WorldWideScience

Sample records for drinking water resources

  1. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Dissolved nitrogen in drinking water resources of farming communities in Ghana. ... African Journal of Environmental Science and Technology ... Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking ...

  2. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Administrator

    of the total drinking water needs. Dry season vegetable farmers also prepare their nur- sery beds close to streams and use surface water for irri- gation. The proximity of nurseries to streams results in clearing of stream bank vegetation to accommodate nur- series. Pollution of stream water and depletion of their resources ...

  3. Sewage disinfection towards protection of drinking water resources.

    Science.gov (United States)

    Kolch, A

    2000-01-01

    Wastewater applied in agriculture for irrigation could replace the use of natural drinking-water resources. With respect to high concentrations of human pathogens wastewater has to be disinfected prior to use. This paper introduces disinfection methods with emphasis on UV irradiation.

  4. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  5. A study of pollution extent in some drinking water resources by heavy elements in Hadramout governorate

    International Nuclear Information System (INIS)

    Barheyan, Saad Awadh

    2001-01-01

    The paper is considered as a preliminary study of pollution extent in some drinking water resources in Hadramout governorate by heavy elements which differ in their toxicity. The elements subjected to study are Cd, Pb, Fe, Cr, Mn, Zn, Co and Cu. Atomic absorption spectrometric method of analysis (AAS) is used for the determination of heavy elements concentrations. The elemental analysis of drinking water samples shows that the concentration of the above-mentioned elements in drinking water resources, lies in the permissible limit given by the WHO. Similarity of elements content is observed in Thela and Fuwah waters, bu the case is different for Ghail Bawzeer and Asshihir waters due to their different lithospheric structures. Drinking water used by the civilians is not subjected to physical, biological or chemical treatment which may lead to total or partial removal of heavy elements and other rejected impurities. Drinking water running in distribution nets is a hard water and has a weak base (Ph which explains the reason why heavy elements are absorbed and precipitated inside drinking water pipes before they reach consumers. This type of hard water causes accumulation of salt precipitates inside the water pipes which results in many economic and health disturbances to consumers. The slight increase of Cr, Mn, and Co concentration in drinking water flowing in the pipes may be due to the effect of some anions such as nitrates which form soluble compounds with the elements contained in the chemical composition of the drinking water pipes. This paper is a strong indicator for determination of heavy elements concentrations in different drinking water resources in Hadramout govemorate. Such approach seeks a further comprehensive work with special focus on the study of lithospheric structure of the feeding water regions of Hadramout aquifers. (author)

  6. Drinking Water

    Science.gov (United States)

    This encyclopedic entry deals with various aspects of microbiology as it relates to drinking water treatment. The use of microbial indicators for assessing fecal contamination is discussed as well as current national drinking water regulations (U.S. EPA) and guidelines proposed ...

  7. Sustainable River Basin Management under the European Water Framework Directive: an Effective Protection of Drinking-Water Resources

    NARCIS (Netherlands)

    van Rijswick, H.F.M.W.|info:eu-repo/dai/nl/099909189; Wuijts, Susanne

    2016-01-01

    In the Netherlands drinking water is produced both from surface water and groundwater. Due to the shortage of space, resources are often found in combination with other activities, such as those pertaining to industry or agriculture, in the same neighbourhood. These combinations impose strong

  8. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg

    is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter......Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  9. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    Science.gov (United States)

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  10. Ultimate resources of drinking water in the event of a major pollution crisis: the role of bottled water

    International Nuclear Information System (INIS)

    Collin, J.J.; Comte, J.P.; Daum, J.R.; Lopoukhine, M.; Mesny, M.

    1995-01-01

    In the event of a serious and widespread pollution incident - on the level of the ''Chernobyl cloud'' - most of the drinking water resources in France could be contaminated : surface water immediately, ground water in a few days... or a few months. Therefore on the initiative of the Ministry of the Environment's Director for Defence, a study has been initiated as to what might be qualified as ''final emergency resources''. An inventory and map of protected resources have been prepared. In this context it seems reasonable to show bottled water as a resource meeting the necessary protection criteria. However it seems that these criteria are not all, nor always, relevant for defining a ''ultimate emergency resource'' not contaminated by a major incident. This article outlines a typology of situations and defines the main criteria necessary for bottled water to be able to constitute an ultimate resource

  11. Drinking Water - National Drinking Water Clearinghouse

    Science.gov (United States)

    Savings Septic Unsafe Disposable Wipe Woes FacebookLogo FOCUS AREAS Drinking Water Wastewater Training Security Conservation & Water Efficiency Water We Drink Source Water Protection SORA/COI EPA MOU CartIcon Links Listserv Educators Homeowners Operators Small Systems Drinking Water Read On Tap Latest

  12. Investigation of Fungi in Drinking Water Resources as a Source of Contamination Tap Water in Sari, Iran

    Directory of Open Access Journals (Sweden)

    Z Yousefi

    2013-06-01

    Full Text Available Background and purpose: One of the most prominent concerns for the water consumers is pathogenic microorganism contamination. Wells and underground water resources are the main resources of drinking water in Sari city, Iran. The main objectives of the research project were to explore the distribution and frequency of mycoflora in wells and underground water resources of the city and their contamination effects on humans. Materials and methods: Three reservoirs and 18 wells or underground water resources were analyzed. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Each filter and 0.2 ml of suspension inoculated on SDA+CG media. For fungal growth, plates were incubated at 27’C for 7-10 days. The fungi were identified by standard mycological techniques. Results: Fungal colonies were isolated from all samples. From total of 160 fungal colonies isolated from wells water, 14 species of fungi were distinguished. Rhodotorula (54.4%, Monilinia (13.7%, Alternaria (6.9% were the most commonly isolated. Drechslera, Rhizopus, and Exserohilum (0.6% had the lowest frequency. There was no significant difference between fungal elements isolated from three major reservoirs (P>0.05. Conclusion: This study revealed that resources of drinking water from an area have to monitored and if its fungal CFU be greater than a certain value, medical and health preventive measures should be taken before the water is used by human. In this context, public and private awareness should also be provided through the media, broadcasting, teachers and scholars.

  13. Resource protection and resource management of drinking water-reservoirs in Thuringia--a prerequisite for high drinking-water quality.

    Science.gov (United States)

    Willmitzer, H

    2000-01-01

    In face of widespread pollution of surface waters, strategies must be developed for the use of surface waters which protect the high quality standards of drinking water, starting with the catchment area via the reservoir to the consumer. As a rule, priority is given to the avoidance of contaminants directly at their point of origin. Water protection is always cheaper than expensive water-body restoration and water treatment. Complementary to the generally practised technical methods of raw water treatment with all their associated problems of energy input requirements, costs, and waste products, there is an increasing number of environmentally sound treatment technologies which use ecological principles as a basis to support the self-cleaning properties of flowing and dammed waters.

  14. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    Science.gov (United States)

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic...

  15. EPA's Study of Hydraulic Fracturing and Its Potential Impact on Drinking Water Resources

    Science.gov (United States)

    EPA released the final report for the study of fracking's impact on drinking water in December 2016. Here you can find a summary of the report, the full report, some frequent questions and answers and fact sheets.

  16. New England's Drinking Water | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  17. Origin of bank filtered groundwater resources covering the drinking water demand of Budapest, Hungary

    International Nuclear Information System (INIS)

    Forizs, I.; Deak, J.

    1998-01-01

    The ratio of Danube water/infiltrated precipitation has been determined using stable oxygen isotope data on four parts of the protection area of the bank filtered water works supplying drinking water for Budapest, Hungary. These ratios comparing to those calculated by hydraulic modeling rarely match each other. The Danube water transit time calculated fro few wells by isotopic data are usually shorter than those determined by hydraulic modeling. The relation between the δ 18 O values and the nitrate chloride and sulfate pollutants shows that the source of the pollutants is on the island area (sewage water, agricultural activity and salt used for de-icing asphalt roads). (author)

  18. Determination of radon concentration in drinking water resources of villages nearby Lalehzar fault and evaluation the annual effective dose

    International Nuclear Information System (INIS)

    Mohammad Malakootian; Zahra Darabi Fard; Mojtaba Rahimi

    2015-01-01

    The radon concentration has been measured in 44 drinking water resources, in villages nearby Lalehzar fault in winter 2014. Some samples showed a higher concentration of radon surpassing limit set by EPA. Further, a sample was taken from water distribution networks for these sources of water. Soluble radon concentration was measured by RAD7 device. Range radon concentration was 26.88 and 0.74 BqL -1 respectively. The maximum and minimum annual effective dose for adults was estimated at 52.7 and 2.29 µSvY -1 , respectively. Reducing radon from water before use is recommended to improve public health. (author)

  19. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    Science.gov (United States)

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  20. 30 CFR 75.1718 - Drinking water.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  1. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  2. Health impairments arising from drinking water resources contaminated with Vibrio cholerae.

    Science.gov (United States)

    Ramamurthy, T; Chakraborty, S; Nair, G B; Bhattacharya, S K

    2000-01-01

    The endemic and seasonal nature of cholera depends upon the survival of toxigenic Vibrio cholerae in various niches of the aquatic environment. To understand the transmission and ecology of V. cholerae, it is necessary to know which component in the aquatic ecosystem can harbor it and thus contribute to the endemic presence. Toxigenic V. cholerae is now recognized as an autochthonous member of the microflora in many aquatic environments based on its protracted survival and proliferation without losing the virulence determinants. This article summarizes knowledge about the ecology, survival strategies and elimination techniques of V. cholerae from natural waters with special reference to drinking water.

  3. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  4. Models and statistical analysis of organic micropollutants in groundwater-based drinking water resources

    DEFF Research Database (Denmark)

    Malaguerra, Flavio

    The access to safe drinking water is essential for the well being of the population. The spread of micropollutant contamination jeopardise many freshwater reservoirs, and is a serious threat for human health, especially because of its long-term effects. To asses the threat of contamination, models...... to model. The identification of dominant processes is an essential step in the understanding of system behaviour, because it enables the development of simplified models that can approximate the fate of contaminants with the best trade-off between model complexity and reliability of results. In this thesis......, global sensitivity analysis techniques are used to assess detailed models in order to identify the main processes involved in the degradation of chlorinated solvents in the subsurface, and in the transport of pesticides from surface water into nearby wells in confined aquifers. Statistical techniques...

  5. Drinking Water FAQ

    Science.gov (United States)

    ... 90 different contaminants in public drinking water, including E.coli , Salmonella , and Cryptosporidium species. More information regarding the ... page. Water Quality Indicators: Total Coliforms Fecal Coliforms / Escherichia coli (E. coli) pH Contaminants: Nitrate Volatile Organic Compounds ( ...

  6. Disinfection of drinking water

    International Nuclear Information System (INIS)

    Ensenauer, P.

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection. (AJ) [de

  7. Disinfection of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Ensenauer, P

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection.

  8. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  9. SDWISFED Drinking Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — SDWIS/FED is EPA's national regulatory compliance database for the drinking water program. It includes information on the nation's 160,000 public water systems and...

  10. Drinking Water Treatability Database (TDB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities,...

  11. Simulation of Integrated Qualitative and Quantitative Allocation of Surafce and Underground Water Resources to Drinking Water Demand in Mashhad

    Directory of Open Access Journals (Sweden)

    Mansoureh Atashi

    2015-12-01

    Full Text Available Despite the fact that both surface and groundwater resources inside and outside the city of Mashhad have been already exploited to their maximum capacity and that the large water transfer Doosti Dam Project has been already implemented to transfer a considerable quanity of water to Mashhad, the city will be encountering a daily water shortage of about 1.7 m3/s by 2021. The problem would be even worse if the quality of the water resources are taken into account, in which case, the shortage would start even sooner in 2011 when the water deficit will be about 0.9 m3/s. As a result, it is essential to develop short- and medium-term strategies for secure adequate water supplies for the city's domestic water demand. The present study aims to carry out a qualitative and quantitative modeling of surface and groundwater resources supplying Mashhad domestic water. The qualitative model is based on the quality indices of surface and groundwater resources according to which the resources are classified in the three quality categories of resources with no limitation, those with moderate limitations, and those with high limitations for use as domestic water supplies. The pressure zones are then examined with respect to the potable water demand and supply to be simulated in the MODSIM environment. The model thus developed is verified for the 2012 data based on the measures affecting water resources in the region and various scenarios are finally evaluated for a long-term 30-year period. Results show that the peak hourdaily water shortage in 2042for the zone supplied from no limitation resources will be 38%. However, this value will drop to 28% if limitations due to resource quality are also taken into account. Finally, dilution is suggested as a solution for exploiting the maximum quantitative and qualitative potential of the resources used as domestic water supplies. In this situation, the daily peak hour water shortage will be equal to 31%.

  12. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary.

    Science.gov (United States)

    Liu, Lin; Wang, Dongqi; Deng, Huanguang; Li, Yangjie; Chang, Siqi; Wu, Zhanlei; Yu, Lin; Hu, Yujie; Yu, Zhongjie; Chen, Zhenlou

    2014-09-01

    Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m(-2) h(-1) in marshes (ranged from 7.5 to 42.1 μmol m(-2) h(-1)) and 15.1 μmol m(-2) h(-1) at the mudflat (ranged from 6.6 to 26.5 μmol m(-2) h(-1)). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 10(8) g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

  13. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  14. EFFECTS OF FOG PRECIPITATION ON WATER RESOURCES AND DRINKING WATER TREATMENT IN THE JIZERA MOUNTAINS, THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Josef Křeček

    2015-07-01

    Full Text Available Water yield from catchments with a high evidence of fog or low clouds could be increased by the canopy fog drip. However, in areas with the acid atmospheric deposition, this process can lead to the decline of water quality. The aim of this study is to analyze fog related processes in headwater catchments of the Jizera Mountains (the Czech Republic with special attention to water quality and the drinking water treatment. In two years (2011-2012, the fog drip was observed by twelve passive fog collectors at transect of the Jizerka experimental catchment. Methods of space interpolation and extrapolation (ArcGis 10.2 were applied to approximate the areal atmospheric deposition of fog water, sulphur and nitrogen, in catchments of the drinking water reservoirs Josefův Důl and Souš. The mean annual fog drip from vegetation canopy was found between 88 and 106 mm (i.e. 7 to 9 percent of precipitation, and 11 to 13 percent of water yield, estimated by standard rain gauge monitoring. But, the mean annual load of sulphur and nitrogen by the fog drip was 1,975 and 1,080, kilograms per square kilometre, respectively (i.e. 55 and 48 percent of total deposition of sulphur and nitrogen, registered in the bulk. The acidification of surface waters leads to rising operational costs in the water treatment plants (liming, reduce of heavy metals, more frequent control of sand filters etc.. In a catchment scale, the additional precipitation, caused by the canopy fog drip, could be controlled by the effective watershed management (support of forests stands near the native composition with presence of deciduous trees: beech, mountain ash, or birch.

  15. Public services for distribution of drinking water and liquid sanitation in urban zones in Morocco Relevance of introduction the performance indicators for preservation water resources.

    Science.gov (United States)

    Habib, Akka; Abdelhamid, Bouzidi; Said, Housni

    2018-05-01

    Because of the absence of regulations and specific national norms, the unilaterally applied indicators for performance evaluation of water distribution management services are insufficient. This does not pave the way for a clear visibility of water resources. The indicators are also so heterogeneous that they are not in equilibrium with the applied management patterns. In fact: 1- The performance (yield and Linear loss index) of drinking water networks presents a discrepancy between operators and lack of homogeneity in terms of parameters put in its equation. Hence, It these indicators lose efficiency and reliability; 2- Liquid sanitation service has to go beyond the quantitative evaluation target in order to consider the qualitative aspects of water. To reach this aim, a reasonable enlargement of performance indicators is of paramount importance in order to better manage water resource which is becoming scarce and insufficient.

  16. Practices that Prevent the Formation of Cyanobacterial Blooms in Water Resources and remove Cyanotoxins during Physical Treatment of Drinking Water

    Science.gov (United States)

    This book chapter presents findings of different studies on the prevention and elimination of cyanobacterial blooms in raw water resources as well as the removal of cyanotoxins during water treatment with physical processes. Initially,treatments that can be applied at the source ...

  17. Using QMRAcatch - a stochastic hydrological water quality and infection risk model - to identify sustainable management options for long term drinking water resource planning

    Science.gov (United States)

    Derx, J.; Demeter, K.; Schijven, J. F.; Sommer, R.; Zoufal-Hruza, C. M.; Kromp, H.; Farnleitner, A.; Blaschke, A. P.

    2017-12-01

    River water resources in urban environments play a critical role in sustaining human health and ecosystem services, as they are used for drinking water production, bathing and irrigation. In this study the hydrological water quality model QMRAcatch was used combined with measured concentrations of human enterovirus and human-associated genetic fecal markers. The study area is located at a river/floodplain area along the Danube which is used for drinking water production by river bank filtration and further disinfection. QMRAcatch was previously developed to support long term planning of water resources in accordance with a public infection protection target (Schijven et al., 2015). Derx et al. 2016 previously used QMRAcatch for evaluating the microbiological quality and required virus-reduction targets at the study area for the current and robust future "crisis" scenarios, i.e. for the complete failure of wastewater treatment plants and infection outbreaks. In contrast, the aim of this study was to elaborate future scenarios based on projected climate and population changes in collaboration with urban water managers. The identified scenarios until 2050 include increased wastewater discharge rates due to the projected urban population growth and more frequent storm and overflow events of urban sewer systems following forecasted changes in climate and hydrology. Based on the simulation results for the developed scenarios sustainable requirements of the drinking water treatment system for virus reductions were re-evaluated to achieve the health risk target. The model outcomes are used to guide practical and scientifically sound management options for long term water resource planning. This paper was supported by FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22) and the GWRS project (Vienna Water) as part of the "(New) Danube-Lower Lobau Network Project" funded by the Government of Austria and Vienna, and the European Agricultural Fund for Rural

  18. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  19. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran

    Directory of Open Access Journals (Sweden)

    Mahmood Yousefi

    2018-02-01

    Full Text Available This cross-sectional study was conducted on the drinking water resources of the city of Jolfa (East Azerbaijan province, Iran from samples taken from 30 wells. Calcium hardness, pH, total alkalinity, TDS, temperature and other chemical parameters were measured using standard methods. The Langelier, Rayzner, Puckhorius and aggressive indices were calculated. The results showed that the Langelier, Reynar, Puckorius, Larson-skold and aggressive indices were 1.15 (± 0.43, 6.92 (± 0.54, 6.42 (± 0.9, 0.85 (± 0.72 and 12.79 (± 0.47, respectively. In terms of water classification, 30% of samples fell into the NaCl category and 26.6% in the NaHCO3 category and 43.4% samples in the CaHCO3, MgHCO3 and MgCl category. The sedimentation indices indicated that the water of the wells could be considered as corrosive. Keywords: Corrosion and scaling potential, Stability indices, Ground water, Jolfa

  20. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  1. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran.

    Science.gov (United States)

    Yousefi, Mahmood; Saleh, Hossein Najafi; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nabizadeh, Ramin; Mohammadi, Ali Akbar

    2018-02-01

    This cross-sectional study was conducted on the drinking water resources of the city of Jolfa (East Azerbaijan province, Iran) from samples taken from 30 wells. Calcium hardness, pH, total alkalinity, TDS, temperature and other chemical parameters were measured using standard methods. The Langelier, Rayzner, Puckhorius and aggressive indices were calculated. The results showed that the Langelier, Reynar, Puckorius, Larson-skold and aggressive indices were 1.15 (± 0.43), 6.92 (± 0.54), 6.42 (± 0.9), 0.85 (± 0.72) and 12.79 (± 0.47), respectively. In terms of water classification, 30% of samples fell into the NaCl category and 26.6% in the NaHCO 3 category and 43.4% samples in the CaHCO 3 , MgHCO 3 and MgCl category. The sedimentation indices indicated that the water of the wells could be considered as corrosive.

  2. A Retrospective Analysis on the Occurrence of Arsenic in Ground-Water Resources of the United States and Limitations in Drinking-Water-Supply Characterizations

    Science.gov (United States)

    Focazio, Michael J.; Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Horn, Marilee A.

    2000-01-01

    The Safe Drinking Water Act, as amended in 1996, requires the U.S. Environmental Protection Agency (USEPA) to review current drinking-water standards for arsenic, propose a maximum contaminant level for arsenic by January 1, 2000, and issue a final regulation by January, 2001. Quantification of the national occurrence of targeted ranges in arsenic concentration in ground water used for public drinking-water supplies is an important component of USEPA's regulatory process. Data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) were used in a retrospective analysis of arsenic in the ground-water resources of the United States. The analysis augments other existing sources of data on the occurrence of arsenic collected in ground water at public water-supply systems.The USGS, through its District offices and national programs, has been compiling data for many years on arsenic concentrations collected from wells used for public water supply, research, agriculture, industry, and domestic water supply throughout the United States. These data have been collected for a variety of purposes ranging from simple descriptions of the occurrence of arsenic in local or regional ground-water resources to detailed studies on arsenic geochemistry associated with contamination sites. A total of 18,864 sample locations were selected from the USGS NWIS data base regardless of well type, of which 2,262 were taken from public water-supply sources. Samples with non-potable water (dissolved-solids concentration greater than 2,000 milligrams per liter and water temperature greater than 50o Celsius) were not selected for the retrospective analysis and other criteria for selection included the amount and type of ancillary data available for each sample. The 1,528 counties with sufficient data included 76 percent of all large public water-supply systems (serving more than 10,000 people) and 61 percent of all small public water-supply systems (serving more than 1

  3. Drinking Water in your Home

    Science.gov (United States)

    Many people choose to filter or test the drinking water that comes out of their tap or from their private well for a variety of reasons. And whether at home, at work or while traveling, many Americans drink bottled water.

  4. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  5. 30 CFR 71.602 - Drinking water; distribution.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  6. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  7. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  8. Governance conditions for improving quality drinking water resources : the need for enhancing connectivity

    NARCIS (Netherlands)

    Wuijts, Susanne; Driessen, P.P.J.; van Rijswick, H.F.M.W.

    Realising the water quality objectives of the European Water Framework Directive have appeared to stagnate over the last decade all across Europe because of their highly complex nature. In the literature, interactive governance approaches tend to be regarded as the best way of dealing with complex

  9. Water resources

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  10. 30 CFR 71.600 - Drinking water; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  11. Biofilm in drinking water networks

    International Nuclear Information System (INIS)

    Cristiani, Pietrangela

    2005-01-01

    Bacterial growth in drinking waters is today controlled adding small and non toxic quantities of sanitising products. An innovative electrochemical biofilm monitoring system, already successfully applied in industrial waters, could be confirmed as an effective diagnostic tool of water quality also for drinking distributions systems [it

  12. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  13. Evaluation of Heavy Metals in Drinking Water Resources in Urban and Rural Areas of Hamadan Province in 2016

    Directory of Open Access Journals (Sweden)

    Seyyed Bahman Aleseyyed

    2018-03-01

    Conclusion: The results showed that the average concentration of heavy metals measured in all samples of Hamadan province was lower than the maximum allowed in the national and international standards. Apart from the worrying situation of arsenic amount in samples of a small number of villages, it can be concluded that the status of drinking water sources in terms of heavy metals contamination is favorable in Hamadan province, but annually control of arsenic is strongly recommended.

  14. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burnet, Jean-Baptiste, E-mail: jeanbaptiste.burnet@gmail.com [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Université de Liège (ULg), Department of Environmental Sciences and Management, 165 avenue de Longwy, B-6700 Arlon (Belgium); Penny, Christian, E-mail: penny@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Ogorzaly, Leslie, E-mail: ogorzaly@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Cauchie, Henry-Michel, E-mail: cauchie@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2014-02-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10{sup 9} and 10{sup 10} (oo)cysts.d{sup −1}, respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log{sub 10} removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10{sup 6} to 10{sup 7} (oo)cysts.d{sup −1}) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment

  15. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    International Nuclear Information System (INIS)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-01-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10 9 and 10 10 (oo)cysts.d −1 , respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log 10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10 6 to 10 7 (oo)cysts.d −1 ) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  16. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: implications for monitoring and risk assessment.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-02-15

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10(9) and 10(10) (oo)cysts.d(-1), respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10(6) to 10(7) (oo)cysts.d(-1)) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  17. Focus on CSIR research in water resources: antimicrobial properties of copper and its effects on micro-organisms in drinking water distribution systems

    CSIR Research Space (South Africa)

    Genthe, Bettina

    2007-08-01

    Full Text Available understanding of the mechanisms involved in copper toxicity in bacteria to better understand the potential applications of copper in treating drinking water. Further research is needed to determine why the growth continues after initial inactivation and whether...

  18. Evaluation of heavy metals level (arsenic, nickel, mercury and lead effecting on health in drinking water resource of Kohgiluyeh county using geographic information system (GIS

    Directory of Open Access Journals (Sweden)

    Abdolazim Alinejad

    2016-08-01

    Full Text Available This study was conducted to determine the amount of heavy metals (Arsenic, Nickel, Mercury, and Lead in drinking water resource of Kohgiluyeh County using Geographic Information System (GIS. This cross-sectional study was conducted on drinking water resource of Kohgiluyeh County (33 water supplies and 4 heavy metals in 2013. 264 samples were analyzed in this study. The experiments were performed at the laboratory of Water and Wastewater Company based on Standard Method. The Atomic Adsorption was used to evaluate the amount of heavy metals. The results were mapping by Geographic Information System software (GIS 9.3 after processing of parameters. Finally, the data were analyzed by SPSS 16 and Excel 2007. The maximum amount of each heavy metal and its resource were shown as follow: Nickel or Ni (Source of w12, 124ppb, Arsenic or As (w33, 42 ppb, Mercury or Hg (w22 and w30, 96ppb, Lead or Pb (w21, 1553ppb. Also, the GIS maps showed that Lead in the central region was very high, Mercury and Arsenic in the northern region were high and Nickel in the eastern and western regions was high. The Kriging method and Gauss model were introduced as best method for interpolation of these metals. Since the concentration of these heavy metals was higher than standard levels in most drinking water supplies in Kohgiluyeh County and these high levels of heavy metals can cause the adverse effects on human health; therefore, the environmental and geological studies are necessary to identify the pollution resource and elimination and removal of heavy metals

  19. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  20. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...... fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well...

  1. Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation).

    Science.gov (United States)

    Keramati, Hassan; Ghorbani, Raheb; Fakhri, Yadolah; Mousavi Khaneghah, Amin; Conti, Gea Oliveri; Ferrante, Margherita; Ghaderpoori, Mansour; Taghavi, Mahmoud; Baninameh, Zahra; Bay, Abotaleb; Golaki, Mohammad; Moradi, Bigard

    2018-03-30

    The current study was performed to review the conducted studies regarding the concentration of radon 222 in the tap drinking water; furthermore, by estimation of ingestion and inhalation effective dose, the health risk assessment in the adults and children using MCS technique was assessed. All related studies published among January 1990 to October 2016; were screened in the available databases such as Web of Science, PubMed, Science Direct, Scopus, SID, and Irandoc. The total effective dose was estimated by calculating E ing (Effective dose of ingestion) and E inh (Effective dose of inhalation) by Monte Carlo simulation (MCS) method. The range of ND ─ 40.9 Bq/L for radon 222 in water resources was proposed after evaluation of data collected from 13 studies with 1079 samples. The overall concentration of radon 222 in drinking water in Iran was 3.98: 95%CI (3.79 ─ 4.17 Bq/L). Also, the effective ingestion dose of radon 222 in adults age groups was 1.35 times higher than children. The rank order of drinking water resources based on the concentration of radon 222 was Spring > Spring and Well > Well > Spring and Qanat > Tap water. The overall concentration of radon 222 in drinking water in Iran was lower than WHO and EPA standard limits. Also, the rank order regarding area studied based on the concentration of radon 222 was Gillan > Mashhad > Mazandaran > Kerman > Yazd > Tehran > Kermanshah > Golestan > Hormozgan. The effective ingestion dose of radon 222 to consumers in the Gillan, Mashhad, Mazandaran, and Kerman were higher than WHO guidance (0.1 mSv/y). Also except consumers in the Hormozgan, inhalation effective dose radon 222, in the other investigated areas were higher than WHO guidance (0.1 mSv/y). Therefore, it is recommended to conduct the required programs regarding control and elimination of radon 222 concentration in Iranian drinking water supply. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Drinking water in Cuba and seawater desalination

    International Nuclear Information System (INIS)

    Meneses-Ruiz, E.; Turtos-Carbonell, L.M.; Oviedo-Rivero, I.

    2004-01-01

    The lack of drinking water has become a problem at world level because, in many places, supplies are very limited and, in other places, their reserves have been drained. At the present time there are estimated to be around two thousand million people that don't have drinking water for several reasons, such as drought, contamination and the presence of saline waters not suitable for human consumption. Because of the human need for water, they have always taken residence in areas where the supply was guaranteed, sometimes impeding the exploitation of other areas that can be economically very interesting. However, this resource is usually very close and in abundance in the form of seawater but its salinity makes it unusable for many basic requirements. Humanity has been forced, therefore, to take into consideration the possibilities of the economic treatment of seawater. Cuba has regions where the supplies of drinking water are scarce and others where the lack of this resource limits economic exploitation. The present work is approached with regard to the situation of hydro resources in Cuba, it includes: a description of the main hydrographic basins of the country; the contamination levels of the waters and the measures for mitigation; analysis of the supplies and demand for drinking water and its quality; regulatory aspects. The state of seawater desalination in Cuba is also included and the possibility of its realisation using nuclear energy and the advantages that this would bring is evaluated. (author)

  3. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  4. Radiological investigation of drinking water

    International Nuclear Information System (INIS)

    Kunz, E.

    1981-01-01

    An analysis is made of the report ''Radiological investigation of drinking water'' submitted by a working group of WHO to the Brussels meeting held between Nov 7 and 10, 1978. Annex II is emphasized of the WHO publication bearing the title ''The revision of WHO standards for drinking water''. It is shown that the draft of the revision does not basically differ from the revision introduced in Czechoslovakia and published in a revised standard CSN 83 0611 Drinking Water from 1978, including its harmonization with the Decree 59/72 Collect. of Laws on the protection of health from ionizing radiation, and from the standard CSN 83 0523 Radiometric analysis of drinking water. It is also shown that the text of the working group report contains some incorrect or unclear statements and views, which is explained by the misunderstanding of some ICRP recommendations. (H.S.)

  5. Drinking Water State Revolving Fund

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for...

  6. Perceived agricultural runoff impact on drinking water.

    Science.gov (United States)

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  7. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  8. Responsibility for drinking water; Verantwortung fuer Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Lein, Peter [Ingenieurbuero Dipl.-Ing. Peter Lein, Berlin (Germany)

    2008-03-15

    Planners of drinking water supply systems, implementing sanitary companies as well as building owners probably can be made liable, if the user of drinking water supply systems suffer health damages by drinking water hygienic problems. The germinating of the drinking water with legionella often is the consequence of a not professional start-up of a plant immediately after completion.

  9. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Basic Information about Your Drinking Water

    Science.gov (United States)

    ... Offices Regional Offices Labs and Research Centers Ground Water and Drinking Water Contact Us Share Basic Information about Your Drinking Water Infographic: How does your water system work? The ...

  11. [The EU drinking water recommendations: objectives and perspectives].

    Science.gov (United States)

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Dose from drinking water Finland

    International Nuclear Information System (INIS)

    Maekelaeinen, Ilona; Salonen, Laina; Huikuri, Pia; Arvela, Hannu

    1999-01-01

    The dose from drinking water originates almost totally from naturally occurring radionuclides in the uranium-238 series, the most important nuclide being radon-222. Second comes lead-210, and third polonium-210. The mean age-group-weighted dose received by ingestion of drinking water is 0.14 mSv per year. More than half of the total cumulative dose of 750 manSv is received by the users of private wells, forming 13% of the population. The most exposed group comprises the users of wells drilled in bedrock, who receive 320 manSv while comprising only 4% of the population. The calculated number of annual cancer incidences due to drinking water is very sensitive to the dose-conversion factors of ingested radon used, as well as to the estimated lung cancer incidences caused by radon released from water into indoor air. (au)

  13. How dogs drink water

    Science.gov (United States)

    Gart, Sean; Socha, Jake; Vlachos, Pavlos; Jung, Sunghwan

    2014-11-01

    Animals with incomplete cheeks (i.e. dogs and cats) need to move fluid against gravity into the body by means other than suction. They do this by lapping fluid with their tongue. When a dog drinks, it curls its tongue posteriorly while plunging it into the fluid and then quickly withdraws its tongue back into the mouth. During this fast retraction fluid sticks to the ventral part of the curled tongue and is drawn into the mouth due to inertia. We show several variations of this drinking behavior among many dog breeds, specifically, the relationship between tongue dynamics and geometry, lapping frequency, and dog weight. We also compare the results with the physical experiment of a rounded rod impact onto a fluid surface. Supported by NSF PoLS #1205642.

  14. Lead and Drinking Water from Private Wells

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  15. Consumer protection on the drinking water market

    OpenAIRE

    Kosová, Martina

    2009-01-01

    The goal of Bachelor thesis is marketing research on consumer preferences and knowledge in the field of drinking water and also analyze and compare the price of tap water and bottled water. The theoretical part describes how the consumer market with drinking water is protected in the Czech Republic. They compared the advantages and disadvantages of both types of drinking water.

  16. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  17. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  18. Uranium in Kosovo's drinking water.

    Science.gov (United States)

    Berisha, Fatlume; Goessler, Walter

    2013-11-01

    The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Drinking Water - Multiple Languages

    Science.gov (United States)

    ... dialect)) PDF Centers for Disease Control and Prevention French (français) Expand Section Keep Food and Water Safe After a Disaster or Emergency - English HTML Keep Food and Water Safe After a Disaster or Emergency - français (French) HTML Centers for Disease Control and Prevention Haitian ...

  20. Hot Topics/New Initiatives | Drinking Water in New England ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  1. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  2. Drinking Water Contaminants -- Standards and Regulations

    Science.gov (United States)

    ... and Research Centers Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate ... other partners to implement these SDWA provisions. Regulated Contaminants National Primary Drinking Water Regulations (NPDWRs) - table of ...

  3. Regulation Development for Drinking Water Contaminants

    Science.gov (United States)

    To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.

  4. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2018-01-01

    Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  5. Safe Drinking Water

    Centers for Disease Control (CDC) Podcasts

    2008-04-23

    Listen to this podcast to learn more about the steps that are taken to bring you clean tap water.  Created: 4/23/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/1/2008.

  6. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Drinking Water Maximum Contaminant Levels (MCLs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards...

  8. Cleaning Up Our Drinking Water

    International Nuclear Information System (INIS)

    Manke, Kristin L.

    2007-01-01

    Imagine drinking water that you wring out of the sponge you've just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. 'We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,' said Pacific Northwest National Laboratory's Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues

  9. Influence of Land Use and Watershed Characteristics on Protozoa Contamination in a Potential Drinking Water Resources Reservoir

    Science.gov (United States)

    Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The waters...

  10. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    The study found that water supply in Harshin district is 100% surface water ... Besides, 76% of the respondents were not satisfied with the quality of drinking water. ... Key words: Water resources, pastoralists, rainwater, water-harvesting, gender ...

  11. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  12. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  13. Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): Pollution of raw drinking water

    Science.gov (United States)

    Luque-Espinar, Juan Antonio; Navas, Natalia; Chica-Olmo, Mario; Cantarero-Malagón, Samuel; Chica-Rivas, Lucía

    2015-12-01

    This piece of research deals with the monitoring of a group of emerging contaminants (ECs) in the metropolitan area of Granada, a city representative of the South of Spain, in order to evaluate the environmental management of the wastewater system. With that aim, the spatial and seasonal occurrence and distribution of a group of ECs in groundwater, surface and irrigation water resources from the aquifer "Vega de Granada" (VG) have been investigated for the first time. A set of the most prescribed drugs in Spain (ibuprofen, loratadine, pantoprazole and paracetamol), a pesticide widely used in agriculture (atrazine) and a typical anthropogenic contaminant (caffeine) were included in the study. Water samples were taken from the metropolitan area of the city of Granada inside of the zone of the aquifer, from the downstream of two waste water treatment plants (WWTPs) and from the two main irrigation channels where surface and wastewater are mixed before distribution for irrigation purposes in the crops of the study area. A total of 153 water samples were analyzed through liquid chromatography coupled with mass spectrometry (LC-MS/MS) throughout the study that took place over a period of two years, from July 2011 to July 2013. Results demonstrated the occurrence of four of the six target pollutants. Ibuprofen was detected several times, always in both channels with concentration ranges from 5.3 to 20.8 μg/L. The occurrence of paracetamol was detected in rivers and channels up to 34.3 μg/L. Caffeine was detected in all the water resources up to 39.3 μg/L. Pantoprazole was detected twice in the surface water source near to a WWPT ranging from 0.02 to 0.05 μg/L. The pesticide atrazine and the drug loratadine were not detected in any of the water samples analyzed. These results show evidence of poor environmental management of the wastewater concerning the water quality of the aquifer studied. The groundwater sources seem to receive a very continuous input of wastewater

  14. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  15. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    Science.gov (United States)

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  16. Army's drinking water surveillance program

    International Nuclear Information System (INIS)

    Sneeringer, P.V.; Belkin, F.; Straffon, N.; Costick, S.A.

    1977-01-01

    In 1976 a total of 827 water sources from Army installations throughout the world were sampled and analyzed for 53 chemical constituents and physical parameters. Medically significant contaminants included radiation measurements, heavy metals, fluoride, nitrate, and pesticides. Radiological activity appeared to vary with geographic location; a majority being from water sources in the western part of the U.S. No results for tritium were found to exceed the health-reference limit. Confirmatory analyses for radium-226 identified 3 groundwater sources as exceeding the limit; one was attributed to natural activity and the other sources are currently being investigated. Of the metals considered to be medically significant, mercury, chromium, lead, cadmium, silver, barium and arsenic were found in amounts within health level limits. Nitrate levels exceeding the health limit were confirmed for 2 drinking water sources

  17. Uranium and drinking water; Uran und Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Konietzka, Rainer [Umweltbundesamt, Berlin (Germany). Fachgebiet II 3.6 - Toxikologie des Trink- und Badebeckenwassers; Dieter, Hermann H.

    2014-03-01

    Uranium is provoking public anxiety based on the radioactivity of several isotopes and the connection to nuclear technology. Drinking water contains at the most geogenic uranium in low concentrations that might be interesting in the frame of chemical of toxicology, but not due to radiological impact. The contribution gives an overview on the uranium content in drinking water and health effects for the human population based on animal tests. These experiments indicate a daily tolerable intake of 0.2 microgram per kg body mass. The actual limiting value for uranium in drinking water is 0.3 microgram per kg body mass water (drinking water regulation from 2001).

  18. Pharmaceutical compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Vikas Chander

    2016-06-01

    Full Text Available Pharmaceutical products and their wastes play a major role in the degradation of environment. These drugs have positive as well as negative consequences on different environmental components including biota in different ways. Many types of pharmaceutical substances have been detected with significant concentrations through various advanced instrumental techniques in surface water, subsurface water, ground water, domestic waste water, municipal waste water and industrial effluents. The central as well as state governments in India are providing supports by creating excise duty free zones to promote the pharmaceutical manufacturers for their production. As a result, pharmaceutical companies are producing different types of pharmaceutical products at large scale and also producing complex non-biodegradable toxic wastes byproducts and releasing untreated or partially treated wastes in the environment in absence of strong regulations. These waste pollutants are contaminating all types of drinking water sources. The present paper focuses on water quality pollution by pharmaceutical pollutants, their occurrences, nature, metabolites and their fate in the environment.

  19. Neuro-fuzzy inference system Prediction of stability indices and Sodium absorption ratio in Lordegan rural drinking water resources in west Iran.

    Science.gov (United States)

    Takdastan, Afshin; Mirzabeygi Radfard, Majid; Yousefi, Mahmood; Abbasnia, Abbas; Khodadadia, Rouhollah; Soleimani, Hamed; Mahvi, Amir Hossein; Naghan, Davood Jalili

    2018-06-01

    According to World Health Organization guidelines, corrosion control is an important aspect of safe drinking-water supplies. Water always includes ingredients, dissolved gases and suspended materials. Although some of these water ingredients is indispensable for human beings, these elements more than permissible limits, could be endanger human health. The aim of this study is to assess physical and chemical parameters of drinking water in the rural areas of Lordegan city, also to determine corrosion indices. This cross-sectional study has carried out with 141 taken samples during 2017 with 13 parameters, which has been analyzed based on standard method and to estimate the water quality indices from groundwater using ANFIS. Also with regard to standard conditions, results of this paper are compared with Environmental Protection Agency and Iran national standards. Five indices, Ryznar Stability Index (RSI), Langlier Saturation Index (LSI), Larson-Skold Index (LS), Puckorius Scaling Index (PSI), and Aggressive Index (AI) programmed by using Microsoft Excel software. Owing to its simplicity, the program, can easily be used by researchers and operators. Parameters included Sulfate, Sodium, Chloride, and Electrical Conductivity respectively were 13.5, 28, 10.5, and 15% more than standard level. The amount of Nitrate, in 98% of cases were in permissible limits and about 2% were more than standard level. Result of presented research indicate that water is corrosive at 10.6%,89.4%,87.2%,59.6% and 14.9% of drinking water supply reservoirs, according to LSI, RSI, PSI, LS and AI, respectively.

  20. Risk management for assuring safe drinking water.

    OpenAIRE

    Hrudey, Steve E.; Hrudey, Elizabeth J.; Pollard, Simon J. T.

    2006-01-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that dis...

  1. Mutagenic and carcinogenic properties of drinking water

    International Nuclear Information System (INIS)

    Kool, H.J.; van Kreijl, C.F.; Hrubec, J.

    1985-01-01

    In this chapter results of oxidation treatments with chlorine, ozone, chlorine dioxide, and ultraviolet (UV), with respect to their effects on activity (Ames test) in drinking water supplies are reviewed. In addition, the authors present the preliminary results of a pilot plant study on the effects of chlorine and chlorine dioxide on mutagenicity. Furthermore, results of several carcinogenicity studies performed with organic drinking water concentrates are discussed in relation to the results of a Dutch carcinogenicity study with mutagenic drinking water concentrates

  2. Regulating tritium in drinking water

    International Nuclear Information System (INIS)

    Fluke, R.

    1994-01-01

    This article incorporates an article by E. Koehl from an internal Ontario Hydro publication, and a letter from the Joint Committee of Health and Safety of the Royal Society of Canada and the Canadian Academy of Engineering, submitted to the Ontario Minister of the Environment and Energy. The Advisory Committee on Environmental Standards had recommended that the limit for tritium in Ontario drinking water be reduced from 40,000 to 100 Bq/L, with a further reduction to 20 in five years. Some facts and figures are adduced to show that the effect of tritium in drinking water in Ontario is negligible compared to the effect of background radiation. The risk from tritium to the people of Ontario is undetectably small, and the attempt to estimate this risk by linear extrapolation is extremely dubious. Regulation entails social and economic costs, and the government ought to ensure that the benefits exceed the costs. The costs translate into nothing less than wasted opportunity to save lives in other ways. 3 refs

  3. Radioactivity standards for drinking water

    International Nuclear Information System (INIS)

    Sastry, V.N.; Mahadevan, T.N.; Nair, R.N.; Krishnamoorthy, T.M.; Nambi, K.S.V.

    1995-01-01

    The Bureau of Indian Standards (BIS) had issued drinking water specifications for radioactivity in 1991 as 0.1 Bq/L for gross α and 1 pCi/L for gross β. The specification for gross β should have been 1 Bq/L, however the basis for arriving at these standards were not clearly stated. The radiological basis for fixing the Drinking Water Standards (DWS) has, therefore, been reviewed in the present work. The values derived now for gross α (0.01 Bq/L) and gross β (0.34 Bq/L) are different from the values given above. In addition, the DWS for some important radionuclides using the ingestion dose factors applicable to members of the general public (adult as well as children) are given here. It is hoped that the presently suggested values will be accepted by the Atomic Energy Regulatory Board and adopted by the BIS in the near future. (author). 14 refs., 2 tabs., 2 ills

  4. Naphthalene: Drinking water health advisory

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The Drinking Water Health Advisory, Office of Water, U.S. Environmental Protection Agency, has issued its report on the chemical, naphthalene. Naphthalene is used in the manufacture of phthalic and anthranilic acids and other derivatives, and in making dyes; in the manufacture of resins, celluloid, lampblack and smokeless gunpowder; and as moth repellant, insecticide, anthelmintic, vermicide, and intestinal antiseptic. The report covers the following areas: the occurrence of the chemical in the environment; its environmental fate; the chemical's absorption, distribution, metabolism, and excretion in the human body; and its health effects on humans and animals, including its mutagenicity and carcinogenicity characteristics. Also included is the quantification of its toxicological effects.

  5. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    The impact of the Chernobyl accident throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate potential risk to drinking water supplies, soil water and the food chain. This book provides information on radiological standards as they exist at present, methods of monitoring, and concepts in design to minimize risk and to highlight possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. (author)

  6. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  7. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  8. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  9. Radon in private drinking water wells

    International Nuclear Information System (INIS)

    Otahal, P.; Merta, J.; Burian, I.

    2014-01-01

    At least 10 % of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq.l -1 . This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. (authors)

  10. Drinking Water Cyanotoxin Risk Communication Toolbox

    Science.gov (United States)

    The drinking water cyanotoxin risk communication toolbox is a ready-to-use, “one-stop-shop” to support public water systems, states, and local governments in developing, as they deem appropriate, their own risk communication materials.

  11. Determination of Phthalates in Drinking Water Samples

    African Journals Online (AJOL)

    user

    successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. ... esters are used in the manufacturing of polyvinyl chloride. (PVC). ... water, soil, air, food products and the human body. (Castillo et al.

  12. GROUNDWATER, DRINKING WATER, ARSENIC POLLUTION, NORTH DAG

    Directory of Open Access Journals (Sweden)

    T. O. Abdulmutalimova

    2012-01-01

    Full Text Available In this article we studied the chemical particularities of ground water of the North Daghestan, using by population as drinking water. In particular we examined the problem of arsenic pollution.

  13. Identification of Giardia lamblia and the human infectious-species of Cryptosporidium in drinking water resources in Western Saudi Arabia by nested-PCR assays.

    Science.gov (United States)

    Hawash, Y; Ghonaim, M; Hussein, Y; Alhazmi, A; Alturkistani, A

    2015-06-01

    The presence of Cryptosporidium and/or Giardia in drinking water represents a major public health problem. This study was the first report concerned with the occurrence of these protozoa in drinking water in Saudi Arabia. The study was undertaken in Al-Taif, a high altitude region, Western Saudi Arabia. Eight underground wells water, six desalinated water and five domestic brands of bottled water samples, 10 liter each, were monthly collected between May 2013 and April 2014. All samples (n = 228), were processed using an automated wash/elution station (IDEXX Laboratories, Inc.). Genomic DNA was directly isolated and purified from samples concentrates with QIAamp® Stool Mini Kit (Qiagen). The target protozoan DNA sequences were amplified using two previously published nested-PCR protocols. Of all the analyzed water, 31 samples (≈14%) were found contaminated with the target protozoa. Giardia lamblia was detected in ≈10% (7/72) of desalinated water and in ≈9% (9/96) of wells water. On the other hand, Cryptosporidium was identified in ≈8% (8/72) of desalinated water and in ≈7% (7/96) of wells water. All bottled water samples (n = 60) were (oo)cysts-free. Protozoan (oo)cysts were more frequently identified in water samples collected in the spring than in other seasons. The methodology established in our study proved sensitive, cost-effective and is amenable for future automation or semi-automation. For better understanding of the current situation that represent an important health threat to the local inhabitants, further studies concerned with (oo)cyst viability, infectivity, concentration and genotype identification are recommended.

  14. Concentration of natural radionuclides in private drinking water wells

    International Nuclear Information System (INIS)

    Cerny, R.; Otahal, P.; Merta, J.; Burian, I.

    2017-01-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/Euroatom, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. (authors)

  15. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  16. Drinking Water Program 1992 annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG ampersand G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG ampersand G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a open-quotes community water systemclose quotes (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG ampersand G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG ampersand G Idaho production wells

  17. Investigation of Drinking Water Quality in Kosovo

    Directory of Open Access Journals (Sweden)

    Fatlume Berisha

    2013-01-01

    Full Text Available In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water. The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U. Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  18. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  19. Heavy metal pollution in drinking water - a global risk for human ...

    African Journals Online (AJOL)

    Water resources in the world have been profoundly influenced over the last years by human activities, whereby the world is currently facing critical water supply and drinking water quality problems. In many parts of the world heavy metal (HM) concentrations in drinking water are higher than some international guideline ...

  20. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  1. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  2. Risk management for assuring safe drinking water.

    Science.gov (United States)

    Hrudey, Steve E; Hrudey, Elizabeth J; Pollard, Simon J T

    2006-12-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that disease outbreaks remain a risk that could be better managed and prevented even in affluent nations. A detailed retrospective analysis of more than 70 case studies of disease outbreaks in 15 affluent nations over the past 30 years provides the basis for much of our discussion [Hrudey, S.E. and Hrudey, E.J. Safe Drinking Water--Lessons from Recent Outbreaks in Affluent Nations. London, UK: IWA Publishing; 2004.]. The insights provided can assist in developing a better understanding within the water industry of the causes of drinking water disease outbreaks, so that more effective preventive measures can be adopted by water systems that are vulnerable. This preventive feature lies at the core of risk management for the provision of safe drinking water.

  3. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-02-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.

  4. Get the Facts: Drinking Water and Intake

    Science.gov (United States)

    ... Obesity About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Related Links CDC Food Safety Adolescent and School Health BAM! Body and Mind Get the Facts: Drinking Water and Intake Recommend ...

  5. Drinking Water Mapping Application (DWMA) - Public Version

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Mapping Application (DWMA) is a web-based geographic information system (GIS) that enhances the capabilities to identify major contaminant risks...

  6. Risk assessment of radon in drinking water

    National Research Council Canada - National Science Library

    Committee on Risk Assessment of Exposure to Radon in Drinking Water, National Research Council

    .... This book presents a valuable synthesis of information about the total inhalation and ingestion risks posed by radon in public drinking water, including comprehensive reviews of data on the transfer...

  7. Drinking Water Earthquake Resilience Paper Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data for the 9 figures contained in the paper, A SOFTWARE FRAMEWORK FOR ASSESSING THE RESILIENCE OF DRINKING WATER SYSTEMS TO DISASTERS WITH AN EXAMPLE EARTHQUAKE...

  8. Microbial interactions in drinking water biofilms

    OpenAIRE

    Simões, Lúcia C.; Simões, M.; Vieira, M. J.

    2007-01-01

    Drinking water distribution networks may be viewed as a large reactor where a number of chemical and microbiological processes are taking place. Control of microbial growth in drinking water distribution systems (DWDS) often achieved through the addition of disinfectants, is essential to limit the spread of waterborne pathogens. However, microorganisms can resist disinfection through protection within biofilms and resistant host cells. Recent studies into the microbial ecology ...

  9. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    OpenAIRE

    Crocker, Jonny; Bartram, Jamie

    2014-01-01

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, ...

  10. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  11. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  12. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  13. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  14. Natural radionuclides in drinking water in Argentina

    International Nuclear Information System (INIS)

    Bomben, A.M.; Palacios, M.A.

    2000-01-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of natural uranium and 226 Ra have been analyzed in over 300 drinking water samples taken from different locations in Argentina. 226 Ra was determined by 222 Rn emanation and liquid scintillation counting, and natural uranium by a fluorimetric procedure. Values ranging from 0.03 to 24 μg.l -1 of natural uranium and from 0.06 to 50 μg.l -1 , were measured on drinking water samples taken from tap water systems and private wells, respectively. Concentrations up to 15 mBq.l -1 and to 22 mBq.l -1 of 226 Ra were found in drinking water samples taken from tap water systems and private wells, respectively. These values are compared with the reference values accepted for drinking water. Based on the water intake rate, the age distribution and the measured concentrations, an annual collective effective dose of 1.9 man Sv and an individual committed effective dose of 0.49 μSv.y -1 were calculated for the city of Buenos Aires adult inhabitants, for the ingestion of both natural radionuclides analyzed in drinking water. (author)

  15. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  16. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  17. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  18. National trends in drinking water quality violations.

    Science.gov (United States)

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  19. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  20. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  1. Problems with provision: barriers to drinking water quality and public health in rural Tasmania, Australia.

    Science.gov (United States)

    Whelan, Jessica J; Willis, Karen

    2007-01-01

    Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.

  2. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  3. Quantitative risk assessment of drinking water contaminants

    International Nuclear Information System (INIS)

    Cothern, C.R.; Coniglio, W.A.; Marcus, W.L.

    1986-01-01

    The development of criteria and standards for the regulation of drinking water contaminants involves a variety of processes, one of which is risk estimation. This estimation process, called quantitative risk assessment, involves combining data on the occurrence of the contaminant in drinking water and its toxicity. The human exposure to a contaminant can be estimated from occurrence data. Usually the toxicity or number of health effects per concentration level is estimated from animal bioassay studies using the multistage model. For comparison, other models will be used including the Weibull, probit, logit and quadratic ones. Because exposure and toxicity data are generally incomplete, assumptions need to be made and this generally results in a wide range of certainty in the estimates. This range can be as wide as four to six orders of magnitude in the case of the volatile organic compounds in drinking water and a factor of four to five for estimation of risk due to radionuclides in drinking water. As examples of the differences encountered in risk assessment of drinking water contaminants, discussions are presented on benzene, lead, radon and alachlor. The lifetime population risk estimates for these contaminants are, respectively, in the ranges of: <1 - 3000, <1 - 8000, 2000-40,000 and <1 - 80. 11 references, 1 figure, 1 table

  4. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    International Nuclear Information System (INIS)

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule

  5. Drinking water protection plan; a discussion document

    International Nuclear Information System (INIS)

    2001-01-01

    This draft document outlines the plan of action devised by the Government of British Columbia in an effort to safeguard the purity of the drinking water supply in the province, and invites British Columbians to participate in the elaboration of such a plan. This document concentrates on the assessment of the sources of the water supply (watersheds and aquifers) and on measures to ensure the integrity of the system of water treatment and distribution as the principal components of a comprehensive plan to protect drinking water. The proposed plan involves a multi-barrier approach that will use a combination of measures to ensure that water sources are properly managed and waterworks systems provide safe drinking water. New drinking water planning procedures, more effective local influence and authority, enforceable standards, better access to information and public education programs form the essence of the plan. A series of public meetings are scheduled to provide the public at large with opportunities to comment on the government's plan of action and to offer suggestions for additional measures

  6. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  7. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    -depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up

  8. A bibliometric analysis of drinking water research in Africa

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Keywords: Africa, bibliometric review, drinking water, publications, research ...... and 'heavy metal water pollution' (1 article) with 89 citations. The high ..... KHAN MA and HO YS (2011) Arsenic in drinking water: A review on.

  9. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  10. Drinking Water Quality Assessment in Tetova Region

    OpenAIRE

    B. H. Durmishi; M. Ismaili; A. Shabani; Sh. Abduli

    2012-01-01

    Problem statement: The quality of drinking water is a crucial factor for human health. The objective of this study was the assessment of physical, chemical and bacteriological quality of the drinking water in the city of Tetova and several surrounding villages in the Republic of Macedonia for the period May 2007-2008. The sampling and analysis are conducted in accordance with State Regulation No. 57/2004, which is in compliance with EU and WHO standards. A total of 415 samples were taken for ...

  11. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  12. Drinking water-a pipe dream

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    Every third person deprived of clean drinking water in the world is an Indian, according to a report based on studies conducted by the National Environmental Engineering Research Institute (NEERI), Nagpur. The study further states that almost 70 per cent of our available water is polluted. This causes deaths of about 15 Iakh Indian children every year. A WHO report says that 80 per cent of the illnesses in India could be prevented if safe potable water was available to our entire population. The Union Ministry of Rural Development aims at providing at least one source of safe drinking water supply to each of 5.75 Iakh villages. Each source is expected to be about 0.5 km away from the village and will supply 70 liters of water per person everyday.

  13. Utilization of Groundwater, Spring, and the Surface Water for Drinking Water Service for the People of Surakarta

    OpenAIRE

    Team PDAM Surakarta

    2004-01-01

    Case study: utilizing the groundwater, water resources, and surface of water to supply the drinking water for the inhabitants is Surakarta. Of the early target at 75%, the supply of drinking water for the inhabitants in Surakarta only achieves 44%. Because of this, the Regional Drinking Water ompany (PDAM) of Surakarta made a decision to: 1) utilize the debit of water production by making a deep well at a capacity of 30 liters a second for a short term, and on the basis of the study of water ...

  14. Radioactivity in drinking water supplies in Western Australia.

    Science.gov (United States)

    Walsh, M; Wallner, G; Jennings, P

    2014-04-01

    Radiochemical analysis was carried out on 52 drinking water samples taken from public outlets in the southwest of Western Australia. All samples were analysed for Ra-226, Ra-228 and Pb-210. Twenty five of the samples were also analysed for Po-210, and 23 were analysed for U-234 and U-238. Ra-228 was found in 45 samples and the activity ranged from water. The estimated doses ranged from 0.001 to 2.375 mSv y(-1) with a mean annual dose of 0.167 mSv y(-1). The main contributing radionuclides to the annual dose were Ra-228, Po-210 and Ra-226. Of the 52 drinking water samples tested, 94% complied with the current Australian Drinking Water Guidelines, while 10% complied with the World Health Organization's radiological guidelines which many other countries use. It is likely that these results provide an overestimate of the compliance, due to limitations, in the sampling technique and resource constraints on the analysis. Because of the increasing reliance of the Western Australian community on groundwater for domestic and agricultural purposes, it is likely that the radiological content of the drinking water will increase in the future. Therefore there is a need for further monitoring and analysis in order to identify problem areas. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Water resources (Chapter 12)

    Science.gov (United States)

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  16. [Medical and environmental aspects of the drinking water supply crisis].

    Science.gov (United States)

    Él'piner, L I

    2013-01-01

    Modern data determining drinking water supply crisis in Russia have been considered. The probability of influence of drinking water quality used by population on current negative demographic indices was shown. The necessity of taking into account interests of public health care in the process of formation of water management decisions was grounded. To achieve this goal the application of medical ecological interdisciplinary approach was proposed Its use is mostly effective in construction of goal-directed medical ecological sections for territorial schemes of the rational use and protection of water resources. Stages of the elaboration of these sections, providing the basing of evaluation and prognostic medical and environmental constructions on similar engineering studies of related disciplinary areas (hydrological, hydrogeological, hydrobiological, hydrochemical, environmental, socio-economic, technical and technological) were determined.

  17. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  18. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  19. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  20. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  1. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  2. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  3. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  4. Microfiltration and Ultrafiltration Membranes for Drinking Water

    Science.gov (United States)

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  5. Emerging Contaminants in the Drinking Water Cycle.

    Science.gov (United States)

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  6. Basic Information about Lead in Drinking Water

    Science.gov (United States)

    ... this page is not intended to catalog all possible health effects for lead. Rather, it is intended to let ... in drinking water at which no adverse health effects are likely to occur with ... on possible health risks, are called maximum contaminant level goals ( ...

  7. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  8. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  9. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution,...... be separated from the water phase by filtration.......Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  10. Natural radio-nuclides in drinking water

    International Nuclear Information System (INIS)

    Deflorin, O.

    2003-01-01

    This article discusses the presence of radio-nuclides in Switzerland's drinking water. The article describes research done into the natural radioactivity to be found in various drinking water samples taken from the public water supply in the Canton of Grisons in eastern Switzerland. The various natural nuclides to be expected are listed and the methods used to take the samples are described. The results of the analysis are presented in the form of sketches showing the geographical distribution of the nuclide samples. Diagrams of the cumulative frequency of the quantities of nuclides found are presented, as are such diagrams for the yearly radioactive doses that the population is exposed to. The results and their consequences for the water supply are discussed in detail and further investigations to be made in the region are proposed

  11. Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Ljiljana Zlatanović

    2018-04-01

    Full Text Available Drinking water and fire safety are strongly bonded to each other. Actual drinking water demand and fire flows are both delivered through the same network, and are both devoted to public health and safety. In The Netherlands, the discussion about fire flows supplied by the drinking water networks has drawn fire fighters and drinking water companies together, searching for novel approaches to improve public safety. One of these approaches is the application of residential fire sprinkler systems fed by drinking water. This approach has an impact on the layout of domestic drinking water systems (DDWSs, as extra plumbing is required. This study examined the influence of the added plumbing on quality of both fresh and 10 h stagnant water in two full scale DDWSs: a conventional and an extended system. Overnight stagnation was found to promote copper and zinc leaching from pipes in both DDWSs. Microbial numbers and viability in the stagnant water, measured by heterotrophic plate count (HPC, flow cytometry (FCM and adenosine tri-phosphate (ATP, depended on the temperature of fresh water, as increased microbial numbers and viability was measured in both DDWSs when the temperature of fresh water was below the observed tipping point (15 °C for the HPC and 17 °C for the FCM and ATP measurements respectively and vice versa. A high level of similarity between water and biofilm communities, >98% and >70–94% respectively, indicates that the extension of the DDWS did not affect either the microbial quality of fresh drinking water or the biofilm composition.

  12. Drinking water quality from the aspect of element concentrations

    International Nuclear Information System (INIS)

    Chiba, M.; Shinohara, A.; Sekine, M.; Hiraishi, S.

    2006-01-01

    Drinking water in developed countries is usually treated by the water-purification system, while in developing countries untreated natural water such as well water, river water, rain water, or pond water are used. On the other hand, many kinds of mineral water bottled in plastic containers are sold as drinking water with or without gas in urban areas in many countries. Seawater under hundreds meters from the surface is also bottled and sold as drinking water with advertising good mineral balance. Various element concentrations in water samples for drinking were analyzed, and then it was considered the effects of elements on human health. (author)

  13. Book Review: Taste, color, and odor in drinking water (Introduction, Detection, and Control

    Directory of Open Access Journals (Sweden)

    Sina Dobaradaran

    2013-06-01

    Full Text Available Access to safe drinking water to protect human health and also for society development is necessary. With regards to population growing, industrial and economic development, serious harms on the quality and quantity of water resources are increasing. Considering the increasing pollution of water resources and the need for access to safe drinking water, understanding and knowledge of the water components in terms of planning, design and operation of water projects seems necessary. Beside this, knowledge about drinking water quality standards and its criteria in terms of health and pleasant for all people in this region (scientists, designers, engineers, operators and consultants is absolutely important. Production of drinking water in water treatment plants with considering primary health standards is of essential concern but attention to aesthetic aspects in drinking water sources must be also considered to increase public confidence about their drinking water sources. According to secondary standards for drinking water the contents of aesthetic parameters including color, odor and taste must be low and acceptable. In the present book the sources of color, odor and taste, measurement methods and removal of each cited parameter is discussed. Finally, the step by step design for removal systems of color, odor and taste in the particular circumstances are also considered with introducing case design. This book is recommended to students and researches in the field of environmental health engineering, environmental science and related sciences. This book can also be used in the design and operation of water treatment plants by designers, operators and all those involvedpublic.

  14. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  15. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  16. Improving Drinking Water Quality by Remineralisation.

    Science.gov (United States)

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.

  17. The quality of drinking water in Poland

    Directory of Open Access Journals (Sweden)

    L. Kłos

    2015-05-01

    Full Text Available Introduction. An analysis of the drinking water quality and the degree of access to water supply and sewerage system in Poland was conducted. Materials and methods. Method of analysis of secondary statistical data was applied, mostly based on data available in the materials of the Central Statistical Office in Warsaw, the Waterworks Polish Chamber of Commerce in Bydgoszcz and the National Water Management in Warsaw. Result and discussion. 60 % of Poles do not trust to drink water without prior boiling. Water flowing from the taps, although widely available, is judged to be polluted, with too much fluorine or not having the appropriate consumer values (colour, smell and taste. The current water treatment systems can however improve them, although such a treatment, i.e. mainly through chlorination of water, deteriorates its quality in relation to pure natural water. The result is that fewer and fewer Poles drink water directly from the tap. They also less and less use tap water to cook food for which the bottled water is trusted more. Reason for that is that society does not trust the safety of the water supplied by the municipal water companies. The question thus is: Are they right? Tap water in Poland meets all standards since it is constantly monitored by the water companies and all relevant health services. Tap water supplied through the water supply system can be used without prior boiling. Studies have shown that only the operating parameters of water, suc h as taste, odour and hardness, are not satisfactory everywhere, different in each city, and sometimes in different districts of cities, often waking thoughts among users about its inappropriateness. The lowered water value can be easily improved at home through the use of filters. In conclusion, due to constant monitoring and investment in upgrading treatment processes, the quality of tap water has improved significantly in the last years. Conclusion. The results first allow assessing the

  18. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  19. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    try as there are no readily available methods for the determination of residual polyelectrolyte concentration. This study aims at ... quate, making the need to quantify them more critical (Fielding,. 1999). ... decisions and actions are sometimes required in the environ- ... were conducted on both distilled and real water systems.

  20. European Communities (Drinking water) Regulations, 2000

    International Nuclear Information System (INIS)

    2000-12-01

    These Regulations were adopted as Statutory Instrument No. 439 of 2000 on 18 December 2000 and come in to operation on 1 January 2004. The regulations give effect to provisions of EU Council Directive 98/83/EC on the quality of water intended for human consumption.. They prescribe quality standards to be applied in relation to certain supplies of drinking water. S.I. 439 of 2000 stipulates that the radiation dose arising from one year's consumption of drinking water should not exceed 0.1 mSv. It further stipulates that the dose calculation should include contributions from all natural and artificial radionuclides with the exception of tritium, potassium-40, radon and radon decay products

  1. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...

  2. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  3. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  4. [Pay attention to the human health risk of drinking low mineral water].

    Science.gov (United States)

    Shu, Weiqun

    2015-10-01

    The consumption of low mineral drinking water has been increasing around the world with the shortage of water resources and the development of advanced water treatment technologies. Evidences from systematic document reviews, ecological epidemiological observations, and experimental drinking water intervention studies indicate that lack of minerals in drinking water may cause direct or indirect harm to human health, among which, the associations of magnesium in water with cardiovascular disease, as well as calcium in water with osteoporosis, are well proved by sufficient evidence. This article points out that it is urgent to pay more attention to the issues about establishment of health risk evaluation system on susceptible consuming population, establishment of lab evaluation system on water quality and health effect for non-traditional drinking water, and program of safety mineralization for demineralized or desalinated water and so on.

  5. Water resources for Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water scarcity is a matter of urgent, national, regional and international concern. For those people, usually women, who are responsible for the daily task of obtaining sufficient water for household use, water shortages are a perpetual worry. It is a situation which affects many individual families and communities throughout the arid and semi-arid regions of Africa. The isotope studies conducted thus far have proved that the majority of regional groundwater systems in northern Africa and the Sahel zone are paleowaters, replenished thousands of years ago, without the possibility of significant replenishment under present climatic conditions. Therefore, removal from such underground reservoirs will eventually deplete the resource. Mapping these paleowaters, and estimating their reservoir sizes, is a priority. (IAEA)

  6. Provision of the population of Kazakhstan with qualitative drinking water by the main water lines

    International Nuclear Information System (INIS)

    Tastanov, K.Kh; Tokmurzin, Zh.T.; Baibatyrov, E.N.; Taubaldiev, T.S.; Murinov, S.K.; But, A. A.

    2002-01-01

    In the paper the status of drinking water supply of the Kazakhstan Caspian region is revealed. It is noted, that on the Kazakhstan coast of the Caspian sea by reason of lack of local water resources suitable for economic-consumption and technical usage water-supply is generally made with the Volga waters by water line 'Astrakhan-Mangistau', flow of the Ural river with very low water quality and sea water after water preparation on the Mangistau atomic energetic plant (for technical aims). By reason of lack of proper water preparation an intensive processes of corrosion of internal uninsulated surface in pipeline is coming. Water is enriched with iron lower water sanitary-hygienic norms and gets a stagnant smell. Nowadays half of population of Caspian region uses water which does not meet standard of quality, or is faced with lack of water what negatively results in human health. Large concentration of iron in drinking water is causing of illness of liver, blood and allergy reactions. Raised content of strontium results in development of rickets and other skeletal diseases. At present plants for treatment and disinfecting of water in water-line 'Astrakhan-Mangistau' were elaborated and put into operation for supply of population of several villages of Western Kazakhstan with drinking water of quarantined quality and necessary quantity

  7. Uptake of uranium from drinking water

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1987-01-01

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234 U and 238 U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion the subjects collected 24 hour total output of both urine and feces for seven days prior to drinking water. During the next day they drank, at their normal rate of drinking water intake, 900 ml of water containing approximately 90 pCi 238 U and 90 pCi 234 U (274 μg U) and continued to collect their urine and feces for seven additional days. Utilizing one technique for analyzing data, the G.I. absorption of 234 U ranged from -0.07% to 1.88% with an average of 0.51% and G.I. absorption of 238 U ranged from -0.07% to 1.79% with an average of 0.50%. Employing another technique for analyzing the data, the G.I. absorption ranged from -0.04 to 1.46% with a mean of 0.53% for 234 U and from 0.03% to 1.43% with a mean of 0.52 for 238 U. The dietary intake of U was also estimated from measurements of urinary and fecal excretion of U in eight subjects prior to drinking water containing U. The estimated average dietary intake of U for these subjects is 3.30 +/- 0.65 or 4.22 +/- 0.65 μg/day. These averages are two to four times higher than the values reported in the literature for dietary intake

  8. Disinfection of drinking water by ultraviolet light

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It is no longer mandatory that a given residue of chlorine is present in drinking water and this has led to interest in the use of ultraviolet radiation for disinfection of water in large public waterworks. After a brief discussion of the effect of ultraviolet radiation related to wavelength, the most usual type of irradiation equipment is briefly described. Practioal considerations regarding the installation, such as attenuation of the radiation due to water quality and deposits are presented. The requirements as to dose and residence time are also discussed and finally it is pointed out that hydraulic imperfections can reduce the effectiveness drastically. (JIW)Ψ

  9. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  10. Determination of mercury in drinking water

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1976-01-01

    Determination of mercury in drinking water samples have been carried out by neutron activation followed by chemical separation. The chemical analysis is necessary as the levels of mercury in these samples are quite low and activities of sodium, copper etc. interfere in its determination by direct spectroscopy. Solvent extraction separation offers speed and complete separation from interfering activities. Some of drinking water samples collected at Trombay have been analysed and their result are given in this paper. The procedure was checked with 197 Hg tracer and the reproducibility of the procedure is within 5%. It was free from contamination due to the activities of Cu, Na etc. The time of analysis was 15 minutes, and upto 5 samples could be analysed conveniently at a time. The average chemical yield was 72%. (T.I.)

  11. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    Science.gov (United States)

    Stoler, Justin; Weeks, John R; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  12. Water Safety Plan for drinking water risk management: the case study of Mortara (Pavia, Italy

    Directory of Open Access Journals (Sweden)

    Sabrina Sorlini

    2017-08-01

    Full Text Available The Water Safety Plan (WSP approach is an iterative method focused on analyzing the risks of water contamination in a drinking water supply system, from catchment to consumer, in order to protect human health. This approach is aimed at identifying and drastically reducing water contamination in the entire drinking water system, through the identification and mitigation or, if possible, elimination of all factors that may cause a chemical, physical, microbiological and radiological risk for water. This study developed a proposal of WSP for the drinking water supply system (DWSS of Mortara, Italy, in order to understand which are the preliminary evaluation aspects to be considered in the elaboration of a WSP. The DWSS of Mortara (a town of 15,500 inhabitants, located in northern Italy consists of three drinking water treatment plants (DWTPs, considering the following main contaminants: arsenic, iron, manganese and ammonia. Potential hazardous events and associated hazards were identified in each part of the water supply system. The risk assessment was carried out following the semi quantitative approach. The WSP proposal for Mortara was very useful not only as a risk mitigation approach, but also as a cost-effective tool for water suppliers. Furthermore, this approach will reduce public health risk, ensure a better compliance of water quality parameters with regulatory requirements, increase confidence of consumers and municipal authorities, and improve resource management due to intervention planning. Further, some new control measures are proposed by the WSP team within this work.

  13. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    Directory of Open Access Journals (Sweden)

    Justin Stoler

    Full Text Available Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  14. Drinking Water Consequences Tools. A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    In support of the goals of Department of Homeland Security’s (DHS) National Protection and Programs Directorate and the Federal Emergency Management Agency, the DHS Office of Science and Technology is seeking to develop and/or modify consequence assessment tools to enable drinking water systems owner/operators to estimate the societal and economic consequences of drinking water disruption due to the threats and hazards. This work will expand the breadth of consequence estimation methods and tools using the best-available data describing water distribution infrastructure, owner/assetlevel economic losses, regional-scale economic activity, and health. In addition, this project will deploy the consequence methodology and capability within a Web-based platform. This report is intended to support DHS effort providing a review literature review of existing assessment tools of water and wastewater systems consequences to disruptions. The review includes tools that assess water systems resilience, vulnerability, and risk. This will help to understand gaps and limitations of these tools in order to plan for the development of the next-generation consequences tool for water and waste water systems disruption.

  15. UV disinfection in drinking water supplies.

    Science.gov (United States)

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  16. Removal of radium from drinking water

    International Nuclear Information System (INIS)

    Lauch, R.P.

    1992-08-01

    The report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water. Calcium cation exchange removes radium and can be used when hardness removal is not necessary. Iron removal processes are discussed in relation to radium removal. Iron oxides remove much less than 20 percent of the radium from water under typical conditions. Manganese dioxide removes radium from water when competition for sorption sites and clogging of sites is reduced. Filter sand that is rinsed daily with dilute acid will remove radium from water. Manganese dioxide coated filter sorption removes radium but more capacity would be desirable. The radium selective complexer selectively removes radium with significant capacity if iron fouling is eliminated

  17. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  18. Parasites Associated with Sachet Drinking Water (Pure Water) in ...

    African Journals Online (AJOL)

    popularly called “Pure Water” in Nigeria), in Awka, capital of Anambra State, southeast Nigeria was conducted. This was in order to determine the safety and suitability of such water for human consumption. Sachet water is a major source of drinking ...

  19. Protecting health from metal exposures in drinking water.

    Science.gov (United States)

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  20. [Revision of the drinking water regulations].

    Science.gov (United States)

    Hauswirth, S

    2011-11-01

    The revision the Drinking Water Regulations will come into effect on 01.11.2011. Surveillance authorities and owners of drinking water supply systems had hoped for simplifications and reductions because of the new arrangements. According to the official statement for the revision the legislature intended to create more clarity, consider new scientific findings, to change regulations that have not been proved to close regulatory gaps, to deregulate and to increase the high quality standards. A detailed examination of the regulation text, however, raises doubts. The new classification of water supply systems requires different modalities of registration, water analyses and official observation, which will complicate the work of the authorities. In particular, the implementation of requirements of registration and examination for the owners of commercial and publicly-operated large hot-water systems in accordance with DVGW Worksheet W 551 requires more effort. According to the estimated 30 000 cases of legionellosis in Germany the need for a check of such systems for Legionella, however, is not called into question. Furthermore, the development of sampling plans and the monitoring of mobile water supply systems requires more work for the health authorities. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The Effect of Water Chemistry on the Removal of Arsenic from Drinking Water During Iron Removal Treatment

    Science.gov (United States)

    This research investigates the effects of water chemistry, oxidant type and concentration on the removal of iron and arsenic from drinking water. The research will be conducted using one of the National Risk Management Research Laboratory’s Water Supply and Water Resources Divisi...

  2. Drinking water quality of Sukkur municipal corporation

    International Nuclear Information System (INIS)

    Kandhar, I.A.; Ansari, A.K.

    2002-01-01

    SMC (Sukkur Municipal Corporation) supply the (filtered/settled) water for domestic purpose to the consumers, through intermittent water supply, from Phases I to IV. The water supply distribution network is underground and at most places pass parallel to sewerage lines. The grab sampling technique was followed for collecting representative samples. The official US-EPA and standard methods of water analysis have been used for drinking water quality analysis. DR/2000 spectrophotometer has been used for monitoring: Nitrates, Fluorides, Sulfates, Copper, Chromium, Iron and manganese. The trace metals Cr/sup 6/, Fe/sup 2+/ and other contaminants like; Turbidity and TSS (Total Suspended Solids) have been found higher than World Health Organization (WHO-1993) guideline values. (author)

  3. Toxicological relevance of emerging contaminants for drinking water quality

    OpenAIRE

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values ...

  4. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study

    International Nuclear Information System (INIS)

    Nelson, Andrew W.; Knight, Andrew W.; Eitrheim, Eric S.; Schultz, Michael K.

    2015-01-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation – before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. - Highlights: • Natural radionuclides in ground water near unconventional drilling operations were investigated. • Natural uranium ( nat U), lead-210 ( 210 Pb), and polonium-210 ( 210 Po) levels are described. • No statistically significant increases in natural radioactivity post-drilling were observed

  5. Microbiological and physicochemical quality of drinking water

    International Nuclear Information System (INIS)

    Chan, Chee Ling; Zalifah, M.K.; Norrakiah, A.S.

    2007-01-01

    This study was conducted on the water samples collected before and after filtration treatment was given. Five types of filtered drinking water (A1, B1, C1, D1 and E2) were chosen randomly from houses in Klang Valley for analyses. The purpose of this study was to determine the quality of filtered drinking water by looking into microbiological aspect and several physicochemical analyses such as turbidity, pH and total suspended solid (TSS). The microbiological analyses were performed to trace the presence of indicator organisms and pathogens such as Escherichia coli, Streptococcus faecalis and Pseudomonas aeruginosa. All of the water did not comply with the regulations of Food Act as consisted of more than 10 3 -10 4 cfu/ mL for total plate count. However, the total coliforms and E. coli were detected lower than 4 cfu/ mL and not exceeding the maximum limit of Food Act. While the presence of S. faecalis and P. aeruginosa were negative in all samples. The pH value was slightly acidic (pH -4 - 2.2 x 10 -3 mg/ L) and the turbidity for all the samples were recorded below 1 Nephelometric Turbidity units (NTU) thus, complying with the regulations. All the water samples that undergo the filtration system were fit to be consumed. (author)

  6. Drinking Water Quality Status and Contamination in Pakistan

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2017-01-01

    Full Text Available Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  7. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  8. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  9. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  10. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Drinking water quality was investigated at source and corresponding point-of-use in 2 peri-urban areas receiving drinking water either by communal water tanker or by delivery directly from the distribution system to household-based groundtanks with taps. Water quality variables measured were heterotrophic bacteria, total ...

  11. Biological stability of drinking water : Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  12. Drinking water purification in the Czech Republic and worldwide

    International Nuclear Information System (INIS)

    Krmela, Jan; Beckova, Vera; Vlcek, Jaroslav; Marhol, Milan

    2012-06-01

    The report is structured as follows: (i) Legislative (hygienic) requirements for technologies applied to drinking water purification with focus on uranium elimination; (ii) Technological drinking water treatment processes (settling, filtration, precipitation, acidification, iron and manganese removal) ; (iii) State Office for Nuclear Safety requirements for the operation of facilities to separate uranium from drinking water and for the handling of saturated ionexes from such facilities; (iv) Material requirements for the operation of ionex filters serving to separate uranium from drinking water; (v) Effect of enhanced uranium concentrations in drinking waters on human body; (vi) Uranium speciation in ground waters; (vii) Brief description of technologies which are used worldwide for uranium removal; (viii) Technologies which are usable and are used in the Czech Republic for drinking water purification from uranium; (ix) Inorganic and organic ion exchangers and sorbents. (P.A.)

  13. Framework for continuous performance improvement in small drinking water systems.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-01-01

    Continuous performance improvement (CPI) can be a useful approach to overcome water quality problems impacting small communities. Small drinking water systems (SDWSs) struggle to meet regulatory requirements and often lack the economic and human resource flexibility for immediate improvement. A CPI framework is developed to provide SDWS managers and operators an approach to gauge their current performance against similar systems and to track performance improvement from the implementation of the new technologies or innovations into the future. The proposed CPI framework incorporates the use of a water quality index (WQI) and functional performance benchmarking to evaluate and compare drinking water quality performance of an individual water utility against that of a representative benchmark. The results are then used to identify and prioritize the most vulnerable water quality indicators and subsequently identify and prioritize performance improvement strategies. The proposed CPI framework has been demonstrated using data collected from SDWSs in the province of Newfoundland and Labrador (NL), Canada and using the Canadian Council of Ministers of the Environment (CCME) WQI. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water

    Science.gov (United States)

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  15. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water**

    Science.gov (United States)

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  16. Polyelectrolyte determination in drinking water | Majam | Water SA

    African Journals Online (AJOL)

    Chemical contaminants that occur in drinking water are not usually associated with acute health effects when compared to microbial contaminants and are usually given a lower priority. Those that are of concern have cumulative toxic properties such as metals and substances that are carcinogenic. Some of these potentially ...

  17. Drinking water quality assessment in Southern Sindh (Pakistan).

    Science.gov (United States)

    Memon, Mehrunisa; Soomro, Mohammed Saleh; Akhtar, Mohammad Saleem; Memon, Kazi Suleman

    2011-06-01

    The southern Sindh province of Pakistan adjoins the Arabian Sea coast where drinking water quality is deteriorating due to dumping of industrial and urban waste and use of agrochemicals and yet has limited fresh water resources. The study assessed the drinking water quality of canal, shallow pumps, dug wells, and water supply schemes from the administrative districts of Thatta, Badin, and Thar by measuring physical, chemical, and biological (total coliform) quality parameters. All four water bodies (dug wells, shallow pumps canal water, and water supply schemes) exceeded WHO MPL for turbidity (24%, 28%, 96%, 69%), coliform (96%, 77%, 92%, 81%), and electrical conductivity (100%, 99%, 44%, 63%), respectively. However, the turbidity was lower in underground water, i.e., 24% and 28% in dug wells and shallow pumps as compared to open water, i.e., 96% and 69% in canal and water supply schemes, respectively. In dug wells and shallow pumps, limits for TDS, alkalinity, hardness, and sodium exceeded, respectively, by 63% and 33%; 59% and 70%, 40% and 27%, and 78% and 26%. Sodium was major problem in dug wells and shallow pumps of district Thar and considerable percent in shallow pumps of Badin. Iron was major problem in all water bodies of district Badin ranging from 50% to 69% and to some extent in open waters of Thatta. Other parameters as pH, copper, manganese, zinc, and phosphorus were within standard permissible limits of World Health Organization. Some common diseases found in the study area were gastroenteritis, diarrhea and vomiting, kidney, and skin problems.

  18. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  19. The Drinking Water Disparities Framework: On the Origins and Persistence of Inequities in Exposure

    Science.gov (United States)

    Balazs, Carolina L.; Ray, Isha

    2014-01-01

    With this article, we develop the Drinking Water Disparities Framework to explain environmental injustice in the context of drinking water in the United States. The framework builds on the social epidemiology and environmental justice literatures, and is populated with 5 years of field data (2005–2010) from California’s San Joaquin Valley. We trace the mechanisms through which natural, built, and sociopolitical factors work through state, county, community, and household actors to constrain access to safe water and to financial resources for communities. These constraints and regulatory failures produce social disparities in exposure to drinking water contaminants. Water system and household coping capacities lead, at best, to partial protection against exposure. This composite burden explains the origins and persistence of social disparities in exposure to drinking water contaminants. PMID:24524500

  20. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  1. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  2. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    Sale, M.J.; Presley, P.M.

    1991-01-01

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  3. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  4. Arsenic in Water Resources of the Southern Pampa Plains, Argentina

    Directory of Open Access Journals (Sweden)

    Juan D. Paoloni

    2009-01-01

    Full Text Available Confronted with the need for accessible sources of good quality water and in view of the fact that the threat to public health posed by arsenic occurs mainly through the ingestion of contaminated drinking water, the presence and distribution of arsenic was evaluated in the southern Pampa Plains of Bahía Blanca district in Argentina. The findings show variable concentrations of arsenic in a complex distribution pattern. Complementary information is provided on the behavior of the groundwater resource and its salinity in terms of dissolved ions. Groundwater is the most severely affected, 97% of the samples exceeding the guideline value for arsenic in drinking water as recommended by the WHO (Guidelines for Drinking Water Quality, 2004. and showing maximum concentrations of up to 0.30 mg/L. Informing those responsible for preventive medicine and alerting the community at large will facilitate measures to mitigate exposure and ensure the safety of drinking water.

  5. Arsenic in Water Resources of the Southern Pampa Plains, Argentina

    Science.gov (United States)

    Paoloni, Juan D.; Sequeira, Mario E.; Espósito, Martín E.; Fiorentino, Carmen E.; Blanco, María del C.

    2009-01-01

    Confronted with the need for accessible sources of good quality water and in view of the fact that the threat to public health posed by arsenic occurs mainly through the ingestion of contaminated drinking water, the presence and distribution of arsenic was evaluated in the southern Pampa Plains of Bahía Blanca district in Argentina. The findings show variable concentrations of arsenic in a complex distribution pattern. Complementary information is provided on the behavior of the groundwater resource and its salinity in terms of dissolved ions. Groundwater is the most severely affected, 97% of the samples exceeding the guideline value for arsenic in drinking water as recommended by the WHO (Guidelines for Drinking Water Quality, 2004). and showing maximum concentrations of up to 0.30 mg/L. Informing those responsible for preventive medicine and alerting the community at large will facilitate measures to mitigate exposure and ensure the safety of drinking water. PMID:19936127

  6. Arsenic in Water Resources of the Southern Pampa Plains, Argentina

    International Nuclear Information System (INIS)

    Paoloni, J.D.; Sequeira, M.E.; Esposito, M.E.; Fiorentino, C.E.; Blanco, M.D.C.

    2010-01-01

    Confronted with the need for accessible sources of good quality water and in view of the fact that the threat to public health posed by arsenic occurs mainly through the ingestion of contaminated drinking water, the presence and distribution of arsenic was evaluated in the southern Pampa Plains of Bahia Blanca district in Argentina. The findings show variable concentrations of arsenic in a complex distribution pattern. Complementary information is provided on the behavior of the groundwater resource and its salinity in terms of dissolved ions. Groundwater is the most severely affected, 97% of the samples exceeding the guideline value for arsenic in drinking water as recommended by the Who (Guidelines for Drinking Water Quality, 2004). and showing maximum concentrations of up to 0.30 mg/L. Informing those responsible for preventive medicine and alerting the community at large will facilitate measures to mitigate exposure and ensure the safety of drinking water.

  7. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  8. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Chemical safety of food and drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M; Heijden, C.A. van der [WHO European Centre for Environment and Health, Bilthoven (Netherlands)

    1992-07-01

    Food and drinking water are major sources of human exposure to a large number of chemicals added intentionally for technological reasons or present unintentionally due to contamination. On the other hand, there is a public demand for an essentially risk-free supply of food and drinking water. The concern over the presence of chemicals in the human diet received further emphasis through the development of toxicological and analytical methodology with increased sensitivity over the years. In order to minimize the potential health hazards to the consumers, standards have been established which indicate levels of consumption that are - according to scientific evidence - considered safe and which, consequently, permit control measures to be taken. In this context, public perception of a particular risk, may not always be in line with what might be considered a 'real' risk. Thus, while in the public opinion risk associated with smoking or over-nutrition might be accepted or underestimated, certain food chemical related risks may not be accepted and are sometimes perceived as alarmingly high.

  10. Chemical safety of food and drinking water

    International Nuclear Information System (INIS)

    Younes, M.; Heijden, C.A. van der

    1992-01-01

    Food and drinking water are major sources of human exposure to a large number of chemicals added intentionally for technological reasons or present unintentionally due to contamination. On the other hand, there is a public demand for an essentially risk-free supply of food and drinking water. The concern over the presence of chemicals in the human diet received further emphasis through the development of toxicological and analytical methodology with increased sensitivity over the years. In order to minimize the potential health hazards to the consumers, standards have been established which indicate levels of consumption that are - according to scientific evidence - considered safe and which, consequently, permit control measures to be taken. In this context, public perception of a particular risk, may not always be in line with what might be considered a 'real' risk. Thus, while in the public opinion risk associated with smoking or over-nutrition might be accepted or underestimated, certain food chemical related risks may not be accepted and are sometimes perceived as alarmingly high

  11. High enteric bacterial contamination of drinking water in Jigjiga city ...

    African Journals Online (AJOL)

    unhcc

    Key words: Contamination, drinking water, households, enteric bacteria, Jigjiga. Introduction. Water safety ... regular sanitary checks for un-chlorinated water (9). Because of this ... 238, considering 5% non-response rate. All kebeles have.

  12. Assessment of drinking water quality using principal component ...

    African Journals Online (AJOL)

    Assessment of drinking water quality using principal component analysis and partial least square discriminant analysis: a case study at water treatment plants, ... water and to detect the source of pollution for the most revealing parameters.

  13. Trends in Drinking Water Nitrate Violations Across the United States

    Science.gov (United States)

    Drinking water maximum contaminant levels (MCL) are established by the U.S. EPA in order to protect human health. Since 1975, public water suppliers across the U.S. have reported violations of the MCL to the national Safe Drinking Water Information System (SDWIS). Nitrate is on...

  14. 76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate

    Science.gov (United States)

    2011-02-11

    ...-9262-8] RIN 2040-AF08 Drinking Water: Regulatory Determination on Perchlorate AGENCY: Environmental...'s) regulatory determination for perchlorate in accordance with the Safe Drinking Water Act (SDWA... substantial likelihood that perchlorate will occur in public water systems with a frequency and at levels of...

  15. Start-up of a drinking water biofilter

    DEFF Research Database (Denmark)

    Ramsay, Loren; Søborg, Ditte; Breda, Inês Lousinha Ribeiro

    When virgin filter media is placed in drinking water biofilters, a start-up period of some months typically ensues. During this period, the necessary inorganic coating and bacterial community are established on the filter medium, after which the treated water complies with drinking water criteria...

  16. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  17. Drinking water contamination and it's disinfection

    International Nuclear Information System (INIS)

    Shah, P.M.J.

    2005-01-01

    High quality water is necessary for the survival of human life. In this paper, an effort has been made to highlight the various causes of water contamination. Some of the most common impurities present in water are pathogenic microorganisms along with organize and in organize pollutants. Different treatment methods are adopted to ensure the potability of water. They include physical, chemical and ultra viable treatment along with solar disinfection etc. The adoption of a particular disinfection strategy depends on the level of treatment required and the resources available to carry out such a treatment. (author)

  18. The real water consumption behind drinking water: the case of Italy.

    Science.gov (United States)

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Unintended consequences of regulating drinking water in rural Canadian communities: examples from Atlantic Canada.

    Science.gov (United States)

    Kot, Megan; Castleden, Heather; Gagnon, Graham A

    2011-09-01

    Studies that explore social capital and political will [corrected] in the context of safe drinking water provision in [corrected] Canada are limited. This paper presents findings from a study that examines the capacity of rural Canadian communities to attain regulatory compliance for drinking water. Interviews were conducted with water operators and managers in ten rural communities across Atlantic Canada to identify the burden of compliance arising from the implementation of, and adherence to, drinking water regulations. This research identifies the operator as being particularly burdened by regulatory compliance, often resulting in negative consequences including job stress and a strained relationship with the community they serve. Findings indicate that while regulations are vital to ensuring safe drinking water, not all communities have the resources in place to rise to the challenge of compliance. As a result, some communities are being negatively impacted by these regulations, rather than benefit from their intended positive effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Learning about Drinking Water: How Important Are the Three Dimensions of Knowledge That Can Change Individual Behavior?

    Science.gov (United States)

    Fremerey, Christian; Bogner, Franz X.

    2014-01-01

    Clean drinking water, our most important resource, needs comprehensive protection. Due to its ubiquitous availability, the awareness of the importance of clean drinking water has partially vanished. Therefore, sensitizing within this context and improving individual ecological behavior has become an important issue in science curricula. We…

  1. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  2. MAGNESIUM, DRINKING WATER HARDNESS AND CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Dragana Nikic

    2006-01-01

    Full Text Available Many different countries suggest and justify an integrated laboratory and epidemiological research program with an aim to reject or accept the magnesium – CVD (cardiovascular disease hypothesis. The studies shown in this paper that have investigated the relationship between water hardness, especially magnesium and CVD indicate that, even though there has been an ongoing research for nearly half a century (1957-2004, it has not been completed yet. Different study designs (obductional, clinical, ecological, case-control and cohort restrict an adequate comparison of their results as well as the deduction of results applicable on each territorial level.The majority of researchers around the world, using populational and individual studies, have found an inverse (protective association between mortality and morbidity from CVD and the increase in water hardness, especially the increase in the concentration of magnesium. The most frequent benefit of the water with an optimal mineral composition is the reduction of mortality from ischemic heart disease.It was suggested that Mg from water is a supplementary source of Mg of high biological value, because magnesium from water is absorbed around 30% better than Mg in a diet. The vast majority of studies consider lower concentrations of Mg in the water, in the range of 10% of the total daily intake of Mg.Future research efforts must give better answers to low Mg concentrations in the drinking water, before any concrete recommendations are given to the public. Moreover, the researchers must also determine which chemical form of Mg is most easily absorbed and has the greatest impact.Additional research is necessary in order to further investigate the interrelation between different water and food components as well as individual risk factors in the pathogenesis of CVD.

  3. Future Challenges to Protecting Public Health from Drinking-Water Contaminants

    Science.gov (United States)

    Murphy, Eileen A.; Post, Gloria B.; Buckley, Brian T.; Lippincott, Robert L.; Robson, Mark G.

    2014-01-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation. PMID:22224887

  4. Future challenges to protecting public health from drinking-water contaminants.

    Science.gov (United States)

    Murphy, Eileen A; Post, Gloria B; Buckley, Brian T; Lippincott, Robert L; Robson, Mark G

    2012-04-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation.

  5. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia.

    Science.gov (United States)

    Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z

    2016-02-01

    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  7. Managing peatland vegetation for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  8. Safe drinking water act: Amendments, regulations and standards

    International Nuclear Information System (INIS)

    Calabrese, E.J.; Gilbert, C.E.; Pastides, H.

    1989-01-01

    This book approaches the topic of safe drinking water by communicating how the EPA has responded to the mandates of Congress. Chapter 1 summarizes what is and will be involved in achieving safe drinking water. Chapter 2 describes the historical development of drinking water regulations. Chapter 3 summarizes the directives of the Safe Drinking Water Act Amendments of 1986. Chapters 4 through 9 discuss each phase of the regulatory program in turn. Specific problems associated with volatile organic chemicals, synthetic organics, inorganic chemicals, and microbiological contaminants are assessed in Chapter 4 and 5. The unique characteristics of radionuclides and their regulation are treated in Chapter 6. The disinfection process and its resultant disinfection by-products are presented in Chapter 7. The contaminant selection process and the additional contaminants to be regulated by 1989 and 1991 and in future years are discussed in Chapters 8 and 9. EPA's Office of Drinking Water's Health Advisory Program is explained in Chapter 10. The record of public water system compliance with the primary drinking water regulations is detailed in Chapter 11. Chapter 12 offers a nongovernmental perspective on the general quality of drinking water and how this is affected by a wide range of drinking water treatment technologies. Separate abstracts are processed for 5 chapters in this book for inclusion in the appropriate data bases

  9. Mapping of tritium in drinking water from various Indian states

    International Nuclear Information System (INIS)

    Shah, Chirag A.; Baburajan, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The tritium in fresh water used for drinking purpose across five state of India was analyzed for tritium activity. The tritium data obtained were compared with the monitoring data of tritium in drinking water sources at Tarapur site, which houses a number of nuclear facilities. It is observed that the tritium activity in the water sample from various out station locations were in the range of < 0.48 to 1.33 Bq/l. The tritium value obtained in the drinking water sources at Tarapur was found to be in the range of 0.91 to 3.10 Bq/l. The monitoring of tritium in drinking water from Tarapur and from various out station location indicate that the level is negligible compared to the USEPA limit of 10000 Bq/l and the contribution of operation nuclear facilities to the tritium activity in drinking water source at Tarapur is insignificant. (author)

  10. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  11. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  12. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  13. Effect of sunlight, transport and storage vessels on drinking water ...

    African Journals Online (AJOL)

    Effect of sunlight, transport and storage vessels on drinking water quality in rural Ghana. ... on drinking water quality in rural Ghana. K Obiri-Danso, E Amevor, LA Andoh, K Jones ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  14. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  15. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    Science.gov (United States)

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  16. Analysis of phthalate esters contamination in drinking water samples ...

    African Journals Online (AJOL)

    The optimum condition method was successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. The concentration of DMP, DEP and DBP in drinking water samples were below allowable levels, while the DEHP concentration in three samples was found to be greater than the ...

  17. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  18. Trends in Nitrate Drinking Water Violations Across the US

    Science.gov (United States)

    Background/Question/Methods Safe drinking water is essential for the health and well-being of humans and life on Earth. Previous studies have shown that groundwater and other sources of drinking water can be contaminated with nitrate above the 10 mg nitrate-N L-1 maximum contami...

  19. Physico-Chemical Quality Of Drinking Water At Mushait, Aseer ...

    African Journals Online (AJOL)

    The physico-chemical quality study of different drinking water sources used in Khamis Mushait, southwestern, Saudi Arabia (SA) has been studied to evaluate their suitability for potable purposes. A total of 62 drinking water samples were collected randomly from bottled, desalinated and groundwater located around the ...

  20. Bacteriological and Physicochemical Quality of Drinking Water and ...

    African Journals Online (AJOL)

    BACKGROUND: Lack of safe drinking water, basic sanitation, and hygienic practices are associated with high morbidity and mortality from excreta related diseases. The aims of this study were to determine the bacteriological and physico-chemical quality of drinking water and investigate the hygiene and sanitation practices ...

  1. Small Drinking Water Systems Communication and Outreach Highlights

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  2. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  3. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications...

  4. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  5. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    drinking water treatment practices in the areas, which in turn have important human health implications. This study, therefore, recommends the government and other responsible authorities to take appropriate corrective measures. Key words: Drinking water quality, Heavy metals, Maximum admissible limit, World health.

  6. - Oklahoma Water Resources Center

    Science.gov (United States)

    Development Ag Business Community & Rural Development Crops Family & Consumer Sciences Gardening Family & Consumer Sciences Food & Ag Products Center Horticulture & Landscape Architecture & Landscape Architecture Natural Resource Ecology & Management Plant & Soil Sciences

  7. Meeting drinking water and sanitation targets of MDGs. Water use & competition in sub-Saharan Africa

    NARCIS (Netherlands)

    Hoek van der, Marjolijn

    2006-01-01

    Access to safe drinking water and improved sanitation is of vital importance for human beings. Improving the access to safe drinking water and improved sanitation in developing countries is therefore one of the Millennium Development Goals (MDGs) to be me

  8. Drinking water fluoride and blood pressure? An environmental study.

    Science.gov (United States)

    Amini, Hassan; Taghavi Shahri, Seyed Mahmood; Amini, Mohamad; Ramezani Mehrian, Majid; Mokhayeri, Yaser; Yunesian, Masud

    2011-12-01

    The relationship between intakes of fluoride (F) from drinking water and blood pressure has not yet been reported. We examined the relationship of F in ground water resources (GWRs) of Iran with the blood pressure of Iranian population in an ecologic study. The mean F data of the GWRs (as a surrogate for F levels in drinking water) were derived from a previously conducted study. The hypertension prevalence and the mean of systolic and diastolic blood pressures (SBP & DBP) of Iranian population by different provinces and genders were also derived from the provincial report of non-communicable disease risk factor surveillance of Iran. Statistically significant positive correlations were found between the mean concentrations of F in the GWRs and the hypertension prevalence of males (r = 0.48, p = 0.007), females (r = 0.36, p = 0.048), and overall (r = 0.495, p = 0.005). Also, statistically significant positive correlations between the mean concentrations of F in the GWRs and the mean SBP of males (r = 0.431, p = 0.018), and a borderline correlation with females (r = 0.352, p = 0.057) were found. In conclusion, we found the increase of hypertension prevalence and the SBP mean with the increase of F level in the GWRs of Iranian population.

  9. High enteric bacterial contamination of drinking water in Jigjiga city ...

    African Journals Online (AJOL)

    Both simple random and convenient sampling techniques were applied to select 238 households to assess water handling and hygienic practices, and 125 water samples to assess bacteriological quality of drinking water respectively. The water samples were collected from household water container, pipeline, water ...

  10. Energy and water resources

    International Nuclear Information System (INIS)

    1981-12-01

    This book presents data and other information for those who desire an understanding of the relationship between water and energy development. The book is not a tract for a grand plan. It does not present solutions. Many of the issues, especially regarding conflict over water allocations and use, are controlled and reconciled at the state level. This report draws together some of the physical and institutional data useful for identifying and understanding water issues which rise in regard to the various aspects of energy development. Three basic water-energy areas are considered in this report: water quality, water supply, and their institutional framework. Water consumption by energy was three percent of the nation's total consumption in 1975, not a large proportion. It is projected to increase to six percent by 2000. Water consumption rates by the energy technologies addressed in this document are tabulated. Water pollutant loadings expected from these technologies are summarized. Finally, a summary of water-related legislation which have particular ramifications in regard to the production of energy is presented

  11. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    Science.gov (United States)

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  12. Drinking Water Quality in Hospitals and Other Buildings

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pa...

  13. Arsenic in Drinking Water-A Global Environmental Problem

    Science.gov (United States)

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  14. Why Drinking Water Is the Way to Go

    Science.gov (United States)

    ... of excess water. When your pee is very dark yellow, it's holding on to water, so it's probably time to drink up. You can help ... Visit the Nemours Web site. Note: All information on KidsHealth® is for ...

  15. Effect of bromine and iodine in drinking water on production ...

    African Journals Online (AJOL)

    jannes

    Different treatments of Br, irrespective of I, decreased water and feed intake significantly. The interaction .... Treatments administered through the drinking water from Days 1 to 42 were: T0 (Control) = 0 ..... Hygienic substantiation of permissible ...

  16. Biological treatment of drinking water by chitosan based ...

    African Journals Online (AJOL)

    ABI

    2015-03-18

    Mar 18, 2015 ... method. A membrane filtration technique is used for the treatment of water to remove or kill ... The characterization of synthesized nanoparticles was done by dynamic ... water and just 3% is available for drinking, agriculture,.

  17. Time-Of-Travel Tool Protects Drinking Water

    Science.gov (United States)

    The Lower Susquehanna Source Water Protection (SWP) Partnership utilizes the Incident Command Tool for Drinking Water Protection (ICWater) to support the Pennsylvania Department of Environmental Protection (PADEP) with real-time spill tracking information.

  18. Spectrophotometric determination of fluoride in drinking water using ...

    African Journals Online (AJOL)

    2011-03-14

    Mar 14, 2011 ... Fluoride (F-) occurs in almost all waters from trace to high con- centration ... in drinking water can give rise to a number of adverse effects. (WHO ..... amended activated alumina granules. Chem. ... coal in Southwestern China.

  19. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  20. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  1. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  2. Experts’ understandings of drinking water risk management in a climate change scenario

    Directory of Open Access Journals (Sweden)

    Åsa Boholm

    2017-01-01

    Full Text Available The challenges for society presented by climate change are complex and demanding. This paper focuses on one particular resource of utmost necessity and vulnerability to climate change: namely, the provisioning of safe drinking water. From a critical perspective on the role of expertise in risk debates, this paper looks at how Swedish experts understand risk to drinking water in a climate change scenario and how they reason about challenges to risk management and adaptation strategies. The empirical material derives from ten in-depth semi-structured interviews with experts, employed both at government agencies and at universities, and with disciplinary backgrounds in a variety of fields (water engineering, planning, geology and environmental chemistry. The experts understand risk factors affecting both drinking water quality and availability as complex and systemically interrelated. A lack of political saliency of drinking water as a public service is identified as an obstacle to the development of robust adaptation strategies. Another area of concern relates to the geographical, organizational and institutional boundaries (regulatory, political and epistemological between the plethora of public actors with partly overlapping and sometimes unclear responsibilities for the provisioning of safe drinking water. The study concludes that climate change adaptation regarding drinking water provisioning will require a new integration of the knowledge of systemic risk relations, in combination with more efficient agency collaboration based on a clear demarcation of responsibility between actors.

  3. A survey of radioactivity in drinking water in Upper Austria

    International Nuclear Information System (INIS)

    Gruber, V.; Maringer, F.J.; Maringer, F.J.; Kaineder, H.; Sperker, S.; Brettner-Messler, R.

    2006-01-01

    The University of Natural Resources and Applied Life Science Vienna, in co-operation with the environmental department of the government of Upper Austria, realizes a 3 year program (2004-2006) to investigate the radioactivity in drinking water in Upper Austria. The superior purpose of the project is to protect the population from radiation exposure by drinking water. Therefore the measurements should yield basic data for further processing (guidelines, regulations [O.N. S.5251]) and their realisation (precaution, mitigation). To get an overview of the situation water samples are taken from water supplies and consumers houses(population radiation exposure) as well as directly from springs and fountains to obtain hydrogeological-radiological basic data. The first 230 water samples (to get a general idea, distributed among the area of Upper Austria) are analyzed for different radionuclides (Rn-222, Ra-226, H-3, U-238) and alpha-beta total activity concentration by liquid scintillation technologies. On the basis of these results more samples are taken in regions with elevated activity concentrations and besides in regions of particular geological interest (e.g. Bohemian Massif granite rocks; along geological disturbances; in regions with elevated Uranium and Thorium-values in the rocks). These samples are analyzed for Radon on-site by a mobile liquid scintillation instrument (Triathler, by Hidex) and additionally in the laboratory for Ra-228, Po-210, Pb-210. So far, 145 samples have been taken in this way in about 23 communities. First results indicate that the Radon activity concentrations in some springs and fountains range to 1000 Bq/l, but after preparation of the water in the supplies the activity concentrations are usually much lower. To determine this behaviour (e.g. for different preparation facilities), samples are taken at several places within the run of the water from the spring to the consumer. Besides special attention is given to U-238, because little

  4. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries.

    Science.gov (United States)

    Malik, Amir Haider; Khan, Zahid Mehmood; Mahmood, Qaisar; Nasreen, Sadia; Bhatti, Zulfiqar Ahmed

    2009-08-30

    Arsenic concentrations above acceptable standards for drinking water have been detected in many countries and this should therefore is a global issue. The presence of arsenic in subsurface aquifers and drinking water systems is a potentially serious human health hazard. The current population growth in Pakistan and other developing countries will have direct bearing on the water sector for meeting the domestic, industrial and agricultural needs. Pakistan is about to exhaust its available water resources and is on the verge of becoming a water deficit country. Water pollution is a serious menace in Pakistan, as almost 70% of its surface waters as well as its groundwater reserves have contaminated by biological, organic and inorganic pollutants. In some areas of Pakistan, a number of shallow aquifers and tube wells are contaminated with arsenic at levels which are above the recommended USEPA arsenic level of 10 ppb (10 microg L(-1)). Adverse health effects including human mortality from drinking water are well documented and can be attributed to arsenic contamination. The present paper reviews appropriate and low cost methods for the elimination of arsenic from drinking waters. It is recommended that a combination of low cost chemical treatment like ion exchange, filtration and adsorption along with bioremediation may be useful option for arsenic removal from drinking water.

  5. Survey of the mutagenicity of surface water, sediments, and drinking water from the Penobscot Indian Nation.

    Science.gov (United States)

    Warren, Sarah H; Claxton, Larry D; Diliberto, Janet; Hughes, Thomas J; Swank, Adam; Kusnierz, Daniel H; Marshall, Valerie; DeMarini, David M

    2015-02-01

    U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S. Published by Elsevier Ltd.

  6. Water : a commodity or resource?

    International Nuclear Information System (INIS)

    Pomeroy, G.

    2003-01-01

    Over the past several years, natural gas demand has increased significantly, as it is seen as an environmentally friendly, convenient and cost effective fuel. As a result, Alberta should experience the development of a sustainable resource in the form of natural gas from coal, provided adequate management of associated water is in place. The environmental impact and volume of water produced with natural gas from coal can be significant. Water is scarce and demand is growing. Gas producers are faced with the challenge of high water production and disposal costs, and often choose the deep disposal option as the most economical solution. However, environmentalists and agriculture groups who view water as a valuable resource, warrant the costs associated with the treatment of produced water. The author proposed a conceptual solution to this dilemma concerning produced water. It was suggested that producers of water should be connected with consumers, while allowing free market supply and demand dynamics to price out the inefficient use of the resource. The author also discussed the related regulatory, environmental, technological, economic, and commercial issues. It was concluded that water is both a resource and a commodity. Alberta should implement measures to promote water conservation, pollute less, and manage supply and demand. figs

  7. Assessment of quality of drinking water in Amasaman, Accra (Ghana)

    International Nuclear Information System (INIS)

    Quarcoo, G.; Hodgson, I. O. A.; Ampofo, J. A.; Cobbina, S. J.; Koku, J. E.

    2014-01-01

    The physico-chemical and microbial quality attributes of untreated water samples from hand dug wells and treated water delivered by tankers (mobile services) were assessed to determine the susceptibility of Amasaman community to water borne diseases. The physico-chemical parameters of all the water sources for domestic use were within the World Health Organization (WHO) drinking water guidelines and Ghana Standards (GS), with the exception of turbidity and colour which showed higher values for the well waters. With respect to the microbial quality, the waters from the hand-dug wells and tanker services showed presence of both total and faecal coliforms, at levels higher than WHO and GS values of zero counts per 100 mL for drinking water. The poor microbial quality (presence of coliform bacteria) of all the water samples suggested susceptibility and exposure of the community to waterborne diseases on continuously drinking the available water. (au)

  8. An assessment of drinking-water quality post-Haiyan.

    Science.gov (United States)

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  9. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  10. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  11. California Water Resources Development.

    Science.gov (United States)

    1977-01-01

    of disposing of waterborne wastes, includ- trol, navigation, salinity control, water supply, tidelands ing reclamation and reuse where appropriate...studies for Wilson and Wildwood Creeks streams in the South Coastal Basins have been com- Keys Canyon pleted: Moose Canyon Agua Hedionda Creek Otay...resulted from the De- cember 1966 flood. channel and conduit sections pass the reduced flows through Palm Springs and part of the Agua Caliente As a

  12. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Araguas-Araguas, L.

    1996-01-01

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  13. Time to revisit arsenic regulations: comparing drinking water and rice.

    Science.gov (United States)

    Sauvé, Sébastien

    2014-05-17

    Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.

  14. Organochlorine pesticides residues in bottled drinking water from Mexico City.

    Science.gov (United States)

    Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey

    2009-06-01

    This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.

  15. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  16. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  17. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  18. Modelling raw water quality: development of a drinking water management tool.

    Science.gov (United States)

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  19. Framework for Shared Drinking Water Risk Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peplinski, William John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Roger [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Binning, David [AEM Corp., Herndon, VA (United States); Meszaros, Jenny [AEM Corp., Herndon, VA (United States)

    2017-01-01

    Central to protecting our nation's critical infrastructure is the development of methodologies for prioritizing action and supporting resource allocation decisions associated with risk-reduction initiatives. Toward this need a web-based risk assessment framework that promotes the anonymous sharing of results among water utilities is demonstrated. Anonymous sharing of results offers a number of potential advantages such as assistance in recognizing and correcting bias, identification of 'unknown, unknowns', self-assessment and benchmarking for the local utility, treatment of shared assets and/or threats across multiple utilities, and prioritization of actions beyond the scale of a single utility. The constructed framework was demonstrated for three water utilities. Demonstration results were then compared to risk assessment results developed using a different risk assessment application by a different set of analysts.

  20. Uranium contamination of drinking water in Kazakhstan and Uzbekistan

    International Nuclear Information System (INIS)

    Kawabata, Y.; Aparin, V.; Shiraishi, K.; Ko, S.; Yamamoto, M.; Nagaia, M.; Katayama, Y.

    2006-01-01

    Uranium is a naturally occurring radioactive metal, and is widely distributed in the Earth's crust. But it is concentrated in certain rock formations. Most of the uranium for nuclear weapon produced in the Soviet Union during the Cold War came from Central Asia. Uranium has negative effects on the human body, both as a carcinogen and as a kidney toxin. WHO (2004) prescribed that uranium concentrations in drinking water should be less than 15 mcg/l for only chemical aspects of uranium addressed. We determined high uranium concentrations in drinking water in the central region of Uzbekistan (Y. KAWABATA et al. 2004). In this area, some discharge water from farmland has higher uranium concentration. Irrigation systems Kyzyl-orda in Republic of Kazakhstan and in Karakalpakstan in the Republic of Uzbekistan have drains deeper than 5 m, in order to protect against salinization. Water in these drains can mix with ground water. In this area, ground water is used for drinking water. We investigated uranium concentrations in water in Kazakhstan and Uzbekistan. In the half of drinking water sampling points, uranium concentrations exceeded the WHO (2004) guideline level for drinking water. Uranium is a suspected carcinogen that can also have a toxic effect on kidney. However, WHO addresses only the chemical aspects of uranium by giving uranium concentrations in drinking water. The effect of uranium exposure from drinking water on people in these areas is significant. The uranium concentration in the Aral Sea was higher than that in sea water. Aral Sea is accumulating uranium. (author)

  1. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    Science.gov (United States)

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  2. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    Science.gov (United States)

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  3. The use of packed water in urban drinking water and its advantages to other methods of separating drinking water from undrinkable water (The case study : Ferdows city in south Khorasan)

    OpenAIRE

    Mehdi Akhgari; Ahmad Mansuri; Saeed Mansuri; Sara Mirzaei

    2014-01-01

    Today,more than one billion people of the world don't have access to safe drinking water.  Therefore, due to the population increase andconsequently increasing water needs, and the reduction of drinking watersources available, separating drinking water and non-drinking water seemsnecessary. In this article, the use of packed water is compared to other methods,such as two networks (drinkable and non-drinkable) water supply, public waterstations, purifying drinking water, and transferring high ...

  4. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    Alam, N.

    2005-01-01

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  5. Natural and Artificial Radioactivity in Drinking Water in Malaga, Spain

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Gordo, E.; Canete, S.; Perez, M.

    2011-01-01

    Water has a vast importance for numerous human activities, so that securing supplies of drinking water of a standard quality is becoming more and more difficult. The measurement of radioactivity in drinking water permits us to determine the exposure of the population to radiation from the habitual consumption of water. The occurrence of radionuclides in drinking water gives rise to internal exposure of humans, directly on the decay of radionuclides taken into the body through ingestion and inhalation and indirectly when they are incorporated as part of the food-chain The measurement of radioactivity in drinking water permits us to determine the exposure of population to radiation from the habitual consumption of water. An intensive study of the water supply in the city of Malaga during 2002-2010 has been carried out in order to determine the gross alpha activities, gross beta activities and natural and artificial radionuclides present in drinking water. A data base on natural and artificial radioactivity in water was produced. The results indicated that a high percentage of the water sample contains a total gross alpha and beta less than 0.10 Bq/l and 1 Bq/l respectively. The main objectives were: 1) to analyses gross alpha and gross beta activities and to know the statistical distributions. 2) to study the levels of natural and artificial radionuclides 3) to determine a possible mathematical correlation between the radionuclides and several factors.

  6. WATERPROTECT: Innovative tools enabling drinking water protection in rural and urban environments

    Science.gov (United States)

    Seuntjens, Piet; Campling, Paul; Joris, Ingeborg; Wauters, Erwin; Lopez de Alda, Miren; Kuczynska, Anna; Lajer Hojberg, Anker; Capri, Ettore; Brabyn, Cristina; Boeckaert, Charlotte; Mellander, Per Erik; Pauwelyn, Ellen; Pop, Edit

    2017-04-01

    High-quality, safe, and sufficient drinking water is essential for life: we use it for drinking, food preparation and cleaning. Agriculture is the biggest source of pesticides and nitrate pollution in European fresh waters. The overarching objective of the recently approved H2020 project WATERPROTECT is to contribute to effective uptake and realisation of management practices and mitigation measures to protect drinking water resources. Therefore WATERPROTECT will create an integrative multi-actor participatory framework including innovative instruments that enable actors to monitor, to finance and to effectively implement management practices and measures for the protection of water sources. We propose seven case studies involving multiple actors in implementing good practices (land management, farming, product stewardship, point source pollution prevention) to ensure safe drinking water supply. The seven case studies cover different pedo-climatic conditions, different types of farming systems, different legal frameworks, larger and smaller water collection areas across the EU. In close cooperation with actors in the field in the case studies (farmers associations, local authorities, water producing companies, private water companies, consumer organisations) and other stakeholders (fertilizer and plant protection industry, environment agencies, nature conservation agencies, agricultural administrations) at local and EU level, WATERPROTECT will develop innovative water governance models investigating alternative pathways from focusing on the 'costs of water treatment' to 'rewarding water quality delivering farming systems'. Water governance structures will be built upon cost-efficiency analysis related to mitigation and cost-benefit analysis for society, and will be supported by spatially explicit GIS analyses and predictive models that account for temporal and spatial scaling issues. The outcome will be improved participatory methods and public policy instruments

  7. 3Ts for Reducing Lead in Drinking Water: Training

    Science.gov (United States)

    It is important to train school officials to raise awareness of the potential occurrences, causes, and health effects of lead in drinking water; assist school officials in identifying potential areas where elevated lead may occur.

  8. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    Science.gov (United States)

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  9. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  10. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  11. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  12. Private Well Owners | Drinking Water in New England | US ...

    Science.gov (United States)

    2017-07-06

    Recent studies in New England identified contamination of some private wells from methyl-tertiary-butyl ether (MtBE), radon and arsenic. But, many homeowners are not aware of this risk to their drinking water.

  13. Nitrate in drinking water and colorectal cancer risk

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene

    2018-01-01

    based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person......Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited...... population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults...

  14. Evaluation of quality of drinking water from Baghdad, Iraq | Barbooti ...

    African Journals Online (AJOL)

    In addition to the routinely measured parameters, 17 metals and 11 ... of drinking water regarding total hardness, chloride contents, sulphate, iron and THM's. ... Corrosion of the pipes could be one of the reasons for the presence of iron.

  15. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  16. Level of Faecal Coliform Contamination of Drinking Water Sources ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... ... of Drinking Water Sources and Its Associated Risk Factors in Rural Settings of North Gondar ... of Environmental & Occupational. Health & Safety, Gondar, Ethiopia. 2University of Gondar .... technicians. All sampling bottles ...

  17. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  18. Household characteristics affecting drinking water quality and human health

    International Nuclear Information System (INIS)

    Kausar, S.; Maann, A.A.; Zafar, I.; Ali, T.

    2009-01-01

    Pakistan's water crisis, especially serious water shortages have had a great impact on the health of the general population. Today majority of Pakistanis have no access to improved water sources which force people to consume polluted drinking water that results in the shape of waterborne diseases. In addition to this, household characteristics, includes mother's education and family income, also have an impact on drinking water quality and ultimately on human health. This study was conducted in three districts of Province Punjab both in urban and rural areas. The sample size of this study was 600 females of age group 20-60 years. From the data, it was concluded that mother's education and family income were affecting drinking water quality and human health. As the mother's years of education increased, the health issues decreased. Similarly, as the level of income increased, people suffered from water related diseases decreased. (author)

  19. Availability of drinking water in US public school cafeterias.

    Science.gov (United States)

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  20. Nitrates in drinking water and the risk of death from brain cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh

    2011-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.

  1. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    Science.gov (United States)

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting

  3. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  4. [Parasitic zoonoses transmitted by drinking water. Giardiasis and cryptosporidiosis].

    Science.gov (United States)

    Exner, M; Gornik, V

    2004-07-01

    Nowadays, the parasitic zoonose organisms Giardia lamblia und Cryptosporidium spp. are among the most relevant pathogens of drinking water-associated disease outbreaks. These pathogens are transmitted via a fecal-oral route; in both cases the dose of infection is low. Apart from person-to-person or animal-to-person transmissions, the consumption of contaminated food and water are further modes of transmission. The disease is mainly characterized by gastrointestinal symptoms. In industrialized countries, the prevalence rate of giardiasis is 2-5 % and of cryptosporidiosis 1-3%. Throughout the world, a large number of giardiasis and cryptosporidiosis outbreaks associated with drinking water were published; in 2001 the first case in Germany was identified. Giardia and Cryptosporidium are detected in surface water and sporadically in unprotected groundwater. Use of these waters for drinking water abstraction makes high demands on the technology of the treatment process: because of the disinfectant resistance of the parasites, safe elimination methods are needed, which even at high contamination levels of source water guarantee safe drinking water. Further measures for prevention and control are implementation of the HACCP concept, which includes the whole chain of procedures of drinking water supply from catchment via treatment to tap and a quality management system.

  5. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  6. Physical, chemical and microbial analysis of bottled drinking water.

    Science.gov (United States)

    Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V

    2012-09-01

    People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.

  7. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-3] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION...-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water...

  8. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-01-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9101-9] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION... meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory...

  9. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    Science.gov (United States)

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  10. Radioactivity monitoring in drinking water of Zahedan, Iran

    International Nuclear Information System (INIS)

    Hosseini, S. A.

    2007-01-01

    The present research has focused on the effect of radioactivity on drinking water from five sites in the region of Zahedan city. Materials and Methods: The measurement of water activity in wells, river and spring has been used as a screening method. The determination of gamma emitters was performed by use the application of gamma spectrometry. Results: The values of Radium concentration was between less than 2 mBq/l to 3±0.4 for water wells, 5±0.4 mBq/L for river, and less than 2 mBq/L for spring. Conclusion: All values of activity in the selected water samples were lower than the permissible limit for drinking water consumption. The water was safe for drinking, washing and agricultural use

  11. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    2013-09-23

    Sep 23, 2013 ... A lack of infrastructure, coupled .... munity tankers and its relationship to health outcomes in light of water quality ... delivery, taps at the eThekwini Water and Sanitation laboratory ... relationship between drinking water quality, health, hygiene ... over a 2-week period from the point-of-use and source of each.

  12. MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?

    Science.gov (United States)

    Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...

  13. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based on international standards. Water Service Authorities, which are either municipalities or district municipalities, are required to submit information regarding water quality and the management thereof ...

  14. Discolouration in drinking water systems : A particular approach

    NARCIS (Netherlands)

    Vreeburg, J.H.G.

    2007-01-01

    The quality of drinking water in the Netherlands meets high standards as is annually reported by the Ministry of Housing, Spatial Planning and the Environment (VROM)(Versteegh and Dik, 2006). Also the water companies themselves report in the voluntary Benchmark that water quality is one of the least

  15. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  16. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  17. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  18. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  19. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  20. Natural Arsenic Pollution and Hydrochemistry of Drinking Water of an Urban Part of Iran

    OpenAIRE

    Mohammad Mosaferi; Mohammad Shakerkhatibi; Saeid Dastgiri; Mohammad Asghari Jafar-abadi; Alireza Khataee; Samira Sheykholeslami

    2014-01-01

    Natural contamination of surface and groundwater resources with arsenic is a worldwide problem. The present study aimed to investigate and report on the quality of drinking water resources with special focus on arsenic presence in an urban part of Iran. Arsenic concentrations were measured by graphite furnace atomic absorption spectroscopy (GFAAS). In both surface and groundwater samples, arsenic concentrations ranged from 6 - 61 µg/L with an average value of 39 ± 20 µg/L. Concentration of ar...

  1. Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river, Iran.

    Science.gov (United States)

    Aminiyan, Milad Mirzaei; Aitkenhead-Peterson, Jacqueline; Aminiyan, Farzad Mirzaei

    2018-06-16

    The main purpose of this study was to evaluate the water quality of the Karoon river, which is a main river in Iran country. For this purpose, hydrochemical analyses of a database that maintained by the Water Resources Authority of Khuzestan Province, Iran's Ministry of Energy, were carried out. These data were compared with the maximum permissible limit values recommended by World Health Organization and Food and Agriculture Organization water standards for drinking and agricultural purposes, respectively. Also in this regard, multiple indices of water quality were utilized. However, not all indices gave similar rankings for water quality. According to the USSL diagram and Kelly ratio, Karoon's water quality is not suitable for irrigation purposes due to high salinity and moderate alkalinity. However, the results of the magnesium hazard analysis suggested that water quality for irrigation is acceptable. A Piper diagram illustrated that the most dominant water types during the 15 years of the study were Na-Cl and Na-SO 4 . The mineral saturation index also indicated that Na-Cl is the dominant water type. The water quality for drinking purpose was evaluated using a Schoeller diagram and water quality index (WQI). According to the computed WQI ranging from 111.9 to 194.0, the Karoon's water in the Khuzestan plain can be categorized as "poor water" for drinking purposes. Based on hydrochemical characteristics, years 2000-2007 and 2008-2014 were categorized into two clusters illustrating a decline in water quality between the two time periods.

  2. Monitoring of Cryptosporidium and Giardia in Czech drinking water sources.

    Science.gov (United States)

    Dolejs, P; Ditrich, O; Machula, T; Kalousková, N; Puzová, G

    2000-01-01

    In Czech raw water sources for drinking water supply, Cryptosporidium was found in numbers from 0 to 7400 per 100 liters and Giardia from 0 to 485 per 100 liters. The summer floods of 1997 probably brought the highest numbers of Cryptosporidium oocysts into one of the reservoirs sampled; since then these numbers decreased steadily. A relatively high number of Cryptosporidium oocysts was found in one sample of treated water. Repeated sampling demonstrated that this was a sporadic event. The reason for the presence of Cryptosporidium in a sample of treated drinking-water is unclear and requires further study.

  3. Artificial sweetener sucralose in U.S. drinking water systems.

    Science.gov (United States)

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  4. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  5. Drinking water disinfection by means of ultraviolet radiation

    International Nuclear Information System (INIS)

    Gelzhaeuser, P.; Bewig, F.; Holm, K.; Kryschi, R.; Reich, G.; Steuer, W.

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice. (orig./PW) [de

  6. Nutrition and Healthy Eating: How Much Water Should You Drink Each Day?

    Science.gov (United States)

    ... body to function properly, you must replenish its water supply by consuming beverages and foods that contain water. ... makes you sweat, you need to drink extra water to cover the fluid loss. It's important to drink water before, during and ...

  7. Standards for arsenic in drinking water: Implications for policy in Mexico.

    Science.gov (United States)

    Fisher, Andrew T; López-Carrillo, Lizbeth; Gamboa-Loira, Brenda; Cebrián, Mariano E

    2017-11-01

    Global concern about arsenic in drinking water and its link to numerous diseases make translation of evidence-based research into national policy a priority. Delays in establishing a maximum contaminant level (MCL) to preserve health have increased the burden of disease and caused substantial and avoidable loss of life. The current Mexican MCL for arsenic in drinking water is 25 μg/l (2.5 times higher than the World Health Organization (WHO) recommendation from 1993). Mexico's struggles to set its arsenic MCL offer a compelling example of shortcomings in environmental health policy. We explore factors that might facilitate policy change in Mexico: scientific evidence, risk communication and public access to information, economic and technological resources, and politics. To raise awareness of the health, societal, and economic implications of arsenic contamination of drinking water in Mexico, we suggest action steps for attaining environmental policy change and better protect population health.

  8. DRINKING WATER CONSUMPTION AND LOSS IN ALGERIA THE CASE OF NETWORKS WITH LOW LEVEL COUNTING

    Directory of Open Access Journals (Sweden)

    Rachid Masmoudi

    2016-01-01

    Full Text Available Demand for drinking domestic water is continuously increasing specially in urban centres which experience high demographic expansion. The decrease of water losses in water supply networks can help preserve such a rare resource. Low number of water meters and intermittent supply make it difficult to quantify the leaking volumes of water. This article presents an analysis of the consumption for drinking water based on an extrapolation from a sample of consumers on whom data are available. Comparison of the volumes of water produced allows a determination of the losses in the water supply system. This analysis is completed by measurements of night flows. The results obtained may be relied on for an evaluation of the needs for drinking water in the South of Algeria, and for future regional development. The study indicates a high rate of water losses in the distribution network, reaching about 40%, and over-consumption due to an insufficient number of water meters and discontinuous supply. It is recommended that water meters come into general use and defective parts of the network are rehabilitated. We will try then to make the necessary recommendations in order to better functioning of the water supply systems in Algeria.

  9. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  10. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  11. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    Science.gov (United States)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong

  12. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  13. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  14. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  15. Drinking and Cleaning Water Use in a Dairy Cow Barn

    Directory of Open Access Journals (Sweden)

    Michael Krauß

    2016-07-01

    Full Text Available Water is used in dairy farming for producing feed, watering the animals, and cleaning and disinfecting barns and equipment. The objective of this study was to investigate the drinking and cleaning water use in a dairy cow barn. The water use was measured on a well-managed commercial dairy farm in North-East Germany. Thirty-eight water meters were installed in a barn with 176 cows and two milking systems (an automatic milking system and a herringbone parlour. Their counts were logged hourly over 806 days. On average, the cows in the automatic milking system used 91.1 (SD 14.3 L drinking water per cow per day, while those in the herringbone parlour used 54.4 (SD 5.3 L per cow per day. The cows drink most of the water during the hours of (natural and artificial light in the barn. Previously published regression functions of drinking water intake of the cows were reviewed and a new regression function based on the ambient temperature and the milk yield was developed (drinking water intake (L per cow per day = −27.937 + 0.49 × mean temperature + 3.15 × milk yield (R2 = 0.67. The cleaning water demand had a mean of 28.6 (SD 14.8 L per cow per day in the automatic milking system, and a mean of 33.8 (SD 14.1 L per cow per day in the herringbone parlour. These findings show that the total technical water use in the barn makes only a minor contribution to water use in dairy farming compared with the water use for feed production.

  16. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    Science.gov (United States)

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  18. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  19. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  20. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  1. Occurrence of organophosphate flame retardants in drinking water from China.

    Science.gov (United States)

    Li, Jun; Yu, Nanyang; Zhang, Beibei; Jin, Ling; Li, Meiying; Hu, Mengyang; Zhang, Xiaowei; Wei, Si; Yu, Hongxia

    2014-05-01

    Several organophosphate flame retardants (OPFRs) have been identified as known or suspected carcinogens or neurotoxic substances. Given the potential health risks of these compounds, we conducted a comprehensive survey of nine OPFRs in drinking water in China. We found total concentrations of OPFRs in tap water ranging from 85.1 ng/L to 325 ng/L, and tris(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tris(2-chloroisopropyl) phosphate (TCPP) were the most common components. Similar OPFR concentrations and profiles were observed in water samples processed through six different waterworks in Nanjing, China. However, boiling affected OPFR levels in drinking water by either increasing (e.g., TBEP) or decreasing (e.g., tributyl phosphate, TBP) concentrations depending on the particular compound and the state of the indoor environment. We also found that bottled water contained many of the same major OPFR compounds with concentrations 10-25% lower than those in tap water, although TBEP contamination in bottled water remained a concern. Finally, we concluded that the risk of ingesting OPFRs through drinking water was not a major health concern for either adults or children in China. Nevertheless, drinking water ingestion represents an important exposure pathway for OPFRs. Copyright © 2014. Published by Elsevier Ltd.

  2. Learning about Drinking Water: How Important are the Three Dimensions of Knowledge that Can Change Individual Behavior?

    OpenAIRE

    Fremerey, Christian; Bogner, Franz

    2014-01-01

    Clean drinking water, our most important resource, needs comprehensive protection. Due to its ubiquitous availability, the awareness of the importance of clean drinking water has partially vanished. Therefore, sensitizing within this context and improving individual ecological behavior has become an important issue in science curricula. We developed a student-centered guided-learning module based on nine workstations, with the themes: occurrence rates, purification methods, cleaning guideline...

  3. 588 Department of Water Resources and Environmental

    African Journals Online (AJOL)

    USER

    2017-06-06

    Jun 6, 2017 ... Department of Civil Engineering, Faculty of Engineering and Technology, University of ... Health Organization (WHO) and Nigerian Standard for Drinking Water Quality (NSDWQ) .... discharges of industrial contaminants into.

  4. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    Science.gov (United States)

    2014-02-04

    disinfected drinking water and the other with the same water with secondary chloramine disinfection . Flow...systems (DWDS). One system was maintained with chlorine- disinfected drinking water and the other with the same water with secondary chloramine... disinfectant concen- tration in drinking water can decrease during periods of stagnation, i.e., minimal to no water flow (Al-Jasser 2007). These

  5. Activation and chemical analysis of drinking water from shallow aquifers

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1991-01-01

    In most of the Indian cities drinking water is drawn from shallow aqiufers with the help of hand pumps. These shallow aquifers get easilyl polluted. In the present work we have measured 20 trace elements using Neutron Activation Analysis (NAA) and 8 chemical parameters using standard chemical methods of drinking water drawn from Rajpura city. It was found that almost all water samples are highly polluted. We attribute this to unplaned disposal of industrial and domestic waste over a period of many decades. (author) 11 refs.; 1 fig.; 1 tab

  6. The genetic basis of novel water utilisation and drinking behaviour traits and their relationship with biological performance in turkeys.

    Science.gov (United States)

    Rusakovica, Julija; Kremer, Valentin D; Plötz, Thomas; Rohlf, Paige; Kyriazakis, Ilias

    2017-09-29

    There is increasing interest in the definition, measurement and use of traits associated with water use and drinking behaviour, mainly because water is a finite resource and its intake is an important part of animal health and well-being. Analysis of such traits has received little attention, due in part to the lack of appropriate technology to measure drinking behaviour. We exploited novel equipment to collect water intake data in two lines of turkey (A: 27,415 and B: 12,956 birds). The equipment allowed continuous recording of individual visits to the water station in a group environment. Our aim was to identify drinking behaviour traits of biological relevance, to estimate their genetic parameters and their genetic relationships with performance traits, and to identify drinking behaviour strategies among individuals. Visits to the drinkers were clustered into bouts, i.e. time intervals spent in drinking-related activity. Based on this, biologically relevant traits were defined: (1) number of visits per bout, (2) water intake per bout, (3) drinking time per bout, (4) drinking rate, (5) daily bout frequency, (6) daily bout duration, (7) daily drinking time and (8) daily water intake. Heritability estimates for most drinking behaviour traits were moderate to high and the most highly heritable traits were drinking rate (0.49 and 0.50) and daily drinking time (0.35 and 0.46 in lines A and B, respectively). Genetic correlations between drinking behaviour and performance traits were low except for moderate correlations between daily water intake and weight gain (0.46 and 0.47 in lines A and B, respectively). High estimates of breeding values for weight gain were found across the whole range of estimated breeding values for daily water intake, daily drinking time and water intake per bout. We show for the first time that drinking behaviour traits are moderately to highly heritable. Low genetic and phenotypic correlations with performance traits suggest that current

  7. Continuous-flow solar UVB disinfection reactor for drinking water.

    Science.gov (United States)

    Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R

    2012-05-01

    Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive

  8. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant

    Science.gov (United States)

    Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao

    2018-01-01

    The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β-cyclocitral and β-ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum. The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll-a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs. PMID:29301296

  9. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  10. Iodine content in drinking water and other beverages in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Larsen, Erik Huusfeldt; Ovesen, L.

    2000-01-01

    Objective: To investigate the variation in iodine content in drinking water in Denmark and to determine the difference in iodine content between organic and non-organic milk. Further, to analyse the iodine content in other beverages. Design and setting: Tap water samples were collected from 41 ev...

  11. INTERACTIVE WORKSHOP ON ARSENIC REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    In 2005, EPA's Office of Water and Office of Research and Development collaborated to present eleven arsenic training events. The workshops provided in-depth treatment technology training to help those affected; state drinking water staff, design engineers, system owners and cert...

  12. Assessment of microbiological quality of drinking water treated with ...

    African Journals Online (AJOL)

    ... quality of drinking water at the point of delivery to the consumer is crucial in safeguarding consumer's health. The current study was undertaken to assess the changes in residual chlorine content with distance in water distribution system in Gwalior city of Madhya Pradesh and assess its relation with the occurrence of total ...

  13. Toxicological relevance of emerging contaminants for drinking water quality

    NARCIS (Netherlands)

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we

  14. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  15. Effect of the Distribution System on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    A. Grünwald

    2001-01-01

    Full Text Available The overall objective of this paper is to characterise the main aspects of water quality deterioration in a distribution system. The effect of residence time on chlorine uptake and the formation and evolution of disinfection by-products in distributed drinking water are discussed.

  16. Microbiological and Physicochemical Properties of Drinking Water at ...

    African Journals Online (AJOL)

    Quality drinking water is of basic importance to human physiology and man's continued existence depends much on its availability. Water samples from different outlets and homes in Ado Odo - Ota Local Government, Ogun state, Nigeria were analyzed for their microbiological and physiochemical properties. Total viable ...

  17. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    Science.gov (United States)

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  18. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  19. Efficacy of conventional drinking water treatment processes in ...

    African Journals Online (AJOL)

    2013-10-07

    Oct 7, 2013 ... that pose a health risk to the consumers of drinking water (Du. Preez et al., 2007 ... are based on source water quality and jar stirring tests. The optimum ... ent occasions (dominant for 19 months of the study period). The highest ... producing toxic substances which may be harmful (even lethal) to consumers ...

  20. Ephedra and Energy Drinks on College Campuses. Infofacts/Resources

    Science.gov (United States)

    Kapner, Daniel Ari

    2008-01-01

    The February 2003 death of Baltimore Orioles pitcher Steve Bechler, who according to the coroner's report died after taking ephedrine alkaloids (ephedra), has garnered national attention for the topic of nutritional supplements and energy drinks. Energy drinks and energy-enhancing pills, diet aids, muscle-enlargers, and other supplements fall…

  1. Risk assessment and control management of radon in drinking water

    International Nuclear Information System (INIS)

    Mills, W.A.

    1990-01-01

    The role of risk assessment and risk management of radon in drinking water was reviewed. It is noted that risk assessments for the public health consequences of radon in drinking water require information on radon concentration in water, exposure pathways, and dose-response relationships. On the other hand, risk management involves assumptions of risk acceptance and the establishment of governmental policies in accord with society's acceptance of these assumptions. Although risk assessment for radon exposures can be reasonably qualitative, risk management is clearly judgmental. The following conclusions/recommendations were made. (1) The presence of radon in drinking water is estimated to have its greatest health impact on the 18% of the US population served by private wells. (2) Although no direct evidence exists associated radon in water with health problems, the diseases that are associated with radon in drinking water are stomach cancer from ingestion and lung cancer from inhalation of radon decay products released during household use of water. (3) Using a number of questionable assumptions, the total number of cancer deaths per year attributable to radon in water is estimated to be about 5,000 as a maximum value, with essentially all cases occurring in the population served by private wells. (4) Promulgating federal regulations to control radon levels in water under the Safe Drinking Water Act seems unwarranted, since private wells would not likely be regulated. (5) Government control programs should be limited to emphasizing an awareness of possible substantially higher than average levels of radon in water in certain geological areas. 12 refs., 4 tabs

  2. Assessment of the school drinking water supply and the water quality in Pingtung County, Taiwan.

    Science.gov (United States)

    Chung, Pei-Ling; Chung, Chung-Yi; Liao, Shao-Wei; Miaw, Chang-Ling

    2009-12-01

    In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value.

  3. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-02-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water vary significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates based

  4. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-01-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m 3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water varies significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates

  5. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [On the rating of Helicobacter pylori in drinking water].

    Science.gov (United States)

    Fedichkina, T P; Solenova, L G; Zykova, I E

    2014-01-01

    There are considered the issues related to the possibility to rate of Helicobacter pylori (H. pylori) content in drinking water. There is described the mechanism of of biofilm formation. The description refers to the biofilm formation mechanism in water supply systems and the existence of H. pylori in those systems. The objective premises of the definition of H. pylori as a potential limiting factor for assessing the quality of drinking water have been validated as follows: H. pylori is an etiologic factor associated to the development of chronic antral gastritis, gastric ulcer and duodenal ulcer, and gastric cancer either, in the Russian population the rate of infection with H. pylori falls within range of 56 - 90%, water supply pathway now can be considered as a source of infection of the population with H. pylori, the existence of WHO regulatory documents considering H. pylori as a candidate for standardization of the quality of the drinking water quite common occurrence of biocorrosion, the reduction of sanitary water network reliability, that creates the possibility of concentrating H. pylori in some areas of the water system and its delivery to the consumer of drinking water, and causes the necessity of the prevention of H. pylori-associated gastric pathology of the population. A comprehensive and harmonized approach to H. pylori is required to consider it as a candidate to its rating in drinking water. Bearing in mind the large economic losses due to, on the one hand, the prevalence of disease caused by H. pylori, and, on the other hand, the biocorrosion of water supply system, the problem is both relevant in terms of communal hygiene and economy.

  7. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  9. The quality assessment to drinking water supplied to Islamabad

    International Nuclear Information System (INIS)

    Mohammad, D.; Hussain, F.; Ashraf, H.; Hussain, S.; Rana, N.N.; Anwar, K.; Sami, Z.; Dil, S.

    1997-01-01

    Drinking water supply system of Islamabad draws major quantities of water from sources such as Simli dam, Rawal dam and the underground aquifer through an integrated system of tube wells sunk in different parts of the city. For an extensive assessment of drinking water quality samples were collected at source from 80 CDA tube wells. Samples were also collected from 3 to 5 predetermined consumer points in sectors 1-8, 1-9, 1-10, G-9, G-10, F-9 and F-10. All these samples apart form coliform organisms, cationic and anionic species present, were analyzed for different parameters required to delineate the drinking water quality using the most reliable techniques like ICP-AES, AAS, HPLC, TIMS and Electro-chemistry. The tube well water samples, generally, contained higher amounts of the TDS and hence higher Ca++ and Mg++ concentration as compared with those of dam water samples. Further all these samples contained reasonable concentration of Sr, an element usually associated with calcite deposits. Samples were also checked for the total radioactivity and were found to be free of such contamination. The results have been discussed with a view to assess the quality of drinking water during the stipulated period. (author)

  10. A Drinking Water Sensor for Lead and Other Heavy Metals.

    Science.gov (United States)

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  11. Determination of strontium in drinking water and consequences of radioactive elements present in drinking water for human health

    International Nuclear Information System (INIS)

    Rajkovic, M.B.; Stojanovic, M.D.; Pantelic, G.K.; Vuletic, V.V.

    2006-01-01

    In this paper the analysis of strontium and uranium content in drinking water has been done, indirectly, according to the scale which originates from drinking water in water-supply system of the city of Belgrade. Gamaspectrometric analysis showed the presence of free natural radionuclide in low activities. The activity of 90Sr in scale which is 0.72±0.11 Bq/kg was determined by radiochemical. Because of the small quantities of fur in the house heater this activity can be considered as irrelevant, but the accumulation of scale can have intensified influence. In this paper, the analysis of effects of the radioactive isotopes presence (first of all 238U and 235U) in drinking water on human health has been done

  12. Determination of strontium in drinking water and consequences of radioactive elements present in drinking water for human health

    OpenAIRE

    Rajković Miloš B.; Stojanović Mirjana D.; Pantelić Gordana K.; Vuletić Vedrana V.

    2006-01-01

    In this paper the analysis of strontium and uranium content in drinking water has been done, indirectly, according to the scale which originates from drinking water in water-supply system of the city of Belgrade. Gamaspectrometric analysis showed the presence of free natural radionuclide in low activities. The activity of 90Sr in scale which is 0.72±0.11 Bq/kg was determined by radiochemical. Because of the small quantities of fur in the house heater this activity can be considered as irrelev...

  13. Drinking water consumption patterns in Canadian communities (2001-2007).

    Science.gov (United States)

    Roche, S M; Jones, A Q; Majowicz, S E; McEwen, S A; Pintar, K D M

    2012-03-01

    A pooled analysis of seven cross-sectional studies from Newfoundland and Labrador, Waterloo and Hamilton Regions, Ontario and Vancouver, East Kootenay and Northern Interior Regions, British Columbia (2001 to 2007) was performed to investigate the drinking water consumption patterns of Canadians and to identify factors associated with the volume of tap water consumed. The mean volume of tap water consumed was 1.2 L/day, with a large range (0.03 to 9.0 L/day). In-home water treatment and interactions between age and gender and age and bottled water use were significantly associated with the volume of tap water consumed in multivariable analyses. Approximately 25% (2,221/8,916) of participants were classified as bottled water users, meaning that 75% or more of their total daily drinking water intake was bottled. Approximately 48.6% (4,307/8,799) of participants used an in-home treatment method to treat their tap water for drinking purposes. This study provides a broader geographic perspective and more current estimates of Canadian water consumption patterns than previous studies. The identified factors associated with daily water consumption could be beneficial for risk assessors to identify individuals who may be at greater risk of waterborne illness.

  14. Workgroup report: Drinking-water nitrate and health - Recent findings and research needs

    Science.gov (United States)

    Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  15. Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs

    Science.gov (United States)

    Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519

  16. Estimating effects of improved drinking water and sanitation on cholera.

    Science.gov (United States)

    Leidner, Andrew J; Adusumilli, Naveen C

    2013-12-01

    Demand for adequate provision of drinking-water and sanitation facilities to promote public health and economic growth is increasing in the rapidly urbanizing countries of the developing world. With a panel of data on Asia and Africa from 1990 to 2008, associations are estimated between the occurrence of cholera outbreaks, the case rates in given outbreaks, the mortality rates associated with cholera and two disease control mechanisms, drinking-water and sanitation services. A statistically significant and negative effect is found between drinking-water services and both cholera case rates as well as cholera-related mortality rates. A relatively weak statistical relationship is found between the occurrence of cholera outbreaks and sanitation services.

  17. Lithium in drinking water and the incidence of bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars V; Gerds, Thomas A; Knudsen, Nikoline N

    2017-01-01

    OBJECTIVE: Animal data suggest that subtherapeutic doses, including micro doses, of lithium may influence mood, and lithium levels in drinking water have been found to correlate with the rate of suicide. It has never been investigated whether consumption of lithium may prevent the development...... of bipolar disorder (primary prophylaxis). In a nation-wide population-based study, we investigated whether long-term exposure to micro levels of lithium in drinking water correlates with the incidence of bipolar disorder in the general population, hypothesizing an inverse association in which higher long......-term lithium exposure is associated with lower incidences of bipolar disorder. METHODS: We included longitudinal individual geographical data on municipality of residence, data from drinking water lithium measurements and time-specific data from all cases with a hospital contact with a diagnosis of mania...

  18. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  19. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Padma Savithri, P.; Srivastava, S.K.; Balbudhe, A.Y.; Vishwa Prasad, K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238 U, 234 U, 230 Th, 26 Ra, 210 Po, 232 Th, 228 Th 210 Pb and 228 Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy -1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  20. Pathogens in drinking water: Are there any new ones

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  1. Trans, Switzerland: new drinking-water hydropower station; Gemeinde Trans (GR) - Neubau Trinkwasserkraftwerk - Bauprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Gadient, N.; Scherrer, I.

    2008-10-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the construction project for the realisation of a hydropower installation that uses the water of the drinking-water mains in Trans, Grisons, Switzerland, to generate electricity. Figures are presented on the head of water available, the proposed electrical power to be installed as well as the annual production and the financing of the project. The latter has been assured by the Swiss scheme for the cost-covering remuneration of electrical energy generated using renewable resources. The construction project agreed on is described and discussed. The project is to be realised together with the refurbishment of the existing drinking-water supply system. The installations necessary and the proposed electromechanical equipment are described and discussed. Also, the supply of increased amounts of water for fire-fighting purposes are noted.

  2. Report: EPA Lacks Internal Controls to Prevent Misuse of Emergency Drinking Water Facilities

    Science.gov (United States)

    Report #11-P-0001, October 12, 2010. EPA cannot accurately assess the risk of public water systems delivering contaminated drinking water from emergency facilities because of limitations in Safe Drinking Water Information System (SDWIS) data management.

  3. The Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water

    Science.gov (United States)

    The introduction of drinking water disinfection greatly reduced the incidence of waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water can lead to an unintended consequence, which is the formation of drinking water disinfe...

  4. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  5. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  6. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  7. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    International Nuclear Information System (INIS)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B.; Eqani, Syed Ali Musstjab Akber Shah

    2015-01-01

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  8. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  9. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  10. Onsite defluoridation system for drinking water treatment using calcium carbonate.

    Science.gov (United States)

    Wong, Elaine Y; Stenstrom, Michael K

    2018-06-15

    Fluoride in drinking water has several effects on teeth and bones. At concentrations of 1-1.5 mg/L, fluoride can strengthen enamel, improving dental health, but at concentrations above 1.5 to 4 mg/L can cause dental fluorosis. At concentrations of 4-10 mg/L, skeletal fluorosis can occur. There are many areas of the world that have excessive fluoride in drinking water, such as China, India, Sri Lanka, and the Rift Valley countries in Africa. Treatment solutions are needed, especially in poor areas where drinking water treatment plants are not available. On-site or individual treatment alternatives can be attractive if constructed from common materials and if simple enough to be constructed and maintained by users. Advanced on-site methods, such as under sink reserve osmosis units, can remove fluoride but are too expensive for developing areas. This paper investigates calcium carbonate as a cost effective sorbent for an onsite defluoridation drinking water system. Batch and column experiments were performed to characterize F - removal properties. Fluoride sorption was described by a Freundlich isotherm model, and it was found that the equilibrium time was approximately 3 h. Calcium carbonate was found to have comparable F - removal abilities as the commercial ion exchange resins and possessed higher removal effectiveness compared to calcium containing eggshells and seashells. It was also found that the anion Cl- did not compete with F - at typical drinking water concentrations, having little impact on the effectiveness of the treatment system. A fluoride removal system is proposed that can be used at home and can be maintained by users. Through this work, we can be a step closer to bringing safe drinking water to those that do not have access to it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water

    DEFF Research Database (Denmark)

    Saunders, Aaron Marc; Kristiansen, Anja; Lund, Marie Braad

    2009-01-01

    doi:10.1016/j.syapm.2008.11.004 The results of this study support the use of fecal Bacteroidales qPCR as a rapid method to complement traditional, culture dependent, water quality indicators in systems where drinking water is supplied without chlorination or other forms of disinfection. A SYBR...... green based, quantitative PCR assay was developed to determine the concentration of fecal Bacteroidales 16S rRNA gene copies. The persistence of a Bacteroides vulgatus pure culture and fecal Bacteroidales from a wastewater inoculum was determined in unchlorinated drinking water at10°C. B. vulgatus 16S r......RNA gene copies persisted throughout the experimental period (200 days) in sterile drinking water but decayed faster in natural drinking water, indicating that the natural microbiota accelerated decay. In a simulated fecal contamination of unchlorinated drinking water, the decay of fecal Bacteroidales 16S...

  12. Drinking water treatment technologies in Europe : State of the art - vulnerabilities - research needs

    NARCIS (Netherlands)

    Van der Hoek, J.P.; Bertelkamp, C.; Verliefde, A.R.D.; Singhal, N.

    2012-01-01

    Eureau is the European Federation of National Associations of Water and Wastewater Services. At the request of Eureau Commission 1, dealing with drinking water, a survey was made focusing on raw drinking water sources and drinking water treatment technologies applied in Europe. Raw water sources

  13. Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply.

    Science.gov (United States)

    Hutton, Guy

    2013-03-01

    Economic evidence on the cost and benefits of sanitation and drinking-water supply supports higher allocation of resources and selection of efficient and affordable interventions. The study aim is to estimate global and regional costs and benefits of sanitation and drinking-water supply interventions to meet the Millennium Development Goal (MDG) target in 2015, as well as to attain universal coverage. Input data on costs and benefits from reviewed literature were combined in an economic model to estimate the costs and benefits, and benefit-cost ratios (BCRs). Benefits included health and access time savings. Global BCRs (Dollar return per Dollar invested) were 5.5 for sanitation, 2.0 for water supply and 4.3 for combined sanitation and water supply. Globally, the costs of universal access amount to US$ 35 billion per year for sanitation and US$ 17.5 billion for drinking-water, over the 5-year period 2010-2015 (billion defined as 10(9) here and throughout). The regions accounting for the major share of costs and benefits are South Asia, East Asia and sub-Saharan Africa. Improved sanitation and drinking-water supply deliver significant economic returns to society, especially sanitation. Economic evidence should further feed into advocacy efforts to raise funding from governments, households and the private sector.

  14. Internal radiation doses from radioactivity of drinking water in Finland

    International Nuclear Information System (INIS)

    Kahlos, H.; Asikainen, M.

    1980-01-01

    A study of the radioactivity of drinking water in Finland was carried out from 1974 to 1978. Samples were collected from nearly all water supply plants with more than 200 users and from privately dug or drilled wells. This paper considers drinking water as a factor in increasing the natural radiation exposure of the population and estimates the collective and per capita dose rates caused by the 222 Rn present in water. Instead of performing dose calculations, the significance of 226 Ra and uranium is assessed by means of daily intake. The assessment is made for both the whole population and three subgroups using the water from water supply plants and privately dug or drilled wells. (author)

  15. New Perspectives in Monitoring Drinking Water Microbial Quality

    Directory of Open Access Journals (Sweden)

    Juan J. Borrego

    2010-12-01

    Full Text Available The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs, in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated.

  16. Radium-226 on drinking water of Camaguey, Cuba

    International Nuclear Information System (INIS)

    Montalvan Estrada, Adelmo; Brigido Flores, Osvaldo; Barrera Caballero, Aldo; Escalante, Alexander

    2001-01-01

    The specific activity of Ra-226 in drinking water of Camaguey city, Cuba, was measured using the emanometric method. The specific activity of Ra-226 in drinking water ranged from 15 ± 5 mBq.l -1 to 39 ±12 mBq.l -1 . The mean specific activity of Ra-226 was found to be 27 ± 8 mBq.l -1 . No seasonal variation was found. Water samples were collected from the two main sources of drinking water: private wells and governmental water supply system, being the mean specific activities of Ra-226: 25 ± 7 mBq.l -1 and 31 ± 9 mBq.l -1 , respectively. Based upon measured concentrations the age-dependent associated effective doses due to the ingestion of Ra-226, as a consequence of direct consumption of drinking water, have been calculated. For the age interval 1 year to 5 years, the average effective dose was 6,2 μSv.y -1 , and for adults the average effective dose was 5,2 μSv.y -1 . (author)

  17. A brief overview on radon measurements in drinking water.

    Science.gov (United States)

    Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael

    2017-07-01

    The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    International Nuclear Information System (INIS)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N.

    2000-01-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed

  19. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-08-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed.

  20. Demineralization of drinking water: Is it prudent?

    Science.gov (United States)

    Verma, K C; Kushwaha, A S

    2014-10-01

    Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed.

  1. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  2. Report: EPA Is Taking Steps to Improve State Drinking Water Program Reviews and Public Water Systems Compliance Data

    Science.gov (United States)

    Report #17-P-0326, July 18, 2017. The EPA is taking action to improve oversight tools used to determine whether public water systems are monitoring and reporting drinking water quality in accordance with the Safe Drinking Water Act.

  3. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  4. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  5. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  6. Gross alpha radioactivity of drinking water in Venezuela

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Gomez, J.; Greaves, E.D.; Herrera, O.; Salazar, V.; Smith, A.

    1997-01-01

    Bottled mineral water is consumed by a large population in Venezuela. The alpha emitters concentration was measured in samples of bottled water and water springs collected near the surface. Approximately 30% of the total mineral water suppliers was monitored. a database on natural and artificial radioactivity in drinking water was produced. Results indicate that 54% of the waters sampled contain a total alpha radioactivity of less than 0.185 Bql -1 and only 12% above 0.37 Bql -1 . Our results revealed a total annual dose of 2.3 mSv year -1 . (author)

  7. Life cycle assessment of central softening of very hard drinking water.

    Science.gov (United States)

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2012-08-30

    Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Drinking Water (Environmental Health Student Portal)

    Science.gov (United States)

    ... Chemicals Home Mercury Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters ...

  9. Water Resources of Israel: Trackrecord of the Development

    Directory of Open Access Journals (Sweden)

    Nicolai S. Orlovsky

    2018-01-01

    Full Text Available Israel is a country in the Near East consisting for 95% of the arid regions in which 60% of the territory are covered by the Negev Desert. Therefore, the water resources are scant here and formed mostly by atmospheric precipitations. In the period from 1989 to 2005 the average precipitations were 6 billion cu. m, of which 60–70% were evaporated soon after rainfalls, at least 5% run down by rivers into the sea (mostly in winter and the remaining 25% of precipitations infiltrated into soil from where the greater part of water got into the sea with ground waters. In Israel there are two groups of water resources: surface and underground. Israel is not rich in surface waters. The natural reservoir of surface fresh water is the Kinneret Lake in the northeast of the country. It gets water from the Jordan River and its tributaries. The average annual amount of available water of this lake is around 370 million cu. m, which accounts for one-third of the country’s water needs and still higher share of the drinking water needs. The greater part of fresh waters (37% of water supply of Israel as of 2011 in this country is supplied from ground water sources. Owing to insufficiency of available natural resources, unevenness of precipitations by years and seasons and with the growth of the population and economic development the issues of provision with the quality drinking water of the population as well as agriculture and industry, rehabilitation of natural environment cause permanently growing concern. In view of the water shortage untiring efforts have been taken to improve the irrigation efficiency and to reduce water use by improving the efficacy of irrigation techniques and application of advanced system management approaches. Among the water saving technologies applied in Israel there are: drop irrigation, advanced filtration, up to date methods of water leak detection from networks, rainwater collection and processing systems. At the same time

  10. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  11. Exploring Perceptions and Behaviors about Drinking Water in Australia and New Zealand: Is It Risky to Drink Water, When and Why?

    Directory of Open Access Journals (Sweden)

    Andrea Crampton

    2016-02-01

    Full Text Available Consumers in most developed countries, including Australia and New Zealand, presume their drinking water is safe. How social perceptions about drinking water are formed, however, remains inadequately explored in the research literature. This research contributes exploratory insights by examining factors that affect consumer perceptions and behaviors. Individual perceptions of drinking water quality and actions undertaken to mitigate perceived risks were collected during 183 face-to-face interviews conducted at six research sites. Qualitative thematic analysis revealed the majority did not consider drinking water a “risky” activity, trusted water management authorities to manage all safety issues and believed self-evaluation of drinking water’s taste and appearance were sufficient measures to ensure safe consumption. Quantitatively, significant relationships emerged between water quality perceptions and sex, employment status, drinking water treatment and trust in government to provide safe water. Expert advice was rarely sought, even by those who believed drinking tap water posed some health risks. Generational differences emerged in media usage for drinking water advice. Finally, precautionary measures taken at home and abroad often failed to meet national drinking water guidelines. Three major conclusions are drawn: a. broad lack of awareness exists about the most suitable and safe water treatment activities, as well as risks posed; b. health literacy and interest may be improved through greater consumer involvement in watershed management; and c. development of health campaigns that clearly communicate drinking water safety messages in a timely, relevant and easily understandable fashion may help mitigate actual risks and dispel myths.

  12. Monitoring of radioactivity in drinking water

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Letessier, P.

    2008-01-01

    Radioactivity is a physical phenomenon whose presence in water is monitored due to its potential capability to induce deleterious effects on human health. In this article the effects that can be caused by radioactivity as well as the way in which regulations establish how to perform a monitorization of water that enables us to ascertain that the radiological quality of water is in agreement with the accepted standard of quality of life are analyzed. Finally the means available to know the content of radioactivity in water together with some clues on how to remove it from water are described. (Author) 5 refs

  13. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  14. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  15. Water quality modeling in the dead end sections of drinking water (Supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to...

  16. Effects of slightly acidic electrolysed drinking water on mice.

    Science.gov (United States)

    Inagaki, Hideaki; Shibata, Yoshiko; Obata, Takahiro; Kawagoe, Masami; Ikeda, Katsuhisa; Sato, Masayoshi; Toida, Kazumi; Kushima, Hidemi; Matsuda, Yukihisa

    2011-10-01

    Slightly acidic electrolysed (SAE) water is a sanitizer with strong bactericidal activity due to hypochlorous acid. We assessed the safety of SAE water as drinking water for mice at a 5 ppm total residual chlorine (TRC) concentration to examine the possibility of SAE water as a labour- and energy-saving alternative to sterile water. We provided SAE water or sterile water to mice for 12 weeks, during which time we recorded changes in body weight and weekly water and food intakes. At the end of the experiment, all of the subject animals were sacrificed to assess serum aspartate aminotransferase, alanine aminotransferase and creatinine levels and to examine the main organs histopathologically under a light microscope. In addition, we investigated the bacteria levels of both types of water. We found no difference in functional and morphological health condition indices between the groups. Compared with sterile water, SAE water had a relatively higher ability to suppress bacterial growth. We suggest that SAE water at 5 ppm TRC is a safe and useful alternative to sterile water for use as drinking water in laboratory animal facilities.

  17. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... other crustaceans and nematodes protect bacteria from treatment processes. The influence of A. aquaticus has never previously been investigated. Investigations in this PhD project revealed that presence of A. aquaticus did not influence microbial water quality measurably in full scale distribution...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  18. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    Science.gov (United States)

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  19. Water resources and water pollution studies

    International Nuclear Information System (INIS)

    Airey, P.

    2001-01-01

    Nuclear techniques are widely used in the investigation of the dynamics of the water cycle. This paper focusses on their contributions to the development of strategies for the sustainability of environmental resources. Emphasis has been placed on the role of environmental isotopes and radiotracers in evaluating models of complex environmental systems. Specific reference is made to 1) the construction of a marine radioactivity database for Asia and the Pacific, 2) the sustainability of groundwater in regions challenged by climate change, and 3) the applications of radiotracers to off-shore transport of sediments and contaminants

  20. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    by human-induced activities. Over the past ... Review of water resources management in Tanzania; Global literature review on water resources ..... requirements for biodiversity and human health. .... Global warming is altering regional climates.

  1. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  2. Evaluation of Minerals Content of Drinking Water in Malaysia

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  3. Evaluation of Minerals Content of Drinking Water in Malaysia

    Directory of Open Access Journals (Sweden)

    Azrina Azlan

    2012-01-01

    Full Text Available The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  4. Evaluation of minerals content of drinking water in Malaysia.

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  5. Drinking water and health hazards in environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Zoeteman, B C

    1985-12-01

    Among the present environmental issues drinking water quality and more specifically organic micropollutants receive not the highest priority. The long tradition of potable water quality assurance and the sophisticated evaluation methodologies provide a very useful approach which has great potential for wider application in environmental research and policy making. Water consumption patterns and the relative importance of the drinking water exposure route show that inorganic water contaminants generally contribute much more to the total daily intake than organic micropollutants. An exception is chloroform and probably the group of typical chlorination by-products. Among the carcinogenic organic pollutants in drinking water only chlorination by-products may potentially increase the health risk. Treatment should therefore be designed to reduce chemical oxidant application as much as possible. It is expected that in the beginning of next century organic micropollutants will receive much less attention and that the present focus on treatment by-products will shift to distribution problems. Within the total context of water quality monitoring microbiological tests will grow in relative importance and might once again dominate chemical analysis the next century. As disinfection is the central issue of the present water treatment practice the search for the ideal disinfection procedure will continue and might result in a further reduction in the use of chemical oxidants. 26 references.

  6. Nitrates in drinking water: relation with intensive livestock production.

    Science.gov (United States)

    Giammarino, M; Quatto, P

    2015-01-01

    An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater.

  7. Evaluation of drinking water quality in Rawalpindi and Islamabad

    International Nuclear Information System (INIS)

    Uzaira, R.; Sumreen, I.; Uzma, R.

    2005-01-01

    Drinking water quality of Rawalpindi and Islamabad was determined in terms of its microbiological and physicochemical characteristics. Water samples were collected from fifty schools of cantonment area Rawalpindi and fifty houses of Sector G-9/4 Islamabad. Survey revealed that surface and ground water are the two major sources of drinking water. Efficiency of domestic filtration units was determined by taking samples before and after filtration, whereas, level of contamination was assessed by collecting samples from storage and dispensing devices in schools. Water quality was determined by pH, conductivity, total dissolved solids, total hardness, concentration of anions and cations, coliforms, viable and colony counts using multiple tube fermentation, titrimetry, UV-Visible spectrophotometry and flame emission photometry. Drinking water quality of Islamabad was found to be better than Rawalpindi. However filtration showed no significant impact in improving water quality due to improper cleaning of filters. Samples were found to exceed WHO guidelines and EPA standards for total dissolved solids and microbiological parameters (WHO, 1996 and EPA, 1980) making water unfit for use due to poor sanitation and cross contamination with sewers in distribution network. (author)

  8. Identification of Hazardous Events for Drinking Water Production Process Using Managed Aquifer Recharge in the Nakdong River Delta, Korea

    International Nuclear Information System (INIS)

    Sang-Il, L.; Ji, H.W.

    2016-01-01

    Various hazardous events can cause chemical, microbial or physical hazards to a water supply system. The World Health Organization (WHO) and some countries have introduced the hazardous event analysis for identifying potential events which may be harmful to the safety of drinking water. This study extends the application of the hazardous event analysis into drinking water production using managed aquifer recharge (MAR). MAR is a way of using an aquifer to secure water resources by storing freshwater for future use and pumping it whenever necessary. The entire drinking water production process is subjected to the analysis from the catchment area to the consumer. Hazardous event analysis incorporates site-specific data as well as common issues occurring in the process of drinking water production. The hazardous events are classified based on chemical, microbial or physical characteristics. Likelihood and severity values are assigned, resulting in quantitative risk by multiplying them. The study site is located at a coastal area in the delta of the Nakdong River, South Korea. The site has suffered from salt water intrusion and surface water pollution from the water upstream. Nine major hazardous events were identified out of total 114 events from 10 drinking water production processes. These major hazardous events will provide useful information on what to be done to secure the water quality produced by a new water supply method. (author)

  9. 78 FR 10269 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule

    Science.gov (United States)

    2013-02-13

    ... Illness CWS--Community Water System DBP--Disinfection Byproduct DWC--Drinking Water Committee EA--Economic... 141 and 142 National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule; Final...-9684-8] RIN 2040-AD94 National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule...

  10. Arsenic in drinking water and adverse birth outcomes in Ohio.

    Science.gov (United States)

    Almberg, Kirsten S; Turyk, Mary E; Jones, Rachael M; Rankin, Kristin; Freels, Sally; Graber, Judith M; Stayner, Leslie T

    2017-08-01

    Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    Science.gov (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  12. Biological drinking water treatment of anaerobic groundwater in trickling filters

    NARCIS (Netherlands)

    De Vet, W.W.J.M.

    2011-01-01

    Drinking water production from anaerobic groundwater is usually achieved by so called conventional techniques such as aeration and sand filtration. The notion conventional implies a long history and general acceptation of the application, but doesn’t necessarily mean a thorough understanding of the

  13. Evaluating Alternatives for Drinking Water at Deployed Locations

    Science.gov (United States)

    2006-03-01

    Tucker and Sands, 1999; Beering , 2002). 1986 Plutonium was found in the New York city drinking water system. Though the concentrations were...based approach called Hazard Analysis and Critical Control Point ( HACCP ). This approach holds that avoidance is practical and effective where other

  14. 9 CFR 3.115 - Food and drinking water requirements.

    Science.gov (United States)

    2010-01-01

    ... would jeopardize the good health and well-being of the animals. (b) Marine mammals being transported in... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and drinking water requirements. 3.115 Section 3.115 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  15. How the Drinking Water State Revolving Fund Works

    Science.gov (United States)

    The DWSRF was established by the 1996 amendments to the Safe Drinking Water Act (SDWA) as a financial assistance program for systems and states to achieve the health protection objectives of the law, 42 U.S.C. §300j-12

  16. Optimal drinking water composition for caries control in populations

    DEFF Research Database (Denmark)

    Bruvo, M.; Ekstrand, K.; Arvin, Erik

    2008-01-01

    of drinking water on caries may not be limited to fluoride only. Among 22 standard chemical variables, including 15 ions and trace elements as well as gases, organic compounds, and physical measures, iterative search and testing identified that calcium and fluoride together explained 45% of the variations...

  17. Carcinogenic and mutagenic properties of chemicals in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R J

    1985-12-01

    Isolated cases of careless handling of industrial and domestic waste has lead to a wide variety of dangerous chemicals being inadvertently introduced into drinking water. However, chemicals with established carcinogenic and mutagenic properties that occur with a high frequency and in multiple locations are limited in number. To date, the chief offenders have been chemicals of relatively low carcinogenic potency. Some of the more common chemicals are formed as by-products of disinfection. The latter process is generally regarded as essential to the production of a ''microbiologically safe'' drinking water. Consequently, any reductions in what may be a relatively small carcinogenic risk must be balanced against a potential for a higher frequency of waterborne infectious disease. The results of recent toxicological investigations will be reviewed to place the potential carcinogenic and mutagenic hazards frequently associated with drinking water into perspective. First, evidence for the carcinogenicity of certain volatile organic compounds such as trichloroethylene, tetrachloroethylene and carbon tetrachloride is considered. Second, the carcinogenic activity that can be ascribed to various by-products of chlorination is reviewed in some detail. Finally, recent evidence that other chemicals derived from the treatment and distribution of drinking water is highlighted as an area requiring move systematic attention. 72 references.

  18. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; van Gaalen FW; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; LWD

    2001-01-01

    Het model TAPWAT (Tool for the Analysis of the Production of drinking WATer), is ontwikkeld om de drinkwaterkwaliteit te beschrijven voor integrale studies in het kader van het planbureau Milieu en Natuur van het RIVM. Het model bestaat uit modules die de individuele zuiveringsstappen van het

  19. Model-Based Control of Drinking-Water Treatment Plants

    NARCIS (Netherlands)

    Van Schagen, K.M.

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process

  20. Economics of feeding drinking water containing organic acids to ...

    African Journals Online (AJOL)

    A feeding trial was conducted to determine the economic effect of acidifying drinking water of broiler chickens with organic acids. The organic acids were acetic, butyric, citric and formic acids, each offered at 0.25%. The control did not contain any of the acids. One hundred and fifty (150) day old AborAcre - plus chicks were ...

  1. Radionuclide analysis of drinking water in selected secondary ...

    African Journals Online (AJOL)

    Radionuclide analysis of drinking water in selected secondary schools of Epe ... obtained were in the ranges of (38.3 – 292.8) Bq/L with mean value of 13.4 + 10.8 ... and within the tolerance level indicating minimal radiological health burden.

  2. evaluation of quality of drinking water from baghdad, iraq

    African Journals Online (AJOL)

    Administrator

    Corrosion of the pipes could be one of the reasons for the presence of iron. Key Words: Drinking water quality, heavy metals, sulphate, Aluminium, .... 280 and 440 mg/L and the average is 230.1 mg/L. The chloride concentration values fall ...

  3. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    guideline is set by WHO (2008) for Zinc level in drinking water, of the samples analyzed,. 94.02% comply the New Zealand standard and 97.01% comply all the maximum admissible limits referred in the present study. In general, the results of the present study have shown that some of the physico-chemical parameters have ...

  4. A bibliometric analysis of drinking water research in Africa | Wambu ...

    African Journals Online (AJOL)

    A total of 1 917 publications of drinking water research in Africa from 1991 to 2013 were identified from the data hosted in online version of SCI-Expanded, Thomson Reuters Web of Science, for bibliometric analysis. The analysis included publication output, distribution of keywords, journals and subject areas, and ...

  5. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  6. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    Science.gov (United States)

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Migration of toxicants from plastics into drinking water during storage ...

    African Journals Online (AJOL)

    In this study, migration of toxicants, such as, manufacturing additives and previously adsorbed materials into drinking water stored inside plastic containers was investigated. The study considered virgin containers as well as those previously used to store sulphuric acid, calcium hypochlorite, methyl ethyl ketone (MEK) and ...

  8. Tracks FAQs: What Chemicals Are In My Drinking Water?

    Centers for Disease Control (CDC) Podcasts

    In this podcast, CDC Tracking experts discuss how you can use the Tracking Network to determine what chemicals are in your drinking water. Do you have a question for our Tracking experts? Please e-mail questions to trackingsupport@cdc.gov.

  9. Modelling and simulation of a nitrification biofilter for drinking water ...

    African Journals Online (AJOL)

    For the purification of pure and microbiologically safe drinking water, different treatment steps are necessary. One of those steps is the removal of ammonium, which can, e.g. be accomplished through nitrification in a biofilter. In this study, a model for such a nitrifying biofilter was developed and the model was ...

  10. Effects of Administration of Molasses through Drinking Water on ...

    African Journals Online (AJOL)

    An experiment was conducted to determine the effect of feeding molasses to broiler chickens as a supplement through drinking water rather than mixing it with the feed. One hundred (100) unsexed day old broiler chicks of Anak strain were used. They were divided into two treatment groups of fifty birds. Each group was ...

  11. Effect of Different Levels of Molasses Fed Through Drinking Water ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the effect of molasses fed through drinking water on growth and economic performance of broiler chickens. One hundred and sixty unsexed day old chicks of Anak strain were used. They were divided into four treatment groups with each group having four replicates of ten birds per ...

  12. Water resources assessment and prediction in China

    Directory of Open Access Journals (Sweden)

    W. Guangsheng

    2016-10-01

    Full Text Available Water resources assessment in China, can be classified into three groups: (i comprehensive water resources assessment, (ii annual water resources assessment, and (iii industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  13. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  14. Geothermal potential of northern Bavaria: Analysis of geothermal resources by evaluation of geophysical temperature logs in drinking water wells and deep wells; Geothermisches Potential Nordbayerns - Untersuchungen der geothermischen Verhaeltnisse durch Auswertung geophysikalischer Temperaturmessungen in Trinkwasser- und Tiefbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W; Udluft, P [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Wuerzburg Univ. (Germany)

    1997-12-01

    The geothermal potential of northern Bavaria was investigated. Thermal water in the lower heat range may be used, e.g., for space heating, bath heating and agricultural purposes. Geophysical data were obtained from a number of drinking water wells with a depth of less than 150 m and a few deep wells of more than 150 m. The data are to serve as a decision aid for potential users of geothermal energy and reduce the exploration risk. (orig.) [Deutsch] Zielsetzung des Forschungsvorhabens ist die Bewertung des geothermischen Potentials Nordbayerns im Hinblick auf die Nutzung von Tiefenwasser zur Gewinnung von hydrothermaler Energie. Niedrigthermale Tiefenwaesser bieten sich z.B. als Energietraeger fuer Raumwaerme, Baederheizung and landwirtschaftliche Nutzung an. Die geothermischen Daten liegen in Form von geophysikalischen Temperaturmessungen aus zahlreichen Trinkwasserbohrungen mit weniger als 150 m Bohrtiefe und einigen Tiefbohrungen mit mehr als 150 m Bohrtiefe vor. Die Bewertung des geothermischen Potentials Nordbayerns soll als Planungsgrundlage fuer potentialle Erdwaermenutzer dienen und zu einer Minimierung des Explorationsrisikos beitragen. (orig.)

  15. Criteria for Radionuclide Activity Concentrations for Food and Drinking Water

    International Nuclear Information System (INIS)

    2016-04-01

    Requirements for the protection of people from the harmful consequences of exposure to ionizing radiation, for the safety of radiation sources and for the protection of the environment are established in IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. GSR Part 3 requires that the regulatory body or other relevant authority establish specific reference levels for exposure due to radionuclides in commodities, including food and drinking water. The reference level is based on an annual effective dose to the representative person that generally does not exceed a value of about 1 mSv. International standards have been developed by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) Codex Alimentarius Commission for levels of radionuclides contained in food traded internationally that contains, or could potentially contain, radioactive substances as a consequence of a nuclear or radiological emergency. International standards have also been developed by the WHO for radionuclides contained in drinking water, other than in a nuclear or radiological emergency. These international standards provide guidance and criteria in terms of levels of individual radiation dose, levels of activity concentration of specific radionuclides, or both. The criteria derived in terms of levels of activity concentration in the various international standards differ owing to a number of factors and assumptions underlying the common objective of protecting public health in different circumstances. This publication considers the various international standards to be applied at the national level for the assessment of levels of radionuclides in food and in drinking water in different circumstances for the purposes of control, other than in a nuclear or radiological emergency. It collates and provides an overview of the different criteria used in assessing and

  16. Radon concentration in drinking water and water for living use and their study status

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    Low quality water is the chief reason for resulting in decrease of human group's physique, and in early appearance of nutrition and supersession diseases. The assimilation of radon released from water by human body may cause radioactive impact to those organs such as stomach and lungs. The monitoring determination for chemical quality of drinking water in developed countries comprises as many as 350 items, and the maximum contamination level of international standards is adopted for checking the radon concentration in drinking water, However, at present, only 35 items of the chemical quality of drinking water are determined in China. The monitoring determination of radon concentration in running water of cities, in distillation water, mineral water, pure water, deep well water in country side, as well as natural surface water is of great market potential in the future. (authors)

  17. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    Directory of Open Access Journals (Sweden)

    Jonny Crocker

    2014-07-01

    Full Text Available Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states, Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  18. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    Science.gov (United States)

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  19. Risk assessment of fluoride exposure in drinking water of Tunisia.

    Science.gov (United States)

    Guissouma, Wiem; Hakami, Othman; Al-Rajab, Abdul Jabbar; Tarhouni, Jamila

    2017-06-01

    The presence of fluoride in drinking water is known to reduce dental cavities among consumers, but an excessive intake of this anion might leads to dental and skeletal fluorosis. This study reports a complete survey of the fluoridated tap water taken from 100 water consumption points in Tunisia. The fluoride concentrations in tap water were between 0 and 2.4 mg L -1 . Risk assessment of Fluoride exposure was assessed depending on the age of consumers using a four-step method: hazard identification, toxicity reference values selection (TRVs), daily exposure assessment, and risk characterization. Our findings suggest that approximately 75% of the Tunisian population is at risk for dental decay, 25% have a potential dental fluorosis risk, and 20% might have a skeletal fluorosis risk according to the limits of fluoride in drinking water recommended by WHO. More investigations are recommended to assess the exposure risk of fluoride in other sources of drinking water such as bottled water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assesment of disinfectant by product in chlorinated drinking water

    International Nuclear Information System (INIS)

    Khattak, M.I.

    2010-01-01

    The present study was design to establish the report of spatial pattern and variations of Trihalomethanes (THMs) in drinking water sample collected from the area of Karachi. This is the first attempt of its nature to assess mainly the THMs level in drinking water samples of this region. THMs occurrence in water samples as investigated based on a program for preliminary monitoring of water quality throughout the distribution system. The most important species CHCl/sub 3/ of THMs were measured in the samples and were found at average level. The results of present investigation demonstrated that there are more than 95.06% of total Trihalomethanes spatial variations. Specially the CHCl/sub 3/ is considerable in all the utilities in question. (author)

  1. Purification of drinking water by low cost method in Ethiopia

    Science.gov (United States)

    Abatneh, Yasabie; Sahu, Omprakash; Yimer, Seid

    2014-12-01

    Nowadays, water treatment is a big issue in rural areas especially in African country. Due to lack of facilities available in those areas and the treatment are expensive. In this regard's an attempt has been made to find alternative natural way to treat the rural drinking water. The experiment trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were used to treat contaminated water obtained from a number of wells. The results showed that the addition of M. oleifera can considerably improve the quality of drinking water. A 100 % improvement both in turbidity and reduction in Escherichia coli was noted for a number of the samples, together with significant improvements in colour.

  2. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  3. Federal Disaster Funding Opportunities for Water and Wastewater Utilities through the Drinking Water and Clean Water State Revolving Funds

    Science.gov (United States)

    The following provides a checklist that will help you take advantage of Drinking Water State Revolving Funds. For more detailed information on Drinking Water SRF, see DWSRF in Fed FUNDS. For more information on Clean Water SRF, see CWSRF in Fed FUNDS.

  4. Solar photocatalysis - a possible step in drinking water treatment

    International Nuclear Information System (INIS)

    Ljubas, Davor

    2005-01-01

    Possibility of the use of solar radiation for reduction of Natural Organic Matter (NOM) content in natural lake water, as a source for drinking water preparation, was the topic of this research. Solar radiation alone does not have enough energy for sufficient degradation of NOM, but in combination with heterogeneous photocatalyst-titanium dioxide (TiO 2 ), with or without other chemicals, the degradation potential could increase. In specific geographical conditions in Republic of Croatia, e.g. Adriatic islands or Dalmatia, solar radiation could be used for photocatalytic degradation of natural organic matter (NOM) in surface waters and therewith lighten the process of preparing them to the potable water. Specific quality of the geographical locality appears in fact that it is a very attractive tourist destination, especially in period June-September. In this period the drinking water demand is the biggest and, fortunately, the intensity of the solar radiation, too. So, there is a proportion between the drinking water demand and solar radiation available for the use in drinking water treatment. A number of tests with lake water exposed to solar radiation in non-concentrating reactors were performed and photodegradation of NOM for various combinations of doses and crystal forms of TiO 2 with H 2 O 2 was studied. Irradiation intensity was estimated from global solar radiation measurements. The best performance for the NOM degradation had combination of 1 g/L TiO 2 both anatase and rutile+solar radiation+H 2 O 2 , but - economically - it was not the best combination. An estimation of the biodegradation potential of dissolved organic matter after the photocatalytic step is given, too

  5. Emerging Genotype (GGIIb) of Norovirus in Drinking Water, Sweden

    OpenAIRE

    Nygård, Karin; Torvén, Maria; Ancker, Camilla; Knauth, Siv Britt; Hedlund, Kjell-Olof; Giesecke, Johan; Andersson, Yvonne; Svensson, Lennart

    2003-01-01

    From May through June 2001, an outbreak of acute gastroenteritis that affected at least 200 persons occurred in a combined activity camp and conference center in Stockholm County. The source of illness was contaminated drinking water obtained from private wells. The outbreak appears to have started with sewage pipeline problems near the kitchen, which caused overflow of the sewage system and contaminated the environment. While no pathogenic bacteria were found in water or stools specimens, no...

  6. Gastrointestinal absorption of soluble uranium from drinking water. Published paper

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Ruth, H.; Burleigh, D.

    1988-04-01

    This manuscript describes results of an experiment to determine the gastrointestinal absorption of uranium from drinking water in 12 health adults. Most of the uranium ingested was excreted in feces in the first 2 days following ingestion of the water. The absorption was the same for (234)U and (238)U for each subject. Absorption varied among subjects from -0.02% to 2.6%, with a mean of 0.6%. Low absorption may be due to concurrent ingestion of food

  7. Identification and assessment of hazardous compounds in drinking water.

    Science.gov (United States)

    Fawell, J K; Fielding, M

    1985-12-01

    The identification of organic chemicals in drinking water and their assessment in terms of potential hazardous effects are two very different but closely associated tasks. In relation to both continuous low-level background contamination and specific, often high-level, contamination due to pollution incidents, the identification of contaminants is a pre-requisite to evaluation of significant hazards. Even in the case of the rapidly developing short-term bio-assays which are applied to water to indicate a potential genotoxic hazard (for example Ames tests), identification of the active chemicals is becoming a major factor in the further assessment of the response. Techniques for the identification of low concentrations of organic chemicals in drinking water have developed remarkably since the early 1970s and methods based upon gas chromatography-mass spectrometry (GC-MS) have revolutionised qualitative analysis of water. Such techniques are limited to "volatile" chemicals and these usually constitute a small fraction of the total organic material in water. However, in recent years there have been promising developments in techniques for "non-volatile" chemicals in water. Such techniques include combined high-performance liquid chromatography-mass spectrometry (HPLC-MS) and a variety of MS methods, involving, for example, field desorption, fast atom bombardment and thermospray ionisation techniques. In the paper identification techniques in general are reviewed and likely future developments outlined. The assessment of hazards associated with chemicals identified in drinking and related waters usually centres upon toxicology - an applied science which involves numerous disciplines. The paper examines the toxicological information needed, the quality and deployment of such information and discusses future research needs. Application of short-term bio-assays to drinking water is a developing area and one which is closely involved with, and to some extent dependent on

  8. Physicochemical Quality of Drinking Water of Kermanshah Province

    Directory of Open Access Journals (Sweden)

    Mahfooz Moradi

    2013-12-01

    Full Text Available Physicochemical quality of drinking water has a direct impact on consumer health and fluoride, nitrite, nitrate, total dissolved solids compounds and pH are their important parameters that have closely relationship with community health. In many cases, source nitrate of water is due to agriculture activities, landfill sites and also potassium nitrate that used in the manufacture of glass, nitrite in form of sodium nitrite used as a food preservative too.

  9. Sunshine and saris equals safe drinking water | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    9 juin 2016 ... Researchers from Canada and India funded by IDRC have found that filtering water through sari-cloth before purifying it in the sun's heat makes polluted water safe to drink. ... Avec plus de 1,2 milliard d'habitants, la population de l'Inde ne cesse de croître et, par le fait même, de transformer le pays.

  10. Drinking water and sanitation: progress in 73 countries in relation to socioeconomic indicators.

    Science.gov (United States)

    Luh, Jeanne; Bartram, Jamie

    2016-02-01

    To assess progress in the provision of drinking water and sanitation in relation to national socioeconomic indicators. We used household survey data for 73 countries - collected between 2000 and 2012 - to calculate linear rates of change in population access to improved drinking water (n = 67) and/or sanitation (n = 61). To enable comparison of progress between countries with different initial levels of access, the calculated rates of change were normalized to fall between -1 and 1. In regression analyses, we investigated associations between the normalized rates of change in population access and national socioeconomic indicators: gross national income per capita, government effectiveness, official development assistance, freshwater resources, education, poverty, Gini coefficient, child mortality and the human development index. The normalized rates of change indicated that most of the investigated countries were making progress towards achieving universal access to improved drinking water and sanitation. However, only about a third showed a level of progress that was at least half the maximum achievable level. The normalized rates of change did not appear to be correlated with any of the national indicators that we investigated. In many countries, the progress being made towards universal access to improved drinking water and sanitation is falling well short of the maximum achievable level. Progress does not appear to be correlated with a country's social and economic characteristics. The between-country variations observed in such progress may be linked to variations in government policies and in the institutional commitment and capacity needed to execute such policies effectively.

  11. 1994 Environmental monitoring drinking water and nonradiological effluent programs annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Brock, T.A.; Meachum, T.R.

    1995-10-01

    EG ampersand G Idaho, Inc., initiated monitoring programs for drinking water in 1988 and for nonradiological parameters and pollutants in liquid effluents in 1985. These programs were initiated for the facilities operated by EG ampersand G Idaho for the US Department of Energy at the Idaho National Engineering Laboratory. On October 1, 1994, Lockheed Idaho Technologies Company (LITCO) replaced EG ampersand G Idaho as the prime contractor at the INEL and assumed responsibility for these programs. Section I discusses the general site characteristics, the analytical laboratories, and sampling methodology general to both programs. Section 2, the Drinking Water Program, tracks the bacteriological, chemical, and radiological parameters required by State and Federal regulations. This section describes the drinking water monitoring activities conducted at 17 LITCO-operated production wells and 11 distribution systems. It also contains all of the drinking water parameters detected and the regulatory limits exceeded during calendar year 1994. In addition, groundwater quality is discussed as it relates to contaminants identified at the wellhead for LITCO production wells. Section 3 discusses the nonradiological liquid effluent monitoring results for 27 liquid effluent streams. These streams are presented with emphasis on calendar year 1994 activities. All parameter measurements and concentrations were below the Resource Conservation and Recovery Act toxic characteristics limits

  12. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    Science.gov (United States)

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  13. Obtaining drinking water using solar electrodialysis

    Directory of Open Access Journals (Sweden)

    Sandro César Silveira Jucá

    2010-05-01

    Full Text Available This paper shows the main worldwide experiments in PV powered electrodialysis plants and analyses possible applications of such systems in the Brazilian Northeast region. The use of PV arrays to power electrodialysis plants for desalination of brackish water from deep wells makes sense in arid and semiarid regions. In such areas there is often an inadequate water and energy supply infrastructure along with favorable levels of solar radiation for electric generation, as is the case of the Brazilian Northeast region.

  14. Radon concentrations in drinking water in Wakasa area, Fukui Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Tokuyama, Hideki; Igarashi, Shuichi [Fukui Prefectural Environmental Radiation Research and Monitoring Center, Tsuruga (Japan)

    1997-02-01

    Radon concentration in drinking water was surveyed to make basic data for the investigation of radiation dose due to natural radioisotopes in the general public. Here, the survey data in the Wakasa region were reported. Sampling was carried out at 126 points in this region (ca. 70x50 km{sup 2}). A total of 167 samples were taken from the tap of private wells, and small and large public water supplies. The radon concentration was determined by direct measuring method. The mean concentration of ground water from the wells was 28.5 Bq/l, significantly higher than those of the tap water from small and large water supplies, 5.0 and 11.2 Bq/l, respectively. Rn concentration of ground water was dependent on geological features and it was comparatively high in the granite region. Ground water containing a high concentration of Rn was mixed into the water of some large water supply in the cities, showing that its Rn concentration was higher compared to those for the small water supply. This survey was conducted only in the winter seasons from 1989 to 1993. Therefore, there are no data concerning seasonal changes in Rn concentration to drinking water. (M.N.)

  15. Organic mutagens and drinking water in The Netherlands : a study on mutagenicity of organic constituents in drinking water in The Netherlands and their possible carcinogenic effects

    NARCIS (Netherlands)

    Kool, H.J.

    1983-01-01

    Several mutagenic and carcinogenic organic compounds have been detected in Dutch surface waters and in drinking water prepared from these surface waters. Although the levels of these compounds in drinking- and surface water are relatively low, in general below μg per litre, it appeared that organic

  16. Assessment of the quality of drinking water in Khartoum State

    International Nuclear Information System (INIS)

    Bashir, E. A.

    2005-07-01

    Assessment of drinking water quality in Khartoum State was the main purpose of this study. Seven sites were selected to represent the area of wells water, relevance to environmental pollution in Khartoum area, Ummbadah near industrial area, Elthawra near a power station, Elfiteihap near the White Nile, Elriyadh near a petroleum station, Elkalakla in the last bus station, Elhag Yousif in the market, as well Eldroshap as control area. Raw and treated water samples were collected from the White Nile, the Blue Nile and the River Nile, wells water and treated water from the three Niles these samples stored in metallic and fiber glass tanks in the rainy and dry seasons. Standard methods were used for samples collection and preparation for the measurements using Atomic Absorption Spectroscopy (AAS) and flame photometer. Thirteen elements were observed and their concentrations determined in the various locations, those are Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mg, Mn, Na, Ni, Pb and Zn. The concentration levels for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were lower than the detection limits for (AAS), and pre-concentration by physical method was found necessary for these elements, the evaporation method of the drinking water samples were used. The data obtained were compared with the data from literature. The results are generally comparable except the concentration of Fe of the raw water for the River Nile in the two seasons as well as the treated water for the River Nile, the treated water for the River Nile stored in fiber glass tank (rainy season), and the treated water for the White Nile stored in metallic tank (rainy season) are lower than the maximum permissible international levels provided by the World Health Organization (WHO) and the concentration of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organization (SSMO). There is no pollution in the ground water resulting from human activities can be made.(Author)

  17. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    Science.gov (United States)

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  18. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic

  19. Heavy metal pollution in drinking water - a global risk for the human ...

    African Journals Online (AJOL)

    Fabian Fernandez

    parts of the world heavy metal (HM) concentrations in drinking water are higher than some international guideline values. ..... become the basis for several drinking water treatment approaches ...... physiological and hygienic needs. Monitoring ...

  20. ON A NEW TECHNOLOGY OF PREPARATION OF HOT DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. F. Jalilov

    2017-01-01

    Full Text Available The present article contains information concerning the new Cl-anionization technology in the preparation of hot drinking water. In contrast with water softening, that replaces all the hardness salts by sodium cations in the cation exchanger, this new technology makes it possible to replace incrustating HCO3̄ and SO42--anions in a strong-base anion exchanger by Cl⁻-ions. As a result, the incrustation on the surfaces of heating hot water heaters is prevented. Thus, cations of hardness that are valuable for the human body remain in the water, the quality of the latter conforming to drinking water quality. Considering the important role of calcium and magnesium in the human body, in Germany and Turkey the minimum value of hardness cations in drinking water is limited to 2.85 and 7.50 mg-Eqv/l, respectively. According to the World Health Organization, in the composition of drinking water, the concentration of cations of magnesium and calcium is recommended, respectively, within 10–(20–30, and 20–50 mg/l; the minimum value of total hardness is 2–4 mg-Eqv/l. According to the developed technology drinking water is passed consistently in the downward direction through the mechanical and chlorineanionite exchanger filters. In the latter, the main part of HCO3̄ and SO42--water ions are exchanged for Cl-anions of anionite. Then the water is collected in the tank, from where it is pumped to the hot water heater through the ultraviolet disinfection unit. After the depletion of the anionite by HCO3̄ and SO42--anions, it is regenerated by a solution of 8–12 % NaCl. The results of research by the anion exchangers Purolite A200EMBCl and AB-17-8 are plotted. It is noted that when the specific consumption of salt for regeneration is of about 45–55 kg/m³, working exchange capacity of the A200EMBCl occurs to be in the range 300–370 g-Eqv/m³. For anionization of water, the residual concentration of HCO3̄-ions are changed from 0.5 to 3.2 mg