuous-energy Monte Carlo codes and modern neutronics calculation methods. Considering the importance of the criticality control of damaged fuel in the Fukushima Daiichi Nuclear Power Station accident, a new international burn-up calculation benchmark for the 9 x 9 STEP-3 BWR fuel assemblies was organised to carry out the inter-comparison of the averaged isotopic composition in the interest of the burnup credit criticality safety community. Benchmark specifications were proposed and approved at the EGBUC meeting in September 2012 and distributed in October 2012. The deadline for submitting results was set at the end of February 2013. The basic model for the benchmark problem is an infinite two-dimensional array of BWR fuel assemblies consisting of a 9 x 9 fuel rod array with a water channel in the centre. The initial uranium enrichment of fuel rods without gadolinium is 4.9, 4.4, 3.9, 3.4 and 2.1 wt% and 3.4 wt% for the rods using gadolinium. The burn-up conditions are

  15. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  16. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  17. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  18. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  19. Bacteriophage Assembly

    Directory of Open Access Journals (Sweden)

    Anastasia A. Aksyuk

    2011-02-01

    Full Text Available Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  20. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  1. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  2. Development of the control assembly pattern and dynamic analysis of the generation IV large gas-cooled fast reactor (GFR); Developpement du design d'un assemblage de controle et analyse dynamique des reacteurs a neutrons rapides de quatrieme generation refroidis au gaz

    Energy Technology Data Exchange (ETDEWEB)

    Girardin, G.

    2009-07-09

    Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. It is in the context of the large, 2400 MWth reference GFR design that the present doctoral research has been conducted, the principal aim having been to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for this system. The work has been carried out in three successive and complementary phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behavior studies for hypothetical CA driven transients. During the first phase of the thesis, the reference PROTEUS test lattice from these experiments has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Additionally, benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. It has been found that, for the main reaction rate ratios, the new analysis of the GCFR-PROTEUS reference lattice generally yields good agreement - within 1{sigma} measurement uncertainty - with experimental values and with the Monte Carlo simulations. As shown by the analysis, the predictions were in somewhat better agreement in the case of the adjusted ERALIB1 library. The applicability of ERANOS-2.0/ERALIB1 as the reference neutronics tool for the GFR analysis could thus be demonstrated. Furthermore, neutronics aspects related to the novel features of the GFR, for which new experimental investigations are needed, were highlighted. In the second phase of the research, the CA pattern was developed for the GFR, based on iterative neutronics and thermal-hydraulics calculations, 2D and 3D neutronics models for the reactor core having first been set up using the reference ERANOS-2.0/ERALIB1 computational scheme. For the thermal

  3. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  4. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Abanades, Alberto; Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto; Bornos, Victor; Kiyavitskaya, Anna; Carta, Mario; Janczyszyn, Jerzy; Maiorino, Jose; Pyeon, Cheolho; Stanculescu, Alexander; Titarenko, Yury; Westmeier, Wolfram

    2008-01-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  5. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  6. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  7. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  8. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  9. Spherical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  10. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  11. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  12. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  13. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  14. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron stru