WorldWideScience

Sample records for drip shield corrosion

  1. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  2. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon

    2003-06-24

    The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

  3. Technical Basis Document No. 6: Waste Package and Drip Shield Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Pasupathi, V; Nair, P; Gordon, G; McCright, D; Gdowski, G; Carroll, S; Steinborn, T; Summers, T; Wong, F; Rebak, R; Lian, T; Ilevbare, G; Lee, J; Hua, F; Payer, J

    2003-08-01

    The waste package and drip shield will experience a wide range of interactive environmental conditions and degradation modes that will determine the overall performance of the waste package and repository. The operable modes of degradation are determined by the temperature regime of operation (region), and are summarized here. Dry-Out Region (T {ge} 120 C; 50 to 400 Years): During the pre-closure period, the waste package will be kept dry by ventilation air. During the thermal pulse, heat generated by radioactive decay will eventually increase the temperature of the waste package, drip shield and drift wall to a level above the boiling point, where the probability of seepage into drifts will become insignificant. Further heating will push the waste package surface temperature above the deliquescence point of expected salt mixtures, thereby preventing the formation of deliquescence brines from dust deposits and humid air. Phase and time-temperature-transformation diagrams predicted for Alloy 22, and validated with experimental data, indicates no significant phase instabilities (LRO and TCP precipitation) at temperatures below 300 C for 10,000 years. Neither will dry oxidation at these elevated temperatures limit waste package life. After the peak temperature is reached, the waste package will begin to cool, eventually reaching a point where deliquescence brine formation may occur. However, corrosion testing of Alloy 22 underneath such films has shown no evidence of life-limiting localized corrosion. Transition Region (120 C {ge} T {ge} 100 C; 400 to 1,000 Years): During continued cooling, the temperature of the drift wall will drop to a level close to the boiling point of the seepage brine, thus permitting the onset of seepage. Corrosion in a concentrated, possibly aggressive, liquid-phase brine, evolved through evaporative concentration, is possible while in this region. However, based upon chemical divide theory, most ({ge} 99%) of the seepage water entering the

  4. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  5. Drip Shield Emplacement Gantry Concept

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  6. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  7. Hydrogen-Induced Cracking of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  8. WAPDEG Analysis of Waste Package and Drip shield Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-09-29

    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of

  9. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-10-11

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts.

  10. Incorporation of Uncertainty and Variability of Drip Shield and Waste Package Degradation in WAPDEG Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Helton

    2000-04-19

    This presentation investigates the incorporation of uncertainty and variability of drip shield and waste package degradation in analyses with the Waste Package Degradation (WAPDEG) program (CRWMS M&O 1998). This plan was developed in accordance with Development Plan TDP-EBS-MD-000020 (CRWMS M&O 1999a). Topics considered include (1) the nature of uncertainty and variability (Section 6.1), (2) incorporation of variability and uncertainty into analyses involving individual patches, waste packages, groups of waste packages, and the entire repository (Section 6.2), (3) computational strategies (Section 6.3), (4) incorporation of multiple waste package layers (i.e., drip shield, Alloy 22, and stainless steel) into an analysis (Section 6.4), (5) uncertainty in the characterization of variability (Section 6.5), and (6) Gaussian variance partitioning (Section 6.6). The presentation ends with a brief concluding discussion (Section 7).

  11. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J

    2008-07-18

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  12. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  13. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K

    2007-11-16

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.

  14. W1045 environment surf drip shield and waste package outer barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G

    1999-07-14

    The environments on the drip shield and waste package outer barrier are controlled by the compositions of the waters that contact these components. the temperature (T) of these components, and the effective relative humidity (RH) at these components. Because the composition of the waters that are expected to enter the emplacement drifts (either by seepage flow or by episodic flow) have not been specified: well J13 water was chosen as the reference water (Harrar 1990). Section 6.2 discusses the accessible RH for the temperatures of interest at the repository horizon. Section 6.3 discusses the adsorption of water on metal alloys in the absence of hygroscopic salts. Because the temperatures of the DSs and the WPOBs are higher than those of the surrounding near-field environment, the relative humidity at the DSs and the WPOBs will be lower than that of the surrounding near-field environment. This difference is a result of the water partial pressure in the drift being constant and no higher than the equilibrium water vapor pressure at the temperature of the drift wall.

  15. Technical Work Plan For: Calculation of Waste Packave and Drip Shield Response to Vibratory Ground Motion and Revision of the Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2006-12-08

    The overall objective of the work scope covered by this technical work plan (TWP) is to develop new damage abstractions for the seismic scenario class in total system performance assessment (TSPA). The new abstractions will be based on a new set of waste package and drip shield damage calculations in response to vibratory ground motion and fault displacement. The new damage calculations, which are collectively referred to as damage models in this TWP, are required to represent recent changes in waste form packaging and in the regulatory time frame. The new damage models also respond to comments from the Independent Validation Review Team (IVRT) postvalidation review of the draft TSPA model regarding performance of the drip shield and to an Additional Information Need (AIN) from the U.S. Nuclear Regulatory Commission (NRC).

  16. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2015-01-01

    The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM) and field emission scanning electron microscopy (FESEM). Energy back scattered diffraction (EBSD) method was used to determine t...

  17. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2015-09-01

    Full Text Available The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM and field emission scanning electron microscopy (FESEM. Energy back scattered diffraction (EBSD method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr–Mn–N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

  18. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  19. A Review Corrosion of TI Grade 7 and Other TI Alloys in Nuclear Waste Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-05-11

    Titanium alloy degradation modes are reviewed in relation to their performance in repository environments. General corrosion, localized corrosion, stress corrosion cracking, hydrogen induced cracking, microbially influenced corrosion, and radiation-assisted corrosion of Ti alloys are considered. With respect to the Ti Grade 7 drip shields selected for emplacement in the repository at Yucca Mountain, general corrosion, hydrogen induced cracking, and radiation-assisted corrosion will not lead to failure within the 10,000 year regulatory period; stress corrosion cracking (in the absence of disruptive events) is of no consequence to barrier performance; and localized corrosion and microbially influenced corrosion are not expected to occur. To facilitate the discussion, Ti Grades 2, 5, 7, 9, 11, 12, 16, 17, 18, and 24 are included in this review.

  20. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo [Yonsei University, Seoul (Korea, Republic of)

    2014-03-15

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr{sub 2}N are the key points of this study. The primary results of this study are as follows. The addition of N{sub 2} to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N{sub 2} decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N{sub 2} gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

  1. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  2. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  3. Study of the atypical formations in the corrosion bulks of an ancient bronze shield, by optical and electron microscopy.

    Science.gov (United States)

    Mircea, Otilia; Sandu, Ion; Vasilache, Viorica; Sandu, Andrei Victor

    2012-11-01

    This article presents the atypical formations in the structure of the corrosion crust and in the partially mineralized metallic core, which resulted during the underground stay of a bronze shield, dated between the 1st century B.C. and the 1st century A.D. For our study, we choose a representative fragment from the rim of the shield, which was analyzed by optical microscopy and by electron microscopy coupled with energy-dispersive X-ray spectroscopy, to study its morphology, its composition, and the location of chemical compounds on the surface and inside the bulk formed during the underground stay, by processes of chemical and physical alteration, assisted by contamination with structural elements from the site. Those processes, by monolithization and mineralization formed a series of structures consisting of congruent elements and phases with a complex composition. Those formations, defined as surface effects generated by exogenous factors and endogenous factors inside the bulk, are frequently found in ancient bronze objects (such as the exterior flat mole formations and the Liesegang effect in the stratigraphic structure of the bulk). Some of those structures have atypical characteristics as regards their structure, composition, and formation mechanism, which may be used in archeometry. Moreover, that includes the object in the category of special cases, in terms of artifact evolution during underground stay and of the atypical formations resulted from the action of pedological and environmental factors.

  4. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B.M.; Quinn, M.J

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces

  5. Electronic route information panels (DRIPs).

    NARCIS (Netherlands)

    2008-01-01

    Also in the Netherlands, the term Dynamic Route Information Panel (DRIP) is used for an electronic route information panel. A DRIP usually indicates whether there are queues on the various routes to a particular destination and how long they are. On certain locations DRIPS also give the estimated tr

  6. Technical and economical evaluation of tape drip and drip line irrigation systems in a strawberry greenhouse

    Directory of Open Access Journals (Sweden)

    Soghra HOSSEINIAN

    2016-04-01

    Full Text Available This study was done in a strawberry greenhouse to examine the technical and the economical evaluation of two drip irrigation systems including the tape and the drip line in the northern part of Iran. The result showed that all of the technical indices with tape were higher than drip line, and due to statistical analysis reveal a significant difference (P < 0.05. Yield and water productivity (WP with tape were higher than drip line (P < 0.05. Benefit per drop (BPD and net benefit per drop (NBPD with tape were higher than drip line. Net present value, internal rate of capital return and benefit to cost ratio in drip line were higher than tape. In general, regarding technical evaluation tape was better than drip line, besides according to the economical evaluation the drip ­lines were better than tape.

  7. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  8. Drip Line Flushing with Chlorine May Not Be Effective in Reducing Bacterial Loads in Irrigation Water Distribution Systems.

    Science.gov (United States)

    Callahan, Mary Theresa; Marine, Sasha C; Everts, Kathryne L; Micallef, Shirley A

    2016-06-01

    Irrigation water distribution systems are used to supply water to produce crops, but the system may also provide a protected environment for the growth of human pathogens present in irrigation water. In this study, the effects of drip tape installation depth and sanitization on the microbial quality of irrigation groundwater were evaluated. Drip tape lines were installed on the soil surface or 5 or 10 cm below the soil surface. Water samples were collected from the irrigation source and the end of each drip line every 2 weeks over an 11-week period, and the levels of Escherichia coli, total coliforms, aerobic mesophilic bacteria, and enterococci were quantified. Half of the lines installed at each depth were flushed with sodium hypochlorite for 1 h during week 6 to achieve a residual of 10 ppm at the end of the line. There was a statistically significant (P = 0.01) effect of drip tape installation depth and sanitizer application on the recovery of E. coli, with increased levels measured at the 5-cm depth and in nonsanitized lines, although the levels were at the limit of detection, potentially confounding the results. There was no significant effect of drip tape depth on total coliforms, aerobic mesophiles, or enterococci. In contrast, a statistically significant increase (P < 0.01) in the recovery of total coliforms was recorded from the ends of lines that received chlorine. This may be indicative of shedding of cells owing to degradation of biofilms that formed on the inner walls of the lines. These findings emphasize the need to better understand conditions that may lead to corrosion and increases in bacterial loads inside drip lines during flushing. Recommendations to growers should suggest collecting groundwater samples for testing at the end of drip lines rather than at the source. Guidelines on flushing drip lines with chlorine may need to include water pH monitoring, a parameter that influences the corrosive properties of chlorine.

  9. Verkeersveiligheidseffecten van Dynamische Route Informatie Panelen (DRIP's).

    NARCIS (Netherlands)

    2008-01-01

    The term Dynamic Route Information Panel (DRIP) is, also in the Netherlands, used for an electronic route information panel. A DRIP usually indicates if there are queues on the various routes to a particular destination, how long they are, and sometimes what the estimated journey time is. This is in

  10. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  11. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  12. Mechanical Stimulation by Postnasal Drip Evokes Cough.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Iwata

    Full Text Available Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough.

  13. Mechanical Stimulation by Postnasal Drip Evokes Cough.

    Science.gov (United States)

    Iwata, Toshiyuki; Ito, Isao; Niimi, Akio; Ikegami, Koji; Marumo, Satoshi; Tanabe, Naoya; Nakaji, Hitoshi; Kanemitsu, Yoshihiro; Matsumoto, Hisako; Kamei, Junzo; Setou, Mitsutoshi; Mishima, Michiaki

    2015-01-01

    Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough.

  14. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  15. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  16. Collective properties of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, I. [Univ. of Lund (Sweden); Sagawa, H. [Univ. of Aizu, Fukushima (Japan)

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  17. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    Science.gov (United States)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  18. Monitoring drip water isotope and element variability: A new device for automatic drip water collection

    Science.gov (United States)

    Breitenbach, S. F. M.; Gilbert, M.-J.; Kwiecien, O.; Seifert, R.; Fleitmann, D.

    2012-04-01

    Understanding cave drip water elemental and stable isotope composition (δD and δ18O) are vital for interpreting climate proxy records derived from stalagmites as palaeoclimate archives. Delineating the temporal changes in drip water chemistry to climatic and environmental fluctuations (such as rainfall amount, degassing, bioactivity etc.) is even more important if calibration is attempted between climatic parameters and stalagmite proxy records. Monitoring of remote study sites has often been limited by the ability to regularly and manually collect drip water samples over an extended period of time. One important complication to be considered for stable isotope analysis is that sampling vials must be closed air-tight, in order to avoid post-sampling evaporation of the sampled water. To overcome these limitations we developed an automated and programmable sampling device that can collect 12 ml of drip water at pre-defined time intervals. A total of 49 samples can be collected in a turret over a period of up to one year. The device is powered by widely available C-cell batteries and works in cave environments with positive air temperature. The autosampler has been installed and tested in Waldheim Cave, Switzerland, where we collected water at 24h intervals. We present preliminary data for the winter period December 2011 to March 2012.

  19. Galactic Drips and How to Stop Them

    CERN Document Server

    Mathews, W G

    1996-01-01

    The temperature of hot interstellar gas at large radii in elliptical galaxies can be lower than the mean galactic virial temperature. If so, a nonlinear cooling wave can form in the hot interstellar gas and propagate slowly toward the galactic core. If the cooling wave survives hydrodynamic instabilities, it can intermittently deposit cold gas within about 15 effective radii. For a bright elliptical the total mass deposited in this manner can approach 10^10 solar masses. The cold gas that drips out at large galactic radii may account for the young stellar populations and extended gas at $\\sim 10^4$ K observed in many ellipticals, features that are often attributed to galactic mergers. Galactic drips are expected in relatively isolated (field) ellipticals provided (i) the galactic stellar velocity ellipsoids are radially oriented at large galactic radii and (ii) the current Type Ia supernova rate is sufficiently small to be consistent with interstellar iron abundances found in recent X-ray studies. Galactic dr...

  20. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have

  1. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  2. Model to Design Drip Hose Lateral Line

    Science.gov (United States)

    Ludwig, Rafael; Cury Saad, João Carlos

    2014-05-01

    Introduction The design criterion for non-pressure compensating drip hose is normally to have 10% of flow variation (Δq) in the lateral line, corresponding to 20% of head pressure variation (ΔH). Longer lateral lines in drip irrigation systems using conventional drippers provide cost reduction, but it is necessary to obtain to the uniformity of irrigation [1]. The use of Δq higher levels can provide longer lateral lines. [4] proposes the use of a 30% Δq and he found that this value resulted in distribution uniformity over 80%. [1] considered it is possible to extend the lateral line length using two emitters spacing in different section. He assumed that the spacing changing point would be at 40% of the total length, because this is approximately the location of the average flow according with [2]. [3] found that, for practical purposes, the average pressure is located at 40% of the length of the lateral line and that until this point it has already consumed 75% of total pressure head loss (hf ). In this case, the challenge for designers is getting longer lateral lines with high values of uniformity. Objective The objective of this study was to develop a model to design longer lateral lines using non-pressure compensating drip hose. Using the developed model, the hypotheses to be evaluated were: a) the use of two different spacing between emitters in the same lateral line allows longer length; b) it is possible to get longer lateral lines using high values of pressure variation in the lateral lines since the distribution uniformity stays below allowable limits. Methodology A computer program was developed in Delphi® based on the model developed and it is able to design lateral lines in level using non-pressure compensating drip hose. The input data are: desired distribution uniformity (DU); initial and final pressure in the lateral line; coefficients of relationship between emitter discharge and pressure head; hose internal diameter; pipe cross-sectional area

  3. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have

  4. DripFume: A Visual Basic Program For Simulating Distribution And Atmospheric Volatilization Of Soil Fumigants Applied Through Drip Irrigation

    Science.gov (United States)

    A Windows-based graphical user interface program (DripFume) was developed in MS Visual Basic (VB) to utilize a two-dimensional multi-phase finite element pesticide transport model to simulate distribution and emission of volatile fumigant chemicals when applied through drip irrigation or shank injec...

  5. Corrosion protection

    Science.gov (United States)

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  6. A remote drip infusion monitoring system employing Bluetooth.

    Science.gov (United States)

    Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton

    2012-01-01

    We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.

  7. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  8. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  9. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  10. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    Effects of ten years treated wastewater drip irrigation on soil microbiological properties under ... Water shortage in most countries of the southern Mediterranean basin has led to the reuse of municipal wastewater for irrigation. ... Article Metrics.

  11. Application of sand and geotextile envelope in subsurface drip ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... Subsurface drip irrigation is a technology used for better management of irrigation water. This ... for commercial vegetable production, with turbulent flow ... delivery system to carry the water to the field (Reich et al., 2009).

  12. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  13. Chaotic rhythms of a dripping faucet

    Science.gov (United States)

    Cahalan, Robert F.; Leidecker, Henning; Cahalan, Gabriel D.

    1990-01-01

    An experiment was conducted which showed that a leaky faucet can offer valuable insights on predicting fluid flow. In this experiment, a flow control and drop detector were connected to the printer port of an IBM PC, which computed and saved the time intervals using a program for droptime compiled with Turbo C. It is noted that the time intervals change from periodic to doubly periodic as the flow rate is increased and then to various forms of chaos, interrupted by windows of periodicity. A number of two- and three-dimensional plots are displayed and discussed. Attention is focused on one of the simpler plots which is approximately parabolic, where each successive time interval is a quadratic function of the preceding interval, with a steepness which depends upon the flow rate. It is shown that a single past analog can predict a dripping faucet with reasonable accuracy 7-10 drops ahead. While such methods are more difficult to apply in higher-dimensional systems, this experiment aids in understanding how fluid flow may be predicted even under conditions of unstable flows caused by increase in velocity.

  14. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  15. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  16. CORROSION IN AIRFRAMES

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  17. Radiation Shielding Materials

    Science.gov (United States)

    Adams, James H., Jr.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    NASA has relied on the materials to provide radiation shielding for astronauts since the first manned flights. Until very recently existing materials in the structure of manned spacecraft as well as the equipment and consumables onboard have been taken advantage of for radiation shielding. With the advent of the International Space Station and the prospect of extended missions to the Moon or Mars, it has been found that the materials, which were included in the spacecraft for other reasons, do not provide adequate shielding. For the first time materials are being added to manned missions solely to improve the radiation shielding. It is now recognized that dual use materials must be identified/developed. These materials must serve a purpose as part of the spacecraft or its cargo and at the same time be good shielding. This paper will review methods for evaluating the radiation shielding effectiveness of materials and describe the character of materials that have high radiation shielding effectiveness. Some candidate materials will also be discussed.

  18. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  19. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  20. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  1. Blood drop size in passive dripping from weapons.

    Science.gov (United States)

    Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E

    2013-05-10

    Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  3. Systematic Study of Shell Effect near Drip-lines

    CERN Document Server

    Adhikari, S K

    2004-01-01

    Variation of nuclear shell effects with nucleon numbers are evaluated using the modified Bethe-Weizsacker mass formula (BWM) and the measured atomic masses. The shell effects at magic neutron numbers N = 8, 20, 28, 50, 82 and 126 and magic proton numbers Z = 8, 20, 28,50 and 82 are found to vary rapidly approaching the drip lines. The shell effect due to one magic number increases when it approaches another magic number. Thus, shell effects are not always negligible near the drip lines.

  4. Stroke mimics under the drip-and-ship paradigm.

    Science.gov (United States)

    Mehta, Sonal; Vora, Nirav; Edgell, Randall C; Allam, Hesham; Alawi, Aws; Koehne, Jennifer; Kumar, Abhay; Feen, Eliahu; Cruz-Flores, Salvador; Alshekhlee, Amer

    2014-01-01

    Recent reports suggested better outcomes associated with the drip-and-ship paradigm for acute ischemic stroke (AIS) treated with thrombolysis. We hypothesized that a higher rate of stroke mimics (SM) among AIS treated in nonspecialized stroke centers that are transferred to comprehensive centers is responsible for such outcomes. Consecutive patients treated with thrombolysis according to the admission criteria were reviewed in a single comprehensive stroke center over 1 academic year (July 1, 2011 to June 30, 2012). Information on the basic demographic, hospital complications, psychiatric diagnoses, and discharge disposition was collected. We identified those patients who were treated at a facility and then transferred to the tertiary center (ie, drip-and-ship paradigm). In addition to comparative and adjusted analysis to identify predictors for SM, a stratified analysis by the drip-and-ship status was performed. One hundred twenty patients were treated with thrombolysis for AIS included in this analysis; 20 (16.7%) were discharged with the final diagnosis of SM; 14 of those had conversion syndrome and 6 patients had other syndromes (seizures, migraine, and hypoglycemia). Patients with SM were younger (55.6 ± 15.0 versus 69.4 ± 14.9, P = .0003) and more likely to harbor psychiatric diagnoses (45% versus 9%; P ≤ .0001). Eighteen of 20 SM patients (90%) had the drip-and-ship treatment paradigm compared with 65% of those with AIS (P = .02). None of the SM had hemorrhagic complications, and all were discharged to home. Predictors of SM on adjusted analysis included the drip-and-ship paradigm (odds ratio [OR] 12.8, 95% confidence interval [CI] 1.78, 92.1) and history of any psychiatric illness (OR 12.08; 95% CI 3.14, 46.4). Eighteen of 83 drip-and-ship patients (21.7%) were diagnosed with SM compared with 2 of 37 patients (5.4%) presented directly to the hub hospital (P = .02). The drip-and-ship paradigm and any psychiatric history predict the diagnosis of

  5. iSHIELD - A Line Source Application of SHIELD11

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Rokni, S.H.; /SLAC

    2006-04-27

    iSHIELD11 performs a line-source numerical integration of radiation source terms that are defined by the iSHIELD11 computer code[1] . An example is provided to demonstrate how one can use iSHIELD11 to perform a shielding analysis for a 250 GeV electron linear accelerator.

  6. Irrigation and fertigation with drip and alternative micro irrigation systems in northern highbush blueberry

    Science.gov (United States)

    The effects of nitrogen (N) fertigation using conventional drip and alternative micro irrigation systems were evaluated in six cultivars of northern highbush blueberry. The drip system consisted of two laterals of drip tubing, with 2 L/h in-line emitters (point source) spaced every 0.45 m, on each s...

  7. 40 CFR 265.441 - Assessment of existing drip pad integrity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Assessment of existing drip pad integrity. 265.441 Section 265.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., STORAGE, AND DISPOSAL FACILITIES Drip Pads § 265.441 Assessment of existing drip pad integrity. (a) For...

  8. 40 CFR 264.571 - Assessment of existing drip pad integrity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Assessment of existing drip pad integrity. 264.571 Section 264.571 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... DISPOSAL FACILITIES Drip Pads § 264.571 Assessment of existing drip pad integrity. (a) For each existing...

  9. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  10. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  11. Shielded cells transfer automation

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J J

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

  12. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  13. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  14. Yield Response and Economics of Shallow Subsurface Drip Irrigation Systems

    Science.gov (United States)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  15. Nitrogen Effects on Onion Yield Under Drip and Furrow Irrigation

    Science.gov (United States)

    Onion (Allium cepa L.) is a high cash value crop with a very shallow root system that is frequently irrigated and fertilized with high N rates to maximize yield. Converting from furrow-irrigated to drip-irrigated onion production may reduce N fertilizer needs, water inputs, and NO3-N leaching poten...

  16. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    Science.gov (United States)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  17. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  18. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Science.gov (United States)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  19. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sayenko, S.Yu.; Dovbnya, A.N.; Shkuropatenko, V.A.; Tarasov, R.V.; Rybka, A.V.; Zakharchenko, A.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2015-07-15

    Highlights: • It incorporates all suggestions by the reviewers. • Explanation to each new term is provided and suitable references are given. • Sample identities have been streamlined by revising the text and the tables. • Some figures have been redrawn. - Abstract: Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete’s tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  20. A Review of Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    Science.gov (United States)

    Schoenfeld, Michael P.

    2008-01-01

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion. With the space program focus m emphasize more on permanent return to the Moon and eventually manned exploration of Mars, there has been a renewed look at fission power to meet the difficult technical & design challenges associated with this effort. This is due to the ability of fission power to provide a power rich environment that is insensitive to solar intensity and related aspects such as duration of night, dusty environments, and distance from the sun, etc. One critical aspect in the utilization of fission power for these applications of manned exploration is shielding. Although not typically considered for space applications, water shields have been identified as one potential option due to benefits in mass savings and reduced development cost and technical risk (Poston, 2006). However, the water shield option requires demonstration of its ability to meet key technical challenges including such things as adequate natural circulation for thermal management and capability for operational periods up to 8 years. Thermal management concerns have begun to be addressed and are not expected to be a problem (Pearson, 2007). One significant concern remaining is the ability to maintain the shield integrity through its operational lifetime. Shield integrity could be compromised through shield pressurization and corrosion resulting from the radiolytic decomposition of water.

  1. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn

    2015-01-01

    leaching without compromising profits. Four replicate plots of each treatment with varying predefined and model-based (Daisy and Aquacrop crop model) irrigation and N fertilization levels were used in the study. Two experiments were conducted. In experiment-I, treatments consisted of one drip......The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P...

  2. Strange Stars: Can Their Crust Reach the Neutron Drip Density?

    Institute of Scientific and Technical Information of China (English)

    Hai Fu; Yong-Feng Huang

    2003-01-01

    The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.

  3. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn

    2015-01-01

    The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P......, K, Mg and micronutrients, and in addition 120 kg N/ha in the gun irrigated treatments and 36 kg N/ha in the drip-fertigated. For the latter, portion of 20 kg N/ha was applied whenever plant N concentration approached a critical value as simulated by the Daisy model. As a result differences in soil...

  4. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  5. Estimating soil wetting patterns for drip irrigation using genetic programming

    Energy Technology Data Exchange (ETDEWEB)

    Samadianfard, S.; Sadraddini, A. A.; Nazemi, A. H.; Provenzano, G.; Kisi, O.

    2012-07-01

    Drip irrigation is considered as one of the most efficient irrigation systems. Knowledge of the soil wetted perimeter arising from infiltration of water from drippers is important in the design and management of efficient irrigation systems. To this aim, numerical models can represent a powerful tool to analyze the evolution of the wetting pattern during irrigation, in order to explore drip irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. This paper examines the potential of genetic programming (GP) in simulating wetting patterns of drip irrigation. First by considering 12 different soil textures of USDA-SCS soil texture triangle, different emitter discharge and duration of irrigation, soil wetting patterns have been simulated by using HYDRUS 2D software. Then using the calculated values of depth and radius of wetting pattern as target outputs, two different GP models have been considered. Finally, the capability of GP for simulating wetting patterns was analyzed using some values of data set that were not used in training. Results showed that the GP method had good agreement with results of HYDRUS 2D software in the case of considering full set of operators with R{sup 2} of 0.99 and 0.99 and root mean squared error of 2.88 and 4.94 in estimation of radius and depth of wetting patterns, respectively. Also, field experimental results in a sandy loam soil with emitter discharge of 4 L h{sup -}1 showed reasonable agreement with GP results. As a conclusion, the results of the study demonstrate the usefulness of the GP method for estimating wetting patterns of drip irrigation. (Author) 40 refs.

  6. Colitis amebiasis with symptom of occasional dripped anal bleeding.

    Science.gov (United States)

    Wandono, Hadi

    2007-01-01

    Colitis amebiasis is usually characterized by bloody and mucous diarrhea, abdominal pain and anal discomfort. However, there is unusual manifestation of colitis amebiasis, such as occasional dripped anal bleeding, which sometimes spouted. Therefore, we often do not suspect such symptoms for colitis amebiasis. Laboratory examination includes complete laboratory test, coagulation and hematologic test, ICT TBC and colonoscopy. The pathology anatomy examination reveals positive results of trophozoites. Treatment by using metronidazole tablet provides good result for this disease.

  7. Manifold learning approach for chaos in the dripping faucet.

    Science.gov (United States)

    Suetani, Hiromichi; Soejima, Karin; Matsuoka, Rei; Parlitz, Ulrich; Hata, Hiroki

    2012-09-01

    Dripping water from a faucet is a typical example exhibiting rich nonlinear phenomena. For such a system, the time stamps at which water drops separate from the faucet can be directly observed in real experiments, and the time series of intervals τn between drop separations becomes a subject of analysis. Even if the mass mn of a drop at the onset of the nth separation, which is difficult to observe experimentally, exhibits perfectly deterministic dynamics, it may be difficult to obtain the same information about the underlying dynamics from the time series τn. This is because the return plot τn-1 vs. τn may become a multivalued relation (i.e., it doesn't represent a function describing deterministic dynamics). In this paper, we propose a method to construct a nonlinear coordinate which provides a "surrogate" of the internal state mn from the time series of τn. Here, a key of the proposed approach is to use isomap, which is a well-known method of manifold learning. We first apply it to the time series of τn generated from the numerical simulation of a phenomenological mass-spring model for the dripping faucet system. It is shown that a clear one-dimensional map is obtained by the proposed approach, whose characteristic quantities such as the Lyapunov exponent, the topological entropy, and the time correlation function coincide with the original dripping faucet system. Furthermore, we also analyze data obtained from real dripping faucet experiments, which also provide promising results.

  8. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    allowed to dry. The area is then checked for the golden brown color which is produced by the chemical conversion material. If the work area requires...Materials, pp. 258-3074 1968. 41. W. IH. Ailor, "Seven-year exposure at Point leyes , California," "Corrosion in Natural Environments, ASTM STP 558," American... Color Units 3 Turbidity Units 0.7 pH Units 7.6 Temperature OF 76 Sp. Conductivity MMhos 425 B.O.D. (5 days at 206C) 0.2 SjV i;~-- 1201 A .9 8 ~ 8 kl

  9. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  10. Surface films and corrosion of copper

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  11. Precesion Agriculture for Drip Irrigation Using Microcontroller and GSM Technology

    Directory of Open Access Journals (Sweden)

    Dr. Deepak Gupta* ,

    2014-06-01

    Full Text Available Drip irrigation is now a common phenomenon gaining popularity especially in the states like Rajasthan where water scarcity is a day to day affair. For drip irrigation a small over head water tank in used which supply water to the drip system. Usually the geographic systems as well as the cost do not permit a bigger tank. This tank generally gets vacated and a farmer needs to be always attentive to refill the over head tank from his well or cannel by an electric pump, mostly this need arises in the night as the availability of power is not whole day. This involved a lot of risk and cost on the part of farmer. The simple and low cost gadget that has been work upon, not only control the starting and stopping of motor by sending a simple SMS through a GSM mobile but also gets the return SMS showing level of water in overhead tank. The application of the gadget is not only limited to the use for a farmer & but can be beneficial for any process industry in which level of a chemical or any liquid need to be crucially controlled and monitored from far end, may be even from the home of a supervisor with no constraints of time or place for controlling the operations.

  12. Improved ferrous shielding for flat cables

    Science.gov (United States)

    Drechsler, R. J.

    1969-01-01

    To improve shielding of flat multicore cables, a thin, seamless ferrous shield around all cores optimizes low frequency magnetic shielding. Such shielding is covered with an ultrathin seamless coat of highly conductive nonferrous material.

  13. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm.

  14. Genotoxicological safety of the ethanol extract from seafood cooking drips by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Choi, Jong Il; Lee, Hee Sub; Kim, Jae Hun; Byun, Myung Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chun, Byung Soo; Ahn, Dong Hyun [Faculty of Food Science and Biotechnology, Pukyong National University, Busan (Korea, Republic of); Yook, Hong Sun [Dept. of Food and Nutrition, Chungnam National University, Daejeon (Korea, Republic of); Kim, Kee Hyuk [Dept. of Food Nutrion and Food Science, Woosong University, Daejeon (Korea, Republic of)

    2008-01-15

    Although seafood cooking drips were the byproducts from the fishery industry it was known that the cooking drips had many nutrients and could be used as functional materials. Previously, the physiological properties of cooking drips were shown to be increased by a gamma irradiation. But, there was no report on the safe for the genotoxicity on the irradiation. In this study, the genotoxicity of the cooking drips from Hizikia fusiformis, Enteroctopus dofleni and Thunnus thynnus was evaluated by the Ames test (Salmonella typhimurium reversion assay) and the SOS chromotest. The results from all samples were negative in the bacterial reversion assay with S. typhimurium TA98, TA100. No mutagenicity was detected in the assay, both with and without metabolic activation. The SOS chromotest also indicated that the gamma-irradiated seafood cooking drips did not show any mutagenicity. Therefore, this study indicated that gamma irradiation could be used for the hygiene, functional properties and processibility of seafood cooking drips.

  15. Effect of hydraulic head and slope on water distribution uniformity of the IDE drip irrigation system

    OpenAIRE

    Ella, Victor B.; Reyes, Manuel R.; R. Yoder

    2008-01-01

    Assessment of the effect of topography and operating heads on the emission uniformity distribution in drip irrigation systems is important in water management and could serve as the basis for optimizing water-use efficiency and crop productivity. This study was carried out to evaluate the effect of slope and hydraulic head on the water distribution uniformity of a low-cost drip irrigation system developed by International Development Enterprises (IDE). The drip system was tested for water dis...

  16. Light shielding apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  17. Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    CERN Document Server

    Freund, Rudolf; 10.4204/EPTCS.11.8

    2009-01-01

    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations.

  18. Shielding calculations for SSC

    Energy Technology Data Exchange (ETDEWEB)

    Van Ginneken, A.

    1990-03-01

    Monte Carlo calculations of hadron and muon shielding for SSC are reviewed with emphasis on their application to radiation safety and environmental protection. Models and algorithms for simulation of hadronic and electromagnetic showers, and for production and transport of muons in the TeV regime are briefly discussed. Capabilities and limitations of these calculations are described and illustrated with a few examples. 12 refs., 3 figs.

  19. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain.

    Science.gov (United States)

    Tian, Di; Zhang, Yuanyuan; Mu, Yujing; Zhou, Yizhen; Zhang, Chenglong; Liu, Junfeng

    2017-01-01

    N2O and NO emissions, the water usage and grain yields of a maize field in the North China Plain (NCP) under traditional flood irrigation, drip irrigation and drip fertigation were compared. With respect to the flood irrigation treatment, N2O emissions were reduced by 13.8% in the drip irrigation treatment and 7.7% in the drip fertigation treatment. NO emissions were reduced to 16.7% in the drip irrigation treatment but increased by 21.7% in the drip fertigation treatment. The molar ratios of NO/N2O within 2days after each fertilization event were evidently greater from the drip fertigation treatment than from the flood irrigation treatment, indicating that nitrification was more intensive in the drip fertigation treatment than in the treatment of flood irrigation. Compared with the flood irrigation treatment, evident increase of the maize yields in the drip irrigation treatment (28%) and the drip fertigation treatment (3.7%) were found. Although the drip fertigation treatment could evidently increase NO emission, the 40% water reduction in drip fertigation is of great importance for the sustainable development of agriculture in the NCP where water resources are extremely limited. To mitigate NO emissions from agricultural fields in the NCP with drip fertigation, the addition of a nitrification inhibitor combined with N or nitrate fertilizer was recommended.

  20. Shielding in Mental Health Hospitals

    Directory of Open Access Journals (Sweden)

    Espen W. Haugom

    2016-02-01

    Full Text Available Shielding is defined as the confinement of patients to a single room or a separate unit/area inside the ward, accompanied by a member of staff. It is understood as both a treatment and a control. The purpose of this study is to examine how staff in psychiatric hospitals describe and assess shielding. This qualitative study uses a descriptive and exploratory design with an inductive approach. The material was acquired through the Acute Network (in Psychiatry nationwide shielding project. Data collection was carried out by the staff, who described the shielding procedure on a semi-structured form. The analysis was inspired by Graneheim and Lundman’s qualitative content analysis. Shielding has been described as an ambiguous practice, that is, shielding can be understood in several ways. There is a clear tension between shielding as a control and shielding as a treatment, with control being described as more important. The important therapeutic elements of shielding have also been mentioned, and shielding involves isolation to different degrees.

  1. Investigating Liquid Leak from Pre-Filled Syringes upon Needle Shield Removal: Effect of Air Bubble Pressure.

    Science.gov (United States)

    Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C

    2011-01-01

    This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of

  2. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  3. Measurement of the transient shielding effectiveness of shielding cabinets

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2008-05-01

    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  4. Justification for Shielded Receiver Tube Additional Lead Shielding

    Energy Technology Data Exchange (ETDEWEB)

    BOGER, R.M.

    2000-04-11

    In order to reduce high radiation dose rates encountered when core sampling some radioactive waste tanks the addition of 240 lbs. of lead shielding is being considered to the shielded receiver tube on core sample trucks No.1, No.3 and No.4. The lead shielding is 4 inch diameter x 1/2 inch thick half rounds that have been installed around the SR tube over its' full length. Using three unreleased but independently reviewed structural analyses HNF-6018 justifies the addition of the lead shielding.

  5. Direct mass measurements beyond the proton drip-line

    CERN Document Server

    Rauth, C; Blaum, K; Block, M; Chaudhuri, A; Eliseev, S; Ferrer, R; Habs, D; Herfurth, F; Hessberger, F P; Hofmann, S; Kluge, H J; Maero, G; Martin, A; Marx, G; Mukherjee, M; Neumayr, J B; Plass, W R; Quint, W; Rahaman, S; Rodríguez, D; Scheidenberger, C; Schweikhard, L; Thirolf, P G; Vorobjev, G; Weber, C; Di, Z

    2007-01-01

    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about $7\\cdot 10^{-8}$, nine of them for the first time. Four nuclides ($^{144, 145}$Ho and $^{147, 148}$Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies.

  6. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    Science.gov (United States)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  7. The axion shield

    CERN Document Server

    Andrianov, A A; Mescia, F; Renau, A

    2010-01-01

    We investigate the propagation of a charged particle in a spatially constant, but time dependent, pseudoscalar background. Physically this pseudoscalar background could be provided by a relic axion density. The background leads to an explicit breaking of Lorentz invariance; as a consequence the process p-> p gamma is possible and the background acts as a shield against extremely energetic cosmic rays, an effect somewhat similar to the GZK cut-off effect. The effect is model independent and can be computed exactly. The hypothetical detection of the photons radiated via this mechanism would provide an indirect way of verifying the cosmological relevance of axions.

  8. Watching a disappearing shield

    Science.gov (United States)

    Stolarski, Richard S.

    1988-10-01

    The remote-sensing techniques used to monitor atmospheric ozone levels are reviewed, and recent results are discussed. The importance of the ozone layer as a shield for UV radiation is stressed, and the impact of human activities generating ozone-destroying compounds is considered. Ground-based, airborne, balloon-borne, and satellite remote-sensing methods are shown to complement each other to provide both global coverage and detailed structural information. Data obtained with the Nimbus-7 TOMS and solar-backscatter UV instruments are presented in graphs and briefly characterized.

  9. Low cost drip irrigation in Burkina Faso : unravelling actors, networks and practices

    NARCIS (Netherlands)

    Wanvoeke, M.J.V.

    2015-01-01

    Title: Low cost drip irrigation in Burkina Faso: Unravelling Actors, Networks and Practices In Burkina Faso, there is a lot of enthusiasm about Low Cost Drip Irrigation (LCDI) as a tool to irrigate vegetables, and thus improve food security, solve wat

  10. Bricolage as innovation: opening the black box of Drip Irrigation Systems

    NARCIS (Netherlands)

    Benouniche, M.; Zwarteveen, M.Z.; Kuper, M.

    2014-01-01

    In Morocco, many farmers enthusiastically use drip irrigation. However, few drip irrigation systems conform to engineering standards. In a process they refer to as bricolage, farmers modify and adapt standard designs, thus creating their own technical standards. We document three instances of bricol

  11. Bricolage as innovation: opening the black box of drip irrigation systems

    NARCIS (Netherlands)

    Benouniche, M.; Zwarteveen, M.; Kuper, M.

    2014-01-01

    In Morocco, many farmers enthusiastically use drip irrigation. However, few drip irrigation systems conform to engineering standards. In a process they refer to as bricolage, farmers modify and adapt standard designs, thus creating their own technical standards. We document three instances of bricol

  12. Farmers’ Logics in Engaging With Projects Promoting Drip Irrigation Kits in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, Jonas; Venot, Jean Philippe; Zwarteveen, Margreet; Fraiture, de Charlotte

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not

  13. Bricolage as innovation: opening the black box of Drip Irrigation Systems

    NARCIS (Netherlands)

    Benouniche, M.; Zwarteveen, M.Z.; Kuper, M.

    2014-01-01

    In Morocco, many farmers enthusiastically use drip irrigation. However, few drip irrigation systems conform to engineering standards. In a process they refer to as bricolage, farmers modify and adapt standard designs, thus creating their own technical standards. We document three instances of

  14. Hydrogeochemical processes as environmental indicators in drip water: Study of the Cueva del Agua (Southern Spain

    Directory of Open Access Journals (Sweden)

    Francisco Sanchez-Martos

    2008-01-01

    Full Text Available Karst caves exhibit a wide range of hydrological and hydrochemical responses to infiltration events, due to their physical heterogeneity space and dynamic variability over time, and due to non-Gaussian inputs (rain and outputs (discharge. This paper reviews different approaches of studying seepage water in caves, in order to understand the infiltration regimen in the non-saturated zone of karst areas. As an illustration, we describe a four-year study of the active carbonate-water system the Cueva del Agua (Granada, southern Spain that automatically logs the discharge from a stalactite. The results indicate that: (1 the drip water regime is not seasonal, but is linked instead to slow infiltration. Sudden changes in drip water regime occur due to infiltration along preferential flow paths and the draining of water of supersaturated water from reserves in the microfissure and pore system; (2 the drip rate is not linear over time. When dripping is constant, barometric oscillation of the air is the principal factor causing a chaotic a drip flow regime. Over a short period of two to three days, a mean variation in air pressure inside the cave of 10 (±3.7 mbar causes a oscillation the drip rate of 0.5 (±0.2 mm/h. The increase air translates into an the relative thickness of the gaseous phase of the drip water at the cost of the aqueous phase, so leading to a reduction the drip rate from the stalactite.

  15. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  16. The effect of vitamin E supplementation on drip loss of bovine longissimus lumborum, psoas major and semitendinosus muscles

    NARCIS (Netherlands)

    den Hertog-Meischke, M.J.; Smulders, F.J.M.; Houben, J.H.; Eikelenboom, G.

    1997-01-01

    The effect of dietary vitamin E supplementation (2150 1U/head/day) on drip loss and related quality traits of bovine M. longissimus lumborum, M. psoas major and M. semitendinosus was examined. The effect of vitamin E supplementation on drip loss seemed to depend on muscle studied. Drip loss of longi

  17. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  18. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  19. Radiation Shielding Optimization on Mars

    Science.gov (United States)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  20. Corrosion inhibitors; Los inhibidores de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, L. A.; Meas, Y.; Ortega-Borges, R.; Corona, A.

    2003-07-01

    In this paper, we briefly describe the characteristics, cost and electrochemical nature of the corrosion phenomena as well as some of the technologies that are currently employed to minimize its effect. The main subject of the paper however, deals with the description, classification and mechanism of protection of the so-called corrosion inhibitors. Examples of the use of these substances in different aggressive environments are also presented as means to show that these compounds, or their combination, can in fact be used as excellent and relatively cheap technologies to control the corrosion of some metals. In the last part of the paper, the most commonly used techniques to evaluate the efficiency and performance of corrosion inhibitors are presented as well as some criteria to make a careful and proper selection of a corrosion inhibitor technology in a given situation. (Author) 151 refs.

  1. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  2. Hundreds of automatic drip counters reveal infiltration water discharge characteristics in Australian caves

    Science.gov (United States)

    Baker, A.; Treble, P. C.; Coleborn, K.; Mahmud, K.; Markowska, M.; Flemons, I.

    2015-12-01

    Quantifying the timing and character of cave drip water discharge is crucial for our understanding of speleothem climate proxies. Since 2010, we have established a long-term, national monitoring program of drip water infiltration onto cave stalagmites using automated Stalagmate© loggers. Five karst regions, from semi-arid to sub-tropical climates, have been instrumented. Over 200 loggers (between 10 and 40 per cave) have collected data on the timing and amount of drip water infiltration, from sites of contrasting limestone geology. Here, we present results demonstrating the timing and characteristics of drip water discharge from 2010 to present. At the semi-arid Cathedral Cave, with a range of depths from 0-40 m, there is a decreasing frequency of recharge events with depth below ground surface. High-intensity, long-duration rainfall events are confirmed to be the primary driver of infiltration events at semi-arid sites, whereas annual rainfall amount is the primary driver at a Mediterranean climate site with high primary porosity. Inter-annual variability in the frequency and relative amount of drip water infiltration is compared to climate forcing variables such as the ENSO and surface temperature. Our cave observatory system helps improve our understanding of the drip water recharge process, drip-water related speleothem proxy records, and provides a baseline monitoring network for diffuse groundwater recharge during a period of climate change.

  3. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  4. Clustering and correlations at the neutron drip-line

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A.; Marques, F.M

    2003-03-01

    Some recent experimental studies of clustering and correlations within very neutron-rich light nuclei are reviewed. In particular, the development of the novel probes of neutron-neutron interferometry and Dalitz-plot analyses is presented through the example of the dissociation of the two-neutron halo system {sup 14}Be. The utility of high-energy proton radiative capture is illustrated using a study of the {sup 6}He(p,{gamma}) reaction. A new approach to the production and detection of bound neutron clusters is also described, and the observation of events with the characteristics expected for tetraneutrons ({sup 4}n) liberated in the breakup of {sup 14}Be is discussed. The prospects for future work, including systems beyond the neutron drip-line, are briefly outlined. (authors)

  5. Exotic decay of hot rotating nuclei near proton drip line

    Science.gov (United States)

    Ray, J.; Datta Pramanik, U.; Bhowmik, R. K.; Ray, I.; Rahaman, A.; Chakraborty, A.; Chakraborty, S.; Garg, R.; Goyal, S.; Ganguly, S.; Kumar, S.; Mandal, S.; Mukherjee, B.; Mukherjee, P.; Muralithar, S.; Negi, D.; Saxena, M.; Selvakumar, K.; Singh, P.; Singh, A. K.; Singh, R. P.

    2014-03-01

    Hot and rotating exotic 124Ce nucleus near proton drip line has been populated through fusion evaporation reaction of 32S and 92Mo. This exotic nucleus was de-excited by evaporating p, n, α and/or light nuclei etc and several exotic nuclei have been populated. The experimentally obtained relative population of those exotic nuclei have been compared with the statistical model calculation. Agreement between experimental and statistical model calculation have been observed for most of the evaporation channels. Huge enhancement in comparison to statistical model calculation have been observed fora few channels related to multiple proton evaporation which could not be explained by using default and modified input parameters in statistical calculation.

  6. Effect of Long-term Drip Fertigation on Root Growth of Lychee and Soil pH

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Through field experiment,we explore the impact of long-term drip fertigation on growth and distribution of lychee root and changes of soil pH in different layers of soil in lychee garden.The results show that drip fertigation can significantly promote the growth of lychee roots,and increase the contact area of root and soil;if it experiences six years of drip fertigation successively,the dry weight of root,root length and surface area of root in soil in drip fertigation area,will be 2.29 times,2.17 times and 2.25 times that in non-drip fertigation area,respectively.The lychee root is mainly distributed in 0-40 cm layer of soil,but there is conspicuous difference between drip fertigation area and non-drip fertigation area in terms of root distribution in 0-20 cm and 20-40 cm layer of soil.Drip fertigation is more favorable for the root to go deep inside the soil.Under long-term drip fertigation,the soil acidification in lychee garden is prominent,and in comparison with non-drip fertigation area,there is the greatest decline in soil pH in 10-20 cm layer of soil in drip fertigation area,reaching 1.47 units.

  7. β-delayed proton decays near the proton drip line

    Institute of Scientific and Technical Information of China (English)

    XU; Shuwei; LI; Zhankui; XIE; Yuanxiang; HUANG; Wenxue; SH

    2005-01-01

    We briefly reviewed the experimental study on β-delayed proton decays near the proton drip line published by our group during the period of 1996―2004, namely the first observation of the β-delayed proton decays of 9 new nuclides in the rare-earth region and the new measurements of β-delayed proton decays of 5 nuclides in the mass (90 region near the N = Z line with the aid of the "p-γ" coincidence in combination with a He-jet tape transport system. In the meantime some important experimental technique details were supplemented. The experimental results, including the half-lives, spins, parities, deformations and production reaction cross sections for the 14 nuclei were summarized and compared with the current nuclear-model predictions, and then the following points were represented. (1) The experimental half-lives for 85Mo and 92Rh as well as the predicted "waiting point" nuclei 89Ru and 93Pd are 5―10 times longer than the theoretical predictions given by M(o)ller et al. using a macroscopic-microscopic model. It considerably influences the predictions of the abundances of the nuclides produced in the rp-process. (2) The current-model predictions are not consistent with the experimental assignments of the spins and parities for the proton drip-line nuclei 142Ho and 128Pm. However, the nuclear potential energy surface (PES) calculated by using a Woods- Saxon-Strutinsky method reproduced the experimental results. (3) The Alice code overestimated the production reaction cross sections of the studied 9 rare-earth nuclei by one order of magnitude or two, while HIVAP code overestimated them by one order of magnitude approximately.

  8. Symmetry energy effects on properties of neutron star crusts around the neutron drip density

    CERN Document Server

    Bao, S S; Zhang, Z W; Shen, H

    2014-01-01

    We study the effects of the symmetry energy on the neutron drip density and properties of nuclei in neutron star crusts. The nonuniform matter around the neutron drip point is calculated using the Thomas--Fermi approximation with the relativistic mean-field model. The neutron drip density and the composition of the crust are found to be correlated with the symmetry energy and its slope. We compare the self-consistent Thomas--Fermi approximation with other treatments of surface and Coulomb energies, and find that these finite-size effects play an essential role in determining the equilibrium state at low density.

  9. New Materials for EMI Shielding

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  10. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  11. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  12. Hybrid Shielding for Magnetic Fields

    Science.gov (United States)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  13. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  14. Structural/Radiation-Shielding Epoxies

    Science.gov (United States)

    Connell, John W.; Smith, Joseph G.; Hinkley, Jeffrey; Blattnig, Steve; Delozier, Donavon M.; Watson, Kent A.; Ghose, Sayata

    2009-01-01

    A development effort was directed toward formulating epoxy resins that are useful both as structural materials and as shielding against heavy-ion radiation. Hydrogen is recognized as the best element for absorbing heavy-ion radiation, and high-hydrogen-content polymers are now in use as shielding materials. However, high-hydrogen-content polymers (e.g. polyethylene) are typically not good structural materials. In contrast, aromatic polymers, which contain smaller amounts of hydrogen, often have the strength necessary for structural materials. Accordingly, the present development effort is based on the concept that an ideal structural/ heavy-ion-radiation-shielding material would be a polymer that contains sufficient hydrogen (e.g., in the form of aliphatic molecular groups) for radiation shielding and has sufficient aromatic content for structural integrity.

  15. Thermal neutron shield and method of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  16. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared

  17. Use of a furosemide drip does not improve earlier primary fascial closure in the open abdomen

    National Research Council Canada - National Science Library

    Webb, Leland H; Patel, Mayur B; Dortch, Marcus J; Miller, Richard S; Gunter, Oliver L; Collier, Bryan R

    2012-01-01

    The furosemide drip (FD), in addition to improving volume overload respiratory failure, has been used to decrease fluid in attempts to decrease intra-abdominal and abdominal wall volumes to facilitate fascial closure...

  18. Charge Effects and Nanoparticle Pattern Formation in Electrohydrodynamic NanoDrip Printing of Colloids

    CERN Document Server

    Richner, Patrizia; Norris, David J; Poulikakos, Dimos

    2016-01-01

    Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics, to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O(1 {\\mu}m) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and out-of-plane structures of similar sizes. Despite demonstrated capabilities, our fundamental understanding of important aspects of the physics of NanoDrip printing needs further improvement. Here we address the topics of charge content and transport in NanoDrip printing. We employ quantum dot and gold nanoparticle dispersions in combination with a specially designed, auxiliary, asymmetric electric field, targeting the understanding of charge locality (particles vs. solvent) and particle distribution in the deposits as indicated by ...

  19. Technological quality and yield of sugarcane grown under nitrogen doses via subsurface drip fertigation

    Directory of Open Access Journals (Sweden)

    Andressa F. L. Rhein

    2016-03-01

    Full Text Available ABSTRACT This study characterized the technological quality and yield of sugarcane cv. SP80-3280 under nitrogen doses via subsurface drip fertigation. Five treatments were established using N-fertilizer in the form of urea (0, 50, 100, 150 and 200 kg N ha-1, with four replicates, applied via subsurface drip fertigation. The technological quality (fiber% cane; Brix% juice; pol% juice, pol% cane; juice purity and total recoverable sugar - TRS, as well as yield of stalks and sugar were determined 381 days after the third harvest. The technological variables Brix%, pol% juice, purity% and TRS of sugarcane, cultivar SP80-3280, were altered by the application of nitrogen doses via subsurface drip fertigation, with significant reductions at the dose of 200 kg N ha-1. Stalk and sugar yields increased linearly with the increment in nitrogen doses applied through subsurface drip fertigation.

  20. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  1. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  2. Shielding requirements in helical tomotherapy

    Science.gov (United States)

    Baechler, S.; Bochud, F. O.; Verellen, D.; Moeckli, R.

    2007-08-01

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  3. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    Science.gov (United States)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the

  4. Electrochemical corrosion studies

    Science.gov (United States)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  5. Erosion-corrosion; Erosionkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Aghili, B

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment 32 refs, 16 figs, tabs

  6. What determines the calcium concentration of speleothem-forming drip waters?

    Science.gov (United States)

    Baker, Andy; Flemons, Ingrid; Andersen, Martin S.; Coleborn, Katie; Treble, Pauline C.

    2016-08-01

    Cave drip water calcium ion concentration is a primary determinant of speleothem deposition and growth rate. The factors that determine drip water calcium ion concentrations are the soil and vadose zone CO2 concentrations, and the hydrogeochemical evolution of the water from soil to cave. Here, we use a systematic literature review of cave drip water calcium concentrations, combined with PHREEQC equilibrium modelling, to investigate the global relationship between calcium concentration and surface climate. Our results are discussed in the context of understanding the climatic and environmental controls on drip water calcium concentration, speleothem growth rates and proxies of past climate and environmental change. We use an empirical, global soil CO2 concentration-temperature relationship to derive PHREEQC modelled cave drip water calcium concentrations. The global mean modelled drip water calcium concentration is close to that observed, but it over-predicts at high and low temperatures, and significantly under-predicts at temperate conditions. We hypothesise that closed system hydrochemical evolution due to water saturation is an important control on carbonate dissolution at colder temperatures. Under warmer conditions, for example temperate climates with a dry and hot or warm summer, seasonally-limited water availability can lead to: microbial and root respiration; wildfire; and prior calcite precipitation, all of which limit drip water calcium concentrations. In temperate climates with no dry season, higher CO2 concentrations than modelled from soil values are necessary to explain the observed drip water calcium values, which we propose is from an additional source of CO2 from microbial activity and root respiration in the vadose zone during open system hydrochemical evolution.

  7. Drip irrigation: Will it increase yield in traditional vegetable production system?

    OpenAIRE

    Anas D Susila; T. Prasetyo

    2008-01-01

    In the rain-fed production system area, vegetables normally can be grown on wet season (>200 mm/month) between December - April. During dry season ( Drip irrigation systems have the highest potential water application efficiency of the irrigation system used in commercial vegetables production. Field studies have shown a significant decrease in irrigation requirements of tomatoes with the use of drip irrigation system and compared to sub-irrigation system. Marketable yield, fruit size, and fr...

  8. Subsurface drip irrigation in different planting spacing of sugarcane

    Science.gov (United States)

    Pires, R. C. M.; Barbosa, E. A. A.; Arruda, F. B.; Silva, T. J. A.; Sakai, E.; Landell, M. G. A.

    2012-04-01

    The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficits conditions. The SDI provides better water use efficiency, due to the water and nutrients application in root zone plants. However, it is important to investigate the long-term effect of irrigation in the yield and technological quality in different ecological condition cultivation. Thus, the aim of this work was to evaluate the effect of SDI in sugarcane cultivated in different planting spacings on technological quality, yield and theoretical recoverable sugar during four cycles of sugarcane cultivation. The experiment was carried out at Colorado Mill, Guaíra, São Paulo State in Brazil, in a clay soil. The experiment was installed in randomized blocks, with six replications. The treatments were three different planting spacings (S1 - 1.5 m between rows; S2 - 1.8 m between rows and S3 - planting in double line of 0.5 m x 1.3 m between planting rows) which were subdivided in irrigated and non-irrigated plots. In S1 and S2 treatments were installed one drip line in each plant row and in treatment S3 one drip line was installed between the rows with smaller spacing (0.5 m). The RB855536 genotype was used and the planting date occurred in May, 25th 2005. The analyzed parameters were: percentage of soluble solids (brix), percent apparent sucrose juice (Pol), total recoverable sugar (ATR), yield and theoretically recoverable sugar (RTR). Four years of yield (plant cane and first, second and third ratoon) were analyzed. Data were submitted to variance analysis and the averages compared by Duncan test at 5% probability. Two months before the first harvest a yield estimate was realized. According to the observed results the irrigated plants provided increase of about 20 % compared to non irrigated plants. However there was a great tipping of plants specially in irrigated plots. The

  9. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  10. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  11. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    Science.gov (United States)

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De

    2011-01-01

    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site.

  12. Influence of Flame Retardants on the Melt Dripping Behaviour of Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Melissa Matzen

    2015-08-01

    Full Text Available Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate (PBT, polypropylene (PP, polypropylene modified with ethylene-propylene rubber (PP-EP and polyamide 6 (PA 6, is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC, thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed.

  13. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D. (Sedco Forex, Montrouge (France)); Edwards, R. (Schlumberger Well Services, Columbus, OH (United States)); Hayman, A. (Etudes et Productions Schlumberger, Clamart (France)); Hill, D. (Schlumberger Dowell, Tulsa, OK (United States)); Mehta, S. (Schlumberger Dowell, St. Austell (United Kingdom)); Semerad, T. (Mobil Oil Indonesia, Inc., Sumatra (Indonesia))

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  14. Response of broccoli to soil water tension under drip irrigation

    Directory of Open Access Journals (Sweden)

    Bartolomeu Felix Tangune

    2016-02-01

    Full Text Available We evaluated the effect of different soil water tensions on the production of broccoli cultivated in a protected environment under drip irrigation in order to establish criteria for the adequate management of irrigation. A completely randomized block design was used, comprising six treatments and four replicates. The treatments included six soil water tensions (15, 30, 45, 60, 75 and 90 kPa. Soil water tension was monitored with granular matrix sensors installed at depths of 0.2 m (decision sensors and 0.4 m (seepage control sensors. Total and marketable fresh weight of broccoli heads, average diameter of marketable heads, height of marketable heads, and total and marketable yield were greatest when the soil water tension at a depth of 0.2 m was 15 kPa, at which the mean values of the evaluated variables were 0.84 kg, 0.76 kg, 20.5 cm, 11.7 cm; 26.5 t ha?1, and 23.7 t ha?1, respectively. Treatments did not significantly affect efficiency of water use or height of marketable heads.

  15. Spectroscopy of $^{28}$Na: shell evolution toward the drip line

    CERN Document Server

    Lepailleur, A; Mutschler, A; Sorlin, O; Bader, V; Bancroft, C; Barofsky, D; Bastin, B; Baugher, T; Bazin, D; Bildstein, V; Borcea, C; Borcea, R; Brown, B A; Caceres, L; Gade, A; Gaudefroy, L; Grévy, S; Grinyer, G F; Iwasaki, H; Khan, E; Kröll, T; Langer, C; Lemasson, A; Llidoo, O; Lloyd, J; Negoita, F; Santos, F de Oliveira; Perdikakis, G; Recchia, F; Redpath, T; Roger, T; Rotaru, F; Saenz, S; Saint-Laurent, M -G; Smalley, D; Sohler, D; Stanoiu, M; Stroberg, S R; Thomas, J C; Vandebrouck, M; Weisshaar, D; Westerberg, A

    2015-01-01

    Excited states in $^{28}$Na have been studied using the $\\beta$-decay of implanted $^{28}$Ne ions at GANIL/LISE as well as the in-beam $\\gamma$-ray spectroscopy at the NSCL/S800 facility. New states of positive (J$^{\\pi}$=3,4$^+$) and negative (J$^{\\pi}$=1-5$^-$) parity are proposed. The former arise from the coupling between 0d$\\_{5/2}$ protons and a 0d$\\_{3/2}$ neutron, while the latter are due to couplings with 1p$\\_{3/2}$ or 0f$\\_{7/2}$ neutrons. While the relative energies between the J$^{\\pi}$=1-4$^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between $^{26}$F and $^{30}$Al. This points to a possible change in the proton-neutron 0d$\\_{5/2}$-0d$\\_{3/2}$ effective interaction when moving from stability to the drip line. The presence of J$^{\\pi}$=1-4$^-$ negative parity states around 1.5 MeV as well as of a candidate for a J$^{\\pi}$=5$^-$ state around 2.5 MeV give further support to the col...

  16. $\\beta$-delayed proton decays near the proton drip line

    CERN Document Server

    Xu, S W; Huang, W X; Li, Z K; Pan Qiang Yan; Shu, N C; Wang, K; Wang, X D; Xie, Y X; Xing, Y B; Xu, F R; Yu, Y; 10.1103/PhysRevC.71.054318

    2005-01-01

    We briefly reviewed and summarized the experimental study on beta - delayed proton decays published by our group over the last 8 years, namely the experimental observation of beta -delayed proton decays of nine new nuclides in the rare-earth region near the proton drip line and five nuclides in the mass 90 region with N approximately=Z by utilizing the p- gamma coincidence technique in combination with a He-jet tape transport system. In addition, important technical details of the experiments were provided. The experimental results were compared to the theoretical predictions of some nuclear models, resulting in the following conclusions. (1) The experimental half- lives for /sup 85/Mo, /sup 92/Rh, as well as the predicted "waiting point" nuclei /sup 89/Ru and /sup 93/Pd were 5-10 times longer than the macroscopic-microscopic model predictions of Moller et al. At. Data Nucl. Data Tables 66,131(1997). These data considerably influenced the predictions of the mass abundances of the nuclides produced in the rp p...

  17. Impact dynamics of porcine drip bloodstains on fabrics.

    Science.gov (United States)

    Williams, Elisabeth M P; Dodds, Margaret; Taylor, Michael C; Li, Jingyao; Michielsen, Stephen

    2016-05-01

    As a passive blood drop impacts a hard surface, it is observed to collapse and spread laterally, then retract and settle. During the spreading phase, the edge of the drop may rise forming a crown extending into spines and breaking up into secondary drops. When a similar drop falls onto a textile surface these same processes may occur, but the process of blood wicking into the fabric complicates stain formation. These processes are described within for passive drip stains collected under controlled conditions using anticoagulated porcine blood. Three stages of this impact process were identified and could be separated into distinct time zones: (1) spreading (time t≤2.5ms) and (2) retraction (2.5≤t≤12ms) on the surface with potential splashing at the periphery, and (3) wicking (30ms ≤t≤30min) of the blood into the fabric. Although wetting and wicking may also occur for tplain-woven>cardboard. Conversely, the size of the satellite stains correlates with the amount of wicking in the fabric with the satellite stain size for plain-woven>jersey knit>cardboard.

  18. ENSO-cave drip water hydrochemical relationship: a 7-year dataset from south-eastern Australia

    Science.gov (United States)

    Tadros, Carol V.; Treble, Pauline C.; Baker, Andy; Fairchild, Ian; Hankin, Stuart; Roach, Regina; Markowska, Monika; McDonald, Janece

    2016-11-01

    Speleothems (cave deposits), used for palaeoenvironmental reconstructions, are deposited from cave drip water. Differentiating climate and karst processes within a drip-water signal is fundamental for the correct identification of palaeoenvironmental proxies and ultimately their interpretation within speleothem records. We investigate the potential use of trace element and stable oxygen-isotope (δ18O) variations in cave drip water as palaeorainfall proxies in an Australian alpine karst site. This paper presents the first extensive hydrochemical and δ18O dataset from Harrie Wood Cave, in the Snowy Mountains, south-eastern (SE) Australia. Using a 7-year long rainfall δ18O and drip-water Ca, Cl, Mg / Ca, Sr / Ca and δ18O datasets from three drip sites, we determined that the processes of mixing, dilution, flow path change, carbonate mineral dissolution and prior calcite precipitation (PCP) accounted for the observed variations in the drip-water geochemical composition. We identify that the three monitored drip sites are fed by fracture flow from a well-mixed epikarst storage reservoir, supplied by variable concentrations of dissolved ions from soil and bedrock dissolution. We constrained the influence of multiple processes and controls on drip-water composition in a region dominated by El Niño-Southern Oscillation (ENSO). During the El Niño and dry periods, enhanced PCP, a flow path change and dissolution due to increased soil CO2 production occurred in response to warmer than average temperatures in contrast to the La Niña phase, where dilution dominated and reduced PCP were observed. We present a conceptual model, illustrating the key processes impacting the drip-water chemistry. We identified a robust relationship between ENSO and drip-water trace element concentrations and propose that variations in speleothem Mg / Ca and Sr / Ca ratios may be interpreted to reflect palaeorainfall conditions. These findings inform palaeorainfall reconstruction from

  19. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system co...

  20. Corrosion evaluation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of {+-} 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs.

  1. Avionics Corrosion Control Study

    Science.gov (United States)

    1974-01-01

    found at seacoast (harsn) environnents is the most destructive. Differences in electrolte concentration and oxygen concentration promote corrosion...against corrosion by acting as moisture and gas barriers. CMCVIT B0.4ID *COATINGS Polyurethane’s, cprxies, silicones, and polystyrenes are the most

  2. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  3. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  4. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...... with sensitive electrical resistance technique and crevice corrosion current measurements....

  5. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    OpenAIRE

    Xuming Zhang; Guosong Wu; Xiang Peng; Limin Li; Hongqing Feng; Biao Gao; Kaifu Huo; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface c...

  6. Corrosion Failures in Marine Environment

    Directory of Open Access Journals (Sweden)

    R. Krishnan

    1985-04-01

    Full Text Available This paper gives a brief description of typical marine environments and the most common form of corrosion of materials used in this environment. Some typical case histories of failures pertaining to pitting, bimetallic corrosion, dealloying, cavitation and stress corrosion cracking are illustrated as typical examples of corrosion failures.

  7. Corrosion Inhibitors for Reinforced Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Steel corrosion in reinforced concrete structures has been a major problem across the U.S. Steel-reinforced concrete structures are continually subject to attack by corrosion brought on by naturally occurring environmental conditions. FerroGard, a corrosion inhibitor, developed by Sika Corporation, penetrates hardened concrete to dramatically reduce corrosion by 65% and extend the structure's service life.

  8. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  9. The Corrosion and Preservation of Iron Antiques.

    Science.gov (United States)

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  10. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  11. Investigation of factors influencing the efficacy of electromagnetic shielding in X band frequency range

    Directory of Open Access Journals (Sweden)

    Vida Zaroushani

    2016-12-01

    Full Text Available Introduction: Due to the importance of engineering controls for prevention of microwave exposure, this study was conducted to design and constract a novel electromagnetic shielding and also to examine the factors influencing shielding efficacy in X band frequency range. Material and Method: This study used Resin Epoxy as matrix and nano-Nickel Oxide as filler to prepare the composite plates with three different thicknesses (2,4, and 6 mm and four different weight percentages (5,7,9 and 11. The fabricated composites characterized using X-ray diffraction and Field Emission Scanning Electron microscopy. Shielding effectiveness, percolation depth, and percolation threshold were measured using Vector Network Analyzers. Thermal Gravimetric Analysis was conducted to study the temperature influence on weight loss for fabricated composites. Result: A maximum shielding effectiveness value of 84.18% was obtained for the 11%-6mm composite at 8.01 GHz and the 7%-4mm composite exhibits a higher average of shielding effectiveness of 66.72% at X- band frequency range. The 4mm thickness was optimum and critical diameter for composite plates; and percolation depth was obtained greater than thickness of composites. However, increasing the nickel oxide content did not show noticeable effect on the shielding effectiveness. Thermal Gravimetric Analysis showed that the study shields were resistant to temperature up to 150 °C without experiencing weight loss. What is more, the results indicated that Nickel oxide Nano particles had desirable distribution and dispersion in epoxy matrix and percolation threshold was appeared in low content of nickel oxide nanoparticles. Conclusion: A novel electromagnetic shield using low thickness and few content of nanoparticle with noticeable efficacy was properly designed and constructed in the field of occupational health. In addition, this shield has low cost, easy to manufacture, resistance to wet/corrosion, and low weight. Epoxy

  12. The effects of non-vacuum packaging systems on drip loss from chilled beef.

    Science.gov (United States)

    Payne, S R; Durham, C J; Scott, S M; Devine, C E

    1998-07-01

    This study investigated drip loss in chilled beef (hot-boned m. longissimus lumborum (LL)) under conventional packaging systems, in which a vacuum is applied, and non-vacuum packaging systems. The use of vacuum during the packaging process (vacuum packaging, CO(2) atmosphere packaging) was associated with increased drip. Drip was lower in heat-shrunk vacuum packaging than in non-shrunk vacuum packaging. A slow vacuum onset had no effect on drip formation, or may have increased it. The extent of pressure reduction (vacuum; range 0-1 atm) did not significantly affect drip formation, although the standard vacuum pressure (0 atm) tended to cause more drip loss than higher pressures. The three non-vacuum anaerobic packaging systems tested were: flushed with carbon dioxide without the pressure being reduced below atmospheric (Flush), or the same system with no CO(2) flush but a proprietary oxygen absorber added (Scavenger), or a combination of both (Flush/Scavenger). Storage was at -1.5 °C for up to 20 weeks. The Flush and Flush/Scavenger systems had considerably lower drip loss than the CAP standard system (6.4%, 6.5%, and 9.1% respectively); the Scavenger system had the lowest drip loss (5.2%). Drip losses generally increased with storage period, irrespective of packaging system. All non-vacuum packaging systems except the Flush system had very low oxygen levels (<0.l% v v ). The Flush system had considerably higher levels of oxygen (0.9%) with associated browning of meat samples. All packaging systems gave a hygienic shelf-life of at least 16 weeks. At 16 weeks, microbial numbers were highest (5 × 10(6)) in the Scavenger system. The meat from all packaging systems was acceptable to taste panels even after 16 weeks of storage at -1.5 °C. There were no significant differences between any of the packaging systems for any of the sensory attributes tested. The packaging systems with the best all round performance were the Flush/Scavenger and the Scavenger systems

  13. Mechanisms of Subsurface Drip Irrigation-Mediated Suppression of Lettuce Drop Caused by Sclerotinia minor.

    Science.gov (United States)

    Bell, A A; Liu, L; Reidy, B; Davis, R M; Subbarao, K V

    1998-03-01

    ABSTRACT Subsurface drip irrigation and associated mandatory minimum tillage practices significantly reduced the incidence of lettuce drop (Sclerotinia minor) and the severity of corky root on lettuce compared with furrow irrigation and conventional tillage. Three possible mechanisms for the drip irrigation-mediated disease suppression were examined in this study: qualitative and quantitative differences in the soil microflora under furrow and subsurface drip irrigation; their antagonism and potential bio-control effects on S. minor; and the physical distribution of soil moisture and temperature relative to the two irrigation methods. To determine if the suppressive effects under subsurface drip irrigation were related to changes in soil microflora, soils were assayed for actinomycetes, bacteria, and fungi during the spring and fall seasons. The effects of the irrigation methods on microbial populations were nearly identical during both seasons. In the spring season, the total number of fungal colonies recovered on potato dextrose agar amended with rose Bengal generally was greater in soils under drip irrigation than under furrow irrigation, but no such differences were observed during the fall. Numbers of actinomycetes and bacteria were not significantly different between irrigation methods during either season. No interaction between sampling time and irrigation methods was observed for any of the microbial populations during both seasons. Thus, the significant effect of sampling time observed for actinomycete and bacterial populations during the spring was most likely not caused by the irrigation treatments. There were also no qualitative differences in the three groups of soil microflora between the irrigation treatments. Even though some fungal, actinomycete, and bacterial isolates suppressed mycelial growth of S. minor in in vitro assays, the isolates came from both subsurface drip- and furrow-irrigated soils. In in planta assays, selected isolates failed to

  14. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    Science.gov (United States)

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors.

  15. Corrosion control in mining technology

    Energy Technology Data Exchange (ETDEWEB)

    Telekesi, J.

    1985-01-01

    An overview of corrosion effects in mining technology and the importance of protection is presented. The most common corrosion processes and effects are summarized and the system and criteria of their avoidance are discussed in detail. Preventive measures are recommended to decrease possible corrosion effects including the selection of corrosion-resistive constructions, to use protective coatings and inhibition techniques and some other protection possibilities where applicable. The organization aspects and the economic impact of corrosion control in mining are discussed.

  16. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  17. Reliability-Based Electronics Shielding Design Tools

    Science.gov (United States)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  18. A Novel Radiation Shielding Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding simulations showed that epoxy loaded with 10-70% polyethylene would be an excellent shielding material against GCRs and SEPs. Milling produced an...

  19. Material Effectiveness for Radiation Shielding

    Science.gov (United States)

    2003-01-01

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  20. [Effects of different drip irrigation modes on root distribution of wine grape 'Cabernet Sauvignon' in desert area of Northwest China].

    Science.gov (United States)

    Mao, Juan; Chen, Bai-Hong; Cao, Jian-Dong; Wang, Li-Jun; Wang, Hai; Wang, Yan-Xiu

    2013-11-01

    To study the effects of different drip irrigation modes on the wine grape root distribution is the basis of formulating fertilization, irrigation, and over-wintering management practices for wine grape. Taking the wine grape "Cabernet Sauvignon" as test material, this paper studied the effects of different water-saving irrigation modes (drip irrigation under straw mulching, drip irrigation under plastic mulching, double-tube drip irrigation, and single-tube drip irrigation) on the root distribution of wine grape in the desert area of Northwest China, with the conventional furrow irrigation as the control. The root system of the "Cabernet Sauvignon" was distributed from 0 to 70 cm vertically, and from 0 to 120 cm horizontally. With double-tube drip irrigation, the root amount was the largest (138.3 roots per unit profile), but the root vertical distribution scope was narrowed by 20 cm, as compared to the control. Drip irrigation with straw mulching increased the root amount significantly, and increased the root horizontal distribution scope by 9.1%, as compared to the control. No significant difference was observed in the root number and root horizontal distribution scope between the drip irrigation under plastic mulching and the control, but the root vertical distribution scope with the drip irrigation under plastic mulching decreased by 20 cm. Single-tube drip irrigation increased the root number significantly, but had lesser effects on the root vertical or horizontal distribution, as compared to the conventional irrigation. It was suggested that the drip irrigation under straw mulching could be the best water-saving practice for the wine grape "Cabernet Sauvignon" in the study area.

  1. Design of Light Multi-layered Shields for Use in Diagnostic Radiology and Nuclear Medicine via MCNP5 Monte Carlo Code

    OpenAIRE

    Mehdi Zehtabian; Elham Piruzan; Zahra Molaiemanesh; Sedigheh Sina

    2015-01-01

    Introduction Lead-based shields are the most widely used attenuators in X-ray and gamma ray fields. The heavy weight, toxicity and corrosion of lead have led researchers towards the development of non-lead shields. Materials and Methods The purpose of this study was to design multi-layered shields for protection against X-rays and gamma rays in diagnostic radiology and nuclear medicine. In this study, cubic slabs composed of several materials with high atomic numbers, i.e., lead, barium, bism...

  2. Predictions for Radiation Shielding Materials

    Science.gov (United States)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually

  3. WAVS radiation shielding references and assumptions

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-07

    At ITER, the confluence of a high radiation environment and the requirement for high performance imaging for plasma and plasma-facing surface diagnosis will necessitate extensive application of radiation shielding. Recommended here is a dual-layer shield design composed of lead for gamma attenuation, surrounded by a fire-resistant polyehtylene doped with a thermal neutron absorber for neutron shielding.

  4. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  5. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  6. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation.

    Science.gov (United States)

    Subbarao, K V; Hubbard, J C; Schulbach, K F

    1997-08-01

    ABSTRACT Subsurface drip and furrow irrigation were compared on lettuce (Lactuca sativa) cvs. Salinas and Misty Day for yield and incidence and severity of three important diseases of lettuce in the Salinas Valley, CA. Experiments were conducted between 1993 and 1995 during the spring and fall seasons. The diseases examined included lettuce drop (Sclerotinia minor), downy mildew (Bremia lactucae), and corky root (Rhizomonas suberifaciens). Replicated plots of subsurface drip and furrow irrigation were arranged in a randomized complete-block design. All plants were inoculated with S. minor at the initiation of the experiment during the 1993 spring season. Plots were not inoculated for downy mildew and corky root during any season nor were the plots reinoculated with S. minor. During each season, all plots were sprinkler irrigated until thinning, and subsequently, the irrigation treatments were begun. The furrow plots were irrigated once per week, and the drip plots received water twice per week. The distribution of soil moisture at two soil depths (0 to 5 and 6 to 15 cm) at 5, 10, and 15 cm distance on either side of the bed center in two diagonal directions was significantly lower in drip-irrigated compared with furrow-irrigated plots. Plots were evaluated for lettuce drop incidence and downy mildew incidence and severity at weekly intervals until harvest. Corky root severity and yield components were determined at maturity. Lettuce drop incidence and corky root severity were significantly lower and yields were higher in plots under subsurface drip irrigation compared with furrow irrigation, regardless of the cultivar, except during the 1994 fall season. Incidence and severity of downy mildew were not significantly different between the two irrigation methods throughout the study. The differential microclimates created by the two irrigation treatments did not affect downy mildew infection, presumably because the mesoclimate is usually favorable in the Salinas

  7. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    Science.gov (United States)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  8. Drip water electrical conductivity as an indicator of cave ventilation at the event scale.

    Science.gov (United States)

    Smith, Andrew C; Wynn, Peter M; Barker, Philip A; Leng, Melanie J

    2015-11-01

    The use of speleothems to reconstruct past climatic and environmental change through chemical proxies is becoming increasingly common. Speleothem chemistry is controlled by hydrological and atmospheric processes which vary over seasonal time scales. However, as many reconstructions using speleothem carbonate are now endeavouring to acquire information about precipitation and temperature dynamics at a scale that can capture short term hydrological events, our understanding of within cave processes must match this resolution. Monitoring within Cueva de Asiul (N. Spain) has identified rapid (hourly resolution) changes in drip water electrical conductivity (EC), which is regulated by the pCO2 in the cave air. Drip water EC is therefore controlled by different modes of cave ventilation. In Cueva de Asiul a combination of density differences, and external pressure changes control ventilation patterns. Density driven changes in cave ventilation occur on a diurnal scale at this site irrespective of season, driven by fluctuations in external temperature across the cave internal temperature threshold. As external temperatures drop below those within the cave low pCO2 external air enters the void, facilitating the deposition of speleothem carbonate and causing a reduction in measured drip water EC. Additionally, decreases in external pressure related to storm activity act as a secondary ventilation mechanism. Reductions in external air pressure cause a drop in cave air pressure, enhancing karst air draw down, increasing the pCO2 of the cave and therefore the EC measured within drip waters. EC thereby serves as a first order indicator of cave ventilation, regardless of changes in speleothem drip rates and karst hydrological conditions. High resolution monitoring of cave drip water electrical conductivity reveals the highly sensitive nature of ventilation dynamics within cave environments, and highlights the importance of this for understanding trace element incorporation into

  9. HYDRAULIC CHARACTERIZATIONS OF TORTUOUS FLOW IN PATH DRIP IRRIGATION EMITTER

    Institute of Scientific and Technical Information of China (English)

    LI Yun-kai; YANG Pei-ling; REN Shu-mei; XU Ting-wu

    2006-01-01

    At present, the tortuous emitter has the most advanced performances in drip irrigation. But the theories and methods for designing its flow path have been strictly confidential and the researches on the function of practical guidance have seldom been published. Seven types of most representative tortuous emitting-pipes currently used in agricultural irrigation regions of China were chosen for investigating the geometric parameters of the flow path by means of combining high-precision microscope and AutoCAD technology. By the measurement platform developed by the authors for hydraulic performances of emitters, the free discharge rates from the 7 types of emitters were measured at 9 pressure levels of 1.5 m, 3.0 m, 5.0 m, 7.0 m, 9.0 m, 10.0 m, 11.0 m, 13.0 m and 15.0 m. Then the discharge-pressure relationship, manufacturing variation coefficient, average velocity on the cross-section of flow path and the critical Reynolds number for the flow regime transformation within the paths were analyzed in detail. The results show that both pressure-ascending work pattern and pressure-descending work pattern have some impacts on the discharge rates of tortuous emitters, but the impact level is not significant. The target pressure could be approached by repetitive applications of the two work patterns during pressure regulation. The operation under low pressures has some impacts on the hydraulic performances of emitters, but the impact level is also not significant. The classical model of the discharge-pressure relationship is suitable for the pressure range of 1.5 m -15.0 m. The Reynolds number for fluids within the 7 types of tortuous emitters ranges from =105 to =930. The critical Reynolds number for the flow regime transformation is smaller than that for the routine dimension flow path. The variation coefficient of emitter discharge rates is slightly fluctuating around a certain value within the whole pressure range.

  10. Aggregate stability in citrus plantations. The impact of drip irrigation

    Science.gov (United States)

    Cerdà, A.; Mataix-Solera, J.; Arcenegui, V.

    2012-04-01

    Soil aggregate stability is a key property for soil and water conservation, and a synthetic parameter to quantify the soil degradation. Aggregation is relevant in soils where vegetation cover is scarce (Cerdà, 1996). Most of the research carried out to determine the soil aggregate stability was done in forest soils (Mataix-Solera et al., 2011) and little is done on farms (Cerdà, 2000). The research have show the effect of vegetation cover on soil aggregate stability (Cerdà, 1998) but little is known when vegetation is scarce, rare or not found such it can be seeing in agriculture soils. Then, aggregation is the main factor to control the soil losses and to improve the water availability. Moreover, agriculture management can improve the soil aggregate characteristics and the first step in this direction should be to quantify the aggregate stability. There is no information about the aggregate stability of soils under citrus production, although the research did show that the soil losses in the farms with citrus plantations is very high (Cerdà et al., 2009), and that aggregation should play a key role as the soils are bare due to the widespread use of herbicides. From 2009 to 2011, samples were collected in summer and winter in a chemically managed farm in Montesa, Eastern Iberian Peninsula. Ten irrigated patches and ten non-irrigated patches were selected to compare the effect of the drip irrigation on the soil aggregate stability. The Ten Drop Impacts (TDI) and the Counting the number of drops (CND) tests were applied at 200 aggregates (10 samples x 10 aggregates x 2 sites) in winter and summer in 2009, 2010 and 2011. The results show that the irrigated patches had TDI values that ranged from 43 to 56 % and that the non-irrigated reached values of 41 to 54 %. The CND samples ranged from 29 to 38 drops in the non-irrigated patches to 32 to 42 drop-impacts in the irrigated soil patches. No trends were found from winter to summer during the three years time period

  11. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    NARCIS (Netherlands)

    Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Groenigen, van J.W.; Vallejo, A.

    2014-01-01

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-fi

  12. User's manual and technical description of the intelligent rain-gauge `DRIP1'; software version 1.02

    NARCIS (Netherlands)

    Elsen, van den H.G.M.; Lopez Fernandez, M.

    1995-01-01

    DRIP1 is an instrument for measuring and storing rainfall, air pressure and temperature data, which can be retrieved using a portable PC. DRIP1 can be used stand-alone or can be integrated in a measuring network thus allowing the measuring frequency of other network devices to depend on rainfall sig

  13. Sensing water from subsurface drip irrigation laterals: In situ sensors, weighing lysimeters and COSMOS under vegetated and bare conditions

    Science.gov (United States)

    Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...

  14. Outcome of the ‘Drip-and-Ship’ Paradigm among Patients with Acute Ischemic Stroke: Results of a Statewide Study

    Directory of Open Access Journals (Sweden)

    Adnan I. Qureshi

    2012-01-01

    Full Text Available Background: The ‘drip-and-ship’ paradigm denotes a treatment regimen in patients in whom intravenous (IV recombinant tissue plasminogen activator (rt-PA is initiated at the emergency department (ED of a community hospital, followed by transfer within 24 h to a comprehensive stroke center. Although the drip-and-ship paradigm has the potential to increase the number of patients who receive IV rt-PA, comparative outcomes have not been assessed at a population-based level. Methods: Statewide estimates of thrombolysis, associated in-hospital outcomes, and hospitalization charges were obtained from 2008–2009 Minnesota Hospital Association data for all patients hospitalized with a primary diagnosis of ischemic stroke. Patients who were assigned the drip-and-ship code [International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM V45.88] were classified under the drip-and-ship paradigm. Patients who underwent thrombolysis (ICD-9-CM code 99.10 without drip-and-ship code were classified as primary ED arrival. Patient outcomes were analyzed after stratification into patients treated with IV rt-PA through primary ED arrival or drip-and-ship paradigm. Results: Of the 21,024 admissions, 602 (2.86% received IV rt-PA either through primary ED arrival (n = 473 or the drip-and-ship paradigm (n = 129. IV rt-PA was administered in 30 hospitals, of which 13 hospitals used the drip-and-ship paradigm; the number of patients treated with the drip-and-ship paradigm varied from 1 to 40 between the 13 hospitals. The rates of secondary intracerebral or subarachnoid hemorrhage were higher in patients treated with IV rt-PA through primary ED arrival compared with those treated with the drip-and-ship paradigm (8.5 vs. 3.1%, respectively; p = 0.038. The in-hospital mortality rate was similar among ischemic stroke patients receiving IV rt-PA through primary ED arrival or the drip-and-ship paradigm (5.9 vs. 7.0%, respectively. The mean hospital

  15. A new radiation shielding material: Amethyst ore

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay, E-mail: turgaykorkut@hotmail.co [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Korkut, Hatun [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Karabulut, Abdulhalik; Budak, Goekhan [Faculty of Science, Department of Physics, Atatuerk University, Erzurum (Turkey)

    2011-01-15

    This paper describes a new radiation shielding material, amethyst ore. We have determined the elemental composition of amethyst using WDXRF spectroscopy technique. To see the shielding capability of amethyst for several photon energies, these results have been used in simulation process by FLUKA Monte Carlo radiation transport code. Linear attenuation coefficients have been calculated according to the simulation results. Then, these values have been compared to a fine shielding concrete material. The results show that amethyst shields more gamma beams than concrete. This investigation is the first study about the radiation shielding properties of amethyst ore.

  16. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...... is reached causing the formation of anodic and cathodic regions along the reinforcement. Critical chloride thresholds, randomly distributed along the reinforcement sur-face, link the initiation and propagation phase of reinforcement corrosion. To demonstrate the potential use of the developed model......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  17. Stellar activity and magnetic shielding

    CERN Document Server

    Grießmeier, J -M; Lammer, H; Grenfell, J L; Stadelmann, A; Motschmann, U; 10.1017/S1743921309992961

    2010-01-01

    Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

  18. Radiation shielding for diagnostic radiology.

    Science.gov (United States)

    Martin, Colin J

    2015-07-01

    Scattered radiation makes up the majority of the stray radiation field around an X-ray unit. The scatter is linked to the amount of radiation incident on the patient. It can be estimated from quantities used to assess patient dose such as the kerma-area product, and factors have been established linking this to levels of scattered radiation for radiography and fluoroscopy. In radiography shielding against primary radiation is also needed, but in other modalities this is negligible, as the beam is intercepted by the image receptor. In the same way scatter from CT can be quantified in terms of dose-length product, but because of higher radiation levels, exposure to tertiary scatter from ceilings needs to be considered. Transmission requirements are determined from comparisons between calculated radiation levels and agreed dose criteria, taking into account the occupancy of adjacent areas. Thicknesses of shielding material required can then be calculated from simple equations.

  19. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  20. Paramagnetism shielding in drilling fluid

    OpenAIRE

    Li,Zhuo

    2013-01-01

    In drilling operations, drilling fluid containing magnetic materials is used when drilling a well. The materials can significantly shield the Earth’s magnetic field as measured by magnetic sensors inside the drilling strings. The magnetic property of the drilling fluid is one of the substantial error sources for the determination of magnetic azimuth for wellbores. Both the weight material, cuttings, clay and other formation material plus metal filings from the tubular wear m...

  1. Light shield for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  2. Corrosion and Corrosion Control in Light Water Reactors

    Science.gov (United States)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  3. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  4. Long term testing of materials for tube shielding, stage 2; Laangtidsprovning av tubskyddsmaterial, etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Norling, Rikard; Hjoernhede, Anders; Mattsson, Mattias

    2012-02-15

    Circulating Fluidized Bed (CFB) boilers are commonly used for combustion of biomass and are used to some extent for Waste-to-Energy (WtE) plants as well. The superheaters of the latter are for obvious reasons more prone to suffer from high temperature corrosion caused by the corrosive species in the fuel, mainly chlorides. Frequently the final (hottest) superheater is positioned in the loop seal, where the circulating bed material is returned to the furnace after being separated from the flue gas by a cyclone. The environment in the loop seal is relatively free of chlorides, since these primarily follow the flue gas into the convection pass. Hence, higher steam temperature can be allowed without excessive damage to the final superheater. On the other hand the superheaters, which are located in the convection pass, are more exposed to the corrosive species of the flue gas. Further, they are eroded by particles entrained in the gas flow. Particles and condensing gaseous species are to a large extent deposited on the superheaters, which limits the heat transfer and promotes corrosion. The deposits are regularly removed e.g. by soot blowers. The pressurized steam from soot blowers causes additional erosion damage to that caused by entrained particles. It shall be noted that the actual damage is caused by a combined mechanism of erosion and corrosion denoted erosion-corrosion, which usually results in dramatically accelerated wear. To avoid excessive erosion damage on the superheater tubes the first tube row of each bundle is protected by tube shielding. In its simplest form the shields are made from a steel sheet that has been bent into a semi-circular half-cylinder shell. These shields are attached onto the wind-side of the tubes by hangers. A typical material for tube shielding is the austenitic high temperature resistant stainless steel 253MA. Life of tube shielding depends on numerous factors such as boiler design, superheater location, fuel and operating

  5. Corrosion testing using isotopes

    Science.gov (United States)

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  6. Severe Environmental Corrosion Erosion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Severe Environment Corrosion Erosion Facility in Albany, OR, allows researchers to safely examine the performance of materials in highly corrosive or erosive...

  7. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems

  8. Applying insecticides through drip irrigation to reduce wireworm (Coleoptera: Elateridae) feeding damage in sweet potato.

    Science.gov (United States)

    Arrington, Amber E; Kennedy, George G; Abney, Mark R

    2016-06-01

    A 2 year field study was conducted at multiple locations to determine whether insecticides or an entomopathogenic nematode, Steinernema carpocapsae Weiser, applied through drip irrigation in sweet potato reduced wireworm damage when compared with the non-treated check and/or insecticides applied conventionally. Wireworm damage was low in 2012, and there were no differences in the proportion of roots damaged or the severity of damage between treatments. In 2013, a preplant-incorporated (PPI) application of chlorpyrifos followed by either bifenthrin, imidacloprid, clothianidin, or oxamyl injected through drip irrigation significantly reduced the proportion of wireworm damage as well as the severity of wireworm damage when compared with the non-treated check. The incidence and severity of wireworm damage in these treatments did not differ significantly from those in the conventional management practice. The PPI application of chlorpyrifos followed by either cyantraniliprole or S. carpocapsae injected through drip irrigation was not significantly different from the non-treated check in the proportion of wireworm damage; however, both treatments reduced the severity of wireworm damage compared with the non-treated check. Applying insecticides through drip irrigation provides an alternative to conventionally applied insecticides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Performing the success of an innovation: the case of smallholder drip irrigation in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, M.J.V.; Venot, J.P.J.N.; Zwarteveen, M.Z.; Fraiture, de C.M.S.

    2015-01-01

    Over the last 15 years, smallholder drip irrigation has gained almost unanimous popularity as an effective tool to achieve the combined goals of sustainable water use, food security and poverty alleviation in the developing world. Based on a study in Sub-Saharan Africa, this article shows that this

  10. low cost constant low cost constant – head drip irrigation emitter for ...

    African Journals Online (AJOL)

    eobe

    5 DEPARTMENT OF PLANT PHYSIOLOGY AND CROP PRODUCTION, FED. ... produced a mean discharge and emission uniformity (Eu) of 1.60l/hr. and 74 % respectively; while the calibrated ... Keywords: Drip Irrigation; Food security, Climate change; Adaptation and Cost. 1. .... The meteorological data obtained from the.

  11. D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.

    2001-09-11

    The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies.

  12. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics.

    Science.gov (United States)

    Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi

    2014-02-28

    The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning.

  13. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    CERN Document Server

    Dong, Bao-Guo

    2014-01-01

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results ...

  14. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2012-07-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure for its total water content. The stalagmites' water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Low δ18Ocalcite values are thereby accompanied by low water yields and vice versa. Based on the paleoclimatic interpretation of the δ18Ocalcite records, water yields can be linked to drip water supply. High drip water supply caused by high precipitation rates supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a tropical or subtropical area, its water yield record represents a novel paleoclimate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated precipitation rates.

  15. Cotton, tomato, corn, and onion production with subsurface drip irrigation – a review

    Science.gov (United States)

    The usage of subsurface drip irrigation (SDI) has increased by 89% in the USA during the last ten years according to USDA NASS estimates and over 93% of the SDI land area is located in just ten states. Combining public entity and private industry perceptions of SDI in these ten states, the major cro...

  16. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMI

  17. The effects of three techniques that change the wetting patterns over subsurface drip-irrigated potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Elnesr, M.N.; Alazba, A.A.

    2015-07-01

    Wetting pattern enhancement is one of the goals of irrigation designers and researchers. In this study, we addressed three techniques (dual-lateral drip, intermittent flow and physical barrier methods) that change the wetting pattern of subsurface drip irrigation. To study their effect on the yield and water-use efficiency (WUE) of potatoes, field experiments were conducted for four seasons, during which the soil-water balance was continuously monitored using a set of capacitance probes. The results of the soil water patterns showed that both the dual-lateral and intermittent techniques increased lateral water movement and eliminated deep percolation, whereas the physical barrier had a limited effect on the top soil layer. The crop results indicated that the yield and WUE increased significantly in response to the application of the dual-lateral drip (up to 30%); the intermittent application also positively affected the yield (~10%) and the WUE (~14%), but these effects were not statistically significant according to the statistical model. The physical barrier showed a non-significant negative effect on the yield and WUE. These findings suggest the following recommended practices: the use of dual-lateral drip technique due to its beneficial results and its potential for increasing yields and reducing water consumption; the application of intermittent flow with more than three surges; and restricting the use of physical barriers to soils with high permeability. (Author)

  18. The Feasibility of Multipole Electrostatic Radiation Shielding

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    Although passive shielding appears to be the only workable solution for galactic cosmic radiation (GCR), active shielding may play an important augmenting role to control the dose from solar particle events (SPEs). It has been noted that, to meet the guidelines of NCRP Report No. 98 through the six SPEs of 1989, a crew member would need roughly double the passive shielding that is necessary to control the GCR dose . This would dramatically increase spacecraft mass, and so it has been proposed that a small but more heavily shielded storm shelter may be used to protect the crew during SPEs. Since a gradual SPE may last 5 or more days, staying in a storm shelter may be psychologically and physiologically distressing to the crew. Storm shelters do not provide shielding for the spacecraft itself against the SPE radiation, and radiation damage to critical electronics may result in loss of mission and life. Single-event effects during the radiation storm may require quick crew response to maintain the integrity of the spacecraft, and confining the crew to a storm shelter prohibits their attending to the spacecraft at the precise time when that attention is needed the most. Active shielding cannot protect against GCR because the particle energies are too high. Although lower energy particles are easier to stop in a passive shield, such shielding is more satisfactory against GCR than against SPE radiation because of the tremendous difference in their initial fluences. Even a small fraction of the SPE fluence penetrating the passive shielding may result in an unacceptably high dose. Active shielding is more effective than passive shielding against SPE radiation because it offers 100% shielding effectiveness up to the cutoff energy, and significant shielding effectiveness beyond the cutoff as well.

  19. Hexavalent Chrome Free Coatings for Electronics: Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2016-01-01

    Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.

  20. Corrosion-resistant metallic coatings

    OpenAIRE

    F. Presuel-Moreno; M.A. Jakab; N. Tailleart; Goldman, M.; J. R. Scully

    2008-01-01

    We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned) to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic i...

  1. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  2. Surface effects of Rayleigh-Taylor instability: Feedback between drip dynamics and crustal deformation

    Science.gov (United States)

    Wang, H.; Currie, C. A.

    2013-12-01

    For many continental plates, significant vertical motion of Earth's surface has occurred within the plate interior which can not be clearly linked to plate tectonic processes. For example, several craton areas exhibit anomalous basins, e.g., the Williston basin, Illinois basin and Michigan basin in North America. In orogenic belts, there are examples of local areas (~100 km wide) where the surface has undergone subsidence and then uplift of >1 km, such as the Arizaro basin (central Andes) and Wallowa Mountains (northeast Oregon). Given the near-circular shape of the surface deflection, it has been suggested that they may be related to gravitational foundering of dense lower lithosphere, i.e., Rayleigh-Taylor instability (or 'RT drip'). In order to investigate the surface effects of an RT drip, we use two methods: (1) 2D thermal-mechanical numerical models to study links between drip dynamics and crustal deformation and (2) a theoretical analysis of the crustal deformation induced by stresses from the RT drip. The numerical models consist of a continental lithosphere overlying a sublithospheric mantle. A high-density material is placed in the mantle lithosphere or lower crust to initiate a drip event, and a stress-free boundary condition allows the development of surface topography during model evolution. A reasonable range of crustal viscosity and thickness is tested to study the RT drip in different tectonic settings, from a cold craton to a hot orogen with thick crust. Four types of surface deflection are observed: (1) subsidence; (2) subsidence followed by uplift; (3) uplift; and (4) little deflection. When the crust is relatively strong or thin, the surface has a negative elevation, forming a basin. For a weak or thick crust, the RT drip induces crustal flow, leading to crustal thickening that can uplift the surface; an extremely weak crust decouples the surface and RT drip and the surface is unperturbed. Our theoretical analysis considers the surface

  3. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  4. Solving A Corrosion Problem

    Science.gov (United States)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  5. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  6. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  7. Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data

    Science.gov (United States)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2016-01-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better

  8. Solar-forced diurnal regulation of cave drip rates via phreatophyte evapotranspiration

    Science.gov (United States)

    Coleborn, Katie; Rau, Gabriel C.; Cuthbert, Mark O.; Baker, Andy; Navarre, Owen

    2016-11-01

    We present results of a detailed study of drip rate variations at 12 drip discharge sites in Glory Hole Cave, New South Wales, Australia. Our novel time series analysis, using the wavelet synchrosqueezed transform, reveals pronounced oscillations at daily and sub-daily frequencies occurring in 8 out of the 12 monitored sites. These oscillations were not spatially or temporally homogenous, with different drip sites exhibiting such behaviour at different times of year in different parts of the cave. We test several hypotheses for the cause of the oscillations, including variations in pressure gradients between karst and cave due to cave breathing effects or atmospheric and earth tides, variations in hydraulic conductivity due to changes in viscosity of water with daily temperature oscillations, and solar-driven daily cycles of vegetative (phreatophytic) transpiration. We conclude that the only hypothesis consistent with the data and hydrologic theory is that daily oscillations are caused by solar-driven pumping by phreatophytic trees which are abundant at the site. The daily oscillations are not continuous and occur sporadically in short bursts (2-14 days) throughout the year due to non-linear modification of the solar signal via complex karst architecture. This is the first indirect observation leading to the hypothesis of tree water use in cave drip water. It has important implications for karst hydrology in regards to developing a new protocol to determine the relative importance of trends in drip rate, such as diurnal oscillations, and how these trends change over timescales of weeks to years. This information can also be used to infer karst architecture. This study demonstrates the importance of vegetation on recharge dynamics, information that will inform both process-based karst models and empirical estimation approaches. Our findings support a growing body of research exploring the impact of trees on speleothem paleoclimate proxies.

  9. Development of a physiologically relevant dripping analytical method using simulated nasal mucus for nasal spray formulation analysis

    Directory of Open Access Journals (Sweden)

    Tina Masiuk

    2016-10-01

    Full Text Available Current methods for nasal spray formulations have been elementary evaluating the dripping characteristics of a formulation and have not assessed the behavior of the nasal formulation in the presence of varying types of mucus depending on the indication or diseased state. This research investigated the effects of nasal mucus on the dripping behavior of nasal formulations and focused on developing an improved in vitro analytical test method that is more physiologically relevant in characterizing nasal formulation dripping behavior. Method development was performed using simulated nasal mucus preparations for both healthy and diseased states as coatings for the dripping experiment representing a wide range of viscosity. Factors evaluated during development of this in vitro test method included amount of mucus, application of mucus, drying times, and compatibility of the mucus on a C18 Thin Layer Chromatography (TLC substrate. The dripping behavior of nasal formulations containing a range of 1% Avicel to 3.5% Avicel was assessed by actuating the nasal spray on a perpendicular TLC plate coated with either healthy or diseased simulated nasal mucus. After actuation of the nasal spray, the dripping of the formulation on the coated TLC plate was measured after the plate was repositioned vertically. The method that was developed generated reproducible results on the dripping behavior of nasal formulations and provided critical information about the compatibility of the formulation with the nasal mucus for different diseased states, aiding in nasal spray formulation development and physical characterization of the nasal spray.

  10. Development of a physiologically relevant dripping analytical method using simulated nasal mucus for nasal spray formulation analysis$

    Institute of Scientific and Technical Information of China (English)

    Tina Masiuk n; Parul Kadakia; Zhenyu Wang

    2016-01-01

    Current methods for nasal spray formulations have been elementary evaluating the dripping char-acteristics of a formulation and have not assessed the behavior of the nasal formulation in the presence of varying types of mucus depending on the indication or diseased state. This research investigated the effects of nasal mucus on the dripping behavior of nasal formulations and focused on developing an improved in vitro analytical test method that is more physiologically relevant in characterizing nasal formulation dripping behavior. Method development was performed using simulated nasal mucus preparations for both healthy and diseased states as coatings for the dripping experiment representing a wide range of viscosity. Factors evaluated during development of this in vitro test method included amount of mucus, application of mucus, drying times, and compatibility of the mucus on a C18 Thin Layer Chromatography (TLC) substrate. The dripping behavior of nasal formulations containing a range of 1%Avicel to 3.5%Avicel was assessed by actuating the nasal spray on a perpendicular TLC plate coated with either healthy or diseased simulated nasal mucus. After actuation of the nasal spray, the dripping of the formulation on the coated TLC plate was measured after the plate was repositioned vertically. The method that was developed generated reproducible results on the dripping behavior of nasal formula-tions and provided critical information about the compatibility of the formulation with the nasal mucus for different diseased states, aiding in nasal spray formulation development and physical characterization of the nasal spray.

  11. Combating corrosion in biomass and waste fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Hjoernhede, Anders [Vattenfall AB, Gothenburg (Sweden). Power Consultant

    2010-07-01

    Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than 500 C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures. Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper. These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials. (orig.)

  12. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  13. General and Localized Corrosion of Austenitic And Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J C; Rebak, R B; Fix, D V; Wong, L L

    2004-03-11

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  14. Radiation shielding concrete made of Basalt aggregates.

    Science.gov (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  15. Dique seco, en South Shields

    Directory of Open Access Journals (Sweden)

    Frank Stott, Peter

    1958-10-01

    Full Text Available La conocida empresa Brigham & Cowan Ltd, de South Shields (Inglaterra, acaba de construir un dique de carena en la desembocadura del río Tyne, destinado a la reparación de tanques y cargas de gran tonelaje y de relativamente poco calado. El vaso tiene 217 m de longitud, 29 de anchura mínima en la entrada, 6,40 de a l tura de agua sobre el umbral de entrada y una compuerta metálica rebatible hacia adelante. En este trabajo se describen las partes que mejor caracterizan esta importante obra.

  16. Dynamic rotating-shield brachytherapy.

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-01

    To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process. A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and (192)Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α∕β = 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively. For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes∕fraction (min∕fx) assuming a 10 Ci(192)Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min∕fx more delivery time, and S-RSBT required 6.7 min∕fx more. If an additional 20 min∕fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively. For cervical cancer patients, D-RSBT can boost HR-CTV D90

  17. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  18. Corrosion protection by anaerobiosis.

    Science.gov (United States)

    Volkland, H P; Harms, H; Wanner; Zehnder, A J

    2001-01-01

    Biofilm-forming bacteria can protect mild (unalloyed) steel from corrosion. Mild steel coupons incubated with Rhodoccocus sp. strain C125 and Pseudomonas putida mt2 in an aerobic phosphate-buffered medium containing benzoate as carbon and energy source, underwent a surface reaction leading to the formation of a corrosion-inhibiting vivianite layer [Fe3(PO4)2]. Electrochemical potential (E) measurements allowed us to follow the buildup of the vivianite cover. The presence of sufficient metabolically active bacteria at the steel surface resulted in an E decrease to -510 mV, the potential of free iron, and a continuous release of ferrous iron. Part of the dissolved iron precipitated as vivianite in a compact layer of two to three microns in thickness. This layer prevented corrosion of mild steel for over two weeks, even in a highly corrosive medium. A concentration of 20 mM phosphate in the medium was found to be a prerequisite for the formation of the vivianite layer.

  19. Smart Coatings for Corrosion Protection

    Science.gov (United States)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  20. Shielding of emitting dust particles

    Science.gov (United States)

    Luca Delzanno, Gian; Lapenta, Giovanni; Rosenberg, Marlene

    2003-10-01

    In the present work we focus on the role of electron emission (either thermionic or photoelectric) in charging an object immersed in a plasma. In fact, it is well known that the higher mobility of the plasma electrons (that would lead to negatively charged objects) can be overcome by electron emission, thus reversing the object polarity. Moreover, recent work [1] has shown how electron emission can fundamentally affect the shielding potential around the dust. In particular, depending on the physical parameters of the system (that were chosen such to correspond to common experimental conditions), the shielding potential can develop an attractive potential well. The aim of the present work is two-fold. First, we will present a parametric study in order to enlight the conditions for the formation, as well as the stability of the well. Furthermore, simulations will be presented with physical parameters corresponding to the ionosphere, thus extending our study to the case of meteroids. [1] G.L. Delzanno, G. Lapenta, M. Rosenberg, "Attractive Potential among Thermionically Emitting Microparticles", submitted.

  1. Corrosion potential analysis system

    Science.gov (United States)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  2. Sulfur Content Precision Control Technology for CO2-Shielded Welding Wire Steel

    Science.gov (United States)

    Chaofa, Zhang; Huaqiang, Hao; Youbing, Xiang; Shanxi, Liu

    As a kind of impurity and displaying with FeS and MnS form in steel, Sulfur can make the disadvantage effect on the performance of hot-working, welding and corrosion resistance. The high content sulfur in steel can cause the hot brittle phenomenon for the steel. For the welding steel, when the sulfur content is higher, the drawing performance of wire rod become worst and the yield of wire rod decrease. When the sulfur is lower, the automatic wire feeding performance for the gas shielded welding become worst and the weld seam is not smooth. According to the results of welding expert research, 0.010%≤ S≤ 0.020% in CO2-shielded welding wire steel is reasonable.

  3. Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    2016-05-01

    Conductive polymer composites (CPC) are attractive materials for a wide range of applications because of their weight, corrosion resistivity, design flexibility and low cost. In the present work, the electrical and electromagnetic interference (EMI) shielding characteristics of graphene nanoplatelets (GNP)/ultrahigh molecular weight polyethylene (UHMWPE) composites filled with up to 40 wt% GNP were investigated. In addition, the intrinsic conductivity of the GNP network was estimated based on the statistical power law and the rule of mixtures for randomly oriented filler particles in insulating matrix. Due to the formation of a segregated conductive network at the external surface of UHMWPE powder, an electrical percolation threshold of between 2 and 3 wt% GNP was obtained. At GNP loading of 15 wt%, the composite exhibited an EMI shielding effectiveness of 33 dB, corresponding to 99.95% blocking of the EMI.

  4. Integrity evaluation of lower thermal shield under exposure to HFBR environment

    Energy Technology Data Exchange (ETDEWEB)

    Kassir, M.; Weeks, J.; Bandyopadhyay, K. [Brookhaven National Lab., Upton, NY (United States); Shewmon, P. [Ohio State Univ., Columbus, OH (United States)

    1998-01-01

    The effects of exposure to the HFBR environment on the carbon steel in the HFBR lower thermal shield were evaluated. Corrosion was found to be a non-significant degradation process. Radiation embrittlement has occurred; portions of the plate closest to the reactor are currently operating in the lower-shelf region of the Charpy impact curve (i.e., below the fracture toughness transition temperature). In this region, the effects of radiation on the mechanical properties of carbon steel are believed to have been saturated, so that no further deterioration is anticipated. A fracture toughness analysis shows that a large factor of safety (> 1.5) exists against propagation of credible hypothetical flaws. Therefore, the existing lower thermal shield structure is suitable for continued operation of the HFBR.

  5. Environmental and alloying effects on corrosion of metals and alloys

    Science.gov (United States)

    Liang, Dong

    2009-12-01

    In the first part of this project, corrosion studies were carried out on 304L stainless steel samples welded with Cr-free consumables, which were developed to minimize the concentration of chromate species in the weld fume. The corrosion properties of Ni-Cu and Ni-Cu-Pd Gas Tungsten Arc (GTA) welds and Shielded Metal Arc (SMA) welds are comparable to those of welds fabricated with SS308L consumable, which is the standard consumable for welding 304L. Although the breakdown potentials of the new welds from both welding processes are lower than that of the SS308L weld, the repassivation potential of these new welds is much higher. Generally, the repassivation potential is a more conservative measure of susceptibility to localized corrosion. Our studies showed that the Ni-Cu and Ni-Cu-Pd welds are more resistant to crevice corrosion than SS308L welds, which is related to the high repassivation potential. Also, addition of Pd improved the corrosion resistance of the new welds, which is consistent with previous studies from button samples and bead-on-plate samples. Other corrosion studies such as creviced and uncreviced long time immersion, atmospheric exposure, and slow strain rate testing suggest that Ni-Cu-Pd welds can be a qualified substitute for SS308 weld. In the second part of this project, efforts are put on the connection between lab and field exposure tests because sometimes the correspondence between lab atmospheric corrosion tests (ASTM B117) and field exposures is poor as a result of differences in the critical conditions controlling chemical and electrochemical reactions on surfaces. Recent studies in atmospheric chemistry revealed the formation of extremely reactive species from interactions between UV light, chloride aerosols above oceans and oxidizing agents such as ozone or peroxide. Atmospheric corrosion of metals can be affected by these species which might be transported long distances in the atmosphere to locations far from oceans. However, these

  6. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    Science.gov (United States)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  7. Artificial Dielectric Shields for Integrated Transmission Lines

    NARCIS (Netherlands)

    Ma, Y.; Rejaei, B.; Zhuang, Y.

    2008-01-01

    We present a novel shielding method for on-chip transmission lines built on conductive silicon substrates. The shield consists of an artificial dielectric with a very high in-plane dielectric constant, built from two patterned metal layers isolated by a very thin dielectric film. Inserted below an i

  8. Shielding for beta-gamma radiation.

    Science.gov (United States)

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  9. Alignment modification for pencil eye shields

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.D.; Pla, M.; Podgorsak, E.B. (McGill Univ., Quebec (Canada))

    1989-01-01

    Accurate alignment of pencil beam eye shields to protect the lens of the eye may be made easier by means of a simple modification of existing apparatus. This involves drilling a small hole through the center of the shield to isolate the rayline directed to the lens and fabricating a suitable plug for this hole.

  10. Thermal neutron shield and method of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  11. Corrosion in waste incineration facilities; Korrosion i avfallsfoerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2004-11-01

    be protected by materials with a high content of Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. No general recommendation for superheater materials can be made. A separate evaluation must be made for each case. Parameters such as corrosive species in flue gases and deposits, material and flue gas temperatures, flue gas velocities, particle content and soot blowing must be considered. Usually a more exclusive material must be used for parts in the most corrosive environment, while a cheaper material can be selected for the rest of the superheaters. Surfaces exposed to erosion usually needs extra protection in the form of replaceable shields. These can often be made of a relatively cheap material. Adding sulphur can be an economically beneficial method for reducing superheater corrosion. This can be done by co-firing with coal or by using additives, such as sulphur or ChlorOut. The boiler should be cleaned from deposits immediately after shutdown. If this is not done hygroscopic salts in the deposits can cause severe corrosion.

  12. Effect of hydraulic head and slope on water distribution uniformity of a low-cost drip irrigation system

    OpenAIRE

    Ella, Victor B.; Reyes, Manuel R.; R. Yoder

    2008-01-01

    Metadata only record Assessment of the effect of topography and operating heads on the emission uniformity distribution in drip irrigation systems is important in irrigation water management and could serve as basis for optimizing water use efficiency and crop productivity. This study was carried out to evaluate the effect of hydraulic head and slope on the water distribution uniformity of a low-cost drip irrigation system developed by the International Development Enterprises (IDE), a non...

  13. Scanning reference electrode techniques in localized corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions.

  14. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  15. The Effect of Water Saving and Production Increment by Drip Irrigation Schedules

    Institute of Scientific and Technical Information of China (English)

    QIU Yuan-feng; LUO Jin-yao; MENG Ge

    2004-01-01

    Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and further simplified to a linear distribution. This paper will describe the irrigation scheduling parameters, percent of deficit, application efficiency and coefficient of variation by simple mathematical model. Using this effective model and the irrigation application, the total yield affected by the total water application for different uniformity of irrigation application can be determined. More over, this paper uses the cost of water, price of yield, uniformity of the drip irrigation system, crop response to water application and environmental concerns of pollution and contamination to determine the optimal irrigation schedule. A case study shows that the optimal irrigation schedule can achieve the effect of water saving and production increment compared with the conventional irrigation schedule in which the whole field is fully irrigated.

  16. Crop growth and two dimensional modeling of soil water transport in drip irrigated potatoes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Iversen, Bo Vangsø; Mollerup, Mikkel

    2009-01-01

    Drip irrigation can be an effective way to improve water and nitrogen use efficiency in soil and hence to reduce the environmental pollution. In the EU project SAFIR ( http://www.safir4eu.org/ ) a potato experiment was carried out in lysimeters on three different soil types: coarse sand, loamy sand...... and sandy loam. An automatic roof was used to exclude the lysimeters from natural precipitation. The potatoes were drip irrigated following different strategies: Fully irrigated (FI), deficit irrigation (65% FI), and partial root zone drying (PRD). Gas exchange measurements were carried as well as sampling...... of abscisic acid (ABA). Model outputs from the mechanistic simulation model Daisy, in SAFIR developed to include 2D soil processes and gas exchange processes based on Ball et al. and Farquhar were compared with measured crop dynamics, final DM yield and volumetric water content in the soil measured by TDR...

  17. Theoretical Basis and Application for Measuring Pork Loin Drip Loss Using Microwave Spectroscopy

    Science.gov (United States)

    Mason, Alex; Abdullah, Badr; Muradov, Magomed; Korostynska, Olga; Al-Shamma’a, Ahmed; Bjarnadottir, Stefania Gudrun; Lunde, Kathrine; Alvseike, Ole

    2016-01-01

    During cutting and processing of meat, the loss of water is critical in determining both product quality and value. From the point of slaughter until packaging, water is lost due to the hanging, movement, handling, and cutting of the carcass, with every 1% of lost water having the potential to cost a large meat processing plant somewhere in the region of €50,000 per day. Currently the options for monitoring the loss of water from meat, or determining its drip loss, are limited to destructive tests which take 24–72 h to complete. This paper presents results from work which has led to the development of a novel microwave cavity sensor capable of providing an indication of drip loss within 6 min, while demonstrating good correlation with the well-known EZ-Driploss method (R2 = 0.896). PMID:26848661

  18. Continuum and Symmetry-Conserving Effects in Drip-line Nuclei Using Finite-range Forces

    CERN Document Server

    Schunck, N

    2007-01-01

    We report the first calculations of nuclear properties near the drip-lines using the spherical Hartree-Fock-Bogoliubov mean-field theory with a finite-range force supplemented by continuum and particle number projection effects. Calculations were carried out in a basis made of the eigenstates of a Woods-Saxon potential computed in a box, thereby garanteeing that continuum effects were properly taken into account. Projection of the self-consistent solutions on good particle number was carried out after variation, and an approximation of the variation after projection result was used. We give the position of the drip-lines and examine neutron densities in neutron-rich nuclei. We discuss the sensitivity of nuclear observables upon continuum and particle-number restoration effects.

  19. Solar-powered drip irrigation enhances food security in the Sudano–Sahel

    Science.gov (United States)

    Burney, Jennifer; Woltering, Lennart; Burke, Marshall; Naylor, Rosamond; Pasternak, Dov

    2010-01-01

    Meeting the food needs of Africa’s growing population over the next half-century will require technologies that significantly improve rural livelihoods at minimal environmental cost. These technologies will likely be distinct from those of the Green Revolution, which had relatively little impact in sub-Saharan Africa; consequently, few such interventions have been rigorously evaluated. This paper analyzes solar-powered drip irrigation as a strategy for enhancing food security in the rural Sudano–Sahel region of West Africa. Using a matched-pair comparison of villages in northern Benin (two treatment villages, two comparison villages), and household survey and field-level data through the first year of harvest in those villages, we find that solar-powered drip irrigation significantly augments both household income and nutritional intake, particularly during the dry season, and is cost effective compared to alternative technologies. PMID:20080616

  20. Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids

    Science.gov (United States)

    Richner, Patrizia; Kress, Stephan J. P.; Norris, David J.; Poulikakos, Dimos

    2016-03-01

    Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O (1 μm) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and out-of-plane structures of similar sizes. Despite the demonstrated capabilities, our fundamental understanding of important aspects of the physics of NanoDrip printing needs further improvement. Here we address the topics of charge content and transport in NanoDrip printing. We employ quantum dot and gold nanoparticle dispersions in combination with a specially designed, auxiliary, asymmetric electric field, targeting the understanding of charge locality (particles vs. solvent) and particle distribution in the deposits as indicated by the dried nanoparticle patterns (footprints) on the substrate. We show that droplets of alternating charge can be spatially separated when applying an ac field to the nozzle. The nanoparticles within a droplet are distributed asymmetrically under the influence of the auxiliary lateral electric field, indicating that they are the main carriers. We also show that the ligand length of the nanoparticles in the colloid affects their mobility after deposition (in the sessile droplet state).Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O (1 μm) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and

  1. Evolution of the spherical cavity radius generated around a subsurface drip emitter

    Directory of Open Access Journals (Sweden)

    M. Gil

    2010-06-01

    Full Text Available The emitter discharge in subsurface drip irrigation can be affected by soil properties. A positive pressure develops at the emitter outlet where a spherical cavity is assumed to form. In steady-state conditions, the pressure in the soil relates to soil hydraulic properties, the emitter discharge, and the cavity radius. This pressure in the soil is very sensitive to the cavity radius. In this paper, the development of the cavity around the emitter outlet was measured for various emitter discharges in laboratory tests carried out in containers with uniform loamy soils. A trend between soil pressure and emitter discharge was established that illustrates the performance of buried emitters in the field. Its application to the prediction of water distribution in subsurface drip irrigation units and its effect on the estimation of irrigation performance are also shown.

  2. Proton rich nuclei at and beyond the proton drip line in the Relativistic Mean Field theory

    CERN Document Server

    Geng, L S; Meng, J

    2003-01-01

    The Relativistic Mean Field theory is applied to the analysis of ground-state properties of deformed proton-rich odd-Z nuclei in the region $55\\le Z \\le 73$ >. The model uses the TMA and NL3 effective interactions in the mean-field Lagrangian, and describes pairing correlations by the density-independent delta-function interaction. The model predicts the location of the proton drip line, the ground-state quadrupole deformation, one-proton separation energy at and beyond the proton drip line, the deformed single-particle orbital occupied by the odd valence proton and the corresponding spectroscopic factor. The results are in good agreement with the available experimental data except for some odd-odd nuclei in which the proton-neutron pairing may become important and are close to those of Relativistic Hartree-Bogoliubov model.

  3. Theoretical Basis and Application for Measuring Pork Loin Drip Loss Using Microwave Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alex Mason

    2016-02-01

    Full Text Available During cutting and processing of meat, the loss of water is critical in determining both product quality and value. From the point of slaughter until packaging, water is lost due to the hanging, movement, handling, and cutting of the carcass, with every 1% of lost water having the potential to cost a large meat processing plant somewhere in the region of €50,000 per day. Currently the options for monitoring the loss of water from meat, or determining its drip loss, are limited to destructive tests which take 24–72 h to complete. This paper presents results from work which has led to the development of a novel microwave cavity sensor capable of providing an indication of drip loss within 6 min, while demonstrating good correlation with the well-known EZ-Driploss method (R2 = 0.896.

  4. Results of shielding characteristics tests in Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Suzuoki, Zenro; Deshimaru, Takehide; Nakashima, Fumiaki [Japan Nuclear Cycle Development Inst., Tsuruga, Fukui (Japan)

    2001-06-01

    In the prototype fast breeder reactor Monju, the shielding characteristics tests were made around the reactor core, the primary heat transport system, and the fuel handling and storage system as a part of the system start-up tests from 0% to 45% of rated power from October 1993 through December 1995. The results of the measurements, analyses and evaluations in these tests validated the FBR shielding analysis methods and demonstrated that there was a safe shielding design margin in Monju. The important basic data for use in future FBR shielding design were successfully acquired. In order to obtain more substantial basic data and to improve the accuracy of the analyses, the next shielding measurements are planned for the period of the system start-up tests at the restart of Monju. (author)

  5. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  6. Radiation Shielding for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  7. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    Science.gov (United States)

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.

  8. Geochemical signal in drip waters and carbonates from three year monitoring of Drac Cave in Mallorca (Western Mediterranean)

    Science.gov (United States)

    Cacho, Isabel; Cisneros, Mercé; Torner, Judit; Moreno, Ana; Stoll, Heather; Bladé, Ileana; Fornos, Joan

    2016-04-01

    In order to establish the potential connection between climatic conditions over Mallorca and the chemistry of speleothem growths, a still ongoing monitoring exercise is in development in Drac Cave in Mallorca (Spain) starting from April 2013. This location in the Western Mediterranean was selected to represent Mediterranean semi-arid climatic conditions within a wider monitoring plan covering a transect across the northern part of the Iberian Peninsula, from the Catabric realm, across the Pyrenees and Iberian ranges until the Mediterranean, within the framework of the OPERA research project. Drip waters have been recovered at weakly resolution and carbonate precipitates represent seasonal periods. This monitoring is complemented with drip water and carbonate collection at seasonal scale in another cave close to Drac Cave. This second cave was selected in order to represent comparable climatic conditions but far of any human land-intervention since the Drac cave is partially located under an urban developed area, although drip water and carbonate collection is performed in a location bellow autochthonous forest. First results show that drip flow has a rather constant rate along the year even though the large contrast on rain availability. In contrast, chemical signal of the drip waters shows a rapid response (few days) to changes in rain patterns but of relatively small magnitude. Isotopes in the carbonate precipitates present a seasonal signal and trend that reflect changes in the drip water composition. This data set, although preliminary, will be discussed in the context of the changing meteorological conditions of the last three years.

  9. Background simulations and shielding calculations

    Science.gov (United States)

    Kudryavtsev, Vitaly A.

    2011-04-01

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  10. Radiation Shielding Systems Using Nanotechnology

    Science.gov (United States)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  11. Spacesuit Radiation Shield Design Methods

    Science.gov (United States)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  12. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  13. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  14. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R; Breit, George N; Healy, Richard W; Zupancic, John W; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  15. Recent Studies of Proton Drip-Line Nuclei Using the Berkeley Gas-Filled Separator

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.W.; Batchelder, J.C.; Ninov, V.; Gregorich, K.E.; Toth, K.S.; Bingham, C.R.; Piechaczek, A.; Xu, X.J.; Powell, J.; Joosten, R.; Cerny, J.

    1999-10-07

    The Berkeley Gas-filled Separator provides new research opportunities at Lawrence Berkeley National Laboratory's X-Inch Cyclotron. The use of this apparatus for the study of proton drip-line nuclides is discussed. Preliminary results of {sup 78}Kr bombardments of {sup 102}Pd targets at mid-target energies of 360, 375 and 385 MeV are presented. Improvements planned partially as a result of this measurement are also discussed.

  16. On the morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  17. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina Chow

    2016-11-01

    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  18. Efficacy of benzydamine hydrochloride dripping at endotracheal tube cuff for prevention of postoperative sore throat.

    Science.gov (United States)

    Nimmaanrat, Sasikaan; Chokkijchai, Kedsirin; Chanchayanon, Thavat

    2013-10-01

    Postoperative sore throat (POST) is a frequent consequence following ETT intubation, which may negatively affect the postoperative course and patient satisfaction. Benzydamine hydrochloride is a topically-applied non-steroidal anti-inflammatory drug (NSAID). The authors evaluated the analgesic effect of benzydamine hydrochloride dripping on the ETT cuff on POST. Eighty-six patients participated in this randomized controlled trial. They were assigned into either the benzydamine hydrochloride or the control group. The whole ETT cuff was dripped either with 3 ml (4.5 mg) of benzydamine hydrochloride or nothing five minutes prior to anesthesia induction. The incidence and severity of POST at 0, 2, 4, 6, 12 and 24 hours postoperatively were assessed. The potential adverse effects of benzydamine hydrochloride (throat numbness throat burning sensation, dry mouth, and thirst) were also evaluated. Twenty-five patients (58.14%) in each group had POST (p-value = 1). The severity of POST (calculated from affected patients) in both groups at different time points was not significantly different. Patients in the benzydamine hydrochloride group did not have a higher incidence of adverse effects. We found that dripping benzydamine hydrochloride on the ETT cuff neither reduced the incidence of POST nor increased the incidence of adverse effects in comparison with no intervention.

  19. Effect of fabric mounting method and backing material on bloodstain patterns of drip stains on textiles.

    Science.gov (United States)

    Chang, J Y M; Michielsen, S

    2016-05-01

    Textiles may provide valuable bloodstain evidence to help piece together events or activities at violent crime scenes. However, in spite of over 75 years of research, there are still difficulties encountered in many cases in the interpretation and identification of bloodstains on textiles. In this study, we dripped porcine blood onto three types of fabric (plain woven, single jersey knit, and denim) that are supported in four different ways (hard, taut, loose, and semi-hard, i.e., fabric laid on denim). These four mounting methods represent different ways in which a textile may be present when blood from a violent act lands on it. This study investigates how the fabric mounting method and backing material affect the appearance of drip stains on textiles. We found that bloodstain patterns formed on fabric lying flat on a hard surface were very different from when the same fabric was suspended loosely. We also found that bloodstains formed on the technical back of single jersey knit were vastly different from those on the technical face. Interestingly, some drip stains showed blood passing through the textile and leaving a stain behind it that resembled insect stains. By observing, recording, and describing how a blood stained textile is found or presented at the scene, the analyst may be able to better understand bloodstains and bloodstain patterns on textiles, which could be useful to confirm or refute a witness's account of how blood came to be where it was found after a bloodshed event.

  20. Role of phospholipase A2 in the induction of drip loss in porcine muscle

    DEFF Research Database (Denmark)

    Poulsen, Kristian A; Young, Jette F; Theil, Peter

    2007-01-01

    different breeds of pigs with variations in drip loss revealed no clear correlation between drip loss level and iPLA2-VIA expression. Together, these data indicate that during the post-mortem period, iPLA2-VIA expression and activity is increased at the muscle fiber membranes. PLA2 activity may affect......The role of phospholipase A2 in the induction of drip loss from pig muscle has been investigated. In samples from porcine M. longissimus dorsi, total PLA2 activity as well as mRNA and protein levels of the group VIA iPLA2 (iPLA2-VIA) increased during the initial 4 h post-mortem period....... Morphological studies of porcine muscle showed that at 4 h post-mortem, gaps had formed between muscle fibers and that the sarcolemma membrane borders appeared blurred. At the same time iPLA2-VIA protein levels were increased inside muscle fibers and at the sarcolemma. iPLA2-VIA mRNA abundance in samples from...

  1. Corrosion-resistant metallic coatings

    Directory of Open Access Journals (Sweden)

    F. Presuel-Moreno

    2008-10-01

    Full Text Available We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic inhibitors to protect defects in the coating, by formation of an optimized barrier to local corrosion in Cl− containing environments, as well as by sacrificial cathodic prevention. Further progress in this field could lead to the design of the next generation of adaptive or tunable coatings that inhibit corrosion of underlying substrates.

  2. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  3. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  4. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  5. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  6. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2009-01-01

    in each dimen- sion than bacteria and archaea. Fungi are eukaryotic organisms. Yeasts , molds, and mushrooms are examples of fungi. The majority of...occurs widely in natural waters and can be carried out by a variety of organisms including bacteria, yeast , and fungi (42). Ghiorse (43) prepared a...and its alloys is due to an aluminum oxide passive film. Anodizing produces thicker insulating films and better corrosion resistance. The natural

  7. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  8. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  9. Foam-Reinforced Polymer Matrix Composite Radiation Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New and innovative lightweight radiation shielding materials are needed to protect humans in future manned exploration vehicles. Radiation shielding materials are...

  10. Improved Metal-Polymeric Laminate Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase I program, a multifunctional lightweight radiation shield composite will be developed and fabricated. This structural radiation shielding will...

  11. Corrosion of bio implants

    Indian Academy of Sciences (India)

    U Kamachi Mudali; T M Sridhar; Baldev Raj

    2003-06-01

    Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co–Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

  12. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  13. Corrosion detection by induction

    Science.gov (United States)

    Roddenberry, Joshua L.

    Bridges in Florida are exposed to high amounts of humidity due to the state's geography. This excess moisture results in a high incidence of corrosion on the bridge's steel support cables. Also, the inclusion of ineffective waterproofing has resulted in additional corrosion. As this corrosion increases, the steel cables, responsible for maintaining bridge integrity, deteriorate and eventually break. If enough of these cables break, the bridge will experience a catastrophic failure resulting in collapse. Repairing and replacing these cables is very expensive and only increases with further damage. As each of the cables is steel, they have strong conductive properties. By inducing a current along each group of cables and measuring its dissipation over distance, a picture of structural integrity can be determined. The purpose of this thesis is to prove the effectiveness of using electromagnetic techniques to determine cable integrity. By comparing known conductive values (determined in a lab setting) to actual bridge values, the tester will be able to determine the location and severity of any damage, if present.

  14. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  15. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    electrochemical measurements as well as elemental analysis look very promising for elucidating corrosion reaction mechanisms. The study of initial surface reactions at the atomic or submicron level is becoming an important field of research in the understanding of corrosion processes. At present, mainly two...... scanning microscope techniques are employed investigating corrosion processes, and usually in situ: in situ scanning tunneling microscopy (in situ STM) and in situ scanning force microscopy (in situ AFM). It is these techniques to which attention is directed here....

  16. Panel report on corrosion in energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    Corrosion problems in high-temperature (non aqueous) energy systems, corrosion in aqueous energy systems and institutional problems inhibiting the development of corrosion science and engineering are discussed. (FS)

  17. Panel report on corrosion in energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    Corrosion problems in high-temperature (non aqueous) energy systems, corrosion in aqueous energy systems and institutional problems inhibiting the development of corrosion science and engineering are discussed. (FS)

  18. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting....... Consequently, a combination of carburizing and oxidizing conditions has a strong mutual catalyzing effect on the metal dusting corrosion....

  19. Development trends in Conductive Nano-Composites for Radiation Shielding

    Directory of Open Access Journals (Sweden)

    Vishal Udmale

    2013-10-01

    Full Text Available Our paper reviews the use of conductive polymer composite materials in various applications for semi conductive, static-dissipative, anti-corrosive, electromagnetic interference (EMI shielding and stealth composite coatings. The composite consists of conductive fillers and the insulating polymer network. The composite becomes electrically conductive as the filler content exceeds a certain critical value, generally called as Percolation Threshold Value (PTV. The PTV for a particular polymer composite can be drastically reduced by using nano-sized conductive fillers. The higher the aspect ratio (length:width of the nano-fillers, the lower is the concentration for achieving the PTV. Traditionally the metals, carbon-black particles and alloys have been used as electrically conductive fillers; however, very high level of these fillers can be detrimental for the process ability, surface quality of the material, density, the cost and mechanical properties of the composite. By the use of nano conductive fillers, good conductivity will be achieved while retaining the original properties. Recently, one and two dimensional nano-creatures based on carbon such as carbon nanotubes and graphene respectively have received significant attention, due to their outstanding thermal, electronic and mechanical properties. In this paper we have compared different conductive filler materials, their dispersion techniques, and compatibility in polymer matrix and suitability in various above mentioned applications. The proliferation of mobile towers and electronic devices in the world results in harmful EMI and radio frequency interference (RFI ultimately causing operational malfunction to electronic devises and also harmful to living beings, signifies the importance of this detailed review for EMI/RFI shielding applications.

  20. International Space Station Radiation Shielding Model Development

    Science.gov (United States)

    Qualls, G. D.; Wilson, J. W.; Sandridge, C.; Cucinotta, F. A.; Nealy, J. E.; Heinbockel, J. H.; Hugger, C. P.; Verhage, J.; Anderson, B. M.; Atwell, W.

    2001-01-01

    The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization. Lightweight shield augmentation materials will be optimally fit to crew quarter areas using parametric optimization procedures to minimize the augmentation shield mass. The optimization process is being integrated into the Intelligence Synthesis Environment s (ISE s) immersive simulation facility at the Langley Research Center and will rely on High Performance Computing and Communication (HPCC) for rapid evaluation of shield parameter gradients.

  1. Design of Light Multi-layered Shields for Use in Diagnostic Radiology and Nuclear Medicine via MCNP5 Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    Mehdi Zehtabian

    2015-09-01

    Full Text Available Introduction Lead-based shields are the most widely used attenuators in X-ray and gamma ray fields. The heavy weight, toxicity and corrosion of lead have led researchers towards the development of non-lead shields. Materials and Methods The purpose of this study was to design multi-layered shields for protection against X-rays and gamma rays in diagnostic radiology and nuclear medicine. In this study, cubic slabs composed of several materials with high atomic numbers, i.e., lead, barium, bismuth, gadolinium, tin and tungsten, were simulated, using MCNP5 Monte Carlo code. Cubic slabs (30×30×0.05 cm3 were simulated at a 50 cm distance from the point photon source. The X-ray spectra of 80 kVp and 120 kVp were obtained, using IPEM Report 78. The photon flux following the use of each shield was obtained inside cubic tally cells (1×1×0.5 cm3 at a 5 cm distance from the shields. The photon attenuation properties of multi-layered shields (i.e., two, three, four and five layers, composed of non-lead radiation materials, were also obtained via Monte Carlo simulations. Results Among different shield designs proposed in this study, the three-layered shield, composed of tungsten, bismuth and gadolinium, showed the most significant attenuation properties in radiology, with acceptable shielding at 140 keV energy in nuclear medicine. Conclusion According to the results, materials with k-edges equal to energies common to diagnostic radiology can be proper substitutes for lead shields.

  2. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  3. Optimization design of electromagnetic shielding composites

    Science.gov (United States)

    Qu, Zhaoming; Wang, Qingguo; Qin, Siliang; Hu, Xiaofeng

    2013-03-01

    The effective electromagnetic parameters physical model of composites and prediction formulas of composites' shielding effectiveness and reflectivity were derived based on micromechanics, variational principle and electromagnetic wave transmission theory. The multi-objective optimization design of multilayer composites was carried out using genetic algorithm. The optimized results indicate that material parameter proportioning of biggest absorption ability can be acquired under the condition of the minimum shielding effectiveness can be satisfied in certain frequency band. The validity of optimization design model was verified and the scheme has certain theoretical value and directive significance to the design of high efficiency shielding composites.

  4. Tank evaluation system shielded annular tank application

    Energy Technology Data Exchange (ETDEWEB)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  5. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  6. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    Science.gov (United States)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  7. OPTIMAL BETA-RAY SHIELDING THICKNESSES FOR DIFFERENT THERAPEUTIC RADIONUCLIDES AND SHIELDING MATERIALS.

    Science.gov (United States)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2016-04-06

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides.

  8. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An important consideration of the use of superconducting magnets in ADR applications is shielding of the other instruments in the vicinity of the superconducting...

  9. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  10. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II program will concentrate on manufacturing of qualified low-current, light-weight, 10K ADR magnets for space application. Shielded ADR solenoidal magnets...

  11. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  12. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  13. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed a ceramic composite material system that is more effective for shielding both GCR and SPE than aluminum. The composite...

  14. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  15. Agricultural Polymers as Corrosion Inhibitors

    Science.gov (United States)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  16. INHIBITION OF CORROSION

    Science.gov (United States)

    Atherton, J.E. Jr.; Gurinsky, D.H.

    1958-06-24

    A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.

  17. Shielding Design for a Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; SONG; Guo-fang; GUAN; Feng-ping; LV; Yin-long; ZHANG; Xing-zhi

    2012-01-01

    <正>A 10 MeV 100 μA medical cyclotron is constructed at CIAE which is used in the production of FDG. The energy of the cyclotron can reach 14 MeV by adjusting the magnetic field and RF system parameters, and the shielding design is in accordance with the 14 MeV beam energy. In this shielding design only neutron is considered, and the neutron source is produced by proton

  18. Enhanced radiation shielding with galena concrete

    OpenAIRE

    Hadad Kamal; Majidi Hosein; Sarshough Samira

    2015-01-01

    A new concrete, containing galena mineral, with enhanced shielding properties for gamma sources is developed. To achieve optimized shielding properties, ten types of galena concrete containing different mixing ratios and a reference normal concrete of 2300 kg/m3 density are studied experimentally and numerically using Monte Carlo and XCOM codes. For building galena concrete, in addition to the main composition, micro-silica and water, galena mineral (contai...

  19. Influence of Shielding Arrangement on ECT Sensors

    Directory of Open Access Journals (Sweden)

    J. L. Fernandez Marron

    2006-09-01

    Full Text Available This paper presents a full 3D study of a shielded ECT sensor. The spatialresolution and effective sensing field are obtained by means of Finite Element Methodbased simulations and are the compared to a conventional sensor's characteristics. Aneffective improvement was found in the sensitivity in the pipe cross-section, resulting inenhanced quality of the reconstructed image. The sensing field along the axis of the sensoralso presents better behaviour for a shielded sensor.

  20. Undulator Beam Pipe Magnetic Shielding Effect Tests

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Andrew; Wolf, Zachary; /SLAC

    2010-11-23

    The proposed stainless steel beampipe for the LCLS undulator has a measurable shielding effect on the magnetic field of the LCLS undulators. This note describes the tests used to determine the magnitude of the shielding effect, as well as deviations in the shielding effect caused by placing different phase shims in the undulator gap. The effect of the proposed Steel strongback which will be used to support the beam pipe, was also studied. A hall probe on a 3 axis movement system was set up to measure the main component of the magnetic field in the Prototype Undulator. To account for temperature variations of the magnetic field of the undulator for successive tests, a correction is applied which is described in this technical note. Using this method, we found the shielding effect, the amount which the field inside the gap was reduced due to the placement of the beampipe, to be {approx}10 Gauss. A series of tests was also performed to determine the effect of phase shims and X and Y correction shims on the shielding. The largest effect on shielding was found for the .3 mm phase shims. The effect of the .3 mm phase shims was to increase the shielding effect {approx}4 Gauss. The tolerance for the shielding effect of the phase shims is less than 1 gauss. The effect of the strongback was seen in its permanent magnetic field. It introduced a dipole field across the measured section of the undulator of {approx}3 gauss. This note documents the tests performed to determine these effects, as well as the results of those tests.

  1. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  2. Reliability Methods for Shield Design Process

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  3. Shielding Effectiveness of Composites Containing Flaky Inclusions

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; QU Zhaoming; WANG Yilong

    2013-01-01

    To investigate the quantitative relationship between the electromagnetic-shielding property of composites and the distribution of inclusions,a scheme for predicting the shielding effectiveness of composites containing variously-distributed flaky inclusions is proposed.The scheme is based on equivalent parameters of homogeneous comparison materials and the plane-wave shielding theory.It leads to explicit formulas for the shielding effectiveness of multi-layered composites in terms of microstructural parameters that characterize the shape,distribution and orientation of the inclusions.For single layer composite that contains random and aligned flaky silver-coated carbonyl-iron particles with fractions of different volume,the predicted shielding effectiveness agrees well with the experimental data.As for composites containing aligned flaky particles,the shielding effectiveness obtained by the proposed scheme and experiment data is higher than that the random case,e.g.about 20 dB higher at 750 MHz.The proposed scheme is a straightforward method for optimizing future composite designs.

  4. Corrugation Stuffed Shield for Spacecraft and Its Performance

    Institute of Scientific and Technical Information of China (English)

    LIU You-ying; WANG Hai-fu

    2006-01-01

    A corrugation stuffed shield system protecting spacecrafts against meteoroid and orbital debris (M/OD) is presented. The semi-empirical ballistic limit equations (BLEs)defining the protection capability of the shield system are given, an d the shielding performance is also discussed. The corrugation stuffed shield (CSS) is more effective than stuffed Whipple shield for M/OD protection,and its shielding performance will be improved significantly as increasing the impact angle. Orbital debris up to 1cm in diameter can be shielded effectively as increasing the impact angle to 25° at the corrugated angle of 30°. The results are significant to spacecraft design.

  5. Antibacterial Properties and Corrosion Resistance of Nitrogen-doped TiO2 Coatings on Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Hefeng Wang; Bin Tang; Xiuyan Li; Yong Ma

    2011-01-01

    The Nitrogen-doped TiO2 (N-TiO2) coatings were fabricated on 304 austenitic stainless steel (SS) substrates by oxidation of titanium nitride coatings, which were prepared by plasma surface alloying technique. Microstructural investigation, corrosion tests and antibacterial tests were conducted to study the properties of N-TiO2 coatings. Composition analysis shows that the SS substrates were shielded by the N-TiO2 coatings entirely. The N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The corrosion properties of N-TiO2 coated SS samples in Hanks' solution were investigated by a series of tests. The electrochemical measurements indicate that the corrosion potential positively shifts from -0.275 V for untrated SS to -0.267 V for N-TiO2, while the corrosion current density decreases from 1.3× 10-5 A/cm2 to 4.1×10-6A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the N-TiO2 coatings provide good protection for SS substrate against corrosion in Hanks' solution. Electrochemistry noise tests indicate that the N-TiO2 coatings effectively retard the local pitting and crevice corrosion of the SS substrate. The results of the antibacterial test reveal that N-TiO2 coatings give 304 austenitic SS an excellent antibacterial property.

  6. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    Science.gov (United States)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  7. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  8. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  9. Effects of drip irrigation on migration and distribution of heavy metals in soil profile.

    Science.gov (United States)

    Wei, Binggan; Yu, Jiangping; Dong, Yunshe; Yang, Linsheng; Wang, Jing; Xue, Yuan; Guo, Shufang

    2016-02-01

    Drip irrigation systems have been widely applied in semiarid and arid regions of China. However, little is known about the migration of heavy metals in cultivated soil under drip irrigation. Therefore, the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in soil were determined. The mean contents of Cd, Cr, Cu, Pb, Zn, and Ni in surface soil subjected to irrigation with low and high amounts of water (W1 and W2) were 0.11, 117.50, 37.51, 13.53, 78.10, and 38.41 mg/kg and 0.20, 94.45, 29.71, 22.48, 63.00, and 36.62 mg/kg, respectively. Metal concentrations in deep soil varied slightly between W1 and W2. Among different distances from the dropper, the metal levels in surface soil varied widely, while they varied slightly in deep soil. The Igeo (geo-accumulation index) values indicated that the soil was usually contaminated by Cr, Cu, and Cd. Under W1, Cd and Cu usually accumulated in surface soil near the dropper, while the other metals leached into subsurface soil. Moreover, the metals generally accumulated in soil away from the dropper. However, significant leaching of metals to the subsurface and deep soil was observed near the dropper under W2. Away from the dropper, Cd, Cr, Cu, Ni, and Pb usually accumulated in surface and deep soil. This suggested that heavy metals generally migrated to the soil away from the dropper when subjected to lower amounts of irrigation, while metals usually moved to surface soil and deep soil under high irrigation amounts. These findings indicate that drip irrigation greatly affected the distribution and migration of heavy metals in soil, with irrigation with lower amounts of irrigation water significantly affecting the horizontal migration of heavy metals and higher amounts influencing the vertical movement of heavy metals.

  10. Water Management For Drip Irrigated Corn In The Arid Southeastern Anatolia Project Area In Turkey

    Science.gov (United States)

    Yazar, A.; Gencel, B.

    Microirrigation has the potential to minimize application losses to evaporation, runoff and deep percolation; improve irrigation control with smaller, frequent applications; supply nutrients to the crop as needed; and improve crop yields. The Southeastern Anatolia Project (GAP), when completed, 1.7 million ha of land will be irrigated. Wa- ter supplies are limited, and traditional irrigation practices result in high losses and low irrigation efficiences. This study was conducted to evaluate surface drip irrigation on crop performance. The effect of irrigation frequency and amount on crop yield, yield components, water use, and water use efficiency of corn (Zea mays L., PIO- 3267) were investigated in the Harran Plain in the arid Southeastern Turkey on a clay textured Harran Soil Series. Irrigation frequencies were once in three-day, and once in six-day; irrigation levels varied from full (I-100), medium (I-67; 2/3rd of full), and low (I-33; 1/3rd of full). The full irrigation treatment received 100% of the cumula- tive evaporation within the irrigation interval. Liquid nitrogen was injected into the irrigation water throughout the growing season. Treatments received the same amount of fertilizers. Highest average corn grain yield (11920 kg/ha) was obtained from the full irrigation treatment (I-100) with six-day irrigation interval. Irrigation intervals did not affect corn yields; however, deficit irrigation affected crop yields by reducing seed mass, and the seed number. Maximum water use efficiency (WUE) was found as 2.27 kg/m3 in the I-33 treatment plots with three-day irrigation interval. On the clay soil at Harran, irrigation frequencies are less critical than proper irrigation management for drip irrigation systems to avoid water deficits that have a greater effect on corn yields. The results revealed that about 40% water saving is possible with drip irrigation as compared to traditional surface irrigation methods in the region.

  11. Simulation of water and nitrogen dynamics as affected by drip fertigation strategies

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-jun; LI Jiu-sheng; ZHAO Bing-qiang; LI Yan-ting

    2015-01-01

    The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to ifnd out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a lfexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that: (1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to lfush the pipeline after fertilizer solution application are the three critical factors inlfu-encing the distribution of water and fertilizer nitrogen in the soil. (2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer lfushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the lfushing time period should be as shorter as possible. (3) For a given amount of fertilizer, higher

  12. [Analgesia in labor with continuous--drip venous perfusion of ketamine].

    Science.gov (United States)

    Bertoletti, P L; Ciucci, N

    1981-04-01

    A personal opinion on the way analgesia should be piloted in labour is expressed and reference is made to personal results with continuous venous drip perfusion of ketamin with a SIC P77 infusional pump in 110 cases. The data from the series are described and particular attention is given to the behaviour of the drug with respect to uterine dynamics and the incidence of instrumental intervention. Stress is laid on the considerable benefits offered by the method, including reduction of the labour period and good maternal and foetal tolerance.

  13. Effects of drip irrigation under plastic film with saline water on cotton growth and yields

    Science.gov (United States)

    Wang, B.; Jin, M.; He, Y.; Zhou, J.; Brusseau, M. L.

    2012-12-01

    To study the influence of different irrigation system for drip irrigation under plastic film with saline water on cotton growth and yields, field experiments at key irrigation experiment station of water resources management division in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China were set up consist of different irrigation ratio (5250, 4500, 3750, 3000m3/hm2), different irrigation times (24, 12 and 8 times) and different rotation irrigation modes. The results show that: with the larger irrigation ratio, the cotton growth and yields was also better, and the significant influence on cotton growth and yields for irrigation ratio is between 3750-4500 m3/hm2. When the irrigation ratio is smaller (3000m3/hm2), cotton growth and yields for irrigation times of 8 times are higher, When the irrigation ratio is bigger (4500m3/hm2), cotton growth for irrigation times of 12 times are better and its cotton yields are higher correspondingly. According to the growth of cotton, yields and water productivity, the suitable irrigation system of cotton is the irrigation ratio of 4500-3750 m3/ hm2 and the irrigation times of 18 times for drip irrigation under plastic film with saline water. For different rotation drip irrigation experiments with saline water and fresh water, the cotton yields and irrigation water productivity is higher under the disposal of SF (rotation irrigation in first 6 times with saline water irrigation and then 6 times with fresh water irrigation) compared to FS (rotation irrigation in first 6 times with fresh water and then 6 times with saline water) and SSFA (rotation irrigation with twice saline water and once fresh water) compared to SFA (alternative irrigation with saline water and fresh water). Compared to the different alternate irrigation experiments, the cotton yields and water productivity for pure saline water irrigation is higher. In addition, the trend is the larger the irrigation ratio and the higher the yields. It maybe dues to the low

  14. Secondary salinization and evapotranspiration under mulched drip irrigation condition in Tarim River basin of northwestern China

    Science.gov (United States)

    Tian, Fuqiang; Hu, Hongchang; Zhang, Zhi; Hu, Heping

    2013-04-01

    The secondary salinization induced by irrigation has been presented as a crucial threat to agriculture all over the world, especially in semi-arid and arid regions. Mulched drip irrigation (MDI), as a new micro-irrigation approach incorporating surface drip irrigation method and film mulching technique, has been widely applied in water scarce regions including Tarim River basin of northwestern China. However, salts are likely to build up in the surface soil due to the deficient leaching water in such an irrigation condition. To explore this new kind of secondary salinization issue, the oasis eco-hydrology experimental research station were established in 2008 in a cotton field of Xinjiang, northwestern China. More than 40,000 soil samples were collected to monitor soil moisture and salinity condition within the 1.5 meter depth. The patterns of soil salinity distribution under MDI along the horizontal direction as well as vertical direction have been explored. The results did show that secondary salinization tends to occur in the experimental field under mulched drip irrigation, and winter flush could leach most soil salt in the root zone into groundwater and keep salt balance to mitigate the soil salinization. Meanwhile, soil salt always migrates with the soil water flux such as irrigation and groundwater recharge. Therefore the understanding of water balance is of great importance for estimating soil salinity accumulation, of which evapotranspiration (ET) is the key process, especially in the semi-arid and arid area. In our study, in order to quantify the relation between salinity balance and water balance, ET were derived from a range of measurement systems including eddy covariance, soil water budget (gravimetric methods, Hydra probe, TDT probe and groundwater table sensor, et al.), sap flow and portable photosynthetic system during cotton growing period. Our study is unique in its focus on ET scale issue ranging from leaf and plant scale to field. The up

  15. Drip Sealing Grouting of Tunnels in Crystalline Rock: Conceptualisation and Technical Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Butron, Christian

    2012-07-01

    A conceptual model of the groundwater hydraulic conditions around the tunnel contour in ancient brittle crystalline rocks has been developed and verified. The general aim has been to reach an understanding of the groundwater conditions in and close to the tunnel roof where dripping takes place and to propose technical and practical strategies for waterproofing. Dripping is accompanied by ice growth and icicle formation in cold regions, creating additional problems such as shotcrete fall-outs, icicle fall-outs, damage to vehicles, damage to trains, etc. The methodology for the development of the conceptual model is based mainly on transmissivity determinations from short-duration hydraulic tests and analyses of the connectivity of the fracture structure by means of semi-variogram analysis. The determination of the dimensionality of the flow in the fractures has also been found to be essential in order to describe the conductive system. This conceptual model describes the fracture systems as a combination of transmissive patches (2D-flow fractures) connected by less pervious channels (1D-flow fractures). It provides an understanding of the heterogeneity and connectivity of the fracture network and thus the groundwater conditions, not only in the roof but also around the tunnel contour. The pre-excavation grouting design process used in the tunnelling projects followed a structured approach and the evaluation showed that the grouting design reduced the inflow and fulfilled the environmental demands. However, dripping remained, making its characterisation very important when proposing a possible solution for its control. It is proposed that the remaining dripping comes from a channelised system that has been left unsealed and which would be extremely difficult to intersect with future boreholes, as well as from some ungrouted fractures with inconvenient orientations. Geomembrane lining and post-excavation grouting are possible solutions, although particular attention

  16. Corrosion Prevention and Control Applications Guide

    Science.gov (United States)

    1987-03-31

    Money, Manpower Called Keys to Progress, Aviation Week & Space Technology, October 6, 1980. 12. Reboul , M. C., Galvanic Corrosion of Aluminum, National...PA, April 1980. 25. Reboul , M.C., Galvanic Corrosion of Aluminum, National Association of Corrosion Engineers, Corrosion, V. 35#9, September 1979. 146

  17. Investigation on Atmospheric Corrosiveness in Hainan Province

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the results of four-year exposure tests for carbon steel samples in Hainan province, the influences of meteorological factors and Cl- on atmospheric corrosion were investigated. The feature of atmospheric corrosion in this area was summarized. A corrosive map for the area was drawn. The corrosion products on carbon steel at some typical places were analyzed by XRD and XPS.

  18. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  19. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  20. Design of multi-function Hanford tank corrosion monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    EDGEMON, G.L.

    1999-04-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank.

  1. Some peculiarities of corrosion of wheel steel

    Directory of Open Access Journals (Sweden)

    Alexander SHRAMKO

    2009-01-01

    Full Text Available Corrosion mechanism and rate of different chemical composition and structural condition of wheel steel were investigated. It was shown that “white layers”, variation in grain size and banding of wheel steel structure results in corrosion rate. Microstructure of steel from different elements of railway wheels after operation with corrosion was investigated. Wheel steel with addition of vanadium corroded more quickly than steel without vanadium. Non-metallic inclusions are the centre of corrosion nucleation and their influence on corrosion depends on type of inclusion. Mechanism of corrosion of wheel steel corrosion was discussed.

  2. Diffusion Coatings as Corrosion Inhibitors

    Science.gov (United States)

    Ivanov, Radoslav; Ignatova-Ivanova, Tsveteslava

    2016-03-01

    Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of B2O3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH4)2.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of B2O3), and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.

  3. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  4. Diffusion Coatings as Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Ivanov Radoslav

    2016-03-01

    Full Text Available Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of В2О3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH42.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of В2О3, and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.

  5. Targeted and shielded adenovectors for cancer therapy.

    Science.gov (United States)

    Hedley, Susan J; Chen, Jian; Mountz, John D; Li, Jing; Curiel, David T; Korokhov, Nikolay; Kovesdi, Imre

    2006-11-01

    Conditionally replicative adenovirus (CRAd) vectors are novel vectors with utility as virotherapy agents for alternative cancer therapies. These vectors have already established a broad safety record in humans and overcome some of the limitations of non-replicative adenovirus (Ad) vectors. In addition, one potential problem with these vectors, attainment of tumor or tissue selectivity has widely been addressed. However, two confounding problems limiting efficacy of these drug candidates remains. The paucity of the native Ad receptor on tumor tissues, and host humoral response due to pre-existing titers of neutralizing antibodies against the vector itself in humans have been highlighted in the clinical context. The well-characterized CRAd, AdDelta24-RGD, is infectivity enhanced, thus overcoming the lack of coxsackievirus and adenovirus receptor (CAR), and this agent is already rapidly progressing towards clinical translation. However, the perceived host humoral response potentially will limit gains seen from the infectivity enhancement and therefore a strategy to blunt immunity against the vector is required. On the basis of this caveat a novel strategy, termed shielding, has been developed in which the genetic modification of a virion capsid protein would provide uniformly shielded Ad vectors. The identification of the pIX capsid protein as an ideal locale for genetic incorporation of shielding ligands to conceal the Ad vector from pre-existing neutralizing antibodies is a major progression in the development of shielded CRAds. Preliminary data utilizing an Ad vector with HSV-TK fused to the pIX protein indicates that a shield against neutralizing antibodies can be achieved. The utility of various proteins as shielding molecules is currently being addressed. The creation of AdDelta24S-RGD, an infectivity enhanced and shielded Ad vector will provide the next step in the development of clinically and commercially feasible CRAds that can be dosed multiple times for

  6. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  7. Corrosion Protection of Electrically Conductive Surfaces

    OpenAIRE

    Jian Song; Liangliang Wang; Andre Zibart; Christian Koch

    2012-01-01

    The basic function of the electrically conductive surface of electrical contacts is electrical conduction. The electrical conductivity of contact materials can be largely reduced by corrosion and in order to avoid corrosion, protective coatings must be used. Another phenomenon that leads to increasing contact resistance is fretting corrosion. Fretting corrosion is the degradation mechanism of surface material, which causes increasing contact resistance. Fretting corrosion occurs when there is...

  8. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  9. Shutdown corrosion in geothermal energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Peter F.

    1982-10-08

    Experience has shown that corrosion occurring during geothermal energy utilization system downtime--shutdown corrosion--can pose a serious threat to successful operations. Shutdown corrosion in geothermal plants appears more severe than would be expected in their nongeothermal analogs, and its mitigation may pose a severe challenge to corrosion engineering personnel. This paper presents four case histories of geothermal shutdown corrosion problems. General methods of mitigation are explored.

  10. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  11. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  12. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  13. Review on Stress Corrosion and Corrosion Fatigue Failure of Centrifugal Compressor Impeller

    Institute of Scientific and Technical Information of China (English)

    SUN Jiao; CHEN Songying; QU Yanpeng; LI Jianfeng

    2015-01-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  14. RNA-seq analysis reveals new candidate genes for drip loss in a Pietrain × Duroc × Landrace × Yorkshire population.

    Science.gov (United States)

    Li, Bojiang; Liu, Kaiqing; Weng, Qiannan; Li, Pinghua; Wei, Wei; Li, Qifa; Chen, Jie; Huang, Ruihua; Wu, Wangjun; Liu, Honglin

    2016-04-01

    Drip loss, one of the most important meat quality traits, is characterized by low heritability. To date, the genetic factors affecting the drip loss trait have not been clearly elucidated. The objective of this study was to identify critical candidate genes affecting drip loss. First, we generated a Pietrain × Duroc × Landrace × Yorkshire commercial pig population and obtained phenotypic values for the drip loss trait. Furthermore, we constructed two RNA libraries from pooled samples of longissimus dorsi muscles with the highest (H group) and lowest (L group) drip loss and identified the differentially expressed genes (DEGs) between these extreme phenotypes using RNA-seq technology. In total, 25 883 genes were detected in the H and L group libraries, and none was specifically expressed in only one library. Comparative analysis of gene expression levels found that 150 genes were differentially expressed, of which 127 were upregulated and 23 were downregulated in the H group relative to the L group. In addition, 68 drip loss quantitative trait loci (QTL) overlapping with 63 DEGs were identified, and these QTL were distributed mainly on chromosomes 1, 2, 5 and 6. Interestingly, the triadin (TRDN) gene, which is involved in muscle contraction and fat deposition, and the myostatin (MSTN) gene, which has a role in muscle growth, were localized to more than two drip loss QTL, suggesting that both are critical candidate genes responsible for drip loss.

  15. Effects of Glazing, Packaging and Phosphate Treatments on Drip Loss in Rainbow Trout (Oncorhynchus mykiss W., 1792) During Frozen Storage

    OpenAIRE

    Hülya Turan; Kaya, Yalçın; ERKOYUNCU, İbrahim

    2003-01-01

    Fresh rainbow trout (Oncorhynchus mykiss W., 1792) were frozen with different pre-freezing treatments in an air blast freezer (-35oC) and stored at -25oC for 12 months. The treatments were done using 10% sodium polyphosphate and 3% sodium metaphosphate with 4% NaCl solutions and glazing + packaging to prevent drip loss in the frozen fish. The effect of glazing + packaging treatment on drip loss during frozen storage was significant (p0.05). In other words, neither phosphate usage nor glazing ...

  16. Correlated Uncertainties in Radiation Shielding Effectiveness

    Science.gov (United States)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  17. Cosmic Ray Interactions in Shielding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  18. Advances in space radiation shielding codes

    Science.gov (United States)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  19. Asymmetric Electrostatic Radiation Shielding for Spacecraft

    Science.gov (United States)

    Metzger, Philip T.; Youngquist, Robert C.; Lane, John E.

    2005-01-01

    A paper describes the types, sources, and adverse effects of energetic-particle radiation in interplanetary space, and explores a concept of using asymmetric electrostatic shielding to reduce the amount of such radiation impinging on spacecraft. Typically, such shielding would include a system of multiple inflatable, electrically conductive spheres deployed in clusters in the vicinity of a spacecraft on lightweight structures that would maintain the spheres in a predetermined multipole geometry. High-voltage generators would maintain the spheres at potential differences chosen in conjunction with the multipole geometry so that the resulting multipole field would gradually divert approaching energetic atomic nuclei from a central region occupied by the spacecraft. The spheres nearest the center would be the most positive, so as to repel the positively charged impinging nuclei from the center. At the same time, the monopole potential of the overall spacecraft-and-shielding system would be made negative so as to repel thermal electrons. The paper presents results of computational simulations of energetic-particle trajectories and shield efficiency for a trial system of 21 spheres arranged in three clusters in an overall linear quadrupole configuration. Further development would be necessary to make this shielding concept practical.

  20. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  1. Electromagnetic shielding mats: facts and fiction.

    Science.gov (United States)

    Leitgeb, N; Cech, R

    2007-01-01

    The use of electricity is accompanied by electric and magnetic fields which, intended or not, became a part of our environment. However, fear from environmental electromagnetic fields (EMFs) is widespread and so is business with fear. A number of more or less serious products including miracle products are placed on the market partly at excessive costs. By numerical simulation the efficiency of electromagnetic shielding mats was investigated and claims of manufacturers and their cited expert opinions checked. It could be shown that such products do not fulfil the justified expectations of customers, neither in the extremely low frequency (ELF) nor in the radiofrequency (RF) range. On the contrary, these mats usually make things even worse. The connection to ground, if available, might increase the belief on shielding efficiency, but in fact it even enhances fields instead of improving shielding. The electric conductivity of the mat material plays a minor role in the ELF range and enhances field increase in the RF range. It can not explain the enormous price differences. It could be shown that positive reports can be explained by result picking and exceptional arrangements of selected field sources. Overall, the investigation showed that manufacturer's claims about the shielding effectiveness are misleading and fool the customers about the real situation. Therefore, acquisition and use of electromagnetic shielding mats must be strongly discouraged.

  2. Erosion--Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, B.

    1978-01-01

    The deterioration of materials by corrosion or erosion by itself presents a formidable problem and for this reason investigators have studied these two phenomena independently. In fact, there are very few systematic studies on E-C and the majority of references mention it only in passing. In most real systems, however, the two destructive processes take place simultaneously, hence the purpose of this review is to present the various interactions between the chemical and mechanical agents leading to accelerated degradation of the material. The papers cited in the review are those that lead to a better understanding of the process involved in the accelerated rate of material loss under E-C conditions.

  3. Hydrologic and geochemical dynamics of vadose zone recharge in a mantled karst aquifer: Results of monitoring drip waters in Mystery Cave, Minnesota

    Science.gov (United States)

    Doctor, Daniel H.; Alexander, E. Calvin; Jameson, Roy A.; Alexander, Scott C.

    2015-01-01

    Caves provide direct access to flows through the vadose zone that recharge karst aquifers. Although many recent studies have documented the highly dynamic processes associated with vadose zone flows in karst settings, few have been conducted in mantled karst settings, such as that of southeastern Minnesota. Here we present some results of a long-term program of cave drip monitoring conducted within Mystery Cave, Minnesota. In this study, two perennial ceiling drip sites were monitored between 1997 and 2001. The sites were located about 90 m (300 ft) apart along the same cave passage approximately 18 m (60 ft) below the surface; 7 to 9 m (20 to 30 ft) of loess and 12 m (40 ft) of flat-lying carbonate bedrock strata overlie the cave. Records of drip rate, electrical conductivity, and water temperature were obtained at 15 minute intervals, and supplemented with periodic sampling for major ion chemistry and water stable isotopes. Patterns in flow and geochemistry emerged at each of the two drip sites that were repeated year after year. Although one site responded relatively quickly (within 2-7 hours) to surface recharge events while the other responded more slowly (within 2-5 days), thresholds of antecedent moisture needed to be overcome in order to produce a discharge response at both sites. The greatest amount of flow was observed at both sites during the spring snowmelt period. Rainfall events less than 10 mm (0.4 in) during the summer months generally did not produce a drip discharge response, yet rapid drip responses were observed following intense storm events after periods of prolonged rainfall. The chemical data from both sites indicate that reservoirs of vadose zone water with distinct chemical signatures mixed during recharge events, and drip chemistry returned to a baseline composition during low flow periods. A reservoir with elevated chloride and sulfate concentrations impacts the slow-response drip site with each recharge event, but does not similarly

  4. [Clinical study of astromicin administered by intravenous drip infusion against chronic complicated urinary tract infections].

    Science.gov (United States)

    Suzuki, K; Takanashi, K; Nagakubo, I; Kiyosaki, H; Naide, Y

    1987-07-01

    Astromicin (ASTM) was administered by intravenous drip infusion (i.v.d.) to 22 patients with chronic complicated urinary tract infections and the clinical efficacy and safety of this drug were evaluated. The overall clinical efficacy rate obtained was 71.4% (excellent 6; moderate 9) of 21 evaluable cases by the UTI committee's criteria. Concerning the response on clinical isolates, the drug was highly effective especially against strains of Escherichia coli, indole positive Proteus and Serratia marcescens. It was not effective, however, against 2 strains of Pseudomonas aeruginosa. As for adverse reactions, there was one case which complained of headache on the 3rd day after starting treatment. In this case the drug administration was discontinued at the 5th day. The symptom disappeared within 24 hours without any treatment. No any other adverse reactions were noted. With regard to clinical test values for peripheral blood, liver and renal functions, no abnormality was observed in any of the cases treated with the drug. In conclusion, ASTM was found to be a highly effective and safe drug when administered by intravenous drip infusion in the treatment of chronic complicated urinary tract infections.

  5. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater

    Institute of Scientific and Technical Information of China (English)

    YAN Dazhuang; BAI Zhihui; Mike Rowan; GU Likun; Ren Shumei; YANG Peiling

    2009-01-01

    Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy (SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides (EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide and phospholipid fatty acids (PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coefficient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path (Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.

  6. The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA

    Institute of Scientific and Technical Information of China (English)

    T L Thompson; PANG Huan-cheng; LI Yu-yi

    2009-01-01

    Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.

  7. Sustainable domestic effluent reuse via Subsurface Drip Irrigation (SDI): alfalfa as a perennial model crop.

    Science.gov (United States)

    Kazumba, Shija; Gillerman, Leonid; DeMalach, Yoel; Oron, Gideon

    2010-01-01

    Scarcity of fresh high-quality water has heightened the importance of wastewater reuse primarily in dry regions together with improving its efficient use by implementing the Subsurface Drip Irrigation (SDI) method. Sustainable effluent reuse combines soil and plant aspects, along with the maintainability of the application system. In this study, field experiments were conducted for two years on the commercial farm of Revivim and Mashabay-Sade farm (RMF) southeast of the City of Beer-Sheva, Israel. The purpose was to examine the response of alfalfa (Medicago sativa) as a perennial model crop to secondary domestic effluent application by means of a SDI system as compared with conventional overhead sprinkler irrigation. Emitters were installed at different depths and spacing. Similar amounts of effluent were applied to all plots during the experimental period. The results indicated that in all SDI treatments, the alfalfa yields were 11% to 25% higher than the ones obtained under sprinkler irrigated plots, besides the one in which the drip laterals were 200 cm apart. The average Water Use Efficiency (WUE) was better in all SDI treatments in comparison with the sprinkler irrigated plots. An economic assessment reveals the dependence of the net profit on the emitters' installation geometry, combined with the return for alfalfa in the market.

  8. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    Science.gov (United States)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at ExThomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  9. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  10. Sorption of pathogens during sub-surface drip irrigation with wastewater

    Science.gov (United States)

    Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon

    2017-04-01

    Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.

  11. The effect of drip irrigation on the yield and quality of apples

    Directory of Open Access Journals (Sweden)

    Vladimír Veverka

    2012-01-01

    Full Text Available The paper describes the assessment of the influence of drip irrigation on the quality and yield of apples of the species Golden Delicious/M9 and Gala/M9 in the locality Velké Němčice performed by the Institute of Horticultural Machinery ZF MENDELU in Brno.The experiment is based in the orchard of the company Sady Velké Němčice, s. r. o. The assessed varieties are Golden Delicious and Gala planted in 2003 with the spacing 3.5 × 1.1 m. The experiment is performed in four rows. In every row four 50 meters long experimental sections are marked. Each section is irrigated in a different way. The irrigated sections are fitted with driplines (supplied by NETAFIM CZECH, s. r. o. with different drip-flow rates: 1.6 l/hour (sections labelled “REDUCED”, 2.3 l/hour (“STANDARD”, and 3.5 l/hour (“INCREASED”. Pipes without drippers are installed in the control sections without irrigation (“CONTROL”. The sequence of the sections in the adjacent rows varies to increase the objectivity of the measurement. During the four-year monitoring a positive influence on the quality and yield of apples has been detected.

  12. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  13. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  14. Management of Pratylenchus penetrans on Oriental Lilies with Drip and Foliar-applied Nematicides.

    Science.gov (United States)

    Westerdahl, B B; Giraud, D; Radewald, J D; Anderson, C A; Darso, J

    1993-12-01

    Pratylenchus penetrans is a pest for producers of oriental lilies in northern California. Concern over groundwater contamination from 1,2-dichloropropane following shank injections of 1,3-dichloropropene-l,2-dichloropropane mixture and granular applications of aldicarb prompted testing for alternative methods of controlling P. penetrans. In field trials, nematicides applied by drip irrigation (ethoprop, fenamiphos, oxamyl, sodium tetrathiocarbonate, water extracts of marigold and vetch, and 1,3-D plus emulsifier) were tested with and without foliar applications of oxamyl. Nematode populations were reduced (P = 0.05) relative to controls in soil or roots on one or more sampling dates by all drip-applied nematicides except the plant extracts. On some sampling dates, additional reductions (P = 0.05) occurred as a result of three foliar applications of oxamyl. Foliar-applied oxamyl alone also reduced (P = 0.05) nematodes in soil or roots. Lily bulb weight was not affected (P = 0.05) by chemical treatments.

  15. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  16. Corrosion Problems in Absorption Chillers

    Science.gov (United States)

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  17. Corrosion Resistance of Synergistic Welding Process of Aluminium Alloy 6061 T6 in Sea Water

    Directory of Open Access Journals (Sweden)

    Kharia Salman Hassan

    2014-12-01

    Full Text Available This work involves studying corrosion resistance of AA 6061T6 butt welded joints using Two different welding processes, tungsten inert gas (TIG and a solid state welding process known as friction stir welding, TIG welding process carried out by using Rolled sheet of thickness6mm to obtain a weld joint with dimension of (100, 50, 5 mm using ER4043 DE (Al Si5 as filler metal and argon as shielding gas, while Friction stir welding process carried out using CNC milling machine with a tool of rotational speed 1000 rpm and welding speed of 50mm/min to obtain the same butt joint dimensions. Also one of weld joint in the same dimensions subjected to synergistic weld process TIG and FSW weld process at the same previous weld conditions. All welded joints were tested by X-ray radiography and Faulty pieces were excluded. The joints without defects used to prepare many specimens for Corrosion test by the dimensions of (15*15*3 mm according to ASTM G71-31. Specimens subjected to micro hardness and microstructure test. Corrosion test was achieved by potential at scan rate( +1000 ,-1000mv/sec to estimate corrosion parameters by extrapolator Tafle method after polarized ±100 mv around open circuit potential,in seawater (3.5%NaCl at a temperature of 25°C. From result which obtained by Tafel equation. It was found that corrosion rate for TIG weld joint was higher than the others but synergistic weld process contributed in improving TIG corrosion resistance by a percentage of 14.3%. and FSW give the lest corrosion rate comparing with base metal.

  18. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  19. Electronics Shielding and Reliability Design Tools

    Science.gov (United States)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  20. Carbohydrate based materials for gamma radiation shielding

    Science.gov (United States)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  1. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  2. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  3. Electrochemical Studies of Atmospheric Corrosion.

    Science.gov (United States)

    1979-01-01

    Todynamlc polarization curves using a mod ifiedatmospheric corrosion mon i tor (ACM). Norma l Tafel behavior was observed , the limiting current for oxygen...following a suggestion of Peter Serada, who is heading a task group on time-of-wetness measurements In ASTM GO1 .04, in which the author is participating...about 5 papers except for 1968 where a symposium on atmospheric corrosion was held which resulted in the publ ication of an ASTM Special Technical

  4. Corrosion Control Anniston Army Depot

    Science.gov (United States)

    2010-02-09

    parts. • Anodize, Chrome, and Black Oxide (et.al.) • Substrate Prep and CARC paint. Stowage • Climate controlled storage (limited). • Weather...resistant (rain, uv) stowage . • Right Material – Right Time In Process Actions Bldgs 129 and 114 • Installation of new cleaning technologies for small... Rack Dehydration Prep Area CARC Application Flash-Off Oven De-mask and Anti- Corrosion App. Planned Future Actions Survey • Perform a corrosion survey

  5. Materials selection and corrosion problems

    Energy Technology Data Exchange (ETDEWEB)

    Cornet, I.; Greif, R.; Treseder, R.S.

    1974-06-28

    Data tabulated for chemical composition of geothermal waters are presented for four areas of interest in Nevada: Beowawe steam well and Beowawe Hot Spring, Buffalo Valley Hot Springs, Kyle Hot Springs, and Leach Hot Springs. Material recommendations were prepared for the Nevada geothermal well. A detailed field corrosion test program planned for the Nevada test well is included. A progress report is presented for a laboratory research program on velocity effects in corrosion. (MHR)

  6. Maintainability Improvement Through Corrosion Prediction

    Science.gov (United States)

    1997-12-01

    potential, current, pH, and chloride ion concentration were made along a simulated corrosion fatigue crack for HY80 (UNS K31820) steel in seawater...frequency range of 0.05-50 Hz, a 7075-T6 aluminium alloy and 304 and 316L stainless steels were fatigue tested in 3.0% NaCl solution. The increments...DESCRIPTORS: Conference Paper; Aluminum base alloys- Mechanical properties; Austenitic stainless steels - Mechanical properties; Corrosion fatigue

  7. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  8. Self-Shielding Of Transmission Lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-03-01

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.

  9. A study on the effect of crack in concrete structure in the point of radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Min; Lee, Yoon-Hee; Lee, Kun-Jai [KAIST, Daejeon (Korea, Republic of); Cho, Cheon-Hyung; Choi, Byung-Il; Lee, Heung-Young [Nuclear Environment Technology Institute, Daejeon (Korea, Republic of)

    2005-11-15

    The saturation of South Korea's at-reactor (AR) spent fuel storage pools has created a necessity for additional spent fuel storage capacity. Because the South Korean government has a plan to increase the number of nuclear power plants to 27 units by 2016, the increase of spent nuclear fuel generation will be accelerated. Because there is no concrete plan for spent unclear fuel permanent disposal, the Korea hydraulic nuclear power company is planning to construct dry storage facility. Spent nuclear fuel from CANDU type nuclear power plant will be stored in MACSTOR-400 composed by reinforced concrete. Because it is new model, it has to be licensed. Life time estimation is needed for licensing. Deterioration of reinforced concrete structure is currently of great concern for life time estimation. The most significant form of deterioration is reinforcement corrosion that gives rise to crack the concrete structure. In this study, in order to estimate the life time of MACSTOR, the tendency of crack creation, propagation and the effect of crack in concrete structure against radiation shielding are investigated. Crack creation and propagation depends on concrete cover thickness and c/d ratio. The surface dose rate at the concrete shield in MACSTOR is simulated by MCNP code about several cases. Generally in the case of point source, surface dose rate depends on shape, width and length of crack. In the case of MACSTOR-400, It is estimated that crack is not dominant factor in the point of radiation shielding in less than 0.4mm of crack width. Above results will be helpful to estimate the life time of concrete structure as radiation shield.

  10. Novel Concepts for Radiation Shielding Materials

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  11. Experimental realization of open magnetic shielding

    Science.gov (United States)

    Gu, C.; Chen, S.; Pang, T.; Qu, T.-M.

    2017-05-01

    The detection of extremely low magnetic fields has various applications in the area of fundamental research, medical diagnosis, and industry. Extracting the valuable signals from noises often requires magnetic shielding facilities. We demonstrated directly from Maxwell's equations that specifically designed superconductor coils can exactly shield the magnetic field to an extremely low value. We experimentally confirmed this effect in the frequency spectrum of 0.01-10 000 Hz and improved the electromagnetic environment in a hospital, a leading hospital in magnetocardiograph study in China.

  12. Scale-PC shielding analysis sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    1996-05-01

    The SCALE computational system is a modular code system for analyses of nuclear fuel facility and package designs. With the release of SCALE-PC Version 4.3, the radiation shielding analysis community now has the capability to execute the SCALE shielding analysis sequences contained in the control modules SAS1, SAS2, SAS3, and SAS4 on a MS- DOS personal computer (PC). In addition, SCALE-PC includes two new sequences, QADS and ORIGEN-ARP. The capabilities of each sequence are presented, along with example applications.

  13. Shielding effectiveness of rectangular cavity made of a new shielding material and resonance suppression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    New shielding material has become an alternative to traditional metal to shield boxes from electromagnetic interferences. This article introduces the theory of transmission line method to study the shield boxes made of a new sort of material, and then expands the fundamental formulas to deal with the cases of multiple holes and polarization with arbitrary angle. By means of genetic algorithms with the aid of a three dimensional simulation tool, the damping of electromagnetic resonances in enclosures is researched.The computation indicates that under resonant frequency, electromagnetic resonance results in low, even negative shielding coefficient; whereas, for the same areas, shielding effectiveness of a single hole is worse than that of multiple holes. Shielding coefficient varies when polarization angle increases, and the coupled field through the rectangular aperture with the long side parallel to the thin wire is much weaker than that with the long side vertical to the thin wire. By using the metallic-loss dielectric layer of optimized calculation on the internal surface of the cavity, the best result of resonance suppression has been realized with the same thickness of coating. Finally, according to the calculation result, suggestions for shielding are proposed.

  14. Research on the durability of shield tunnel structure%盾构隧道结构耐久性研究

    Institute of Scientific and Technical Information of China (English)

    刘艳军

    2012-01-01

    The shield tunnel is exposed to a complex aggressive environment and the factors that influence the durability of shield tunnel is complex. Projects have been built will each year bring huge economic losses because the durability damage. This paper analyzes the factors that influence the durability of shield tunnel structure, focuses on the effect of load and the environment to the structural durability which the role of long-term lead to rust of steel and concrete corrosion. Finally, the paper discusses structural durability design method of shield tunnel.%盾构隧道处于复杂的侵蚀性环境中且耐久性影响因素错综复杂,已建工程中,由于耐久性失效每年造成巨大的经济损失.本文作者分析了盾构隧道结构耐久性影响因素,重点阐述了荷载与环境的长期作用对钢筋的锈蚀和混凝土的腐蚀影响,探讨了盾构隧道结构耐久性设计方法.

  15. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-01

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giving the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  16. Seasonal variations of {sup 14}C and δ{sup 13}C for cave drip waters in Ryugashi Cave, Shizuoka Prefecture, central Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Masayo, E-mail: minami@nendai.nagoya-u.ac.jp [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan); Kato, Tomomi [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601 (Japan); Horikawa, Keiji [Department of Environmental Biology and Chemistry, Toyama University, Toyama 930-8555 (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan)

    2015-11-01

    Speleothem {sup 14}C has recently emerged as a potentially powerful proxy for hydrology changes in comparison with atmospheric {sup 14}C calibration curve, rather than as a direct dating tool, apart from a time marker using bomb peak of {sup 14}C. Some possible causes for the relationship between speleothem {sup 14}C content (or dead carbon fraction: DCF) and karst hydrology have been proposed, such as changes in temperature, precipitation, drip water flow dynamics, cave air ventilation, soil air pCO{sub 2}. In this study, we investigated seasonal variation in {sup 14}C and δ{sup 13}C of drip water in Ryugashi Cave, Shizuoka Prefecture, central Japan, to examine the causes of the {sup 14}C and δ{sup 13}C variations in a speleothem. The results show that different {sup 14}C concentrations and δ{sup 13}C values of drip water from the Ryugashi Cave, were exhibited at different sites of the Caves No. 1, No. 3, and No. 4, which have different temperature, air pCO{sub 2}, and flow paths. Further, the {sup 14}C and δ{sup 13}C of drip waters showed seasonal variations at all sites, which were lower in fall and winter, and higher in spring and summer, though the extent of the variations was different among the sites. The {sup 14}C in drip waters tended to be correlated with the drip rates: {sup 14}C tended to be higher in drip waters with higher drip rates, and also correlated with rainfall amount around the Ryugashi Cave, especially for the drip waters in Cave No. 3, which are considered to have simpler flow paths. The increase in rainfall amount could bring the increase in drip rate of drip water, and then the decrease in interaction between solution and karst, resulting in {sup 14}C increase (DCF decrease) in drip water. Accordingly, the reconstruction of precipitation could be performed using {sup 14}C variation in a speleothem formed by drip water with simple flow dynamics.

  17. Investigations on Atmospheric Corrosion of Low carbon Steel in ...

    African Journals Online (AJOL)

    Nafiisah

    2008-07-17

    Jul 17, 2008 ... index which is directly related to the weight loss due to corrosion. The corrosion index ... easily observed by visual inspection, and the robust Gaussian filter was used. .... Method of removal of corrosion products from corrosion.

  18. 1,3-dichloropropene and chloropicrin emissions following simulated drip irrigation to raised beds under plastic films.

    Science.gov (United States)

    Ashworth, D J; Luo, L; Xuan, R; Yates, S R

    2010-08-01

    Using laboratory soil chambers a nonscaled representation of an agricultural raised bed was constructed. For a sandy loam soil, 1,3-dichloropropene (1,3-D) and chloropicrin (CP) were applied at 5 cm depth with an excess of water (simulated drip irrigation). Application was made under both high density polyethylene (HDPE) and virtually impermeable film (VIF) covering the soil bed (the furrow was left uncovered). Soil gas distribution of the fumigants, together with emissions into the headspace above the bed, sidewall and furrow were determined over time. Total emissions from the HDPE treatment were cis 1,3-D 28%, trans 1,3-D 24%, and CP 8%. Due to its lower permeability, the values for VIF were 13%, 7%, and 1.5%, respectively. With HDPE, the majority (86-93%) of the emissions occurred from the bed, while for VIF the majority (92-99%) of the emissions was from the furrow. Compared to a range of literature values for shank injection, the use of drip application appears to offer a benefit in reducing 1,3-D and CP emissions. However, the most meaningful comparison is with our previous data for simulated shank injection where the same soil was covered (completely) with the same plastic films (1). In this comparison, only 1,3-D emissions under HDPE were lower with drip application; 1,3-D emissions under VIF and CP emissions under both films were greater with the drip application.

  19. Radiation grafting of glycidyl methacrylate and divinylbenzene onto polyethylene terephthalate fabrics for improving anti-dripping performance

    Science.gov (United States)

    Chen, Xu; Wang, Yue; Dai, Guoliang; Peng, Jing; Li, Jiuqiang; Shi, Meiwu; Zhai, Maolin

    2016-10-01

    A new kind of anti-dripping polyethylene terephthalate (PET) fabric was successfully prepared by simultaneous gamma radiation-induced grafting polymerization of glycidyl methacrylate (GMA) and divinylbenzene (DVB) onto the surface of PET fabrics. The grafting yield (GY) and anti-dripping effect were optimized by changing the total absorbed dose, dose rate, concentration and the feed ratio of GMA and DVB. The grafting yield increased with the increase of absorbed dose and GMA monomer concentration, and decreased with the dose rate. It is confirmed that PET fabrics had been modified by Fourier transform infrared spectroscopy analysis. The tensile strength and elongation at break of modified PET fabrics were improved compared with original PET fabrics. The limiting oxygen index (LOI) of modified PET fabrics with the GY of 23-25% was 21.5, which was similar to that of unmodified PET fabrics. However, the anti-dripping performance of PET fabrics was improved remarkably after radiation modification due to the crosslinking of the sidechains grafted on the PET surface. This anti-dripping fabric may be promising for fire protective clothing.

  20. Can subsurface drip irrigation (SDI) be a competitive irrigation system in the Great Plains region for commodity crops

    Science.gov (United States)

    Subsurface drip irrigation (SDI) as with all microirrigation systems is typically only used on crops with greater value. In the U.S. Great Plains region, the typical irrigated crops are the cereal and oil seed crops and cotton. These crops have less economic revenue than typical microirrigated cro...

  1. Characteristics of the Drip-and-Ship Paradigm for Patients with Acute Ischemic Stroke in South Korea.

    Science.gov (United States)

    Park, Man-Seok; Lee, Ji Sung; Park, Tai Hwan; Cho, Yong-Jin; Hong, Keun-Sik; Park, Jong-Moo; Kang, Kyusik; Lee, Kyung Bok; Kim, Jae Guk; Lee, Soo Joo; Lee, Jun; Choi, Kang-Ho; Kim, Joon-Tae; Cho, Ki-Hyun; Oh, Mi Sun; Yu, Kyung-Ho; Lee, Byung-Chul; Cha, Jae-Kwan; Kim, Dae-Hyun; Nah, Hyun-Wook; Lee, Juneyoung; Kim, Dong-Eog; Ryu, Wi-Sun; Kim, Beom Joon; Han, Moon-Ku; Bae, Hee-Joon; Song, Sook-Keun; Choi, Jay Chol

    2016-11-01

    Data on the drip-and-ship paradigm in Korea are limited. The present study aimed to evaluate the use of the drip-and-ship paradigm and the time delays and outcomes associated with the paradigm in Korea. We used data from the Clinical Research Center for Stroke-5 registry between January 2011 and March 2014. Among patients treated with tissue-type plasminogen activator (tPA), the use of the drip-and-ship paradigm was evaluated, and time delays and functional outcomes at 3 months were compared between patients treated with the paradigm and those treated directly at visits. Among 1843 patients who met the eligibility criteria, 244 patients (13.2%) were treated with the drip-and-ship paradigm. Subsequent endovascular recanalization therapy was used in 509 patients (27.6%). The median time from symptom onset to groin puncture was greater in patients treated with the paradigm than in those treated directly at visits (305 versus 200 minutes, P paradigm than in those directly treated at visits (odds ratio [OR] 2.15; 95% confidence interval [CI], 1.50-3.08; P paradigm was used in less than 15% of all patients treated with tPA. The use of the paradigm might cause an increase in the onset-to-groin puncture time. Additionally, clinical outcomes might be worse in patients treated with the paradigm than in those treated directly at visits. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Migrating corrosion inhibitor protection of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  3. Solutions of corrosion Problems in advanced Technologies

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Austenitic and ferritic steels were exposed in the superheater area of a straw-fired CHP plant. The specimens were exposed for 1400 hours at 450-600°C. The rate of corrosion was assessed based on unattacked metal remaining. The corrosion products and course of corrosion for the various steel types...... were investigated using light optical and scanning electron microscopy. The ferritic steels suffered from corrosion mainly via material loss. The austenitic steels suffered from predominantly selective corrosion resulting in chromium depletion from the alloy. A clear trend was observed that selective...... corrosion increased with increasing chromium content of the alloy....

  4. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  5. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Xiutong Wang; Jizhou Duan; Yan Li; Jie Zhang; Shide Ma; Baorong Hou

    2005-04-01

    Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this paper, approach in the field of SBS corrosion is reviewed. Electrochemical and microbial corrosion factors, corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and prediction of corrosion are also discussed here.

  6. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    Directory of Open Access Journals (Sweden)

    Junsheng Wu

    2017-04-01

    Full Text Available A layered double hydroxide (LDH film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM. The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS, scanning electrochemical microscopy (SECM, and a salt-spray test (SST.The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  7. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  8. Neutron shielding material based on colemanite and epoxy resin.

    Science.gov (United States)

    Okuno, Koichi

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or upgradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use.

  9. Early test facilities and analytic methods for radiation shielding: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D T [comp.; Oak Ridge National Lab., TN (United States); Ingersoll, J K [comp.; Tec-Com, Knoxville, TN (United States)

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  10. New shield for gamma-ray spectrometry

    Science.gov (United States)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  11. The Tower Shielding Facility: Its glorious past

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  12. Lightweight concrete with enhanced neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  13. MPACT Subgroup Self-Shielding Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-31

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  14. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    Neutrons are moderated or reduced in energy by scattering off of nuclei. When cosmic neutrons with high kinetic energy enter earth’s atmosphere...neutron flux. The simulation volume was modeled as a sphere centered at the origin with a radius of 100 cm. The shielding material was modeled as a

  15. Is Collegiality a Weapon or a Shield?

    Science.gov (United States)

    Cipriano, Robert E.; Buller, Jeffrey L.

    2017-01-01

    There are two primary means to prevent the abuse of collegiality and transform it into a shield to protect the most vulnerable. First, colleges and universities should follow the examples of their peers by developing clear definitions of what types of behavior constitute collegiality and what types of activity are protected as academic freedom or…

  16. Radiation Shielding for Manned Deep Space Missions

    Science.gov (United States)

    Adams, James H., Jr.

    2003-01-01

    The arrival of the Expedition 1 Crew at the International Space Station represents the beginning of the continuous presence of man in space. Already we are deploying astronauts and cosmonauts for missions of approx. 6 months onboard the ISS. In the future we can anticipate that more people will be in space and they will be there for longer periods. Even with 6-months deployments to the ISS, the radiation exposure that crew members receive is approaching the exposure limits imposed by the governments of the space- faring nations. In the future we can expect radiation protection to be a dominant consideration for long manned missions. Recognizing this, NASA has expanded their research program on radiation health. This program has three components, bioastronautics, fundamental biology and radiation shielding materials. Bioastronautics is concerned with the investigating the effects of radiation on humans. Fundamental biology investigates the basic mechanisms of radiation damage to tissue. Radiation shielding materials research focuses on developing accurate computational tools to predict the radiation shielding effectiveness of materials. It also investigates new materials that can be used for spacecraft. The radiation shielding materials program will be described and examples of results from the ongoing research will be shown.

  17. Oxygen Abundance Measurements of SHIELD Galaxies

    CERN Document Server

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  18. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  19. EFFECTS OF INTERFACES ON GAMMA SHIELDING

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, C.E.

    1963-06-15

    A survey is presented of studies of interface effects in gamma shielding problems. These studies are grouped into three types of approaches, viz.: sources at the interface; radiation backscattered from the interface; and radiation transmitted through the interface. A bibliography of 54 references is included. Limitations on the applicability of the results are discussed. (T.F.H.)

  20. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.

    2015-01-01

    , which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...

  1. Report on accelerated corrosion studies.

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  2. An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghi

    2017-01-01

    Full Text Available In this work, improving the abrasion–corrosion behavior of gray cast iron used in centrifugal pumps was studied. These pumps are usually made of gray cast iron (BS:1452Gr220 and are repaired by Shielded Metal Arc Welding (SMAW. Three different typical welding electrodes including Ni electrode (DIN8563, Carbon Steel electrode (DIN1913, and Hardening electrode (DIN8555 were used to compare the weldability of the base metal. Microstructural differences for three types of electrodes were studied and forming of different phases was analyzed. Corrosion and abrasion tests were conducted and related to welding conditions. Experimental results showed that using Ni substrate electrode reduce the unwanted phases (martensitic and carbides. Furthermore, in comparison with the base metal, the abrasion behavior of all weldments was improved. It was also determined that the carbon steel electrode has a higher corrosion resistance in zero-resistance ammeter (ZRA test compared to other electrodes.

  3. Detective probe prevents corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-07-01

    A black liquor recovery boiler is the main investment in a pulp mill, accounting for: about a third of the total cost of FIM 3-4 billion. Environmental aspects required that all the harmful chemicals involved in the process have to be kept within a pulp mill, rather than be released outside, and closed water circulation systems have to be introduced. These have led to the enrichment of some process and non-process chemicals causing corrosion problems and process disturbances in the boiler. The recovery boiler receives the liquor after the digestion stage, i.e. when woodchips are cooked to make cellulose, and burns it. During digestion, the wood produces out lignin, mixed with the liquor (consisting of sodium sulphide and hydroxide). The black liquor is burnt at the bottom of the boiler after the organic parts have been fired off. The rest goes into the recovery system and the chemicals are recycled producing energy, saving repurchasing chemicals and protecting the environment from toxic emissions.

  4. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  5. Assessing the use of 3H-3He dating to determine the subsurface transit time of cave drip waters.

    Science.gov (United States)

    Kluge, Tobias; Wieser, Martin; Aeschbach-Hertig, Werner

    2010-09-01

    (3)H-(3)He measurements constitute a well-established method for the determination of the residence time of young groundwater. However, this method has rarely been applied to karstified aquifers and in particular to drip water in caves, despite the importance of the information which may be obtained. Besides the determination of transfer times of climate signals from the atmosphere through the epikarst to speleothems as climate archives, (3)H-(3)He together with Ne, Ar, Kr, Xe data may also help to give new insights into the local hydrogeology, e.g. the possible existence of a perched aquifer above a cave. In order to check the applicability of (3)H-(3)He dating to cave drips, we collected drip water samples from three adjacent caves in northwestern Germany during several campaigns. The noble gas data were evaluated by inverse modelling to obtain recharge temperature and excess air, supporting the calculation of the tritiogenic (3)He and hence the (3)H-(3)He age. Although atmospheric noble gases were often found to be close to equilibrium with the cave atmosphere, several drip water samples yielded an elevated (3)He/(4)He ratio, providing evidence for the accumulation of (3)He from the decay of (3)H. No significant contribution of radiogenic (4)He was found, corresponding to the low residence times mostly in the range of one to three years. Despite complications during sampling, conditions of a perched aquifer could be confirmed by replicate samples at one drip site. Here, the excess air indicator ΔNe was about 10 %, comparable to typical values found in aquifers in mid-latitudes. The mean (3)H-(3)He age of 2.1 years at this site presumably refers to the residence time in the perched aquifer and is lower than the entire transit time of 3.4 years estimated from the tritium data.

  6. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    Science.gov (United States)

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (Pirrigation reduced NO emissions by 42% (Pirrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  8. On New Limits of the Coefficient of Gravitation Shielding

    Indian Academy of Sciences (India)

    Michele Caputo

    2006-12-01

    New limits of the shielding coefficients in the supposed phenomenon of gravitation shielding have recently become available. The new values are briefly reviewed and discussed in order to update the state of art since some new limits for gravitation shielding are not necessarily the lowest ones which, instead, are those of interest when planning new experimental research or studying theoretically the possible effects of gravitation shielding.

  9. Effect of Different Norms of Under-Mulch-Drip Irrigation on Diurnal Changes of Photosynthesis and Chlorophyll Fluorescence Parameter in High Yield Cotton of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wang-feng; REN Li-tong; WANG Zhen-lin; LI Shao-kun; GOU Ling; YU Songlie; CAO Lian-pu

    2003-01-01

    Under-mulch-drip irrigation is an advanced irrigation technique, which combines plastic-film-covered cultivation with drip irrigation. The influence of different norms of under-mulch-drip irrigation on di-urnal changes of photosynthetic rates and chlorophyll fluorescence parameters of cotton was studied, in orderto understand the physiological mechanisms of water-saving and high-yielding farming in Xinjiang. Results in-dicated that limited drip irrigation, which supplies 2/3 of 375 m3 ha-1 , the widely-used irrigation norm in cot-ton cultivation in Xinjiang, caused a water deficit in cotton field. Compared with the proper drip irrigation,the leaf photosynthetic rate under limited drip irrigation decreased during 9:00 to 11:00 a. m., and was sig-nificantly suppressed at midday, and then recovered afterwards. Using the chlorophyll fluorescence method,the absorption, transfer and transformation features of solar radiation by cotton leaf were investigated. Underlimited drip irrigation, the variable fluorescence (Fy) and primary light transfer efficiency of PSII (Fv/Fm)in cotton leaves were reduced because of the high light intensities and high temperatures at noon, and the de-crease in Xinluzao8 was greater than that in Xinluzao6. Therefore, it could be concluded that Xinluzao6 has ahigher drought-tolerance, and the Fv/Fm ratio could be used as a drought-resistance index for cotton.

  10. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    Science.gov (United States)

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  11. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    Science.gov (United States)

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  12. Pharmacokinetic evaluation of Shenfu Injection in beagle dogs after intravenous drip administration

    Directory of Open Access Journals (Sweden)

    Yuqiao Zhang

    2016-10-01

    Full Text Available Shenfu Injection (SFI is a well-defined Chinese herbal formulation that is obtained from red ginseng and processed aconite root. The main active constituents in SFI are ginsenosides and aconitum alkaloids. In this work, ginsenosides (ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rc and aconitum alkaloids (benzoylmesaconine and fuziline were used as the index components to explore the pharmacokinetic behavior of SFI. A selective and sensitive HPLC–MS/MS method was developed for the quantification of ginsenosides and aconitum alkaloids in dog plasma and was used to characterize the pharmacokinetics of the five index components after intravenous drip of three different dosages of SFI in beagle dogs. The pharmacokinetic properties of the index components were linear over the dose range of 2–8 mL/kg.

  13. Finite-temperature pairing re-entrance in the drip-line nucleus 48Ni

    Science.gov (United States)

    Belabbas, Mohamed; Li, Jia Jie; Margueron, Jérôme

    2017-08-01

    Finite-temperature Hartree-Fock-Bogoliubov theory using Skyrme interactions and relativistic Hartree-Fock effective Lagrangians predicts 48Ni as being a possible candidate for the finite-temperature pairing re-entrance phenomenon. For this proton-drip-line nucleus, proton resonant states are expected to contribute substantially to pairing correlations and the two predicted critical temperatures are Tc 1˜0.08 -0.2 MeV and Tc 2˜0.7 -0.9 MeV. It is also shown that pairing re-entrance modifies the proton single-particle energies around the Fermi level, as well as occupation numbers and quasiparticle levels. The understanding of pairing re-entrance in 48Ni presently challenges our understanding of exotic matter under extreme conditions.

  14. First observation of an isomeric state in proton drip-line nucleus 26P

    Directory of Open Access Journals (Sweden)

    Nishimura D.

    2014-03-01

    Full Text Available An isomeric state in the proton drip-line nucleus 26P has been observed by the γ-ray spectroscopy. The γ-ray energy and the half-life are 164.4 ± 0.1 keV and 120 ± 9 ns, respectively. For the isomeric transition of the mirror nucleus 26Na, the γ-ray energy of 82.40 ± 0.04 keV and the half-life of 4.35 ± 0.16 μs are also revised. Comparing the experimental reduced transition probabilities of 26Na and 26P with theoretical ones calculated by the shell model with the USDA interaction, the spin-parity (Jπ of the isomeric state in 26P is most likely to be 1+.

  15. The design of liquid drip speed monitoring device system based on MCU

    Science.gov (United States)

    Zheng, Shiyong; Li, Zhao; Li, Biqing

    2017-08-01

    This page proposed an intelligent transfusion control and monitoring system which designed by using AT89S52 micro controller as the core, using the keyboard and photoelectric sensor as the input module, digital tube and motor as the output module. The keyboard is independent and photoelectric sensor can offer reliable detection for liquid drop speed and the transfusion bottle page. When the liquid amount is less than the warning value, the system sounded the alarm, you can remove the alert by hand movement. With the advantages of speed controllable and input pulse power can be maintained of the motor, the system can control the bottle through the upper and lower slow-moving liquid drip to control the speed of intelligent purpose.

  16. Impact of Drip Irrigation Scheduling on Vegetative Parameters in Tomato (Lycopersicon esculentum Mill. Under Unheated Greenhouse

    Directory of Open Access Journals (Sweden)

    S.M. Alaoui

    2014-01-01

    Full Text Available Grafted Tomatoes were grown on a fine sandy soil using drip irrigation and plastic mulch to evaluate the effects of irrigation scheduling on water requirements and vegetative parameters under typical Massa greenhouses growing conditions. Capacitive sensors were used to automatically schedule irrigations. The result of this study shows that irrigation dose and frequency does not affect stem diameter in grafted tomato plant, no significant effect on leaves number has been observed. But irrigation scheduling have a large effect on root’s development, The root containers results indicated that a water stress equivalent to 50%ETc and 20% frequency can lead to deep root system; that makes possible to sustain a suitable vegetative canopy if doses and frequencies are well managed in a daily scale; It was possible save 50% of irrigation water.

  17. Pharmacokinetic evaluation of Shenfu Injection in beagle dogs after intravenous drip administration.

    Science.gov (United States)

    Zhang, Yuqiao; Tian, Dali; Huang, Yuyou; Li, Ling; Mao, Juan; Tian, Juan; Ding, Jinsong

    2016-11-01

    Shenfu Injection (SFI) is a well-defined Chinese herbal formulation that is obtained from red ginseng and processed aconite root. The main active constituents in SFI are ginsenosides and aconitum alkaloids. In this work, ginsenosides (ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rc) and aconitum alkaloids (benzoylmesaconine and fuziline) were used as the index components to explore the pharmacokinetic behavior of SFI. A selective and sensitive HPLC-MS/MS method was developed for the quantification of ginsenosides and aconitum alkaloids in dog plasma and was used to characterize the pharmacokinetics of the five index components after intravenous drip of three different dosages of SFI in beagle dogs. The pharmacokinetic properties of the index components were linear over the dose range of 2-8 mL/kg.

  18. Crop growth and two dimensional modeling of soil water transport in drip irrigated potatoes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Iversen, Bo Vangsø; Mollerup, Mikkel

    2009-01-01

    Drip irrigation can be an effective way to improve water and nitrogen use efficiency in soil and hence to reduce the environmental pollution. In the EU project SAFIR ( http://www.safir4eu.org/ ) a potato experiment was carried out in lysimeters on three different soil types: coarse sand, loamy sand...... of abscisic acid (ABA). Model outputs from the mechanistic simulation model Daisy, in SAFIR developed to include 2D soil processes and gas exchange processes based on Ball et al. and Farquhar were compared with measured crop dynamics, final DM yield and volumetric water content in the soil measured by TDR...... probes. The probes were installed parallel to the tillage direction at different positions in the potato ridge. The new Daisy 2D model showed to be able to simulate crop growth, water use and soil water distribution fairly well...

  19. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    Full Text Available The influence of deficit irrigation (DI with saline water on soil salinity in a drip-irrigated potato and millet fields was investigated. We had compared proportional soil salinity developed under Full and DI under drip irrigation. For both experiments, the treatments were (1 Full, control treatment where rooting zone soil water content was increased to field capacity at each irrigation; (2 DI80; (3 DI60 and DI40; 20, 40 and 60% deficit irrigation compared to Full treatment were applied, respectively. Soil salinity was assessed using the isosalinity maps constructed with grid soil sampling of plant root zone at harvest. Results show that high spatial variability was observed in salinity along soil profiles when applying saline water with drip irrigation for potato. For the DI40 and DI60 treatments, high soil salinity was recorded in the upper soil layer close to the emitter. Increase of soil salinity within soil depths of 30 cm or below was also observed under DI60 and DI40 treatments. The lowest increase was noted under the full treatment. Surface soil salinity was somewhat higher under DI60 and DI40 compared with that of full and DI80 irrigation treatments. The distribution of salts around the dripper changes during the crop season according to applied irrigation treatments, with overall higher concentrations between the drippers and towards the margin of wetted band. Iso-salinity maps at harvest of potato showed that the surface layer of 30 cm depth had the lowest salinity which gradually increased at deeper zones irrespective of the treatment. Salt accumulation essentially occurred at wetting front between the drippers and the plant row. Although salt accumulation was relatively highest along the row under DI treatments, the area of accumulation was relatively shifted toward the center between the rows and the drip line. The results also show the importance of the potato cropping season to benefit from the leaching of soluble salts with the

  20. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  1. Rain, Hail, and Drip frames of the Schwarzschild-de Sitter Geometry

    Science.gov (United States)

    Finch, Tehani

    2017-01-01

    Various families of coordinate systems associated with observers moving inwardly along radial geodesics in the Schwarzschild geometry have been constructed by generalizing the Painleve-Gullstrand coordinates. Such observers have categorized as being in the rain frame, a hail frame, or a drip frame, by Taylor and Wheeler. This framework naturally progresses into a search for counterparts of these coordinate systems for the Schwarzschild-de Sitter (SdS) geometry. Consideration of local measurements made by a fiducial observer suggests that the conserved Killing quantity which best fits the designation of ``energy'' in the SdS geometry differs from the one which is typically denoted as such. This leads to Painleve-Gullstrand-style coordinate systems for the SdS geometry that differ from the naïve extrapolations of the Schwarzschild or de Sitter geometries.

  2. Prevalence of potentially thermophilic microorganisms in biofilms from greenhouse-enclosed drip irrigation systems.

    Science.gov (United States)

    Sánchez, Olga; Ferrera, Isabel; Garrido, Laura; del Mar Gómez-Ramos, Maria; Fernández-Alba, Amadeo Rodríguez; Mas, Jordi

    2014-03-01

    Drip irrigation systems using reclaimed water often present clogging events of biological origin. Microbial communities in biofilms from microirrigation systems of an experimental greenhouse in Almería, SE Spain, which used two different qualities of water (treated wastewater and reclaimed water), were analyzed by denaturing gradient gel electrophoresis and subsequent sequencing of amplified 16S rRNA gene bands. The most remarkable feature of all biofilms was that regardless of water origin, sequences belonging to Firmicutes were prevalent (53.5 % of total mean band intensity) and that almost all sequences recovered had some similarity (between 80.2 and 97 %) to thermophilic microorganisms. Mainly, sequences were closely related to potentially spore-forming organisms, suggesting that microbial communities able to grow at high temperatures were selected from the microbiota present in the incoming water. These pioneer results may contribute to improve management strategies to minimize the problems associated to biofouling in irrigation systems.

  3. Corrosion in Electronic Devices and Sensors to Prevent Corrosion

    Directory of Open Access Journals (Sweden)

    Siddharth Dev

    2014-02-01

    Full Text Available Many types of metal and alloys are used in various electronic devices and components like computers, microchips, printed circuit board (PCB, integrated circuits, transistors, and diodes etc. Such components have variety of applications in the field of medical, aerospace, automotive sectors, telecommunication and defense. These components are exposed to different types of environments. The increased used of electronics has also increased the demand for reliability. The size of electronic equipment is also very significant parameter and it has been decreasing presently at a faster rate. The smaller size of equipment has undetectable failures. Though the corrosion taking place in electronic components is generally of micro level which can not be detected easily but the services of device are seized. The paper deals with the various types of corrosion in electronic components as a case study and an approach towards development of some sensor for corrosion monitoring.

  4. Electromagnetic shielding. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-06-01

    The bibliography presents research on electromagnetic shielding of electronic and electrical equipment personnel, and ordnance. The shielding effectiveness of materials and structures is covered. Nuclear electromagnetic pulse shielding is included. This updated bibliography contains 301 abstracts, 19 of which are new entries to the previous edition.

  5. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous...

  6. Telescoping Shield for Point-Focusing Solar Concentrators

    Science.gov (United States)

    Argoud, M.; Walker, W.; Butler, L. V.

    1985-01-01

    Telescoping shield normally stowed around solar receiver protects heat engine and supporting structure from overheating when concentrator aimed few degrees away from line to Sun. When extended, shield intercepts off center concentrated solar radiation. Heat spread out over thermally conductive shield and reradiated diffusely not to cause structural damage.

  7. Salt distribution under mulched drip irrigation in a cotton field of northwestern China

    Science.gov (United States)

    Zhang, Z.; Tian, F.; Hu, H.; Yao, X.; Zhong, R.; Hu, H.

    2012-12-01

    A 3-year experiment was conducted in Xinjiang, northwestern China, to investigate the specific pattern of salt distribution and accumulation associated with mulched drip irrigation in a cotton (Gossypium hirsutum L.) field. The experimental site was divided into three fields according to their distinct features of soil particle size distribution, and three replicators were designed in every field. Above 30,000 soil samples were collected throughout the experimental years, and this large number of soil samples help to answer the strong heterogeneity of soil salinity at the field scale and get the continuous salinity data under the destructive salinity measurement method. The results indicate that the soil salt migrates with water flux and accumulates at the periphery of the wetted soil mass, and the ration of the EC value in inter-film zone to wide-row zone at the end of growth period are 2.34, 1.78 and 1.24 for the three fields, respectively, which implies soil salt would transport to and accumulate in the inter film zone (IFM) more easily for sandy soil than clay soil along the horizontal direction. The field experiment shows the soil salt tends to build up at the interface of soil texture (where the soil texture changes rapidly from sandy at the upper layer to clay at the lower) , which means that layered pattern of soil particle size distribution dominates the vertical distribution pattern of soil salinity. The dimensionless index representing the specific salt distribution pattern associated with mulched drip irrigation was also introduced and modified, and the study shows that the index can well delineate the salt qualitative distribution along the vertical direction.

  8. Can growth-days predict the crop coefficient of cotton under mulched drip irrigation?

    Science.gov (United States)

    Yang, Pengju; Tian, Fuqiang; Hu, Hongchang; Zhang, Zhi; Dai, Chao

    2015-04-01

    Mulched drip irrigation (MDI) has now become popular in arid and semi-arid areas like Tarim River basin located in northwest of China. It has the advantages of saving water as well as increasing crop yield. As an important cash crop, cotton is widely planted in Tarim basin that usually adopts MDI. Irrigation management requires prediction of evapotranspiration (ET). It is usually calculated by FAO-56 method, in which the crop coefficient (Kc) is a necessary parameter needed to determined a prior. Theoretically the crop characteristics like LAI can serve as a direct indicator to determine Kc. Practically two other indicators of growing-degree-day (GDD) and growth-day (GD) are also used to determine Kc. In this study a 3-year experiment was conducted to quantify the weekly ETc and develop a crop coefficient (Kc) model for mulched drip-irrigated cotton based on eddy covariance observation. Two polynomial models were developed to predict the Kc as a function of growth days (r2=0.95) and growing degree-day (GDD) (r2=0.96) in the growth stage after seeding. A logarithmic function (r2=0.87) was used to describe the Kc variability with LAI increase. The results showed that both the three models fitted well with the Kc and the LAI values could fit the Kc well before the end growth stage. The LAI can better simulate Kc with daily step, but with weekly step the accuracy of LAI is lower than the other two variables. Our results showed that the growth-day is a reliable indicator to predict the cotton Kc under MDI, which provide a basis for transpiration modeling in cotton fields.

  9. Bioenergy from Coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater.

    Science.gov (United States)

    Cantrell, Keri B; Stone, Kenneth C; Hunt, Patrick G; Ro, Kyoung S; Vanotti, Matias B; Burns, Joseph C

    2009-07-01

    Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern US due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with livestock wastewater. The objective of this study was to determine the effect of subsurface drip irrigation with treated swine wastewater on both the quantity and quality of bermudagrass bioenergy. The treated wastewater was recycled from an advanced treatment system and used for irrigation of bermudagrass in two crop seasons. The experiment had nine water and drip line spacing treatments arrayed in a randomized complete block-design with four replicates. The bermudagrass was analyzed for calorific and mineral contents. Bermudagrass energy yields for 2004 and 2005 ranged from 127.4 to 251.4MJ ha(-1). Compared to irrigation with commercial nitrogen fertilizer, the least biomass energy density was associated with bermudagrass receiving treated swine wastewater. Yet, in 2004 the wastewater irrigated bermudagrass had greater hay yields leading to greater energy yield per ha. This decrease in energy density of wastewater irrigated bermudagrass was associated with increased concentrations of K, Ca, and Na. After thermal conversion, these compounds are known to remain in the ash portion thereby decreasing the energy density. Nonetheless, the loss of energy density using treated effluent via SDI may be offset by the positive influence of these three elements for their catalytic properties in downstream thermal conversion processes such as promoting a lesser char yield and greater combustible gas formation.

  10. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  11. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  12. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  13. Corrosion effects on friction factors

    Energy Technology Data Exchange (ETDEWEB)

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  14. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  15. Microencapsulation of Corrosion Indicators for Smart Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  16. Method For Testing Properties Of Corrosive Lubricants

    Science.gov (United States)

    Ohi, James; De La Cruz, Jose L.; Lacey, Paul I.

    2006-01-03

    A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

  17. How stable are the 'stable ancient shields'?

    Science.gov (United States)

    Viola, Giulio; Mattila, Jussi

    2014-05-01

    "Archean cratons are relatively flat, stable regions of the crust that have remained undeformed since the Precambrian, forming the ancient cores of the continents" (King, EPSL, 2005). While this type of statement is supported by a wealth of constraints in the case of episodes of thoroughgoing ductile deformation affecting shield regions of Archean and also Peleoproterozoic age, a growing amount of research indicates that shields are not nearly as structurally stable within the broad field of environmental conditions leading to brittle deformation. In fact, old crystalline basements usually present compelling evidence of long brittle deformation histories, often very complex and challenging to unfold. Recent structural and geochronological studies point to a significant mechanical instability of the shield areas, wherein large volumes of 'stable' rocks actually can become saturated with fractures and brittle faults soon after regional cooling exhumes them to below c. 300-350° C. How cold, rigid and therefore strong shields respond to applied stresses remains, however, still poorly investigated and understood. This in turn precludes a better definition of the shallow rheological properties of large, old crystalline blocks. In particular, we do not yet have good constraints on the mechanisms of mechanical reactivation that control the partial (if not total) accommodation of new deformational episodes by preexisting structures, which remains a key to untangle brittle histories lasting several hundred Myr. In our analysis, we use the Svecofennian Shield (SS) as an example of a supposedly 'stable' region with Archean nucleii and Paleoproterozoic cratonic areas to show how it is possible to unravel the details of brittle histories spanning more than 1.5 Gyr. New structural and geochronological results from Finland are integrated with a review of existing data from Sweden to explore how the effects of far-field stresses are partitioned within a shield, which was growing

  18. Smart Coatings for Launch Site Corrosion Protection

    Science.gov (United States)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  19. Multicomponent Oxide Systems for Corrosion Protection.

    Science.gov (United States)

    1980-11-15

    and Si(OEt) 4 are somewhat lpss corrosive to aluminum than is SiCI 4 alone, although some pitting occurs for slow hydrolysis after coating by solutions...humidity (x) 86 A𔃻 determinants of corrosion resistance. The magnesium-silicon- aluminum alloy AA 6061 is generally considered to have good corrosion ... 6061 ), the corrosion resistance exceeded that of the chromate coatings. The feasibilityof the basic approach taken here has been validated. It

  20. Surface modification for corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  1. Electrochemical corrosion of metallic biomaterials.

    Science.gov (United States)

    Pourbaix, M

    1984-05-01

    Methods of electrochemical thermodynamics (electrode potential-pH equilibrium diagrams) and electrochemical kinetics (polarization curves) may help to understand and predict the corrosion behaviour of metals and alloys in the presence of body fluids. A short review of the literature is given concerning some applications of such methods, both in vitro and in vivo, relating to surgical implants (stainless steels, chromium-cobalt-molybdenum alloys, titanium and titanium alloys) and to dental alloys (silver-tin-copper amalgams, silver-base and gold-base casting alloys, nickel-base casting alloys). Attention is drawn to the necessity of more basic research on crevice- and fretting-corrosion of surgical implant materials and dental alloys, and to the toxicity of corrosion products. A perfect understanding of the exact significance of electrode-potentials is essential for the success of such a task.

  2. Strain Measurement Technology for Corrosion Fatigue Specimen

    Institute of Scientific and Technical Information of China (English)

    ZHONG; Wei-hua; NING; Guang-sheng; ZHANG; Chang-yi; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    Main pipeline is the key component of nuclear power plants(NPPs).Under the first loop water and low-cyclic load condition,the main pipeline may be induced to corrosion fatigue failure.Thus,it’s necessary to test and get the corrosion fatigue property of main pipeline material.During the corrosion fatigue test,the strain

  3. 7 CFR 2902.44 - Corrosion preventatives.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  4. 49 CFR 193.2625 - Corrosion protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  5. Corrosion-Induced Concrete Cracking Model Considering Corrosion-Filled Paste

    OpenAIRE

    Dong, Jianfeng; Zhao, Yuxi; Wu, Yingyao; Jin, Weiliang

    2016-01-01

    A TCP–TCL model is established to describe the relationship between the thickness of the corrosion-filled paste (CP) and that of the corrosion layer (CL). This model can describe the phenomenon that the corrosion filling in the concrete pores and accumulating at the steel/concrete interface occur synchronously. Based on the TCP–TCL model, a corrosion-induced concrete cracking model, which can quantitatively consider corrosion-filled paste at concrete/steel interface, is proposed. Combined wit...

  6. Corrosion-Inhibitor Efficiency Control: Comparison by Means of Different Portable Corrosion Rate Meters

    OpenAIRE

    Martinez Sierra, Isabel; Andrade Perdrix, Maria del Carmen; Rebolledo Ramos, Nuria; Luo, L; De Schutter, G

    2010-01-01

    Corrosion-inhibiting substances have been applied to suppress corrosion mainly on bare steel, but when corrosion is progressing, suppression can be achieved if anodic and cathodic reactions are avoided, which is not an easy objective, particularly if the bare metal is surrounded by concrete. In the present article, several corrosion inhibitors are studied to identify their inhibition efficiency in concrete. The percentage of reduction of the corrosion rate without and with inhibitor is named ...

  7. Electrochemical Measurement of Atmospheric Corrosion

    Science.gov (United States)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  8. Corrosion performance of structural alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  9. Measurement of shielding characteristics in the prototype FBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Sasaki, Kenji; Deshimaru, Takehide; Nakashima, Fumiaki [Japan Nuclear Cycle Development Institute, Tsuruga, Fukui (Japan)

    2000-03-01

    In the prototype fast breeder reactor Monju, shielding measurements were made around the reactor core, the primary heat transport system (PHTS), and the fuel handling and storage system during the system start-up tests at different power levels between 0% and 45%. The objectives of the tests were to evaluate the margins by which the shielding performance exceeds the original design requirements, to demonstrate the validity of the shielding analysis method, and to acquire basic data for use in future FBR design. This paper summarizes the important features of the Monju shielding structures and the shielding measurement. (author)

  10. Shielding of Electronic Systems against Transient Electromagnetic Interferences

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2005-01-01

    Full Text Available In order to protect electronic systems against the effects of transient electromagnetic interferences, shields made of electrically conductive material can be used. The subject of this paper is an electrically conductive textile. When applying the shield, a reliable measure is needed in order to determine the effectiveness of the shield to protect against electromagnetic pulses. For this purpose, a time domain measurement technique is presented using double exponential pulses. With these pulses, the susceptibility of an operating electronic device with and without the shield is determined. As a criterion of quality of a shield, the breakdown failure rate found in both cases is compared.

  11. Shield Insertion to Minimize Noise Amplitude in Global Interconnects

    Directory of Open Access Journals (Sweden)

    Kalpana.A.B

    2012-09-01

    Full Text Available Shield insertion is an effective technique for minimise crosstalk noise and signal delay uncertainty .To reduce the effects of coupling uniform or simultaneous shielding may be used on either or both sides of a signal line. Shields are ground or power lines placed between two signal wires to prevent direct coupling between them as the shield width increases, the noise amplitude decreases, in this paper inserting a shield line between two coupled interconnects is shown to be more effective in reducing crosstalk noise for different technology nodes .

  12. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  13. Cyclone reburning retrofit: Corrosion evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sarv, H.; Paul, L.D. (Babcock and Wilcox Co., New Orleans, LA (USA))

    1991-01-01

    Reburning is an emerging NO{sub x} reducing technology which offers cyclone boiler owners a promising alternative to the more expensive flue gas cleanup techniques. Pilot-scale test results have shown that the corrosive H{sub 2}S gas can evolve during reburn. This can pose a potential problem and concern in retrofits burning high-sulfur Illinois coals. This research program is intended to assess tube corrosion under simulated reburning conditions (temperature, stoichiometry, and H{sub 2}S concentration). Performance of existing carbon steel as well as other alloys will be tested and compared. 1 fig.

  14. Cyclone reburning retrofit: Corrosion evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Farzan, H.; Paul, L.D. (Babcock and Wilcox Co., New Orleans, LA (USA))

    1990-01-01

    Reburning is an emerging NO{sub x} reducing technology which offers cyclone boiler owners a promising alternative to the more expensive flue gas cleanup techniques. Pilot-scale test results have shown that the corrosive H{sub 2}S gas can evolve during reburn. This can pose a potential problem and concern in retrofits burning high-sulfur Illinois coals. This research program is intended to assess tube corrosion under simulated reburning conditions (temperature, stoichiometry, and H{sub 2}S concentration). Performance of existing carbon steel as well as other alloys will be tested and compared. 1 fig.

  15. Corrosion Reliability of Electronic Systems

    DEFF Research Database (Denmark)

    Ambat, Rajan; Jensen, Stine G.; Møller, Per

    2008-01-01

    Inherently two factors namely multi-material usage and potential bias makes electronic devices susceptible to corrosion if exposed to humid conditions. The problem is compounded today due to miniaturization and contamination effects. The reduction in size of the components and close spacing...... on a Printed Circuit Board (PCB) for high density packing has greatly increased the risk of corrosion under humid conditions. An important issue is the failures due to electrolytic metal migration. This paper describes an investigation of the electrolytic migration of Sn-Pb solder lines on PCBs in humid...

  16. Microbial Influenced Corrosion (MIC) Study

    Science.gov (United States)

    2012-05-23

    low lying areas breaks down protective coating system and causes structural corrosion , • Water and organic/inorganic nutrients BUSINESS SENSITIVE...Chemical disinfection (T.O 1-1-8 and T.O 1-1-691) • Biocidal rinses and coatings • Biocidal Corrosion Preventative Compounds or CPCs BUSINESS...Type: H    Proprietary  Coating  w/ Silver  Inhibitor   Non‐Chrome Treatment + Mg‐Rich  Primer  Coupon Type: I    Prekote® (Pantheon Chemical) N/A

  17. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  18. Corrosive effects of hvdc transmission

    Energy Technology Data Exchange (ETDEWEB)

    Cornwell, F.E.; Backstrom, T.E.

    1966-02-01

    Field tests using ac transmission lines for introduction of direct current into the earth at widely separated points are described. One test circuit was between a Tracy pumping plant and a Shasta power plant in California, and two others were in the Hoover power plant area. Evaluation of the effects of such ground currents on corrosion of buried metalwork was a primary aim of the tests. Potential gradients, pipe-to-soil potentials, and soil resistivities are discussed in detail. Estimates are made of the distances from ehv dc terminal installations within which corrosion prevention procedures may become necessary.

  19. Coatings for improved corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  20. Evaluation of Personal Shields Used in Selected Radiology Departments

    Directory of Open Access Journals (Sweden)

    Mohsen Salmanvandi

    2015-05-01

    Full Text Available Introduction The purpose of this study was to evaluate personal shields in radiation departments of hospitals affiliated to Mashhad University of Medical Sciences. Materials and Methods First, the information related to 109 personal shields was recorded and evaluated by imaging equipment. Afterwards, the equivalent lead thickness (ELT of 62 personal shields was assessed, using dosimeter and standard lead layers at 100 kVp. Results In this study, 109 personal shields were assessed in terms of tears, holes and cracks. The results showed that 18 shields were damaged. Moreover, ELT was evaluated in 62 shields. As the results indicated, ELT was unacceptable in 8 personal shields and lower than expected in 9 shields. Conclusion According to the results, 16.5% of personal shields had defects (tears, holes and cracks and 13% of them were unacceptable in terms of ELT and needed to be replaced. Therefore, regular quality control of personal shields and evaluation of new shields are necessary at any radiation department.

  1. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  2. Joint inversion of multi-configuration electromagnetic induction measurements to estimate soil wetting patterns during surface drip irrigation

    Science.gov (United States)

    Jadoon, Khan Z.; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; McCabe, Matthew

    2014-05-01

    In arid and semi-arid regions, development of precise information on the soil wetting pattern is important to optimize drip irrigation system design for sustainable agricultural water management. Usually mathematical models are commonly used to describe infiltration from a point source to design and manage drip irrigation systems. The extent to which water migrates laterally and vertically away from the drip emitter depends on many factors, including dripper discharge rate, the frequency of water application, duration of drip emission, the soil hydraulic characteristics, initial conditions, evaporation, root water uptake and root distribution patterns. However, several simplified assumptions in the mathematical models affect their utility to provide useful design information. In this respect, non-invasive geophysical methods, i.e., low frequency electromagnetic induction (EMI) systems are becoming powerful tools to map spatial and temporal soil moisture patterns due to fast measurement capability and sensitivity to soil water content and salinity. In this research, a new electromagnetic system, the CMD mini-Explorer, is used for soil characterization to measure the wetting patterns of drip irrigation systems using joint inversion of multi-configuration EMI measurements. Six transects of EMI measurements were carried out in a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. EMI reference data (ground-truths) were calculated using vertical soil electrical conductivity recorded in different trenches along one of the measurement transects. Reference data is used for calibration to minimize the instrumental shifts which often occur in EMI data. Global and local optimization algorithms are used sequentially, to minimize the misfit between the measured and modeled apparent electrical conductivity (δa) to reconstruct the vertical electrical conductivity profile. The electromagnetic forward model based on full solution of Maxwell

  3. Validation and application of a two-dimensional model to simulate soil salt transport under mulched drip irrigation

    Science.gov (United States)

    Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo

    2017-04-01

    Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where

  4. Corrosion Resistance and Mechanical Properties of TIG and A-TIG Welded Joints of Lean Duplex Stainless Steel S82441 / 1.4662

    OpenAIRE

    Brytan Z.; Niagaj J.

    2016-01-01

    This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal) and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and afte...

  5. In-Beam Background Suppression Shield

    CERN Document Server

    Santoro, V; DiJulio, D D; Ansell, S; Bentley, P M

    2015-01-01

    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .

  6. Electronically shielded solid state charged particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  7. Electronically shielded solid state charged particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  8. Shielding performance of metal fiber composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; WU Bin; CHEN Ze-fei

    2004-01-01

    Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fiberpulling combined cutting method. The cross section of the fibers is hook-like, which is beneficial to the improvement of bonding strength. Cement-based composites with copper and stainless steel fibers were fabricated and their electromagnetic shielding effectiveness was measured in the frequency range of 1 - 5 GHz. The results show that the electromagnetic interference shielding effectiveness of those composites is enhanced by the addition of metal fibers,which functions mainly due to the absorption. At some frequencies, 20 dB or more difference is obtained between the materials with and without metal fibers.

  9. EMC Test Report Electrodynamic Dust Shield

    Science.gov (United States)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  10. SHIELD II: WSRT HI Spectral Line Observations

    Science.gov (United States)

    Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  11. Thermoforming plastic in lead shield construction

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, M.E.; Chow, C.H.; Loyd, M.D. (Univ. of Texas Medical Branch, Galveston (USA))

    1989-09-01

    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when set or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

  12. Thermoforming plastic in lead shield construction.

    Science.gov (United States)

    Abrahams, M E; Chow, C H; Loyd, M D

    1989-09-01

    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when "set" or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

  13. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  14. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  15. Application of MCBEND to PBMR shielding analysis.

    Science.gov (United States)

    Wright, G A; Wall, S J

    2005-01-01

    Shielding analysis of an early design of Pebble Bed Modular Reactor (PBMR) has been carried out by using the Monte Carlo code MCBEND. The issues of concern were damage to the core barrel and the reactor pressure vessel (RPV), activation of the core barrel, RPV, top plate and bottom plate, and also burn-up of boron in the control layer underneath the core. The analysis below the core was complicated due to the presence of the de-fuelling chute, which meant that multiplication had to be taken into account. The analysis of boron burn-up was particularly challenging and was tackled using a combination of MCBEND and the criticality code MONK in the depletion mode. The application of MCBEND to the shielding analysis of the PBMR is described, with particular attention being paid to the regions below the core.

  16. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  17. Heavy Metal Pad Shielding during Fluoroscopic Interventions

    OpenAIRE

    Dromi, Sergio; Wood, Bradford J.; Oberoi, Jay; Neeman, Ziv

    2006-01-01

    Significant direct and scatter radiation doses to patient and physician may result from routine interventional radiology practice. A lead-free disposable tungsten antimony shielding pad was tested in phantom patients during simulated diagnostic angiography procedures. Although the exact risk of low doses of ionizing radiation is unknown, dramatic dose reductions can be seen with routine use of this simple, sterile pad made from lightweighttungsten antimony material.

  18. Homogeneous Dielectric Equivalents of Composite Material Shields

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the methodology of replacing complicated parts of an airplane skin by simple homogeneous equivalents, which can exhibit similar shielding efficiency. On one hand, the airplane built from the virtual homogeneous equivalents can be analyzed with significantly reduced CPU-time demands and memory requirements. On the other hand, the equivalent model can estimate the internal fields satisfactory enough to evaluate the electromagnetic immunity of the airplane.

  19. Shielding design for PWR in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983.

  20. SQUID holder with high magnetic shielding

    Science.gov (United States)

    Rigby, K. W.; Marek, D.; Chui, T. C. P.

    1990-01-01

    A SQUID holder designed for high magnetic shielding is discussed. It is shown how to estimate the attenuation of the magnetic field from the normal magnetic modes for an approximate geometry. The estimate agrees satisfactorily with the attenuation measured with a commercial RF SQUID installed in the holder. The holder attenuates external magnetic fields by more than 10 to the 9th at the SQUID input. With the SQUID input shorted, the response to external fields is 0.00001 Phi(0)/G.