WorldWideScience

Sample records for drinking water reservoir

  1. Controlling Highway Runoff Pollution In Drinking Water Supply Reservoir Watersheds

    Science.gov (United States)

    1999-10-01

    This study evaluated the effectiveness of an innovative stormwater best management practice in treating highway runoff and protecting the integrity of the drinking water reservoir in Warrenton, Virginia. The research focused on the use of a biodetent...

  2. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  3. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  4. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  6. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 2-D Water Quality Modelling of a Drinking Water Reservoir

    Czech Academy of Sciences Publication Activity Database

    Růžička, Martin; Hejzlar, J.; Mikešová, P.; Cole, T. M.

    2002-01-01

    Roč. 50, č. 3 (2002), s. 258-272 ISSN 0042-790X R&D Projects: GA ČR GA103/98/0281; GA AV ČR IAA3042903 Grant - others:USARGD-UK(USA) N68171-99-M-6754 Keywords : CE-QUAL-W2 * Dimictic stratified reservoir * Sensitivity analysis Subject RIV: DA - Hydrology ; Limnology

  8. Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply.

    Science.gov (United States)

    Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A

    2017-03-01

    In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.

  9. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  10. Bioassessment of a Drinking Water Reservoir Using Plankton: High Throughput Sequencing vs. Traditional Morphological Method

    Directory of Open Access Journals (Sweden)

    Wanli Gao

    2018-01-01

    Full Text Available Drinking water safety is increasingly perceived as one of the top global environmental issues. Plankton has been commonly used as a bioindicator for water quality in lakes and reservoirs. Recently, DNA sequencing technology has been applied to bioassessment. In this study, we compared the effectiveness of the 16S and 18S rRNA high throughput sequencing method (HTS and the traditional optical microscopy method (TOM in the bioassessment of drinking water quality. Five stations reflecting different habitats and hydrological conditions in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia, were sampled May 2016. Non-metric multi-dimensional scaling (NMDS analysis showed that plankton assemblages varied among the stations and the spatial patterns revealed by the two methods were consistent. The correlation between TOM and HTS in a symmetric Procrustes analysis was 0.61, revealing overall good concordance between the two methods. Procrustes analysis also showed that site-specific differences between the two methods varied among the stations. Station Heijizui (H, a site heavily influenced by two tributaries, had the largest difference while station Qushou (Q, a confluence site close to the outlet dam, had the smallest difference between the two methods. Our results show that DNA sequencing has the potential to provide consistent identification of taxa, and reliable bioassessment in a long-term biomonitoring and assessment program for drinking water reservoirs.

  11. Sediment enzyme activities and microbial community diversity in an oligotrophic drinking water reservoir, eastern China.

    Directory of Open Access Journals (Sweden)

    Haihan Zhang

    Full Text Available Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs, nested polymerase chain reaction (PCR-denaturing gradient gel electrophoresis (DGGE and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH₃-N/(g·24 h. The highest average well color development (AWCD was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA revealed tremendous differences in the functional (metabolic diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir.

  12. Quantifying DOC Flux From Sediments Into a Drinking Water Reservoir Using Optical Profiling

    Science.gov (United States)

    Downing, B. D.; Bergamaschi, B. A.; Boss, E.

    2006-12-01

    Sediments in drinking water reservoirs may release dissolved organic carbon (DOC) into the overlying water that interferes with water treatment and contributes to disinfection byproduct (DBP) precursor formation. Here we estimate the flux of DOC from the bottom sediments of a drinking water reservoir using a novel optical profiling system comprising instrumentation designed to measure the in situ distribution of optical properties such as absorption and fluorescence. The optical profiles were coupled with high-precision, high-resolution physical measurements of the water-column stability (pressure, temperature, and conductivity). Using the physical and chemical gradients we calculated bulk DOC fluxes at different locations in the reservoir. Further, we distinguished DOC flux from the sediments from other sources of DOC using a principle component analysis and applied those properties to generate vertical source-specific profiles of DOC, which permitted us to calculate the gross flux from the sediments. We observed a positive flux of DOC from the sediments into Sweetwater Reservoir ranging from 8.0 x 10-3 gC m-2day-1 to 3. 0 x 10-2 gC m-2day-1 for bulk DOC, but up to 5 times that for the sediment-specific flux. These results suggest that the sedimentary source of DOC to the reservoir is significant, but also that DOC is labile in the reservoir.

  13. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential.

    Science.gov (United States)

    Su, Ming; Yu, Jianwei; Zhang, Junzhi; Chen, Hui; An, Wei; Vogt, Rolf D; Andersen, Tom; Jia, Dongmin; Wang, Jingshi; Yang, Min

    2015-01-01

    The production of odorant 2-methylisoborneol (MIB) in water bodies by Planktothrix sp. have not been understood very well. Through a four-year investigation in Miyun Reservoir, a huge mesotrophic drinking water reservoir known to have the MIB episodes, we found that the Planktothrix sp. bloomed during September and October causing the high levels of MIB in the reservoir. The concentration of MIB and the biomass of MIB-producing cyanobacteria Planktothrix were measured (n = 887) at different sites and depths during different seasons. The results indicated that the shallow region of the reservoir is the major habitat for Planktothrix sp. due to that the light is able to penetrate down to the relatively high concentrations of nutrients close to the sediments. Quantile regression analysis between Planktothrix biomass and MIB concentration shows that the risk of MIB exceeding the odor threshold (15 ng L⁻¹) in water was as high as 90% when the Planktothrix density was more than 4.0 × 10⁵ cells L⁻¹, while the risk was reduced to 10% when the Planktothrix density remained below 1.6 × 10⁴ cells L⁻¹. This study will improve the understanding of the environmental behaviors of Planktothrix sp., and can provide useful information for better management of drinking water lakes/reservoirs experiencing the taste and odor (T&O) problems caused by deep living cyanobacterial species.

  14. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Science.gov (United States)

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  15. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  16. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources

    NARCIS (Netherlands)

    Liu, G.; Ling, F.Q.; Van der Mark, E.J.; Zhang, X.D.; Knezev, A.; Verberk, J.Q.J.C.; Van der Meer, W.G.J.; Medema, G.J.; Liu, W.T.; Van Dijk, J.C.

    2016-01-01

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of

  17. Sanitary impact evaluation of drinking water in storage reservoirs in Moroccan rural area.

    Science.gov (United States)

    Aziz, Faissal; Parrado Rubio, Juan; Ouazzani, Naaila; Dary, Mohammed; Manyani, Hamid; Rodríguez Morgado, Bruno; Mandi, Laila

    2017-05-01

    In Morocco, storage reservoirs are particular systems of water supply in rural areas. These reservoirs are fed with rainwater and/or directly from the river, which are very contaminated by several pathogenic bacteria. They are used without any treatment as a drinking water by the surrounding population. In this context, the aim of this study is to evaluate the impact of consuming contaminated water stored in reservoirs on health status for six rural communities located in Assif El Mal, Southern East of Marrakech. This was investigated using a classical methodology based on population survey and by molecular approach using PCR-DGGE technique to determine the intestinal bacterial diversity of consumers. The survey showed that, the residents of the studied area suffered from numerous health problems (diarrheal diseases, vomiting or hepatitis A) due to the lack of waste management infrastructures. The consumer's stool analysis by molecular approach revealed that numbers of Escherichia coli , Aeromonas hydrophila and Clostridia , were significantly higher in the diarrheal feces. In addition, PCR-DGGE study of the prevalence and distribution of bacteria causing human diseases, confirmed that, there is a relationship between water bacterial contaminations of storage reservoirs and microbial disease related health status. Therefore, water reservoir consumption is assumed to be the mean way of exposure for this population. It's clear that this approach gives a very helpful tool to confirm without any doubt the relationship between water bacterial contamination and health status.

  18. Spatial and Temporal Variations of Water Quality and Trophic Status in Xili Reservoir: a Subtropics Drinking Water Reservoir of Southeast China

    Science.gov (United States)

    Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao

    2017-12-01

    Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (pwater quality was obvious (pwater quality factors y were similar and the mainly pattern was Pre-rainy period > Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.

  19. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  20. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  1. [Usage of flocculation in emergent control of algal bloom in drinking water supplying reservoir].

    Science.gov (United States)

    Xiao, Li-juan; Han, Bo-ping; Lin, Qiu-qi; Lei, La-mei

    2007-10-01

    An Anabaena circinalis bloom appeared in a reservoir for supplying drinking water in the south of China, in April 2006. Phytoplankton scums gathered and floated on the surface of the whole reservoir especially on the area of water intake, and the cell density of phytoplankton, cyanobacteria and Anabaena circinalis was as high as 7.3 x 10(7), 7.2 x 10(7), 4.1 x 10(7) cells x L(-1) respectively. To maintain drinking water supplying, an emergency program was initiated to control the cyanobacterial bloom. The zone immediately adjacent to the water intake was divided into two small zones by fishing nets and waterproof curtains to modify the water flow. Iron-based flocculants were then applied to control the algal bloom. As a result, the density of the phytoplankton decreased greatly, and at the first day the cell densities of phytoplankton, cyanobacterial, Anabaena circinalis decreased to 5.3 x 10(6), 4.7 x 10(6), 2 x 10(6) cells x L(-1) respectively, and the removal of them reached up to 93%, 94%, 95% respectively. The average of phytoplankton cell density was 1.2 x 10(7) cells x L(-1) and a highest density was 2.0 x 10(7) cells x L(-1) during the treatment from 22 to 30 April, while Chlorophyta and Bacillariophyta slightly increased. These encouraging results suggest that the flocculants used are efficient at removing Cyanobacteria.

  2. Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs.

    Science.gov (United States)

    Gaget, Virginie; Humpage, Andrew R; Huang, Qiong; Monis, Paul; Brookes, Justin D

    2017-11-01

    Cyanobacteria represent a health hazard worldwide due to their production of a range of highly potent toxins in diverse aquatic environments. While planktonic species have been the subject of many investigations in terms of risk assessment, little is known about benthic forms and their impact on water quality or human and animal health. This study aimed to purify isolates from environmental benthic biofilms sampled from three different drinking water reservoirs and to assess their toxin production by using the following methods: Enzyme-Linked Immunosorbent Assay (ELISA), High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and quantitative PCR (qPCR). Microscopic observation of the isolates allowed the identification of various filamentous cyanobacterial genera: Anabaena (benthic form), Calothrix and Nostoc from the Nostocales and Geitlerinema, Leptolyngbya, Limnothrix, Lyngbya, Oxynema, Phormidium and Pseudanabaena representing non-heterocystous filamentous cyanobacteria. The Phormidium ambiguum strain AWQC-PHO021 was found to produce 739 ng/mg of dry weight (d/w) of cylindrospermopsin and 107 ng/mg (d/w) of deoxy-cylindrospermopsin. The Nostoc linckia strain AWQC-NOS001 produced 400 ng/mg (d/w) of a microcystin analogue. This is the first report of hepatotoxin production by benthic cyanobacteria in temperate Australian drinking water reservoirs. These findings indicate that water quality monitoring programs need to consider benthic cyanobacteria as a potential source of toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China

    OpenAIRE

    Ruixiang Hua; Yongyong Zhang

    2017-01-01

    Water quality safety is of critical importance in environmental improvement, particularly with respect to drinking water resources worldwide. As the main drinking water sources in Shenzhen, China, the cascade reservoirs comprising the Shiyan, Tiegang, and Xili Reservoirs are highly regulated and have experienced water quality deterioration in recent years. In this study, a three-dimensional hydrodynamic and water quality model was established using the Environmental Fluid Dynamics Code (EFDC)...

  4. Analysis on the spatiotemporal characteristics of water quality and trophic states in Tiegang Reservoir: A public drinking water supply reservoir in South China

    Science.gov (United States)

    Song, Yun-long; Zhu, Jia; Li, Wang; Tao, Yi; Zhang, Jin-song

    2017-08-01

    Shenzhen is the most densely populated city in China and with a severe shortage of water. The per capita water resource is less than 200 m3, which is approximately 1/12 of the national average level. In 2016, nearly 90% of Shenzhen’s drinking water needed to be imported from the Pearl River. After arrived at Shenzhen, overseas water was firstly stockpiled in local reservoirs and then was supplied to nearby water works. Tiegang Reservoir is the largest drinking water supply reservoir and its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Tiegang Reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. One-way ANOVA showed that significant difference was found in water quality factors on month (p latter rainy period > high temperature and rain free period > temperature jump period > winter drought period, while SD showed the contrary. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession. Tiegang reservoir was seriously polluted by TN, as a result WQI were at IV∼V level. If TN was not taken into account, WQI were atI∼III level. TLI (Σ) were about 35∼60, suggesting Tiegang reservoir was in mesotrophic and light-eutrophic trophic states. The WQI and TLI (Σ) in sampling sites 9 and 10 were poorer than that of other sites. The 14 water quality factors were divided into 5 groups by factor analysis (FA). The total interpretation rate was 73.54%. F1 represents the climatic change represented by water temperature. F2 and F4 represent the concentration of nutrients. F3 and F5 represent the sensory indexes of water body, such as turbidity, transparency. The FA results indicated that water quality potential risk factors was total nitrogen (TN), and potential risk factors also include chlorophyll-a and

  5. Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Ruixiang Hua

    2017-10-01

    Full Text Available Water quality safety is of critical importance in environmental improvement, particularly with respect to drinking water resources worldwide. As the main drinking water sources in Shenzhen, China, the cascade reservoirs comprising the Shiyan, Tiegang, and Xili Reservoirs are highly regulated and have experienced water quality deterioration in recent years. In this study, a three-dimensional hydrodynamic and water quality model was established using the Environmental Fluid Dynamics Code (EFDC for the cascade reservoirs. The relationships between water quality and improvement measures were quantified and the main pollution sources for individual reservoirs were identified. Results showed that the hydrodynamic and water quality model well captured the spatial and temporal variations of water level, the permanganate concentration index (CODMn, and total nitrogen (TN, with high resolution in the cascade reservoirs. The correlation coefficients between simulations and observations were close to 1.00 for water levels, and over 0.50 for CODMn and TN concentrations. The most effective methods for water quality improvement were the reduction of the runoff load for TN and transferred water load for CODMn in the Shiyan Reservoir, reduction of the transferred water load in the Tiegang Reservoir, and an increase in transfer water volume, especially in the flood season, in the Xili Reservoir. Internal pollution sources also played an important role in water pollution, and thus sedimentation should be cleaned up regularly. This study is expected to provide scientific support for drinking water source protection and promote the application of hydrodynamic model in water quality management.

  6. Evaluation of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir

    DEFF Research Database (Denmark)

    Samal, Nihar; Stæhr, Peter A.; Pierson, Donald C.

    Weather related episodic events are typically unpredictable and the episodic inputs of dissolved and particulate material during storm events can have important effects on lake and reservoir ecosystem function and also impact reservoir drinking water quality.   We evaluate the impacts of storm...... events using vertical profiles of temperature, dissolved oxygen, turbidity and chlorophyll automatically collected at 6 hour intervals in West basin of Ashokan Reservoir, which is a part of the New York City drinking water supply. Using data from before, during and after storm events, we examine how...... the balance between GPP and R is influenced by storm related increases in turbidity and dissolved organic matter, which would in turn influence light attenuation and bacterial production. Storm driven inputs to the reservoir periodically resulted in large input of suspended sediments raising water turbidity...

  7. Biofilms in drinking water and their role as reservoir for pathogens.

    Science.gov (United States)

    Wingender, Jost; Flemming, Hans-Curt

    2011-11-01

    Most microorganisms on Earth live in various aggregates which are generally termed "biofilms". They are ubiquitous and represent the most successful form of life. They are the active agent in biofiltration and the carriers of the self-cleaning potential in soils, sediments and water. They are also common on surfaces in technical systems where they sometimes cause biofouling. In recent years it has become evident that biofilms in drinking water distribution networks can become transient or long-term habitats for hygienically relevant microorganisms. Important categories of these organisms include faecal indicator bacteria (e.g., Escherichia coli), obligate bacterial pathogens of faecal origin (e.g., Campylobacter spp.) opportunistic bacteria of environmental origin (e.g., Legionella spp., Pseudomonas aeruginosa), enteric viruses (e.g., adenoviruses, rotaviruses, noroviruses) and parasitic protozoa (e.g., Cryptosporidium parvum). These organisms can attach to preexisting biofilms, where they become integrated and survive for days to weeks or even longer, depending on the biology and ecology of the organism and the environmental conditions. There are indications that at least a part of the biofilm populations of pathogenic bacteria persists in a viable but non-culturable (VBNC) state and remains unnoticed by the methods appointed to their detection. Thus, biofilms in drinking water systems can serve as an environmental reservoir for pathogenic microorganisms and represent a potential source of water contamination, resulting in a potential health risk for humans if left unnoticed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. [Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir].

    Science.gov (United States)

    Huang, Ting-lin; Liu, Fei; Shi, Jian-chao

    2016-01-15

    The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.

  9. Seasonal distribution of potentially pathogenic Acanthamoeba species from drinking water reservoirs in Taiwan.

    Science.gov (United States)

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Liu, Jorn-Hon; Chang, Hsiang-Yu; Ji, Wen-Tsai; Tzeng, Kai-Jiun; Huang, Shih-Wei; Huang, Yu-Li

    2015-03-01

    In order to detect the presence/absence of Acanthamoeba along with geographical variations, water quality variations and seasonal change of Acanthamoeba in Taiwan was investigated by 18S ribosomal RNA (rRNA) gene TaqMan quantitative real-time PCR. Samples were collected quarterly at 19 drinking water reservoir sites from November 2012 to August 2013. Acanthamoeba was detected in 39.5 % (30/76) of the water sample, and the detection rate was 63.2 % (12/19) from samples collected in autumn. The average concentration of Acanthamoeba was 3.59 × 10(4) copies/L. For geographic distribution, the detection rate for Acanthamoeba at the northern region was higher than the central and southern regions in all seasons. Results of Spearman rank test revealed that heterotrophic plate count (HPC) had a negative correlation (R = -0.502), while dissolved oxygen (DO) had a positive correlation (R = 0.463) in summer. Significant differences were found only between the presence/absence of Acanthamoeba and HPC in summer (Mann-Whitney U test, P Acanthamoeba were identified, and T4 was the most commonly identified Acanthamoeba genotypes. The presence of Acanthamoeba in reservoirs presented a potential public health threat and should be further examined.

  10. Drinking Water

    Science.gov (United States)

    ... the safest water supplies in the world, but drinking water quality can vary from place to place. ... water supplier must give you annual reports on drinking water. The reports include where your water came ...

  11. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources

    Science.gov (United States)

    Liu, G.; Ling, F. Q.; van der Mark, E. J.; Zhang, X. D.; Knezev, A.; Verberk, J. Q. J. C.; van der Meer, W. G. J.; Medema, G. J.; Liu, W. T.; van Dijk, J. C.

    2016-01-01

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8–4.5 × 103 cells ml−1 with a biological activity of 0.01–0.04 ng l−1 ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers’ taps and be ingested. PMID:26832989

  12. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources.

    Science.gov (United States)

    Liu, G; Ling, F Q; van der Mark, E J; Zhang, X D; Knezev, A; Verberk, J Q J C; van der Meer, W G J; Medema, G J; Liu, W T; van Dijk, J C

    2016-02-02

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8-4.5 × 10(3) cells ml(-1) with a biological activity of 0.01-0.04 ng l(-1) ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers' taps and be ingested.

  13. Aeromonas presence in drinking water from collective reservoirs and wells in peri-urban area in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Tereza Pepe Razzolini

    2010-10-01

    Full Text Available Aeromonas genus is considered an emerging pathogen and its presence in drinking water supplies is a reason to public health concern. This study investigated the occurrence of Aeromonas in samples from collective reservoirs and wells used as drinking water sources in a peri-urban area. A total of 35 water samples were collected from collective reservoirs and 32 from wells bimonthly, from September 2007 to September 2008. Aeromonas spp determination was carried out using a Multiple-Tube Technique. Samples were inoculated into alkaline peptone water and the superficial film formed was transferred to blood agar plates amended with ampicillin. Typical Aeromonas colonies were submitted to a biochemical screening and then to biochemical tests for species differentiation. Aeromonas was detected in 13 (19% of the 69 samples examined (6 from collective reservoirs and 7 from wells. Concentrations of Aeromonas in collective reservoirs ranged from <0.3 to 1.2 x10²MPN/100mL and, in wells, from <0.3 to 2.4 x10²MPN/100mL. The most frequent specie in the collective reservoir samples was Aeromonas spp (68%, followed by A. encheleia (14% and A. allosaccharophila (8% and A. hydrophila (8%. Aeromonas spp (87% was the most frequent specie isolated from well samples, followed by A. allosacchariphila (8%, A. encheleia (2% and A. jandaei (5%. These data show the presence and diversity of Aeromonas genus in the samples analyzed and highlight that its presence in drinking water poses a significant public health concern.

  14. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Me, W

    2013-01-01

    both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes...... model performance and nutrient transport pathways, which are challenged by a complex artificially altered water infrastructure in the form of ditches, channels and ponds in monsoon-influenced subtropical watersheds....

  15. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    Science.gov (United States)

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.

  16. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China.

    Science.gov (United States)

    Lei, Lamei; Peng, Liang; Huang, Xianghui; Han, Bo-Ping

    2014-05-01

    The tropical cyanobacterium Cylindrospermopsis raciborskii is of particular concern for its invasive characteristics and production of the toxin cylindrospermopsin (CYN). The present study represents the first attempt to determine the distribution of C. raciborskii and CYN in tropical China. The presence of C. raciborskii and CYN, as well as the composition of phytoplankton, was determined from a total of 86 samples from 25 urban reservoirs for drinking water supply in Dongguan City of South China. The presence of C. raciborskii was observed in 21 of the 25 reservoirs and confirmed that this species has been widely distributed in the investigated reservoirs. C. raciborskii accounted for between 0.1 and 90.3 % of the total phytoplankton biomass and contributed to the majority of the phytoplankton in some reservoirs such as Tangkengbian and Xiagongyan. Its biomass was negatively correlated with NO3 (-)-N concentration and Secchi depth. Dissolved CYN was detected in more than one-half of the reservoirs with concentrations up to 8.25 μg L(-1), and it positively correlated with C. raciborskii biomass. Dissolved microcystins (MCs) were detected in 12 of the 25 reservoirs with a maximum concentration 1.99 μg L(-1). Our data strongly suggest that C. raciborskii and CYN could be important health hazards in urban reservoirs of South China and that more data are needed for further assessment.

  17. [Presence of Legionella spp. in household drinking water reservoirs in Resistencia, Chaco, Argentina. Preliminary report].

    Science.gov (United States)

    Lösch, Liliana S; Merino, Luis A

    Legionella spp. is an environmental bacterium that can survive in a wide range of physicochemical conditions and may colonize distribution systems of drinking water and storage tanks. Legionella pneumophila is the major waterborne pathogen that can cause 90% of Legionnaires' disease cases. The aim of this study was to detect the presence of Legionella spp. in household drinking water tanks in the city of Resistencia, Chaco. The detection of Legionella in water samples was performed by culture methods as set out in ISO 11731:1998. Thirty two water samples were analyzed and Legionella spp. was recovered in 12 (37.5%) of them. The monitoring of this microorganism in drinking water is the first step towards addressing the control of its spread to susceptible hosts. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Effects of Seasonal Thermal Stratification on the Functional Diversity and Composition of the Microbial Community in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2015-10-01

    Full Text Available The microbial communities within reservoir ecosystems are shaped by water quality and hydrological characteristics. However, there are few studies focused on the effects of thermal stratification on the bacterial community diversity in drinking water reservoirs. In this study, we collected water samples from the Jinpen Reservoir around the re-stratification period. To explore the functional diversity and bacterial community composition, we used the Biolog method and 16S rRNA-based 454 pyrosequencing combined with flow cytometry. The results indicated that stratification of the reservoir had great effects on temperature and oxygen profiles, and both the functional diversity and the composition of the bacterial community strongly reflected the significant vertical stratification in the reservoir. The results of the Biolog method showed a significantly higher utilization of carbon sources in the hypolimnion than in the epilimnion. The result of pyrosequencing also showed a significantly higher species diversity and richness in the hypolimnion than in the epilimnion with different dominant phylum. Redundancy analysis also indicated that the majority of environmental variables, especially pH and dissolved oxygen, played key roles in shaping bacterial community composition. Our study provides a better understanding of the functional diversity of bacterial communities, and the response of microorganisms to seasonal thermal stratification.

  19. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  20. Monitoring of protected bands of Terkos drinking water reservoir of metropolitan Istanbul near the Black Sea coast using satellite data

    Science.gov (United States)

    Coskun, H. Gonca; Gulergun, Ozlem; Yilmaz, Levent

    2006-01-01

    In this study, remote sensing (RS) with computer-based geographic information systems (GIS) techniques are used as a tool for monitoring the water basin area and water quality in Istanbul's relatively less polluted and comparatively less destroyed catchment of the metropolis drinking water dam reservoir named Terkos. It is necessary to work with recent data to be able to identify the effects of urbanization on the water quality of the Terkos dam catchment area that supplies drinking water to the metropolis. RS is an important tool to monitor water quality and urban terrain. For this aim, a project has been initiated at the Technical University Remote Sensing Laboratory, under the Istanbul Water and Sewerage Administration (ISKI) sponsorship in Istanbul. The project uses SPOT-PAN, XS and IRS-1C/D PAN and satellite data of 1993 and 2000 for urban analysis and Landsat-TM and LISS-III satellite data of 1992 and 2000 for water quality. For calibration and validation, ground truth samples are collected from the experimental area. The RS data was converted into the UTM coordinate system and image enhancement and classification techniques are used. Raster data is converted to vector data to assess the study area for analyzing in GIS for the purpose of planning and decision-making on protected water basin zones. As a result of monitoring land use and water quality changes, recommendations are made for planning and management of the protected environment of the Terkos catchment protected area. Measuring land use change is a very important issue for controlling the future development of the basin, GIS techniques are performed and results are illustrated in established models on the four protected zones of Terkos water basin.

  1. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  2. Monitoring programme of water reservoir Grliste

    International Nuclear Information System (INIS)

    Vuckovic, M; Milenkovic, P.; Lukic, D.

    2002-01-01

    The quality of surface waters is a very important problem incorporated in the environment protection, especially in water resources. The Timok border-land hasn't got sufficient underground and surface waters. This is certificated by the International Association for Water Resource. That was reason for building the water reservoir 'Grliste'. Drinking water from water reservoir 'Grliste' supplies Zajecar and the surroundings. (author)

  3. Use of multiple fish-removal methods during biomanipulation of a drinking water reservoir – Evaluation of the first four years

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Adámek, Zdeněk; Janáč, Michal; Roche, Kevin Francis; Mikl, Libor; Rederer, L.; Zapletal, T.; Koza, V.; Špaček, J.

    2016-01-01

    Roč. 173, č. 1 (2016), s. 101-108 ISSN 0165-7836 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Biomanipulation * Drinking water reservoir * Fish removal * Trophic interactions * Zooplankton density Subject RIV: EH - Ecology, Behaviour Impact factor: 2.185, year: 2016

  4. Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA

    Science.gov (United States)

    We employ a novel geochemical-fingerprinting approach to estimate the source of suspended sediments collected from tributaries entering Falls Lake, a 50 km2 drinking water reservoir on the Neuse River, North Carolina. Many of the major tributaries to the lake are on North Carolina’s 303(d) list for ...

  5. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  7. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  8. Influence of Land Use and Watershed Characteristics on Protozoa Contamination in a Potential Drinking Water Resources Reservoir

    Science.gov (United States)

    Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The waters...

  9. A Physical Pre-Treatment Method (Vertical Weir Curtain for Mitigating Cyanobacteria and Some of Their Metabolites in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Chae-Hong Park

    2017-10-01

    Full Text Available Harmful cyanobacteria and their metabolites often contaminate drinking water resources, and effective control remains challenging. Here, we developed a physical algal pre-treatment method, the vertical weir curtain (VWC, to mitigate cyanobacteria and some of their metabolites (geosmin, 2-methylisoborneol (2-MIB, and microcystins in situ and evaluated its performance in a raw water reservoir used for drinking water supply. The VWC was manufactured with two fibrous polypropylene mats (0% and 92% porosity which were mounted to maintain a constant underwater depth. We installed the VWC to cover the entire epilimnion of the drinking water intake zone and monitored its efficiency during an algal bloom period (July–October 2015. Reduction rates were 40–59% for total algae, 60–75% for cyanobacteria, 23–55% for geosmin, 30–51% for 2-MIB, and 47–89% for microcystin-LR during the study period. Significant reductions were observed in the shallow layer of the water column (1–3 m water depth, particularly during August, when cyanobacterial density was the highest. The results indicate that the VWC can effectively mitigate harmful cyanobacteria and their metabolites when suitably applied, serving as a valuable reference for the algal reduction in raw drinking water resources.

  10. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants.

    Science.gov (United States)

    Bai, Xiuzhi; Zhang, Ting; Qu, Zhipeng; Li, Haipu; Yang, Zhaoguang

    2017-09-01

    In this study, the distribution of 2,4,6-trichloroanisole (2,4,6-TCA) in two water supply reservoirs and four associated drinking water treatment plants (DWTPs) were investigated. The 2,4,6-TCA concentrations were in the range of 1.53-2.36 ng L -1 in water supply reservoirs and 0.76-6.58 ng L -1 at DWTPs. To determine the contribution of filamentous fungi to 2,4,6-TCA in a full-scale treatment process, the concentrations of 2,4,6-TCA in raw water, settled water, post-filtration water, and finished water were measured. The results showed that 2,4,6-TCA levels continuously increased until chlorination, suggesting that 2,4,6-TCA could form without a chlorination reaction and fungi might be the major contributor to the 2,4,6-TCA formation. Meanwhile, twenty-nine fungal strains were isolated and identified by morphological and molecular biological methods. Of the seventeen isolated fungal species, eleven showed the capability to convert 2,4,6-trichlorophenol (2,4,6-TCP) to 2,4,6-TCA. The highest level of 2,4,6-TCA formation was carried out by Aspergillus versicolor voucher BJ1-3: 40.5% of the original 2,4,6-TCP was converted to 2,4,6-TCA. There was a significant variation in the capability of different species to generate 2,4,6-TCA. The results from the proportions of cell-free, cell-attached, and cell-bound 2,4,6-TCA suggested that 2,4,6-TCA generated by fungi was mainly distributed in their extracellular environment. In addition to 2,4,6-TCA, five putative volatile by-products were also identified by gas chromatography and mass spectrometry. These findings increase our understanding on the mechanisms involved in the formation of 2,4,6-TCA and provide insights into managing and controlling 2,4,6-TCA-related problems in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Drinking Water Training

    Science.gov (United States)

    The Drinking Water Academy provides online training and information to ensure that water professionals, public officials, and involved citizens have the knowledge and skills necessary to protect our drinking water supply.

  12. New England's Drinking Water | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  13. Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir.

    Science.gov (United States)

    Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai

    2015-11-01

    An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Drinking Water Action Plan

    Science.gov (United States)

    EPA's Drinking Water Action Plan serves as a national call to action, urging all levels of government, utilities, community organizations, and other stakeholders to work together to increase the safety and reliability of drinking water.

  15. Drinking water

    OpenAIRE

    Kostik, Vesna

    2012-01-01

    Centre of reference laboratories as a part of Institute of Public Health- Skopje is consisted of following laboratories: - Laboratory of Sanitary Microbiology - Laboratory for Food Quality Control - Laboratory for Water Quality Control - Laboratory for Contaminants and Eco - toxicology - Laboratory for Testing of Metals - Laboratory for Radioecology - Laboratory for Ionizing Radiation - Laboratory for Testing common use items Lab...

  16. Effect of a dam on the optical properties of different-sized fractions of dissolved organic matter in a mid-subtropical drinking water source reservoir.

    Science.gov (United States)

    Sun, Qiyuan; Jiang, Juan; Zheng, Yuyi; Wang, Feifeng; Wu, Chunshan; Xie, Rong-Rong

    2017-11-15

    The presence of a dam on a river is believed to have a key role in affecting changes in the components of the chromophoric dissolved organic matter (CDOM) in reservoirs. However, questions remain about the mechanisms that control these changes. In this study, we used tangential ultrafiltration, fluorescence spectrum and phytoplankton cell density detection to explore the impacts of a dam on the CDOM components in the Shanzai Reservoir, a source of drinking water. The results demonstrated each CDOM size fraction comprised two main components, namely C1 (protein-like substance) and C2 (humic-like substance). The C1 content had a higher value in areas with slow flow than in the normal river channel, while the C2 contents were generally stable in the flow direction. The topography of the reservoir site affected the structure of the CDOM components based on changes in the hydraulic conditions caused by the dam. The variations in the CDOM components, hydraulic parameters and fluorescence indices in the river flow direction indicated that the contribution of the phytoplankton to the CDOM content increased as the distance to the dam decreased, phytoplankton metabolism enhanced C1 content of the 1-10kDa molecular weights range fraction. Further, the contributions of different phytoplankton biomass to C1 proved that the dam changed the hydraulic conditions, had secondary effects on the metabolism of the phytoplankton, and resulted in changes in the structure of the CDOM components. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomics analysis

    Science.gov (United States)

    Otten, Timothy; Graham, Jennifer L.; Harris, Theodore D.; Dreher, Theo

    2016-01-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp.,Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R2 = 0.71) and microcystin (adjusted R2 = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems.

  18. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Water Science and Technology Board; National Research Council (U.S.). Committe on Public Water Supply Distribution Systems: Assessing and Reducing Risks

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  19. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis.

    Science.gov (United States)

    Otten, Timothy G; Graham, Jennifer L; Harris, Theodore D; Dreher, Theo W

    2016-09-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific

  20. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  1. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg

    Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark...... is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  2. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Sigsgaard, Torben

    is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter......Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  3. Drinking water microbial myths.

    Science.gov (United States)

    Allen, Martin J; Edberg, Stephen C; Clancy, Jennifer L; Hrudey, Steve E

    2015-01-01

    Accounts of drinking water-borne disease outbreaks have always captured the interest of the public, elected and health officials, and the media. During the twentieth century, the drinking water community and public health organizations have endeavored to craft regulations and guidelines on treatment and management practices that reduce risks from drinking water, specifically human pathogens. During this period there also evolved misunderstandings as to potential health risk associated with microorganisms that may be present in drinking waters. These misunderstanding or "myths" have led to confusion among the many stakeholders. The purpose of this article is to provide a scientific- and clinically-based discussion of these "myths" and recommendations for better ensuring the microbial safety of drinking water and valid public health decisions.

  4. Drinking Water FAQ

    Science.gov (United States)

    ... your well Who should test your well Drinking Water FAQ Frequently Asked Questions General Where does my ... CDC's Private Wells page. Top of Page Public Water Systems What type of health issues can be ...

  5. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  6. SDWISFED Drinking Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — SDWIS/FED is EPA's national regulatory compliance database for the drinking water program. It includes information on the nation's 160,000 public water systems and...

  7. Drinking Water Treatability Database (TDB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities,...

  8. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  9. Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent.

    Science.gov (United States)

    Planas, Carles; Palacios, Oscar; Ventura, Francesc; Rivera, Josep; Caixach, Josep

    2008-08-15

    A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependence on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80-120%), method precision (water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N-Nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. -28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.

  10. Drinking Water in your Home

    Science.gov (United States)

    Many people choose to filter or test the drinking water that comes out of their tap or from their private well for a variety of reasons. And whether at home, at work or while traveling, many Americans drink bottled water.

  11. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  12. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  13. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  14. Drinking Water Fact Sheet: Drinking Water Treatment Systems

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about drinking water treatment systems. This fact sheet discusses different types of water treatment systems available to homeowners. It includes a table with water contaminants or problems, possible causes of the problem, and solutions.

  15. TENORM: Drinking Water Treatment Residuals

    Science.gov (United States)

    EPA has specific regulations under the Safe Drinking Water Act (SDWA) that limit the amount of radioactivity allowed in community water systems. Learn about methods used to treat these water supplies to remove radioactivity and manage wastes.

  16. Biofilm in drinking water networks

    International Nuclear Information System (INIS)

    Cristiani, Pietrangela

    2005-01-01

    Bacterial growth in drinking waters is today controlled adding small and non toxic quantities of sanitising products. An innovative electrochemical biofilm monitoring system, already successfully applied in industrial waters, could be confirmed as an effective diagnostic tool of water quality also for drinking distributions systems [it

  17. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery.

    Science.gov (United States)

    Li, Yuan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Zhou, Yongqiang; Zhang, Yibo; Guo, Yulong

    2017-12-01

    Nutrient enrichment is a major cause of water eutrophication, and variations in nutrient enrichment are influenced by environmental changes and anthropogenic activities. Accurately estimating nutrient concentrations and understanding their relationships with environmental factors are vital to develop nutrient management strategies to mitigate eutrophication. Landsat 8 Operational Land Imager (OLI) data is used to estimate nutrient concentrations and analyze their responses to hydrological and meteorological conditions. Two well-accepted empirical models are developed and validated to estimate the total nitrogen (TN) and total phosphorus (TP) concentrations (C TN and C TP ) in the Xin'anjiang Reservoir using Landsat 8 OLI data from 2013 to 2016. Spatially, C TN decreased from the transition zone to the riverine zone and the lacustrine zone. On the other hand, C TP decreased from the riverine zone to the transition zone and the lacustrine zone. Temporally, C TN displayed elevated values during the late fall and winter and had lower values during the summer and early fall, whereas C TP was higher during the spring and lower during the winter. Among the environmental factors, the rainfall and the inflow rate have strong positive correlations with the nutrient concentrations. TN is more sensitive to meteorological factors (wind speed, temperature, sunshine duration), and the spatial driving forces vary among the different sections of the reservoir. However, TP is more easily influenced by human activities, such as fishery and agricultural activities. Current results would improve our understanding of the drivers of nutrients spatiotemporal variability and the approach in this study can be applicable to other similar reservoir to develop related strategies to mitigate eutrophication. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Drinking Water Fact Sheet: Coliform Bacteria

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about coliform bacteria. Including sections about what coliform bacteria is, how it enters drinking water, health concerns from exposure, drinking water standards, and how to treat drinking water that contains coliforms.

  19. Laboratory Certification Manual for Drinking Water

    Science.gov (United States)

    The Manual describes the Drinking Water Laboratory Certification Program implementation procedures, laboratory procedures, and technical criteria for laboratories that analyze drinking water compliance samples.

  20. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  1. Realisation of a small-scale hydro-power plant between two drinking water reservoirs in the municipality of Vira Gambarogno - Feasibility study; Realizzazione di una microcentrale idroelettrica sulla condotta di adduzione tra il serbatoio Monti di Fosano e il serbatoio Fosano. Programma piccole centrali idrauliche. Studio di fattibilita

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, M.

    2009-02-15

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a project for the realisation of a small hydro-power plant on the drinking water supply in the municipality of Vira Gambarogno, southern Switzerland. The old conduit connecting two drinking water reservoirs has to be replaced. The elevation difference of 260 m is favorable to the installation of a turbine near the lower reservoir. The report presents details on the hydrological data and the dimensioning of the installation. Several variants are considered, which also include the possible reconstruction of the lower reservoir and/or an increased water flow rate from the springs. The electricity production expected is discussed, as is the economic viability of the project.

  2. Drinking Water Temperature Modelling in Domestic Systems

    OpenAIRE

    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  3. Radiological investigation of drinking water

    International Nuclear Information System (INIS)

    Kunz, E.

    1981-01-01

    An analysis is made of the report ''Radiological investigation of drinking water'' submitted by a working group of WHO to the Brussels meeting held between Nov 7 and 10, 1978. Annex II is emphasized of the WHO publication bearing the title ''The revision of WHO standards for drinking water''. It is shown that the draft of the revision does not basically differ from the revision introduced in Czechoslovakia and published in a revised standard CSN 83 0611 Drinking Water from 1978, including its harmonization with the Decree 59/72 Collect. of Laws on the protection of health from ionizing radiation, and from the standard CSN 83 0523 Radiometric analysis of drinking water. It is also shown that the text of the working group report contains some incorrect or unclear statements and views, which is explained by the misunderstanding of some ICRP recommendations. (H.S.)

  4. Drinking Water State Revolving Fund

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for...

  5. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Dose from drinking water Finland

    International Nuclear Information System (INIS)

    Maekelaeinen, Ilona; Salonen, Laina; Huikuri, Pia; Arvela, Hannu

    1999-01-01

    The dose from drinking water originates almost totally from naturally occurring radionuclides in the uranium-238 series, the most important nuclide being radon-222. Second comes lead-210, and third polonium-210. The mean age-group-weighted dose received by ingestion of drinking water is 0.14 mSv per year. More than half of the total cumulative dose of 750 manSv is received by the users of private wells, forming 13% of the population. The most exposed group comprises the users of wells drilled in bedrock, who receive 320 manSv while comprising only 4% of the population. The calculated number of annual cancer incidences due to drinking water is very sensitive to the dose-conversion factors of ingested radon used, as well as to the estimated lung cancer incidences caused by radon released from water into indoor air. (au)

  7. How dogs drink water

    Science.gov (United States)

    Gart, Sean; Socha, Jake; Vlachos, Pavlos; Jung, Sunghwan

    2014-11-01

    Animals with incomplete cheeks (i.e. dogs and cats) need to move fluid against gravity into the body by means other than suction. They do this by lapping fluid with their tongue. When a dog drinks, it curls its tongue posteriorly while plunging it into the fluid and then quickly withdraws its tongue back into the mouth. During this fast retraction fluid sticks to the ventral part of the curled tongue and is drawn into the mouth due to inertia. We show several variations of this drinking behavior among many dog breeds, specifically, the relationship between tongue dynamics and geometry, lapping frequency, and dog weight. We also compare the results with the physical experiment of a rounded rod impact onto a fluid surface. Supported by NSF PoLS #1205642.

  8. Lead and Drinking Water from Private Wells

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  9. Basic Information about Lead in Drinking Water

    Science.gov (United States)

    ... United States Environmental Protection Agency Search Search Ground Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question that's not answered on this ...

  10. Drinking Water State Revolving Fund (DWSRF)

    Science.gov (United States)

    This website provides information on financial assistance to water systems needing capitalization grants and/or technical assistance to improve the quality of drinking water and for the delivery of safe drinking water to consumers.

  11. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  12. Perfluorinated surfactants in surface and drinking waters.

    Science.gov (United States)

    Skutlarek, Dirk; Exner, Martin; Färber, Harald

    2006-09-01

    the Ruhr river and the Moehne river (tributary of the Ruhr) (Ruhr: up to 446 ng/L, Moehne: up to 4385 ng/L). The maximum concentration of all drinking water samples taken in the Rhine-Ruhr area was determined at 598 ng/L with the major component PFOA (519 ng/L). The surface water contaminations most likely stem from contaminated inorganic and organic waste materials (so-called 'Abfallgemisch'). This waste material was legally applied to several agricultural areas on the upper reaches of the Moehne. Perfluorinated surfactants could be detected in some suchlike soil samples. They contaminated the river and the reservoir belonging to it, likely by superficial run-off over several months or probably years. Downstream, dilution effects are held responsible for decreasing concentrations of PS in surface waters of the Moehne and the Ruhr river. In analogy to the surface water samples, PS (major component PFOA) can be determined in many drinking water samples of the Rhine-Ruhr area where the water supplies are mainly based on bank filtration and artificial recharge. The concentrations found in drinking waters decreased with the concentrations of the corresponding raw water samples along the flow direction of the Ruhr river (from east to west) and were not significantly different from surface water concentrations. This indicates that perfluorinated surfactants are at present not successfully removed by water treatment steps. Because of their different problematic properties (persistence, mobility, toxicity, bioaccumulation), the concentrations of specific perfluorinated surfactants and their precursors in drinking waters and food have to be minimised. Therefore, it is of utmost importance to take the initiative to establish suitable legal regulations (limitations/ban) concerning the production and use of these surfactants and their precursors. Furthermore, it is indispensable to protect water resources from these compounds. A discussion on appropriate limit values in drinking

  13. Injured coliforms in drinking water.

    OpenAIRE

    McFeters, G A; Kippin, J S; LeChevallier, M W

    1986-01-01

    Coliforms were enumerated by using m-Endo agar LES and m-T7 agar in 102 routine samples of drinking water from three New England community water systems to investigate the occurrence and significance of injured coliforms. Samples included water collected immediately after conventional treatment, during the backwash cycle, at various points in the distribution system, and 1 week after the break and subsequent repair of a distribution main. Injured coliforms in these samples averaged greater th...

  14. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  15. Hot Topics/New Initiatives | Drinking Water in New England ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  16. Uranium in Kosovo's drinking water.

    Science.gov (United States)

    Berisha, Fatlume; Goessler, Walter

    2013-11-01

    The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  18. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  19. Drinking Water Contaminants -- Standards and Regulations

    Science.gov (United States)

    ... Agency Search Search Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate ... other partners to implement these SDWA provisions. Regulated Contaminants National Primary Drinking Water Regulations (NPDWRs) - table of ...

  20. Drinking water safely during cancer treatment

    Science.gov (United States)

    ... for Disease Control and Prevention. A guide to drinking water treatment technologies for household use. Updated March 14, 2014. www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html . Accessed March 20, 2016.

  1. Decontamination of Drinking Water Infrastructure ...

    Science.gov (United States)

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  2. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2017-01-01

    water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data......Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...

  3. Safe Drinking Water

    Centers for Disease Control (CDC) Podcasts

    2008-04-23

    Listen to this podcast to learn more about the steps that are taken to bring you clean tap water.  Created: 4/23/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/1/2008.

  4. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 30 CFR 75.1718 - Drinking water.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  6. Radioactivity in surface water, drinking water and sewage treatment plants

    International Nuclear Information System (INIS)

    Steger, F.

    1988-01-01

    The author discusses the origin, occurrence, characteristics and behaviour of radioactive substances in waters, the use of various waters as drinking water and consequences to be drawn in the case of drinking water contamination. 1 ref. (Author)

  7. Drinking Water Maximum Contaminant Levels (MCLs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards...

  8. Cleaning Up Our Drinking Water

    International Nuclear Information System (INIS)

    Manke, Kristin L.

    2007-01-01

    Imagine drinking water that you wring out of the sponge you've just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. 'We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,' said Pacific Northwest National Laboratory's Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues

  9. A Watershed Cooperative Addresses Short and Long-Term Perspectives for the Management of Harmful Algae at a Southwestern Ohio Drinking Water Reservoir

    Science.gov (United States)

    The multi-agency East Fork Watershed Cooperative (EFWCoop) has focused discussion and consequent leveraged monitoring efforts to understand how to ensure water safety in the short term. The EFWCoop is also collecting the dense data sets required to consider potential options for...

  10. assessment of heavy metals in surface water of the ikpoba reservoir

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... Mn, Cu, Fe, Pb, Ni, Zn and Cr on the water quality of the Ikpoba reservoir Benin City, Nigeria, ... and Zn, exceeded the World Health Organization (WHO) maximum permissible level for drinking water. Keywords: water quality, heavy metals, Ikpoba ... trial discharges and such incidents of mercury and cad-.

  11. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  12. Chemical Contamination of California Drinking Water

    OpenAIRE

    Russell, Hanafi H.; Jackson, Richard J.; Spath, David P.; Book, Steven A.

    1987-01-01

    Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled...

  13. Water Treatment: Can You Purify Water for Drinking?

    Science.gov (United States)

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  14. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    Science.gov (United States)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  15. Twenty years of water-quality studies in the Cheney Reservoir Watershed, Kansas, 1996-2016

    Science.gov (United States)

    Graham, Jennifer L.; Foster, Guy M.; Kramer, Ariele R.

    2017-03-31

    Since 1996, the U.S. Geological Survey (USGS), in cooperation with the City of Wichita, has done studies in the Cheney Reservoir watershed to understand environmental effects on water-quality conditions. Early studies (1996–2001) determined subwatershed sources of contaminants, nutrient and sediment loading to Cheney Reservoir, changes in reservoir sediment quality over time, and watershed sources of phosphorus. Later studies (2001–present) focused on nutrient and sediment concentrations and mass transport from the watershed; the presence of cyanobacteria, cyanotoxins, and taste-and-odor compounds in the reservoir; and development of regression models for real-time computations of water-quality constituents of interest that may affect drinking-water treatment. This fact sheet summarizes key results from studies done by the USGS during 1996–2016 in the Cheney Reservoir watershed and Cheney Reservoir.

  16. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  17. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status......BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...... reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than...

  18. Army's drinking water surveillance program

    International Nuclear Information System (INIS)

    Sneeringer, P.V.; Belkin, F.; Straffon, N.; Costick, S.A.

    1977-01-01

    In 1976 a total of 827 water sources from Army installations throughout the world were sampled and analyzed for 53 chemical constituents and physical parameters. Medically significant contaminants included radiation measurements, heavy metals, fluoride, nitrate, and pesticides. Radiological activity appeared to vary with geographic location; a majority being from water sources in the western part of the U.S. No results for tritium were found to exceed the health-reference limit. Confirmatory analyses for radium-226 identified 3 groundwater sources as exceeding the limit; one was attributed to natural activity and the other sources are currently being investigated. Of the metals considered to be medically significant, mercury, chromium, lead, cadmium, silver, barium and arsenic were found in amounts within health level limits. Nitrate levels exceeding the health limit were confirmed for 2 drinking water sources

  19. Chemical contamination of California drinking water.

    Science.gov (United States)

    Russell, H H; Jackson, R J; Spath, D P; Book, S A

    1987-11-01

    Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs.

  20. Pharmaceutical compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Vikas Chander

    2016-06-01

    Full Text Available Pharmaceutical products and their wastes play a major role in the degradation of environment. These drugs have positive as well as negative consequences on different environmental components including biota in different ways. Many types of pharmaceutical substances have been detected with significant concentrations through various advanced instrumental techniques in surface water, subsurface water, ground water, domestic waste water, municipal waste water and industrial effluents. The central as well as state governments in India are providing supports by creating excise duty free zones to promote the pharmaceutical manufacturers for their production. As a result, pharmaceutical companies are producing different types of pharmaceutical products at large scale and also producing complex non-biodegradable toxic wastes byproducts and releasing untreated or partially treated wastes in the environment in absence of strong regulations. These waste pollutants are contaminating all types of drinking water sources. The present paper focuses on water quality pollution by pharmaceutical pollutants, their occurrences, nature, metabolites and their fate in the environment.

  1. Asbestos in drinking water: a Canadian view.

    OpenAIRE

    Toft, P; Meek, M E

    1983-01-01

    For several years now, public health professionals have been faced with evaluating the potential hazards associated with the ingestion of asbestos in food and drinking water. In Canada, this is a subject of particular concern, because of the widespread occurrence of chrysotile asbestos in drinking water supplies. The results of available Canadian monitoring and epidemiologic studies of asbestos in drinking water are reviewed and discussed in light of other published work. It is concluded that...

  2. Regulating tritium in drinking water

    International Nuclear Information System (INIS)

    Fluke, R.

    1994-01-01

    This article incorporates an article by E. Koehl from an internal Ontario Hydro publication, and a letter from the Joint Committee of Health and Safety of the Royal Society of Canada and the Canadian Academy of Engineering, submitted to the Ontario Minister of the Environment and Energy. The Advisory Committee on Environmental Standards had recommended that the limit for tritium in Ontario drinking water be reduced from 40,000 to 100 Bq/L, with a further reduction to 20 in five years. Some facts and figures are adduced to show that the effect of tritium in drinking water in Ontario is negligible compared to the effect of background radiation. The risk from tritium to the people of Ontario is undetectably small, and the attempt to estimate this risk by linear extrapolation is extremely dubious. Regulation entails social and economic costs, and the government ought to ensure that the benefits exceed the costs. The costs translate into nothing less than wasted opportunity to save lives in other ways. 3 refs

  3. Radioactivity standards for drinking water

    International Nuclear Information System (INIS)

    Sastry, V.N.; Mahadevan, T.N.; Nair, R.N.; Krishnamoorthy, T.M.; Nambi, K.S.V.

    1995-01-01

    The Bureau of Indian Standards (BIS) had issued drinking water specifications for radioactivity in 1991 as 0.1 Bq/L for gross α and 1 pCi/L for gross β. The specification for gross β should have been 1 Bq/L, however the basis for arriving at these standards were not clearly stated. The radiological basis for fixing the Drinking Water Standards (DWS) has, therefore, been reviewed in the present work. The values derived now for gross α (0.01 Bq/L) and gross β (0.34 Bq/L) are different from the values given above. In addition, the DWS for some important radionuclides using the ingestion dose factors applicable to members of the general public (adult as well as children) are given here. It is hoped that the presently suggested values will be accepted by the Atomic Energy Regulatory Board and adopted by the BIS in the near future. (author). 14 refs., 2 tabs., 2 ills

  4. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  5. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  6. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  7. Impact of environmental factors on maintaining water quality of Bakreswar reservoir, India

    Directory of Open Access Journals (Sweden)

    Moitreyee Banerjee

    2015-09-01

    Full Text Available Reservoirs and dams are engineered systems designed to serve purposes like supply of drinking water as well as other commercial and industrial use. A thorough assessment of water quality for these systems is thus necessary. The present study is carried out at Bakreswar reservoir, in Birbhum district, which was created by the dam, built on Bakreswar River. The major purpose of the reservoir is the supply of drinking water to the surrounding villages and Bakreswar Thermal Power Station. Water samples were collected fortnightly from three different stations of the reservoir. Physical and chemical factors like dissolved oxygen, atmospheric temperature, pH, conductivity, salinity, solar radiation, water temperature, alkalinity, hardness, chloride, productivity etc. were analysed using standard procedure. Abundance data is calculated for four major groups of zooplanktons (Cladocera, Copepoda, Ostracoda, and Rotifera with the software PAST 2.1. Multivariate statistical analysis like PCA, hierarchical cluster and CCA are performed in order to predict the temporal variation in the water quality factors using SPSS 20. Distinct seasonal variation was found for environmental factors and zooplankton groups. Bakreswar reservoir has good assemblage of zooplankton and distinct temporal variation of environmental factors and its association with zooplankton predicts water quality condition. These results could help in formulating proper strategies for advanced water quality management and conservation of reservoir ecosystem. Key elements for growth and sustenance of the system can then be evaluated and this knowledge can be further applied for management purposes.

  8. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  9. Radon in private drinking water wells

    International Nuclear Information System (INIS)

    Otahal, P.; Merta, J.; Burian, I.

    2014-01-01

    At least 10 % of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq.l -1 . This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. (authors)

  10. Drinking Water (Environmental Health Student Portal)

    Science.gov (United States)

    ... Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home Water Pollution Drinking Water ... quality, and activities. For Teachers Arizona Water Quality Education Activities for Grades 1 - 12 (University ... Videos and Players Contact Us: tehip@teh.nlm.nih. ...

  11. Asbestos in drinking water: a Canadian view

    Energy Technology Data Exchange (ETDEWEB)

    Toft, P.; Meek, M.E.

    1983-11-01

    Because of the widespread occurrence of chrysotile asbestos in drinking water supplies in Canada, public health professionals have been faced with evaluating the potential hazards associated with the ingestion of asbestos in food and drinking water. The results of available Canadian monitoring and epidemiologic studies of asbestos in drinking water are reviewed and discussed in light of other published work. The Canadian studies provide no consistent, convincing evidence of increased cancer risks attributable to the ingestion of drinking water contaminated by asbestos, even though the observed asbestos concentrations were relatively high in several communities. Only one study, conducted in the San Francisco Bay Area, has shown evidence of increased cancer incidence associated with the ingestion of asbestos in drinking water. 6 references.

  12. Limited school drinking water access for youth

    Science.gov (United States)

    Kenney, Erica L.; Gortmaker, Steven L.; Cohen, Juliana F.W.; Rimm, Eric B.; Cradock, Angie L.

    2016-01-01

    PURPOSE Providing children and youth with safe, adequate drinking water access during school is essential for health. This study utilized objectively measured data to investigate the extent to which schools provide drinking water access that meets state and federal policies. METHODS We visited 59 middle and high schools in Massachusetts during spring 2012. Trained research assistants documented the type, location, and working condition of all water access points throughout each school building using a standard protocol. School food service directors (FSDs) completed surveys reporting water access in cafeterias. We evaluated school compliance with state plumbing codes and federal regulations and compared FSD self-reports of water access with direct observation; data were analyzed in 2014. RESULTS On average, each school had 1.5 (SD: 0.6) water sources per 75 students; 82% (SD: 20) were functioning, and fewer (70%) were both clean and functioning. Less than half of the schools met the federal Healthy Hunger Free Kids Act requirement for free water access during lunch; 18 schools (31%) provided bottled water for purchase but no free water. Slightly over half (59%) met the Massachusetts state plumbing code. FSDs overestimated free drinking water access compared to direct observation (96% FSD-reported versus 48% observed, kappa=0.07, p=0.17). CONCLUSIONS School drinking water access may be limited. In this study, many schools did not meet state or federal policies for minimum student drinking water access. School administrative staff may not accurately report water access. Public health action is needed to increase school drinking water access. IMPLICATIONS AND CONTRIBUTIONS Adolescents’ water consumption is lower than recommended. In a sample of Massachusetts middle and high schools, about half did not meet federal and state minimum drinking water access policies. Direct observation may improve assessments of drinking water access and could be integrated into routine

  13. Learn About Laboratory Certification for Drinking Water

    Science.gov (United States)

    EPA’s Office of Water Technical Support Center implements the Drinking Water Laboratory Certification Program in partnership with EPA Regions, EPA’s Office of Research and Development, and States.

  14. Optimization Program for Drinking Water Systems

    Science.gov (United States)

    The Area-Wide Optimization Program (AWOP) provides tools and approaches for drinking water systems to meet water quality optimization goals and provide an increased – and sustainable – level of public health protection to their consumers.

  15. Drinking Water Cyanotoxin Risk Communication Toolbox

    Science.gov (United States)

    The drinking water cyanotoxin risk communication toolbox is a ready-to-use, “one-stop-shop” to support public water systems, states, and local governments in developing, as they deem appropriate, their own risk communication materials.

  16. WATER LOSS OF KOKA RESERVOIR, ETHIOPIA: COMMENTS ON

    African Journals Online (AJOL)

    ABSTRACT: Water balance evaluation of Koka Reservoir was attempted by different authors, and different leakage rates were estimated. However, the water balance equation that the previous authors used does not take into account ground. water inflow into the reservoir. Koka Reservoir is known to receive groundwater ...

  17. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  18. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  19. Investigation of drinking water quality in Kosovo.

    Science.gov (United States)

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  20. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    OpenAIRE

    Zlatanovic, Ljiljana; Moerman, Andreas; Hoek, van der, Jan Peter; Vreeburg, Jan; Blokker, Mirjam

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality processes. In this study, a mathematical model is presented that predicts temperature dynamics of the drinking water in DDWSs. A full-scale DDWS resembling a conventional system was built and run according to...

  1. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    Science.gov (United States)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run

  2. Drinking water quality monitoring and surveillance for safe water supply in Gangtok, India.

    Science.gov (United States)

    Khadse, Gajanan K; Kalita, Morami; Pimpalkar, Sarika N; Labhsetwar, Pawan K

    2011-07-01

    To ascertain the quality of drinking water being supplied, water quality monitoring and surveillance was conducted in Gangtok city at various treatment stages, service reservoirs, distribution network, public standposts, and households. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/l in the sump water/finished water. Throughout the year (i.e., during summer, winter, and monsoon seasons), the total coliform and fecal coliform counts were ranged from nil to 7 CFU/100 ml and nil to 3 CFU/100 ml, respectively, in sump water of Selep and VIP complex water treatment plant; however, at consumer end, those were observed as nil to 210 CFU/100 ml and nil to 90 CFU/100 ml, respectively. These variations in bacterial counts among the different service reservoirs and consumer ends may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicates that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physicochemical characteristics.

  3. Drinking Water Mapping Application (DWMA) - Public Version

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Mapping Application (DWMA) is a web-based geographic information system (GIS) that enhances the capabilities to identify major contaminant risks...

  4. Drinking Water Earthquake Resilience Paper Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data for the 9 figures contained in the paper, A SOFTWARE FRAMEWORK FOR ASSESSING THE RESILIENCE OF DRINKING WATER SYSTEMS TO DISASTERS WITH AN EXAMPLE EARTHQUAKE...

  5. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  6. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    NARCIS (Netherlands)

    Zlatanovic, Ljiljana; Moerman, Andreas; Hoek, van der Jan Peter; Vreeburg, Jan; Blokker, Mirjam

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality

  7. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    NARCIS (Netherlands)

    Zlatanović, L.; Moerman, A.; van der Hoek, J.P.; Vreeburg, J.H.G.; Blokker, M

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality processes.

  8. Reproducibility of the water drinking test.

    Science.gov (United States)

    Muñoz, C R; Macias, J H; Hartleben, C

    2015-11-01

    To investigate the reproducibility of the water drinking test in determining intraocular pressure peaks and fluctuation. It has been suggested that there is limited agreement between the water drinking test and diurnal tension curve. This may be because it has only been compared with a 10-hour modified diurnal tension curve, missing 70% of IOP peaks that occurred during night. This was a prospective, analytical and comparative study that assesses the correlation, agreement, sensitivity and specificity of the water drinking test. The correlation between the water drinking test and diurnal tension curve was significant and strong (r=0.93, Confidence interval 95% between 0.79 and 0.96, p<01). A moderate agreement was observed between these measurements (pc=0.93, Confidence interval 95% between 0.87 and 0.95, p<.01). The agreement was within±2mmHg in 89% of the tests. Our study found a moderate agreement between the water drinking test and diurnal tension curve, in contrast with the poor agreement found in other studies, possibly due to the absence of nocturnal IOP peaks. These findings suggest that the water drinking test could be used to determine IOP peaks, as well as for determining baseline IOP. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Drinking water quality monitoring using trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  10. Natural radionuclides in drinking water in Argentina

    International Nuclear Information System (INIS)

    Bomben, A.M.; Palacios, M.A.

    2000-01-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of natural uranium and 226 Ra have been analyzed in over 300 drinking water samples taken from different locations in Argentina. 226 Ra was determined by 222 Rn emanation and liquid scintillation counting, and natural uranium by a fluorimetric procedure. Values ranging from 0.03 to 24 μg.l -1 of natural uranium and from 0.06 to 50 μg.l -1 , were measured on drinking water samples taken from tap water systems and private wells, respectively. Concentrations up to 15 mBq.l -1 and to 22 mBq.l -1 of 226 Ra were found in drinking water samples taken from tap water systems and private wells, respectively. These values are compared with the reference values accepted for drinking water. Based on the water intake rate, the age distribution and the measured concentrations, an annual collective effective dose of 1.9 man Sv and an individual committed effective dose of 0.49 μSv.y -1 were calculated for the city of Buenos Aires adult inhabitants, for the ingestion of both natural radionuclides analyzed in drinking water. (author)

  11. Quality assessment of drinking water in Temeke District (part II ...

    African Journals Online (AJOL)

    ... parameters of drinking water samples from different drinking water sources. The drinking water sources examined included tap water, river water and well water (deep and shallow wells). Water quality studied includes pH, chloride, nitrate and total hardness levels. The concentrations of total hardness in mg CaCO3/L and ...

  12. Bacteriological quality of drinking water in Nyala, South Darfur, Sudan.

    Science.gov (United States)

    Abdelrahman, Amira Ahmed; Eltahir, Yassir Mohammed

    2011-04-01

    The objective of this study was to determine the bacterial contaminations in drinking water in Nyala city, South Darfur, Sudan with special reference to the internally displaced people camps (IDPs). Two hundred and forty water samples from different sites and sources including bore holes, hand pumps, dug wells, water points, water reservoir and household storage containers were collected in 2009. The most probable number method was used to detect and count the total coliform, faecal coliform and faecal enterococci. Results revealed that the three indicators bacteria were abundant in all sources except water points. Percentages of the three indicators bacteria count above the permissible limits for drinking water in all samples were 46.4% total coliform, 45.2% faecal coliform and 25.4% faecal enterococci whereas the highest count of the indicators bacteria observed was 1,600 U/100 ml water. Enteric bacteria isolated were Escherichia coli (22.5%), Enterococcus faecalis (20.42%), Klebsiella (15.00%), Citrobacter (2.1%) and Enterobacter (3.33%). The highest contamination of water sources was observed in household storage containers (20%) followed by boreholes (11.25%), reservoirs (6.24%), hand pumps (5.42%) and dug wells (2.49%). Contamination varied from season to season with the highest level in autumn (18.33%) followed by winter (13.75%) and summer (13.32%), respectively. All sources of water in IDP camps except water points were contaminated. Data suggested the importance of greater attention for household contamination, environmental sanitation control and the raise of awareness about water contamination.

  13. National trends in drinking water quality violations.

    Science.gov (United States)

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  14. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  15. Managing the microbiological risks of drinking water.

    Science.gov (United States)

    Krewski, Daniel; Balbus, John; Butler-Jones, David; Haas, Charles; Isaac-Renton, Judith; Roberts, Kenneth; Sinclair, Martha

    The microbiological contamination of drinking water supplies can have serious health consequences for consumers, and this has been dramatically illustrated in recent years by two disease outbreaks in Canada. In this paper, some factors that can influence the microbiological quality of drinking water and its management are examined. Frameworks have been proposed that help to clarify the main elements of health risk assessment and risk management, and, in accordance with these, risks can be logically characterized, evaluated and controlled. A protocol has been developed for microbiological risk assessment and a risk management framework now guides the development of Canada's national guidelines for drinking-water quality. Monitoring of indicator organisms and the application of adequate water treatment are the primary means recommended in the Canadian guidelines to safeguard health from the presence of water-borne pathogens. Understanding the biological characteristics of microbial pathogens is necessary for assessing their impact on community health and appraising the rationale behind drinking-water testing methods and their limitations. Improvements in health surveillance, monitoring, and risk characterization and application of concepts such as multiple barriers (source-to-tap) and total quality management should contribute to better management of the microbiological quality of drinking water.

  16. Perceived agricultural runoff impact on drinking water.

    Science.gov (United States)

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  17. Biofouling on Reservoir in Sea Water

    Science.gov (United States)

    Yoon, H.; Eom, C.; Kong, M.; Park, Y.; Chung, K.; Kim, B.

    2011-12-01

    The organisms which take part in marine biofouling are primarily the attached or sessile forms occurring naturally in the shallower water along the coast [1]. This is mainly because only those organisms with the ability to adapt to the new situations created by man can adhere firmly enough to avoid being washed off. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm communities formed on the reservoir polymer surfaces were tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. To confirm microbial and formation of biofilm on adsorbents was done CLSM (Multi-photon Confocal Laser Scanning Microscope system) analysis. Microbial identified using 16S rRNA. Experiment results, five species which are Vibrio sp., Pseudoalteromonas, Marinomonas, Sulfitobacter, and Alteromonas discovered to reservoir formed biofouling. There are some microorganism cause fouling and there are the others control fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim. Prog. Org. Coat. 50, (2004) p.75-104.

  18. Organic fertilizer decomposition and nutrient loads in water reservoir ...

    African Journals Online (AJOL)

    Decomposition in aquatic ecosystems is controlled by various factors. The study investigated the trend of decomposition and the potential nutrients loaded in reservoir water. Analysis of water samples and organic fertilizer composition was according to APHA (1995) and Klute (1986) respectively. Reservoir water ...

  19. Reducing radionuclide contents in drinking water

    International Nuclear Information System (INIS)

    Hanslik, E.; Horacek, P.

    1990-01-01

    The results of a cost-benefit analysis of reducing radiation hazards to the population due to radionuclides in drinking water and to nuclear power plants operation are presented. Two aeration methods are used to reduce the radon content in drinking water -aeration in a shallow layer and aeration towers. The radon content can be reduced more effectively by a two-step arrangement of the aeration facility. A reduction of the content of radium, uranium and their daughter products is possible with the use of a modification of the processes common in water-works practice. The analysis of economic efficiency showed that for reducing radiation hazards to the population, it is much more effective to reduce the radionuclide contents in drinking water sources than, for instance, to reduce the tritium content in liquid effluents from nuclear power plants further below the projected level. (J.J.). 2 figs

  20. Characterization of indicator bacteria in municipal raw water, drinking water, and new main water samples.

    Science.gov (United States)

    Clark, J A; Burger, C A; Sabatinos, L E

    1982-09-01

    Municipal water samples were analyzed by membrane filter (MF) and presence-absence (P-A) tests for pollution indicator bacteria. In four years, 11 514 bacterial cultures were isolated from either raw water, drinking water, or new main water samples submitted to three environmental laboratories. The bacterial species occurring most often in all types of water samples were Escherichia coli (11.6-39.7%), Enterobacter aerogenes (18.1-26.3%), Aeromonas hydrophila (8.8-17.0%), Klebsiella pneumoniae (7.7-10.3%), and Citrobacter freundii (5.9-22.7%). A lactose - lauryl tryptose - tryptone broth was examined as an alternative medium to modified MacConkey broth in the presumptive portion of the P-A test. The intensity of acid and gas production in presumptive positive P-A bottles was compared with the types and frequencies of indicator bacteria shown by confirmatory tests. The results of detecting indicator bacteria following the analysis of 53 130 samples over a 2-year period were arranged by water source (well, lake, river, mixed) and water type (raw or drinking) to determine the influence of these parameters on the recovery of indicator bacteria. A further subdivision of the sample types into raw surface, raw ground, in-plant, plant discharge, reservoir, and distribution samples demonstrated the effect of water treatment practices.

  1. A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply

    Science.gov (United States)

    Yin, Xin-An; Yang, Zhi-Feng; Petts, Geoffrey E.; Kondolf, G. Mathias

    2014-05-01

    Riverine ecosystem protection requires the maintenance of natural flow and sediment regimes downstream from dams. In reservoir management schedules this requirement should be integrated with sedimentation control and human water supply. However, traditional eco-friendly reservoir operating methods have usually only considered the natural flow regime. This paper seeks to develop a reservoir operating method that accounts for both the natural flow and sediment regimes as well as optimizing the water supply allocations. Herein, reservoir water level (RWL), sediment-occupied ratio of reservoir volume (SOR) and rate of change of SOR (RCSOR) are adopted as three triggers of a drawdown-flushing-based sediment management policy. Two different groups of reservoir operating rule curves (RORCs) are designed for sediment-flushing and non-sediment-flushing years, and the three triggers, RWL, SOR and RCSOR, are used to change the “static” RORCs to “dynamic” ones. The approach is applied to the Wangkuai Reservoir, China to test its effectiveness. This shows that the approach can improve the flexibility of reservoir operators to balance the reservoir management, water supply management and the flow and sediment needs of the downstream riverine ecosystem.

  2. Quantitative risk assessment of drinking water contaminants

    International Nuclear Information System (INIS)

    Cothern, C.R.; Coniglio, W.A.; Marcus, W.L.

    1986-01-01

    The development of criteria and standards for the regulation of drinking water contaminants involves a variety of processes, one of which is risk estimation. This estimation process, called quantitative risk assessment, involves combining data on the occurrence of the contaminant in drinking water and its toxicity. The human exposure to a contaminant can be estimated from occurrence data. Usually the toxicity or number of health effects per concentration level is estimated from animal bioassay studies using the multistage model. For comparison, other models will be used including the Weibull, probit, logit and quadratic ones. Because exposure and toxicity data are generally incomplete, assumptions need to be made and this generally results in a wide range of certainty in the estimates. This range can be as wide as four to six orders of magnitude in the case of the volatile organic compounds in drinking water and a factor of four to five for estimation of risk due to radionuclides in drinking water. As examples of the differences encountered in risk assessment of drinking water contaminants, discussions are presented on benzene, lead, radon and alachlor. The lifetime population risk estimates for these contaminants are, respectively, in the ranges of: <1 - 3000, <1 - 8000, 2000-40,000 and <1 - 80. 11 references, 1 figure, 1 table

  3. Get the Facts: Drinking Water and Intake

    Science.gov (United States)

    ... foods. Although daily fluid intake can come from food and beverages, plain drinking water is one good way of getting fluids as it has zero calories. Plain water consumption varies by age, race/ethnicity, socioeconomic status, and behavioral characteristics. In 2005-2010, U.S. youth ...

  4. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2017-01-01

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank...... in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise...

  5. Drinking water protection plan; a discussion document

    International Nuclear Information System (INIS)

    2001-01-01

    This draft document outlines the plan of action devised by the Government of British Columbia in an effort to safeguard the purity of the drinking water supply in the province, and invites British Columbians to participate in the elaboration of such a plan. This document concentrates on the assessment of the sources of the water supply (watersheds and aquifers) and on measures to ensure the integrity of the system of water treatment and distribution as the principal components of a comprehensive plan to protect drinking water. The proposed plan involves a multi-barrier approach that will use a combination of measures to ensure that water sources are properly managed and waterworks systems provide safe drinking water. New drinking water planning procedures, more effective local influence and authority, enforceable standards, better access to information and public education programs form the essence of the plan. A series of public meetings are scheduled to provide the public at large with opportunities to comment on the government's plan of action and to offer suggestions for additional measures

  6. Drinking water in Cuba and seawater desalination

    International Nuclear Information System (INIS)

    Meneses-Ruiz, E.; Turtos-Carbonell, L.M.; Oviedo-Rivero, I.

    2004-01-01

    The lack of drinking water has become a problem at world level because, in many places, supplies are very limited and, in other places, their reserves have been drained. At the present time there are estimated to be around two thousand million people that don't have drinking water for several reasons, such as drought, contamination and the presence of saline waters not suitable for human consumption. Because of the human need for water, they have always taken residence in areas where the supply was guaranteed, sometimes impeding the exploitation of other areas that can be economically very interesting. However, this resource is usually very close and in abundance in the form of seawater but its salinity makes it unusable for many basic requirements. Humanity has been forced, therefore, to take into consideration the possibilities of the economic treatment of seawater. Cuba has regions where the supplies of drinking water are scarce and others where the lack of this resource limits economic exploitation. The present work is approached with regard to the situation of hydro resources in Cuba, it includes: a description of the main hydrographic basins of the country; the contamination levels of the waters and the measures for mitigation; analysis of the supplies and demand for drinking water and its quality; regulatory aspects. The state of seawater desalination in Cuba is also included and the possibility of its realisation using nuclear energy and the advantages that this would bring is evaluated. (author)

  7. Drinking water in Cuba and seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Meneses-Ruiz, E. [CUBAENERGIA, Playa, Havana (Cuba)]. E-mail: emeneses@cien.energia.inf.cu; Turtos-Carbonell, L.M.; Oviedo-Rivero, I. [CUBAENERGIA, Playa, Havana (Cuba)

    2004-07-01

    The lack of drinking water has become a problem at world level because, in many places, supplies are very limited and, in other places, their reserves have been drained. At the present time there are estimated to be around two thousand million people that don't have drinking water for several reasons, such as drought, contamination and the presence of saline waters not suitable for human consumption. Because of the human need for water, they have always taken residence in areas where the supply was guaranteed, sometimes impeding the exploitation of other areas that can be economically very interesting. However, this resource is usually very close and in abundance in the form of seawater but its salinity makes it unusable for many basic requirements. Humanity has been forced, therefore, to take into consideration the possibilities of the economic treatment of seawater. Cuba has regions where the supplies of drinking water are scarce and others where the lack of this resource limits economic exploitation. The present work is approached with regard to the situation of hydro resources in Cuba, it includes: a description of the main hydrographic basins of the country; the contamination levels of the waters and the measures for mitigation; analysis of the supplies and demand for drinking water and its quality; regulatory aspects. The state of seawater desalination in Cuba is also included and the possibility of its realisation using nuclear energy and the advantages that this would bring is evaluated. (author)

  8. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  9. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  10. 30 CFR 71.602 - Drinking water; distribution.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  11. Surface water pesticide modelling for decision support in drinking water production

    Science.gov (United States)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  12. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  13. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir

    Science.gov (United States)

    Toth, Elena

    2013-04-01

    The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation

  14. Small Drinking Water Systems Research and Development ...

    Science.gov (United States)

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, reliable drinking water to their customers, many face a number of challenges in their ability to achieve and maintain system sustainability. Some of these include high operator turnover, aging infrastructure, and lack of financial resources. Oftentimes, small communities and their state primacy agencies are reluctant to use novel approaches to drinking water challenges because they may have hidden costs or result in unforeseen health consequences for the community. EPA’s Office of Research and Development is helping to build confidence in innovative treatment technologies and approaches by conducting research that small communities, including tribal communities, and state primacy agencies can rely on to successfully remove contaminants of interest, without compromising the overall sustainability of their system. To share EPA's small drinking water systems research with the states, small systems, and the public.

  15. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  16. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  17. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  18. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  19. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  20. Microfiltration and Ultrafiltration Membranes for Drinking Water

    Science.gov (United States)

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  1. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  2. Impact of a Thermocline on Water Dynamics in Reservoirs – Dobczyce Reservoir Case

    Directory of Open Access Journals (Sweden)

    Hachaj Paweł S.

    2017-06-01

    Full Text Available While modeling water dynamics in dam reservoirs, it is usually assumed that the flow involves the whole water body. It is true for shallow reservoirs (up to several meters of depth but may be false for deeper ones. The possible presence of a thermocline creates an inactive bottom layer that does not move, causing all the discharge to be carried by the upper strata. This study compares the results of hydrodydynamic simulations performed for the whole reservoir to the ones carried out for the upper strata only. The validity of a non-stratified flow approximation is then discussed.

  3. Influence of extended drought on water quality in tropical reservoirs in a semiarid region

    Directory of Open Access Journals (Sweden)

    Gustavo Girão Braga

    2015-03-01

    Full Text Available AimDrought periods often occur in Brazilian semiarid region and are supposed to induce water quality degradation by changes in physical, chemical and biological properties of freshwater ecosystems. Reservoirs in this region are used as drinking-water supplies and are exposed to wide volume fluctuations during drought periods due to lack of precipitation and high evaporation rates. This study aimed to identify patterns on water quality of two reservoirs during a long drought period. It was expected that more arid and shallower conditions would favor algal growth by enhancing nutrient availability, causing a decrease on water quality.MethodsThe study was based on monthly sampling over 20 months (May 2011 to December 2012 at two tropical reservoirs on Brazilian semiarid region. Precipitation and volume data were obtained from environmental agencies. Transparency was measured on field using a Secchi disk and conductivity, nutrients, suspended solids and chlorophyll-a were analyzed on laboratory. Temporal changes in all environmental variables were analyzed in each reservoir using two-way cluster analysis and also principal component analysis (PCA.ResultsThe volume of both reservoirs decreased considerably over the study because of low or shortage of precipitation. It was possible to detect two opposite patterns of chlorophyll-a in each reservoir throughout the drought season: in the first one phytoplankton growth was favored, while in the second one chlorophyll-a decreased by high inorganic turbidity. Both reservoirs tended to increase their turbidity and conductivity during the drought period due to shallow conditions, which probably contributed to sediment resuspension.ConclusionsWater level reduction during the extended drought period, contributed for water quality degradation due to high algal biomass and also high turbidity found during drought period. Local factors, as the nature of suspended solids, play an important role on predicting water

  4. Drinking water quality from the aspect of element concentrations

    International Nuclear Information System (INIS)

    Chiba, M.; Shinohara, A.; Sekine, M.; Hiraishi, S.

    2006-01-01

    Drinking water in developed countries is usually treated by the water-purification system, while in developing countries untreated natural water such as well water, river water, rain water, or pond water are used. On the other hand, many kinds of mineral water bottled in plastic containers are sold as drinking water with or without gas in urban areas in many countries. Seawater under hundreds meters from the surface is also bottled and sold as drinking water with advertising good mineral balance. Various element concentrations in water samples for drinking were analyzed, and then it was considered the effects of elements on human health. (author)

  5. Asbestos in drinking water: a status report.

    OpenAIRE

    Cotruvo, J A

    1983-01-01

    The conference is briefly reviewed in the light of its impact on future regulatory decisions regarding the possible control of asbestos fiber in drinking water. The results of animal feeding studies indicate that asbestos fails to demonstrate toxicity in whole-animal lifetime exposures. The epidemiologic evidence of risk from ingestion of water containing asbestos fibers is not convincing, and in view of the lack of confirmation by animal studies, the existence of a risk has not been proven; ...

  6. Effects of water inlet configuration in a service reservoir applying CFD modelling

    Directory of Open Access Journals (Sweden)

    Carolina Montoya Pachongo

    2016-01-01

    Full Text Available This study investigated the state of a service reservoir of a drinking water distribution network. Numerical simulation was applied to establish its flow pattern, mixing conditions, and free residual chlorine decay. The influence of the change in the water inlet configuration on these characteristics was evaluated. Four scenarios were established with different water level and flow rate as the differences between the first three scenarios. The fourth scenario was evaluated to assess the influence of the inlet configuration, momentum flow and water level on hydrodynamic conditions within the service reservoir. The distribution of four nozzles of 152.4mm diameter was identified as a viable measure to preserve the water quality in this type of hydraulic structures.

  7. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  8. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  9. Spectrophotometric determination of fluoride in drinking water using ...

    African Journals Online (AJOL)

    2011-03-14

    Mar 14, 2011 ... A sensitive spectrophotometric determination of fluoride in drinking water has been developed using aluminium complexes ... Keywords: Fluoride analysis, spectrophotometric method, drinking water, aluminium triphenylmethane dye ..... mechanism at the mercury electrode in neutral and alkaline aque-.

  10. The quality of drinking water in Poland

    Directory of Open Access Journals (Sweden)

    L. Kłos

    2015-05-01

    Full Text Available Introduction. An analysis of the drinking water quality and the degree of access to water supply and sewerage system in Poland was conducted. Materials and methods. Method of analysis of secondary statistical data was applied, mostly based on data available in the materials of the Central Statistical Office in Warsaw, the Waterworks Polish Chamber of Commerce in Bydgoszcz and the National Water Management in Warsaw. Result and discussion. 60 % of Poles do not trust to drink water without prior boiling. Water flowing from the taps, although widely available, is judged to be polluted, with too much fluorine or not having the appropriate consumer values (colour, smell and taste. The current water treatment systems can however improve them, although such a treatment, i.e. mainly through chlorination of water, deteriorates its quality in relation to pure natural water. The result is that fewer and fewer Poles drink water directly from the tap. They also less and less use tap water to cook food for which the bottled water is trusted more. Reason for that is that society does not trust the safety of the water supplied by the municipal water companies. The question thus is: Are they right? Tap water in Poland meets all standards since it is constantly monitored by the water companies and all relevant health services. Tap water supplied through the water supply system can be used without prior boiling. Studies have shown that only the operating parameters of water, suc h as taste, odour and hardness, are not satisfactory everywhere, different in each city, and sometimes in different districts of cities, often waking thoughts among users about its inappropriateness. The lowered water value can be easily improved at home through the use of filters. In conclusion, due to constant monitoring and investment in upgrading treatment processes, the quality of tap water has improved significantly in the last years. Conclusion. The results first allow assessing the

  11. Assessment of Drinking Water Quality from Bottled Water Coolers.

    Science.gov (United States)

    Farhadkhani, Marzieh; Nikaeen, Mahnaz; Akbari Adergani, Behrouz; Hatamzadeh, Maryam; Nabavi, Bibi Fatemeh; Hassanzadeh, Akbar

    2014-05-01

    Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control.

  12. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  13. Determination of trace elements in ground drinking water in Norway

    OpenAIRE

    Abiyos, Beka

    2017-01-01

    Drinking water is essential for life. However, unless standard quality of drinking water is maintained, water can be associated with health risks. The present study was conducted to determine primarily inorganic elements in Norwegian ground drinking water in a nationwide investigation including 201 well works. In addition, indicators of water quality such as pH, conductivity, alkalinity, turbidity, and color were also determined. Water samples were collected from the source (raw water) and fr...

  14. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    include: colloidal titration, extraction-spectrophotometry, chro- matography, fluorometry and potentiometry. Methods that are simple to perform and that allow water- works operators to achieve precise results are desirable as quick. TABLE 1. List of contaminants found in polyelectrolyte products. Contaminant. Polyelectrolyte.

  15. Asbestos and drinking water in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Toft, P.; Wigle, D.; Meranger, J.C.; Mao, Y.

    1981-04-01

    Samples of raw, treated and distributed tap water were collected from 71 municipalities across Canada and analyzed for asbestos content by transmission electron microscopy. Chrysotile asbestos was identified as the major asbestos type present in drinking water with some 5% of public water supplies containing asbestos at concentrations greater than 10 million fibres per litre. Improvement factors of up to 300 were observed for the removal of chrysotile fibres from drinking water during treatment, indicating that coagulation/filtration treatment is efficient for this purpose. In certain cases there is evidence to suggest that erosion of asbestos from pipe material is taking place. Age-standardized mortality rates for gastro-intestinal cancers were calculated for each city for the period of 1966 to 1976. Rates for the 2 localities with the highest (congruent to 10(8)/L) concentrations of asbestos fibres in treated drinking water were compared with the weighted average of the rates for the 52 localities with asbestos concentrations not significantly greater than zero. Eleven localities had intermediate concentrations of asbestos and six were too small for meaningful statistical analysis. Relatively high mortality rates were apparent amongst males in city 1 for cancer of the large intestine except rectum, and in both sexes in city 1 and males in city 2 for stomach cancer. It is felt that these findings are probably related to occupational exposure to asbestos. Further statistical analyses are required, however, before the significance of these observations can be fully assessed.

  16. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...

  17. A drinking water quality framework for South Africa | Hodgson ...

    African Journals Online (AJOL)

    In recognition of the importance of safe drinking water to public health, DWAF initiated a project to draft a Drinking Water Quality Framework for South Africa to enable effective management of drinking water quality and the protection of public health. The Framework is based on a preventative risk management approach, ...

  18. Geographical mapping of fluoride levels in drinking water sources in ...

    African Journals Online (AJOL)

    Background: Knowledge of fluoride levels in drinking water is of importance in dental public health, yet this information is lacking, at national level, in Nigeria. Objective: To map out fluoride levels in drinking water sources in Nigeria. Materials and Methods: Fluoride levels in drinking water sources from 109 randomly ...

  19. Health assessment of toluene in California drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Reed, N.; Reed, W.; Beltran, L.; Li, R.; Encomienda, I.

    1989-03-08

    This report reviews existing literature pertinent to the health risk posed by the use of toluene-contaminated drinking water. Also included in the study is an estimate of the toluene exposure of California residents based on the most recent data on toluene concentrations in California drinking water supplies. The concentration of toluene in drinking water that may cause adverse health effects is delineated.

  20. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  1. Assesment of bathymetric maps via GIS for water in reservoir

    Directory of Open Access Journals (Sweden)

    Ayhan Ceylan

    Full Text Available In order to adopt measures for storing more water in reservoirs, lakes and ponds; to prevent water pollution, protect water sources and extend the service life of these facilities, it is important for manager (Municipalities, Directorates of the State Hydraulic Works (DSHW, Irrigation Unions etc. to know the current topographic conditions and any changes in the storage capacities of these facilities. This study aimed to identify the updated topographic and bathymetric data required for the efficient management and usage of Altınapa reservoir, changes in surface area and volume of the facility, and to form a Reservoir Information System (RIS. Two digital elevation models, from 2009 and 1984, were used to determine changes in the storage capacity of the reservoir. The calculations indicated that, within this 25-year period, the storage capacity of the reservoir decreased by 12.7% due to sedimentation. A Dam Information System (RIS was developed from a wide range of data sources, including topographic and bathymetric data of the reservoir and its surrounding area, data on specific features such as plant cover, water quality characteristics (Temperature, Dissolved Oxygen (DO, Secchi Disk Depth (SDD and pH, geological structure, average water level, water supplied from springs, evaporation value of the reservoir, and precipitation.

  2. Uptake of uranium from drinking water

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1987-01-01

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234 U and 238 U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion the subjects collected 24 hour total output of both urine and feces for seven days prior to drinking water. During the next day they drank, at their normal rate of drinking water intake, 900 ml of water containing approximately 90 pCi 238 U and 90 pCi 234 U (274 μg U) and continued to collect their urine and feces for seven additional days. Utilizing one technique for analyzing data, the G.I. absorption of 234 U ranged from -0.07% to 1.88% with an average of 0.51% and G.I. absorption of 238 U ranged from -0.07% to 1.79% with an average of 0.50%. Employing another technique for analyzing the data, the G.I. absorption ranged from -0.04 to 1.46% with a mean of 0.53% for 234 U and from 0.03% to 1.43% with a mean of 0.52 for 238 U. The dietary intake of U was also estimated from measurements of urinary and fecal excretion of U in eight subjects prior to drinking water containing U. The estimated average dietary intake of U for these subjects is 3.30 +/- 0.65 or 4.22 +/- 0.65 μg/day. These averages are two to four times higher than the values reported in the literature for dietary intake

  3. [Human exposure to trihalomethanes in drinking water].

    Science.gov (United States)

    Tominaga, M Y; Midio, A F

    1999-08-01

    Halogenated hydrocarbon compounds, some of them recognized as carcinogenic to different animal species can be found in drinking water. Chloroform, bromodichloromethane, dibromochloromethane and bromoform are the most important trihalomethanes found in potable water. They are produced in natural waters during chlorinated desinfection by the halogenation of precursors, specially humic and fulvic compounds. The review, in the MEDLINE covers the period from 1974 to 1998, presents the general aspects of the formation of trihalomethanes, sources of human exposure and their toxicological meaning for exposed organisms: toxicokinetic disposition and spectrum of toxic effects (carcinogenic, mutagenic and teratogenic).

  4. Lead (Pb) in Drinking Water

    LENUS (Irish Health Repository)

    2009-01-01

    The application of an acid digestion and subsequent solid-phase extraction (SPE) procedure were implemented as preliminary treatments prior to quantifying the levels of potentially endocrine disrupting metals (EDMs) in a variety of solid and liquid matrices. These included (solid) river sediment, leachate sediment and sewage sludge and also (liquid) river water, landfill leachate, concentrated leachate, sewage influent, and sewage effluent, sampled in the Irish Midlands. The total concentrations of cobalt (Co), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and manganese (Mn), after extraction and preconcentration, were determined by atomic absorption spectroscopy (AAS). Mercury (Hg) in sediment and sludge was determined using cold-vapour atomic fluorescence spectroscopy (AFS). For sewage sludge maximum values (mg\\/kg(dw)) of 4700 Ni, 1642 Mn, 100.0 Cd, 3400 Zn, 36.70 Co, 750.0 Pb, 485.8 Cr, and 1003 Cu were determined whilst in leachate sediment, maximum values (mg\\/kg(dw)) of 32.10 Ni, 815.0 Mn, 32.78 Cd, 230.3 Zn, 26.73 Co, 3525 Pb, 124.9 Cr, and 50.13 Cu were found. Over several months, the data showed elevated levels in sewage influents, effluents, and sludges compared to a battery of adjacent river water samples and corresponding sediments. There was a definite trend for target values for sediments to be exceeded, while intervention values were only exceeded for cadmium. Overall the pattern in terms of concentration was sewage > leachate > river matrices. A nonparametric assessment of the effect of sewage treatment method on median metal levels in sludge revealed statistically significant differences at the 95% level of confidence for Co, Cr, and Hg and at the 90% level of confidence for Cd.

  5. Determination of mercury in drinking water

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1976-01-01

    Determination of mercury in drinking water samples have been carried out by neutron activation followed by chemical separation. The chemical analysis is necessary as the levels of mercury in these samples are quite low and activities of sodium, copper etc. interfere in its determination by direct spectroscopy. Solvent extraction separation offers speed and complete separation from interfering activities. Some of drinking water samples collected at Trombay have been analysed and their result are given in this paper. The procedure was checked with 197 Hg tracer and the reproducibility of the procedure is within 5%. It was free from contamination due to the activities of Cu, Na etc. The time of analysis was 15 minutes, and upto 5 samples could be analysed conveniently at a time. The average chemical yield was 72%. (T.I.)

  6. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    Science.gov (United States)

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  7. Drinking Water Consequences Tools. A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    In support of the goals of Department of Homeland Security’s (DHS) National Protection and Programs Directorate and the Federal Emergency Management Agency, the DHS Office of Science and Technology is seeking to develop and/or modify consequence assessment tools to enable drinking water systems owner/operators to estimate the societal and economic consequences of drinking water disruption due to the threats and hazards. This work will expand the breadth of consequence estimation methods and tools using the best-available data describing water distribution infrastructure, owner/assetlevel economic losses, regional-scale economic activity, and health. In addition, this project will deploy the consequence methodology and capability within a Web-based platform. This report is intended to support DHS effort providing a review literature review of existing assessment tools of water and wastewater systems consequences to disruptions. The review includes tools that assess water systems resilience, vulnerability, and risk. This will help to understand gaps and limitations of these tools in order to plan for the development of the next-generation consequences tool for water and waste water systems disruption.

  8. Assessment of Ilam Reservoir Eutrophication Response in Controlling Water Inflow

    Directory of Open Access Journals (Sweden)

    Fereshteh Nourmohammadi Dehbalaei

    2016-12-01

    Full Text Available In this research, a 2D laterally averaged model of hydrodynamics and water quality, CE-QUAL-W2, was applied to simulate water quality parameters in the Ilam reservoir. The water quality of Ilam reservoir was obtained between mesotrophic and eutrophic based on the measured data including chlorophyll a, total phosphorus and subsurface oxygen saturation. The CE-QUAL-W2 model was calibrated and verified by using the data of the year 2009 and 2010, respectively. Nutrients, chlorophyll a and dissolved oxygen were the water quality constituents simulated by the CE-QUAL-W2 model. The comparison of the simulated water surface elevation with the measurement records indicated that the flow was fully balanced in the numerical model. There was a good agreement between the simulated and measured results of the hydrodynamics and water quality constituents in the calibration and verification periods. Some scenarios have been made base on decreasing in water quantity and nutrient inputs of reservoir inflows. The results have shown that the water quality improvements of the Ilam reservoir will not be achieved by reducing a portion of the reservoir inflow. The retention time of water in reservoir would be changed by decreasing of inflows and it made of the negative effects on the chlorophyll-a concentration by reduction of nutrient inputs and keeping constant of discharge inflow to reservoir, the concentration of total phosphorus would be significantly changed and also the concentration of chlorophyll-a was constant approximately. Thus, the effects of control in nutrient inputs are much more than control in discharge inflows in the Ilam reservoir.

  9. Removal of radium from drinking water

    International Nuclear Information System (INIS)

    Lauch, R.P.

    1992-08-01

    The report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water. Calcium cation exchange removes radium and can be used when hardness removal is not necessary. Iron removal processes are discussed in relation to radium removal. Iron oxides remove much less than 20 percent of the radium from water under typical conditions. Manganese dioxide removes radium from water when competition for sorption sites and clogging of sites is reduced. Filter sand that is rinsed daily with dilute acid will remove radium from water. Manganese dioxide coated filter sorption removes radium but more capacity would be desirable. The radium selective complexer selectively removes radium with significant capacity if iron fouling is eliminated

  10. Effect of disopyramide on bacterial diversity in drinking water

    Science.gov (United States)

    Wu, Qing; Zhao, Xiaofei; Tian, Qi; Wang, Lei; Zhao, Xinhua

    2018-02-01

    Disopyramide was detected in drinking water by LC-MS/MS and the microbial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water changed a lot when added different concentrations of disopyramide. The results of Shannon index showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of disopyramide. However, the number and abundance of community structure did not change with the concentration of disopyramide. Disopyramide inhibits the activity of bacterial community in drinking water and also can reduce the bacterial community diversity in drinking water.

  11. Parasites Associated with Sachet Drinking Water (Pure Water) in ...

    African Journals Online (AJOL)

    popularly called “Pure Water” in Nigeria), in Awka, capital of Anambra State, southeast Nigeria was conducted. This was in order to determine the safety and suitability of such water for human consumption. Sachet water is a major source of drinking ...

  12. A risk assessment of water salinization during the initial impounding period of a proposed reservoir in Tianjin, China.

    Science.gov (United States)

    Zhu, Liqin; Jiang, Cuiling; Wang, Youheng; Peng, Yanmei; Zhang, Peng

    2013-09-01

    Water salinization of coastal reservoirs seriously threatens the safety of their water supply. To elucidate the mechanism of salinization and to quantitatively analyze the risk in the initial period of the impoundment of a proposed reservoir in Tianjin Binhai New Area, laboratory and field simulation experiments were implemented and integrated with the actual operation of Beitang Reservoir, which is located in the same region and has been operational for many years. The results suggested that water salinization of the proposed reservoir was mainly governed by soil saline release, evaporation and leakage. Saline release was the prevailing factor in the earlier stage of the impoundment, then the evaporation and leakage effects gradually became notable over time. By referring to the actual case of Beitang Reservoir, it was predicted that the chloride ion (Cl(-)) concentration of the water during the initial impounding period of the proposed reservoir would exceed the standard for quality of drinking water from surface water sources (250 mg L(-1)), and that the proposed reservoir had a high risk of water salinization.

  13. Aquatic ecology of the Kadra reservoir, the source of cooling water for Kaiga nuclear power plant

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Zargar, S.; Dhopte, R.; Kulkarni, A.; Kaul, S.N.

    2002-01-01

    The study is being conducted since July 2000 to evaluate impact of cooling water discharges from Kaiga Nuclear Power Plant on physicochemical and biological characteristics of Kadra reservoir. Besides marginal decrease of DO, sulfate, nitrate and potassium near discharge point at surface water, abiotic features of the water samples collected from three layers, viz. surface, 3-m depth and bottom at nine locations of the reservoir, did not show remarkable differences with reference to pH, phosphate, conductivity, suspended solids, sodium, hardness, chloride, alkalinity and heavy metals (Cu, Fe, Ni, Zn, Pb, Cd, Cr and Mn). The DT varied between 5 and 8.5 degC at surface water during the study. The abiotic characteristics of the reservoir water meet the specification of drinking water standard of Bureau of Indian Standards. While the counts of phytoplankton and zooplankton were reduced near discharge point, their population at 500 m off the discharge point was comparable to those near dam site at about 11 km down stream from plant site. Plamer's index (0-15) and Shannon's diversity index values (1.39-2.44) of the plankton at different sampling points indicate oligotrophic and semi productive nature of the water body. The total coliform (TC), staphylococcus and heterotrophic counts were, in general, less near discharge point. Based on TC count, the reservoir water, during most of the period, is categorized as 'B' following CPCB classification of surface waters. Generation of data needs to be continued till 2-3 years for statistical interpretation and drawing conclusions pertaining to extent of impact of cooling water discharges on Kadra reservoir ecology. (author)

  14. Water drinking as a treatment for orthostatic syndromes

    Science.gov (United States)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  15. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China.

    Science.gov (United States)

    Ma, Weixing; Huang, Tinglin; Li, Xuan; Zhou, Zizhen; Li, Yang; Zeng, Kang

    2015-07-10

    Storm runoff events in the flooding season affect the water quality of reservoirs and increase risks to the water supply, but coping strategies have seldom been reported. The phenomenon of turbid current intrusion resulting in water turbidity and anoxic conditions reappearing after storm runoff, resulting in the deterioration of water quality, was observed in the flooding season in the deep canyon-shaped Heihe Reservoir. The objective of this work was to elucidate the effects of storm runoff on the Heihe Reservoir water quality and find a coping strategy. In this study, an intensive sampling campaign measuring water temperature, dissolved oxygen, turbidity, nutrients, and metals were conducted in the reservoir over a period of two years, and the water-lifting aerators were improved to achieve single aeration and a full layer of mixing and oxygenation functions using different volumes of gas. The operation of the improved water-lifting aerators mixed the reservoir three months ahead of the natural mixing time, and good water quality was maintained during the induced mixing period, thereby extending the good water quality period. The results can provide an effective coping strategy to improve the water quality of a source water reservoir and ensure the safety of drinking water.

  16. Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983-2012

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 2001 through September 2012, water years (WYs) 2002-12, were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1982 through September 2012 (WYs 1983-2012). Water samples were collected and analyzed by the Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli), and orthophosphate were calculated for WYs 2003-12 for all 37 monitoring stations. Instantaneous loads and yields (loads per unit area) of total coliform bacteria and E. coli, chloride, nitrite, nitrate, and orthophosphate were calculated for all sampling dates during WYs 2003-12 for 23 monitoring stations with streamflow data. Values of physical properties and concentrations of constituents were compared with State and Federal water-quality standards and guidelines and were related to streamflow, land-use characteristics, varying classes of timber operations, and impervious surface areas.

  17. Protecting health from metal exposures in drinking water.

    Science.gov (United States)

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  18. [Revision of the drinking water regulations].

    Science.gov (United States)

    Hauswirth, S

    2011-11-01

    The revision the Drinking Water Regulations will come into effect on 01.11.2011. Surveillance authorities and owners of drinking water supply systems had hoped for simplifications and reductions because of the new arrangements. According to the official statement for the revision the legislature intended to create more clarity, consider new scientific findings, to change regulations that have not been proved to close regulatory gaps, to deregulate and to increase the high quality standards. A detailed examination of the regulation text, however, raises doubts. The new classification of water supply systems requires different modalities of registration, water analyses and official observation, which will complicate the work of the authorities. In particular, the implementation of requirements of registration and examination for the owners of commercial and publicly-operated large hot-water systems in accordance with DVGW Worksheet W 551 requires more effort. According to the estimated 30 000 cases of legionellosis in Germany the need for a check of such systems for Legionella, however, is not called into question. Furthermore, the development of sampling plans and the monitoring of mobile water supply systems requires more work for the health authorities. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Assessment of bacteriologic profile of reservoir water in Ekpoma ...

    African Journals Online (AJOL)

    therefore, assesses the bacteriologic profile of water samples in Ekpoma, Edo, Nigeria, considering the vulnerability of the inhabitants to water-borne diseases often associated with unhygienic environment and lack of safe drinking water. The simple random sampling technique was adopted and water samples were ...

  20. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Groundtank households had better quality drinking water than households using storage containers filled from communal tankers. Uncovered storage containers had the poorest microbial water quality among all storage containers. All stored water did not meet drinking water standards, although mains water did.

  1. Drinking water quality of Sukkur municipal corporation

    International Nuclear Information System (INIS)

    Kandhar, I.A.; Ansari, A.K.

    2002-01-01

    SMC (Sukkur Municipal Corporation) supply the (filtered/settled) water for domestic purpose to the consumers, through intermittent water supply, from Phases I to IV. The water supply distribution network is underground and at most places pass parallel to sewerage lines. The grab sampling technique was followed for collecting representative samples. The official US-EPA and standard methods of water analysis have been used for drinking water quality analysis. DR/2000 spectrophotometer has been used for monitoring: Nitrates, Fluorides, Sulfates, Copper, Chromium, Iron and manganese. The trace metals Cr/sup 6/, Fe/sup 2+/ and other contaminants like; Turbidity and TSS (Total Suspended Solids) have been found higher than World Health Organization (WHO-1993) guideline values. (author)

  2. The microbial quality of drinking water in Manonyane community: Maseru District (Lesotho).

    Science.gov (United States)

    Gwimbi, P

    2011-09-01

    Provision of good quality household drinking water is an important means of improving public health in rural communities especially in Africa; and is the rationale behind protecting drinking water sources and promoting healthy practices at and around such sources. To examine the microbial content of drinking water from different types of drinking water sources in Manonyane community of Lesotho. The community's hygienic practices around the water sources are also assessed to establish their contribution to water quality. Water samples from thirty five water sources comprising 22 springs, 6 open wells, 6 boreholes and 1 open reservoir were assessed. Total coliform and Escherichia coli bacteria were analyzed in water sampled. Results of the tests were compared with the prescribed World Health Organization desirable limits. A household survey and field observations were conducted to assess the hygienic conditions and practices at and around the water sources. Total coliform were detected in 97% and Escherichia coli in 71% of the water samples. The concentration levels of Total coliform and Escherichia coli were above the permissible limits of the World Health Organization drinking water quality guidelines in each case. Protected sources had significantly less number of colony forming units (cfu) per 100 ml of water sample compared to unprotected sources (56% versus 95%, p water sources from livestock faeces, laundry practices, and water sources being down slope of pit latrines in some cases. These findings suggest source water protection and good hygiene practices can improve the quality of household drinking water where disinfection is not available. The results also suggest important lines of inquiry and provide support and input for environmental and public health programmes, particularly those related to water and sanitation.

  3. Microbiological and physicochemical quality of drinking water

    International Nuclear Information System (INIS)

    Chan, Chee Ling; Zalifah, M.K.; Norrakiah, A.S.

    2007-01-01

    This study was conducted on the water samples collected before and after filtration treatment was given. Five types of filtered drinking water (A1, B1, C1, D1 and E2) were chosen randomly from houses in Klang Valley for analyses. The purpose of this study was to determine the quality of filtered drinking water by looking into microbiological aspect and several physicochemical analyses such as turbidity, pH and total suspended solid (TSS). The microbiological analyses were performed to trace the presence of indicator organisms and pathogens such as Escherichia coli, Streptococcus faecalis and Pseudomonas aeruginosa. All of the water did not comply with the regulations of Food Act as consisted of more than 10 3 -10 4 cfu/ mL for total plate count. However, the total coliforms and E. coli were detected lower than 4 cfu/ mL and not exceeding the maximum limit of Food Act. While the presence of S. faecalis and P. aeruginosa were negative in all samples. The pH value was slightly acidic (pH -4 - 2.2 x 10 -3 mg/ L) and the turbidity for all the samples were recorded below 1 Nephelometric Turbidity units (NTU) thus, complying with the regulations. All the water samples that undergo the filtration system were fit to be consumed. (author)

  4. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  5. Drinking Water Quality Status and Contamination in Pakistan

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2017-01-01

    Full Text Available Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  6. Radium in drinking water in southwest Florida

    International Nuclear Information System (INIS)

    Johnson, W.; Eakins, J.

    1984-01-01

    Screening of public, non-community water supplies in a 12-county study area of Florida was undertaken. Fifty private water supplies in each county were also sampled. In six of the counties, more than 20% of all water supplies tested exceeded the Maximum Contaminant Level (MCL) for radium. Four of these counties were selected for study as affected counties and four others as control counties. The basis of this selection was the presence or absence of shallow deposits of phosphate ore, which was reported to be present in parts of the affected counties. It was concluded that the distribution of radium in drinking water is related to the presence of shallow deposits of phosphate ore. The geometric mean radium results for counties in the study area were compared with age adjusted cancer rates of the State of Florida and significant co-variance was indicated

  7. Radiation monitoring on shores of Kayrakum water reservoirs

    International Nuclear Information System (INIS)

    Boboev, B.D.; Khakimov, N.; Nazarov, Kh.M.; Abdulloev, Sh.; Barotov, A.M.

    2012-01-01

    Complex investigation results of radiological situation of Kayrakum water reservoir's fauna and flora are provided in this article. The field radiometric and dosimetric measurements, sampling for analysis by sampler from bottom sedimentation and water are carried out. It is determined that total hardness of water in Kayrakum water reservoir in the course of season (from April till December) fluctuated from 5.78 till 9.6 mg-eq/l. The maximum indicators were during the spring period. Ion sums in average per year was 791.2 mg-eq/l.

  8. Experimental study of water adsorption on Geysers reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Shubo Shang; Horne, Roland N.; Ramey, Henry J., Jr.

    1993-01-28

    Experimental isotherms of water vapor adsorption/desorption on three geothermal reservoir rock samples have been measured at temperatures of 80, 100, 120 and 140°C. Initial surface status of the sample was found to influence the amount of water adsorbed. At low relative pressures, adsorption is the dominant process of water retention onto the rock samples. Adsorption/desorption hysteresis was observed to exist over the whole pressure range at all temperatures. Similar observations were made for all three samples. The results of this study suggest that adsorption is important in storing water in geothermal reservoir rocks not only in itself, but also in inducing capillary condensation.

  9. Tracing dissolved organic carbon and trihalomethane formation potential between source water and finished drinking water at a lowland and an upland UK catchment.

    Science.gov (United States)

    Brooks, Emma; Freeman, Christopher; Gough, Rachel; Holliman, Peter J

    2015-12-15

    Rising dissolved organic carbon (DOC) concentrations in many upland UK catchments represents a challenge for drinking water companies, in particular due to the role of DOC as a precursor in the formation of trihalomethanes (THMs). Whereas traditionally, the response of drinking water companies has been focussed on treatment processes, increasingly, efforts have been made to better understanding the role of land use and catchment processes in affecting drinking water quality. In this study, water quality, including DOC and THM formation potential (THMFP) was assessed between the water source and finished drinking water at an upland and a lowland catchment. Surprisingly, the lowland catchment showed much higher reservoir DOC concentrations apparently due to the influence of a fen within the catchment from where a major reservoir inflow stream originated. Seasonal variations in water quality were observed, driving changes in THMFP. However, the reservoirs in both catchments appeared to dampen these temporal fluctuations. Treatment process applied in the 2 catchments were adapted to reservoir water quality with much higher DOC and THMFP removal rates observed at the lowland water treatment works where coagulation-flocculation was applied. However, selectivity during this DOC removal stage also appeared to increase the proportion of brominated THMs produced. Copyright © 2015. Published by Elsevier B.V.

  10. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification

    Directory of Open Access Journals (Sweden)

    Hai-Han Zhang

    2015-06-01

    Full Text Available Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C to the bottom (9.17 °C. Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24% and 65 m (12.58%. Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.

  11. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-06-17

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.

  12. Kashin-Beck disease and drinking water in Central Tibet

    OpenAIRE

    La Grange, M.; Mathieu, F.; Begaux, F.; Suetens, C.; Durand, M.-Cl.

    2001-01-01

    A cross-sectional survey was carried out in order to study the relationship between Kashin-Beck disease and drinking water. The average volume of the water containers was larger in families unaffected by the disease. Organic material was measured by ultraviolet (UV) spectroscopy. The UV absorbency was significantly lower in drinking water of unaffected families. Thus, the organic material in drinking water may play a role in the pathogenesis of Kashin-Beck disease.

  13. EVALUATION OF THE WATER TROPHIC STATE OF WAPIENICA DAM RESERVOIR

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2015-01-01

    Full Text Available In this publication the trophy level of Wapienica dam reservoir, based on the composition species of planktonic algae and their biomass, and concentrations of chlorophyll a, was defined. The research was conducted during the vegetative season in 2013 year; the samples were taken from two research points (W1 – the part of river Wapienica inflow to reservoir and W2 – the part of the reservoir dam by using bathometer. The whole biomass of planktonic algae and concentration of chlorophyll a from two research areas were low and it allowed to classify water of this reservoir to oligo-/ mesotrophic. Only in the part of the reservoir dam, in summer season, an increased trophy level was observed (Heinonen 1980. A similar trophic character (oligo-/ mesotrophic of the water reservoir was also indicated by algae species: Achnanthes lanceolata (Bréb. Grun. in Cl. and Grun., Chrysoccoccus minutus (Fritsch Nygaard. For a temporary increase of the trophy level, the diatom Nitzschia acicularis (Kütz. W. Sm. could indicate, because it is a typical species in poorly eutrophic water. The green algae (Pediastrum and Coelastrum, which were observed in summer season could also indicate for a rise of the trophic state, because they are typical for eutrophic water.

  14. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    2013-09-23

    Sep 23, 2013 ... Drinking water quality was investigated at source and corresponding point-of-use in 2 peri-urban areas receiving drink- ing water either by communal water tanker or by delivery directly from the distribution system to household-based groundtanks with taps. Water quality variables measured were ...

  15. Bacteriological examination of drinking water in Burdwan, India with ...

    African Journals Online (AJOL)

    SERVER

    2007-11-19

    Nov 19, 2007 ... Bacteriological examination of water samples collected from different sources showed that the water of mobile vendors and sweet shops of Burdwan market area was not potable while the municipal tap water was found to be safe for drinking. Key words: Drinking water, coliform, MPN test. INTRODUCTION.

  16. 30 CFR 71.600 - Drinking water; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  17. Biological stability of drinking water : Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  18. incidence of heavy metals in kano metropolis drinking water sources

    African Journals Online (AJOL)

    userpc

    Contamination of Kano metropolis drinking water sources with excessive heavy metals was evaluated using standard laboratory ... Keywords: Drinking water, Kano, Chromium, Lead, Iron and Zinc. INTRODUCTION. Water is essential to life as ... mercury in glass thermometer. The thermometer was rinsed with distilled water.

  19. Sunshine and saris equals safe drinking water | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-09

    Jun 9, 2016 ... Researchers from Canada and India funded by IDRC have found that filtering water through sari-cloth before purifying it in the sun's heat makes polluted water safe to drink. Polluted water is often the only source of drinking water for many low-income households in India. To kill the germs, people pour ...

  20. Evaluation of Five Treatment Plants for the Removal of Microcystins in Drinking Water

    Directory of Open Access Journals (Sweden)

    Manuel Álvarez Cortiñas

    2017-06-01

    Full Text Available In Galicia there are supplies that collect water from reservoirs showing growth of cyanobacteria that could produce toxins. The drinking water treatment plants (DWTPs of these supplies should provide adequate treatment and be subjected to maintenance. WHO guidelines make recommendations on the most suitable treatments for removing microcystins. The Department of Health developed a protocol of action against these events jointly with water basin authorities. 4 reservoirs and five treatment plants were identified for this study. The treatments of the plants, the maintenance carried out at the DWTPs and the results for sestonic and dissolved toxins analyzed by the Public Health Laboratory of Galicia in the reservoirs near the point of collection, before the treatment plants and after them, during the 2013-2014 biennium were evaluated.

  1. Drinking water purification in the Czech Republic and worldwide

    International Nuclear Information System (INIS)

    Krmela, Jan; Beckova, Vera; Vlcek, Jaroslav; Marhol, Milan

    2012-06-01

    The report is structured as follows: (i) Legislative (hygienic) requirements for technologies applied to drinking water purification with focus on uranium elimination; (ii) Technological drinking water treatment processes (settling, filtration, precipitation, acidification, iron and manganese removal) ; (iii) State Office for Nuclear Safety requirements for the operation of facilities to separate uranium from drinking water and for the handling of saturated ionexes from such facilities; (iv) Material requirements for the operation of ionex filters serving to separate uranium from drinking water; (v) Effect of enhanced uranium concentrations in drinking waters on human body; (vi) Uranium speciation in ground waters; (vii) Brief description of technologies which are used worldwide for uranium removal; (viii) Technologies which are usable and are used in the Czech Republic for drinking water purification from uranium; (ix) Inorganic and organic ion exchangers and sorbents. (P.A.)

  2. Polyelectrolyte determination in drinking water | Majam | Water SA

    African Journals Online (AJOL)

    Chemical contaminants that occur in drinking water are not usually associated with acute health effects when compared to microbial contaminants and are usually given a lower priority. Those that are of concern have cumulative toxic properties such as metals and substances that are carcinogenic. Some of these potentially ...

  3. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  4. Characterization by fluorescence of dissolved organic matter in rural drinking water storage tanks in Morocco.

    Science.gov (United States)

    Aziz, Faissal; Ouazzani, Naaila; Mandi, Laila; Assaad, Aziz; Pontvianne, Steve; Poirot, Hélène; Pons, Marie-Noëlle

    2018-04-01

    Water storage tanks, fed directly from the river through opened channels, are particular systems used for water supply in rural areas in Morocco. The stored water is used as drinking water by the surrounding population without any treatment. UV-visible spectroscopy and fluorescence spectroscopy (excitation-emission matrices and synchronous fluorescence) have been tested as rapid methods to assess the quality of the water stored in the reservoirs as well as along the river feeding them. Synchronous fluorescence spectra (SFS50), collected with a difference of 50 nm between excitation and emission wavelengths, revealed a high tryptophan-like fluorescence, indicative of a pollution induced by untreated domestic and/or farm wastewater. The best correlations were obtained between the total SFS50 fluorescence and dissolved organic carbon (DOC) and biological oxygen demand, showing that the contribution of humic-like fluorescent substances cannot be neglected to rapidly assess reservoir water quality in terms of DOC by fluorescence spectroscopy.

  5. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  6. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  7. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  8. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  9. Chemical composition and water quality of Tashlyk Water-cooling reservoir of South-Ukraine NPP

    International Nuclear Information System (INIS)

    Kosheleva, S.I.; Gajdar, E.M.

    1995-01-01

    Information about water quality in Tashlyk water reservoir (cooler of South-Ukrainian NPP) during 9 years (1980-1992) is presented. Comparative data about Water Quality of South Bug (its source of water nutrition) and this reservoir point on the periodical pollution by surface waters and industrial wastes with a great contain of sulphates and chlorides. The class of water has been changed from hydrocarbonat calcium to sulfur-chlorine-magnesium or chlorine-natrium. The contain of biogenic and organic components in reservoir's water has been corresponded to the main class of waters satisfactory cleanliness

  10. Drinking water for dairy cattle: always a benefit or a microbiological risk?

    Science.gov (United States)

    Van Eenige, M J E M; Counotte, G H M; Noordhuizen, J P T M

    2013-02-01

    Drinking water can be considered an essential nutrient for dairy cattle. However, because it comes from different sources, its chemical and microbiological quality does not always reach accepted standards. Moreover, water quality is not routinely assessed on dairy farms. The microecology of drinking water sources and distribution systems is rather complex and still not fully understood. Water quality is adversely affected by the formation of biofilms in distribution systems, which form a persistent reservoir for potentially pathogenic bacteria. Saprophytic microorganisms associated with such biofilms interact with organic and inorganic matter in water, with pathogens, and even with each other. In addition, the presence of biofilms in water distribution systems makes cleaning and disinfection difficult and sometimes impossible. This article describes the complex dynamics of microorganisms in water distribution systems. Water quality is diminished primarily as a result of faecal contamination and rarely as a result of putrefaction in water distribution systems. The design of such systems (with/ without anti-backflow valves and pressure) and the materials used (polyethylene enhances biofilm; stainless steel does not) affect the quality of water they provide. The best option is an open, funnel-shaped galvanized drinking trough, possibly with a pressure system, air inlet, and anti-backflow valves. A poor microbiological quality of drinking water may adversely affect feed intake, and herd health and productivity. In turn, public health may be affected because cattle can become a reservoir of microorganisms hazardous to humans, such as some strains of E. coli, Yersinia enterocolitica, and Campylobacter jejuni. A better understanding of the biological processes in water sources and distribution systems and of the viability of microorganisms in these systems may contribute to better advice on herd health and productivity at a farm level. Certain on-farm risk factors for

  11. Drinking water quality in urban areas of pakistan a case study of gujranwala city

    International Nuclear Information System (INIS)

    Haydar, S.; Rashid, H.

    2016-01-01

    A study was conducted to evaluate the drinking water quality of Gujranwala city. Samples were collected from 16 locations including: 4 tube wells, 4 overhead reservoirs (OHR) and 8 house connections. Twelve physicochemical and two bacteriological parameters were tested, before and after monsoon and compared with National Standards for Drinking Water Quality (NSDWQ). The results demonstrated that most of the physicochemical parameters, except lead, nickle and chromium were within NSDWQ before and after monsoon. Bacteriological and heavy metal contamination was found before and after the monsoon. Possible reasons of contamination are: no disinfection, old and leaking water pipes, poor drainage during monsoon and possible cross connections between water and sewerage lines. It is recommended to practice disinfection, laying of water and sewerage pipes on opposite sides of streets and periodic water quality monitoring. (author)

  12. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Fabricio D., E-mail: fabricio.cid@gmail.com [Laboratory of Biology ' Prof. E. Caviedes Codelia' , Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis (Argentina); Laboratory of Integrative Biology, Institute for Multidisciplinary Research in Biology (IMIBIO-SL), Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis (Argentina); Department of Biochemistry and Biological Sciences, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Anton, Rosa I. [Department of Analytical Chemistry, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Pardo, Rafael; Vega, Marisol [Department of Analytical Chemistry, Facultad de Ciencias, Universidad de Valladolid, Valladolid (Spain); Caviedes-Vidal, Enrique [Laboratory of Biology ' Prof. E. Caviedes Codelia' , Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis (Argentina); Laboratory of Integrative Biology, Institute for Multidisciplinary Research in Biology (IMIBIO-SL), Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis (Argentina); Department of Biochemistry and Biological Sciences, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina)

    2011-10-31

    Highlights: {yields} Water quality of an Argentinean reservoir has been investigated by N-way PCA. {yields} PARAFAC mode modelled spatial and seasonal variations of water composition. {yields} Two factors related with organic and lead pollution have been identified. {yields} The most polluted areas of the reservoir were located, and polluting sources identified. - Abstract: Temporal and spatial patterns of water quality of an important artificial water reservoir located in the semiarid Midwest of Argentina were investigated using chemometric techniques. Surface water samples were collected at 38 points of the water reservoir during eleven sampling campaigns between October 1998 and June 2000, covering the warm wet season and the cold dry season, and analyzed for dissolved oxygen (DO), conductivity, pH, ammonium, nitrate, nitrite, total dissolved solids (TDS), alkalinity, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, fluoride, sodium, potassium, iron, aluminum, silica, phosphate, sulfide, arsenic, chromium, lead, cadmium, chemical oxygen demand (COD), biochemical oxygen demand (BOD), viable aerobic bacteria (VAB) and total coliform bacteria (TC). Concentrations of lead, ammonium, nitrite and coliforms were higher than the maximum allowable limits for drinking water in a large proportion of the water samples. To obtain a general representation of the spatial and temporal trends of the water quality parameters at the reservoir, the three-dimensional dataset (sampling sites x parameters x sampling campaigns) has been analyzed by matrix augmentation principal component analysis (MA-PCA) and N-way principal component analysis (N-PCA) using Tucker3 and PARAFAC (Parallel Factor Analysis) models. MA-PCA produced a component accounting for the general behavior of parameters associated with organic pollution. The Tucker3 models were not appropriate for modelling the water quality dataset. The two-factor PARAFAC model provided the best picture to understand the

  13. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina

    International Nuclear Information System (INIS)

    Cid, Fabricio D.; Anton, Rosa I.; Pardo, Rafael; Vega, Marisol; Caviedes-Vidal, Enrique

    2011-01-01

    Highlights: → Water quality of an Argentinean reservoir has been investigated by N-way PCA. → PARAFAC mode modelled spatial and seasonal variations of water composition. → Two factors related with organic and lead pollution have been identified. → The most polluted areas of the reservoir were located, and polluting sources identified. - Abstract: Temporal and spatial patterns of water quality of an important artificial water reservoir located in the semiarid Midwest of Argentina were investigated using chemometric techniques. Surface water samples were collected at 38 points of the water reservoir during eleven sampling campaigns between October 1998 and June 2000, covering the warm wet season and the cold dry season, and analyzed for dissolved oxygen (DO), conductivity, pH, ammonium, nitrate, nitrite, total dissolved solids (TDS), alkalinity, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, fluoride, sodium, potassium, iron, aluminum, silica, phosphate, sulfide, arsenic, chromium, lead, cadmium, chemical oxygen demand (COD), biochemical oxygen demand (BOD), viable aerobic bacteria (VAB) and total coliform bacteria (TC). Concentrations of lead, ammonium, nitrite and coliforms were higher than the maximum allowable limits for drinking water in a large proportion of the water samples. To obtain a general representation of the spatial and temporal trends of the water quality parameters at the reservoir, the three-dimensional dataset (sampling sites x parameters x sampling campaigns) has been analyzed by matrix augmentation principal component analysis (MA-PCA) and N-way principal component analysis (N-PCA) using Tucker3 and PARAFAC (Parallel Factor Analysis) models. MA-PCA produced a component accounting for the general behavior of parameters associated with organic pollution. The Tucker3 models were not appropriate for modelling the water quality dataset. The two-factor PARAFAC model provided the best picture to understand the spatial and

  14. Chemical safety of food and drinking water

    International Nuclear Information System (INIS)

    Younes, M.; Heijden, C.A. van der

    1992-01-01

    Food and drinking water are major sources of human exposure to a large number of chemicals added intentionally for technological reasons or present unintentionally due to contamination. On the other hand, there is a public demand for an essentially risk-free supply of food and drinking water. The concern over the presence of chemicals in the human diet received further emphasis through the development of toxicological and analytical methodology with increased sensitivity over the years. In order to minimize the potential health hazards to the consumers, standards have been established which indicate levels of consumption that are - according to scientific evidence - considered safe and which, consequently, permit control measures to be taken. In this context, public perception of a particular risk, may not always be in line with what might be considered a 'real' risk. Thus, while in the public opinion risk associated with smoking or over-nutrition might be accepted or underestimated, certain food chemical related risks may not be accepted and are sometimes perceived as alarmingly high

  15. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. High enteric bacterial contamination of drinking water in Jigjiga city ...

    African Journals Online (AJOL)

    unhcc

    Methods: A cross-sectional study was conducted to assess bacteriological quality of drinking water in Jigjiga city from May-August, 2013. Both simple ... access to safe drinking water can result in tangible benefits to human health. .... water sample. Pipeline: The tap outlet was cleaned using a cloth and allow for maximum ...

  17. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  18. Assessment of changes in drinking water quality during distribution ...

    African Journals Online (AJOL)

    The quality of drinking water at the point of delivery to the consumer is crucial in safeguarding people's health. This study assesses changes in drinking water quality during distribution at Area 25 Township in Lilongwe, Malawi. Water samples were collected from the exit point of the treatment plant, storage tank and taps at ...

  19. Start-up of a drinking water biofilter

    DEFF Research Database (Denmark)

    Ramsay, Loren; Søborg, Ditte; Breda, Inês Lousinha Ribeiro

    When virgin filter media is placed in drinking water biofilters, a start-up period of some months typically ensues. During this period, the necessary inorganic coating and bacterial community are established on the filter medium, after which the treated water complies with drinking water criteria...

  20. Ensuring biological safety of drinking water at International Crops ...

    African Journals Online (AJOL)

    Potability of drinking water from various sources at the campus of International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India had been assessed for 17 years (1994 to 2010). All four sources of drinking water at ICRISAT, including Manjeera water (Municipal corporation ...

  1. High enteric bacterial contamination of drinking water in Jigjiga city ...

    African Journals Online (AJOL)

    unhcc

    2016;30(3):118-128]. Key words: Contamination, drinking water, households, enteric bacteria, Jigjiga. Introduction ... High enteric bacterial contamination of drinking of water in Jigjiga city, Eastern Ethiopia 119. Ethiop. J. Health Dev. 2016 ..... people's tendency to fetch water for toilet services with contaminated toilet articles ...

  2. Drinking Water State Revolving Fund: EPA Funding for ...

    Science.gov (United States)

    2017-07-06

    The Safe Drinking Water Act (SDWA) Amendments of 1996 (Pub. L. 104-182) authorize a Drinking Water State Revolving Fund (DWSRF) program to assist public water systems to finance the costs of infrastructure needed to achieve or maintain compliance with SDWA requirements and to protect public health.

  3. Optimization of Drinking Water Treatment Processes Using Artificial ...

    African Journals Online (AJOL)

    Drinking water treatment is the process of removing microorganisms and solid from water through different methods such as coagulation and filtration. Artificial neural network (ANN) was developed for process and cost optimization of drinking water treatment processes. Results obtained from ANN model showed that ANN ...

  4. physico-chemical and bacteriological analyses of drinking water

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... Physicochemical, heavy metals and bacteriological analysis of drinking water samples from ten. (10) geo-referenced points in five ... Analysis of Drinking Water in Ibeno LGA Akwa Ibom State. 117 ment Area is one of the coastal .... using mercury-in-glass broth thermometer. Water pH was taken in-situ using ...

  5. [Hydraulic fracturing - a hazard for drinking water?].

    Science.gov (United States)

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Water drinking as a treatment for orthostatic syndromes

    Science.gov (United States)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  7. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China

    Science.gov (United States)

    Li, Siyue; Ye, Chen; Zhang, Quanfa

    2017-08-01

    Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.

  8. Molybdenum distributions and variability in drinking water from England and Wales.

    Science.gov (United States)

    Smedley, P L; Cooper, D M; Lapworth, D J

    2014-10-01

    An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p  0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in all cases less than 2 μg/l, were more than an order of magnitude below the WHO health-based value and suggest that Mo is unlikely to pose a significant health or water supply problem in England and Wales.

  9. Mercury in water and bottom sediments from a mexican reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, P.; Diazdelgado, C.

    2001-01-01

    The Lerma-Santiago river's source is located in the State of Mexico. Its drainage basin occupies an area of 129,632 km2. The river receives urban wastewater discharges from 29 municipalities, as well as industrial water discharges, both treated and untreated, mainly from the industrial zones of Toluca, Lerma, Ocoyoacac, Santiago Tianguistengo, Pasteje and Atlacomulco. It is estimated that during a year, the stream receives 536 x 106 m3 of waste waters, which carries 350,946 ton of organic load; 33% of these waste waters come from urban discharges, and 67% originate from industrial discharges. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico and both are considered the most contaminated water bodies in the State of Mexico. Mercury concentrations in water and bottom sediments in the Jose Antonio Alzate Reservoir were determined in 6 different sampling zones over a 1-year period. Mercury was measured by instrumental neutron activation analysis (INAA) and irradiated with a thermal neutron flux of 9 x 1012 n. cm-2 s-1 for a period of 26 hours. High variations of mercury concentrations in water in both, soluble and suspended forms, were observed to depend on the sampling season. During the rainy season, rain events contribute with a substantial water volume to modify physicochemical parameters like pH, which dilute chemical species in the Alzate Reservoir. There are evidence that in the Jose Antonio Alzate reservoir, sedimentation and adsorption act as a natural cleaning process, decreasing the dissolved concentrations and increasing the metallic content of the sediments. A negative gradient was identified for mercury concentrations, from the Lerma river inlet to Alzate Reservoir dam, which demonstrates the considerable influence of the Lerma river inlet. This gradient also proves the existence of a metal recycling process between water and sediment, while the

  10. Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles

    OpenAIRE

    Garfi, Marianna; Cadena, Erasmo; Sanchez Ramos, David; Ferrer Martí, Ivet

    2016-01-01

    This study evaluated the environmental impacts caused by drinking water consumption in Barcelona (Spain) using the Life Cycle Assessment (LCA) methodology. Five different scenarios were compared: 1) tap water from conventional drinking water treatment; 2) tap water from conventional drinking water treatment with reverse osmosis at the water treatment plant; 3) tap water from conventional drinking water treatment with domestic reverse osmosis; 4) mineral water in plastic bottles, and 5) minera...

  11. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  12. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  13. MAGNESIUM, DRINKING WATER HARDNESS AND CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Dragana Nikic

    2006-01-01

    Full Text Available Many different countries suggest and justify an integrated laboratory and epidemiological research program with an aim to reject or accept the magnesium – CVD (cardiovascular disease hypothesis. The studies shown in this paper that have investigated the relationship between water hardness, especially magnesium and CVD indicate that, even though there has been an ongoing research for nearly half a century (1957-2004, it has not been completed yet. Different study designs (obductional, clinical, ecological, case-control and cohort restrict an adequate comparison of their results as well as the deduction of results applicable on each territorial level.The majority of researchers around the world, using populational and individual studies, have found an inverse (protective association between mortality and morbidity from CVD and the increase in water hardness, especially the increase in the concentration of magnesium. The most frequent benefit of the water with an optimal mineral composition is the reduction of mortality from ischemic heart disease.It was suggested that Mg from water is a supplementary source of Mg of high biological value, because magnesium from water is absorbed around 30% better than Mg in a diet. The vast majority of studies consider lower concentrations of Mg in the water, in the range of 10% of the total daily intake of Mg.Future research efforts must give better answers to low Mg concentrations in the drinking water, before any concrete recommendations are given to the public. Moreover, the researchers must also determine which chemical form of Mg is most easily absorbed and has the greatest impact.Additional research is necessary in order to further investigate the interrelation between different water and food components as well as individual risk factors in the pathogenesis of CVD.

  14. Asbestos in drinking water; Asbest im Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, K.R.

    1992-12-01

    Measurements and analysis of more than 100 samples of tap-water, originated from different countries of the Federal Republik of Germany, have been performed by means of the standardized TEM-procedure (ISO). The results have shown that the drinking water is contaminated with fine fibers, with chrysotile and amphibole asbestos. The majority of investigated samples contained less than 10{sup 6} fibers/liter, and the fibers were thin and shorter than 5 {mu}m. Nevertheless, in some tap-water samples the asbestos fiber concentrations were higher than 10{sup 6} fibers/liter and/or the content of long fibers (longer than 5 {mu}m) was relatively high. It is recommended tapwater with asbestos fiber concentrations over 10{sup 6} fibers/liter and/or with greater content of long fibers should not be used for cooking or drinking unless filtered. (orig.) [Deutsch] Mehr als 100 Trinkwasser-Proben aus verschiedenen Bundeslaendern wurden untersucht und analysiert bei Anwendung eines standardisierten TEM-Verfahrens (ISO). Die Ergebnisse zeigten, dass Trinkwasser (alte Bundeslaender) mit feinen Asbestfasern, Chrysotil und Amphibolen, mehr oder weniger kontaminiert ist. In der Mehrheit der untersuchten Proben lagen die Asbestkonzentrationen im Bereich weniger als 10{sup 6} Fasern/Liter und die gemessenen Fasern waren duenn und kuerzer als 5 {mu}m. Nichtsdestoweniger, in einigen Wasserproben wurden Asbestfaser-Kontaminationen im Bereich ueber 10{sup 6} Fasern/Liter ermittelt. Diese Wasserproben enthielten auch hoeheren Anteil an langen Fasern. Es wird empfohlen, Wasser mit Asbestfaserkonzentrationen ueber 10{sup 6} Fasern/Liter oder mit einem hoeheren Anteil an langen Asbestfasern nicht ohne weitere Behandlung (Filtration) zu trinken und nicht zum Kochen zu verwenden. (orig.)

  15. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  16. [The EU drinking water recommendations: objectives and perspectives].

    Science.gov (United States)

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    OpenAIRE

    Katika, Konstantina; Fabricius, Ida Lykke

    2016-01-01

    Advanced waterflooding (injection of water with selective ions in reservoirs) is amethod of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected wa...

  18. Mapping of tritium in drinking water from various Indian states

    International Nuclear Information System (INIS)

    Shah, Chirag A.; Baburajan, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The tritium in fresh water used for drinking purpose across five state of India was analyzed for tritium activity. The tritium data obtained were compared with the monitoring data of tritium in drinking water sources at Tarapur site, which houses a number of nuclear facilities. It is observed that the tritium activity in the water sample from various out station locations were in the range of < 0.48 to 1.33 Bq/l. The tritium value obtained in the drinking water sources at Tarapur was found to be in the range of 0.91 to 3.10 Bq/l. The monitoring of tritium in drinking water from Tarapur and from various out station location indicate that the level is negligible compared to the USEPA limit of 10000 Bq/l and the contribution of operation nuclear facilities to the tritium activity in drinking water source at Tarapur is insignificant. (author)

  19. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  20. Alternative Intake Station in Saguling Reservoir for The Needs of Raw Water in Bandung Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Marselina Mariana

    2018-01-01

    Full Text Available Bandung Metropolitan Area (BMA region is the upper watershed of Citarum with an area of ± 2338 km2. The status carried by BMA as a National Strategic Area from the perspective of economic encourage the increasing migration flows to BMA. These circumstances lead to an imbalance between supply and demand, in which on the one hand, demand for clean water is increasing. The potency of Saguling Reservoir as an alternative of raw water of BMA region in terms of quantity in this research was determined based on the determination of mainstay discharge. In this study, the intake site selection 11 monitoring posts will be carried out by reviewing the concentration of all parameters in Government Regulation No. 82 Year 2001 on any division of discharge grade using 5-grade Makov Discrete method (very dry, dry, normal, wet and very wet. In addition, the calculation of the value of Water Quality Index (WQI was done at each monitoring station for each division of discharge grade that has been done. The series of data flow and concentration parameters used in this study start from the year 1999 to 2014. The allocation of raw water discharge calculation for Saguling Reservoir in order to fulfill the needs of raw water in Bandung Metropolitan Area is 46,92m3/second (R5 dry for irrigation raw water supply and 29,53 92 m3/second (R10 dry for drinking water supply. Based on the assessment of the concentration of measured parameters and determination of Water Quality Index, it can be found that around Muara Ciminyak location is the most qualified location to be used as drinking raw water intake for Bandung Metropolitan Area. Based on this study, it also notes that the determination of the concentration of pollutant parameters needs to be done on the each division of discharge grade occurred.

  1. Effectiveness of Moringa oleifera defatted cake versus seed in the treatment of unsafe drinking water : case study of surface and well waters in Burkina Faso.

    OpenAIRE

    Kabore, Aminata; Savadogo, Boubacar; Rosillon, Francis; Traore, Alfred S.; Dianou, Dayéri

    2013-01-01

    Safe drinking water access for rural populations in developing countries remains a challenge for a sustainable develop-ment, particularly in rural and periurban areas of Burkina Faso. The study aims to investigate the purifying capacity of Moringa oleifera defatted cake as compared to Moringa oleifera seed in the treatment of surface and well waters used for populations alimentation. A total of 90 water samples were collected in sterile glass bottles from 3 dams’ water reservoirs, a river, an...

  2. Meeting drinking water and sanitation targets of MDGs. Water use & competition in sub-Saharan Africa

    NARCIS (Netherlands)

    Hoek van der, Marjolijn

    2006-01-01

    Access to safe drinking water and improved sanitation is of vital importance for human beings. Improving the access to safe drinking water and improved sanitation in developing countries is therefore one of the Millennium Development Goals (MDGs) to be me

  3. Small Drinking Water Systems Communication and Outreach Highlights

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  4. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications...

  5. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  6. Physico-Chemical Properties of Drinking Water at Erinfun ...

    African Journals Online (AJOL)

    The properties of the drinking water from Erinfun community in Ado-Ekiti was investigated. A total of fourteen drinking water samples were collected from different sampling points in the community viz: Aba, DSA, Annex, Staff quarters, Health centre, Lagos male, Lagos female, Abuja central, Abuja hostel, SOE, Poli venture, ...

  7. Bacteriological and Physicochemical Quality of Drinking Water and ...

    African Journals Online (AJOL)

    BACKGROUND: Lack of safe drinking water, basic sanitation, and hygienic practices are associated with high morbidity and mortality from excreta related diseases. The aims of this study were to determine the bacteriological and physico-chemical quality of drinking water and investigate the hygiene and sanitation practices ...

  8. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. The study was undertaken to assess the status of drinking water quality in the urban areas of the. Tigray region, northern Ethiopia. A total of 106 drinking water samples were collected from 16 densely populated urban areas of the region, viz.: Alamata, Korem, Maichew, Adigudom, Abyi-. Adi, Hagereselam ...

  9. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  10. Analysis of phthalate esters contamination in drinking water samples ...

    African Journals Online (AJOL)

    The optimum condition method was successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. The concentration of DMP, DEP and DBP in drinking water samples were below allowable levels, while the DEHP concentration in three samples was found to be greater than the ...

  11. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  12. Arsenic contamination levels in drinking water sources in mining ...

    African Journals Online (AJOL)

    Arsenic contamination in drinking water is a public health problem all over the World especially in mining areas. The study herein reported assessed the concentration levels of arsenic in some drinking water sources in the mining areas in the Lake Victoria Basin and investigated the potential for its removal by adsorption ...

  13. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir.

    Science.gov (United States)

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong

    2017-12-01

    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determination of perfluoroalkylated substances (PFASs) in drinking water from the Netherlands and Greece.

    Science.gov (United States)

    Zafeiraki, Effrosyni; Costopoulou, Danae; Vassiliadou, Irene; Leondiadis, Leondios; Dassenakis, Emmanouil; Traag, Wim; Hoogenboom, Ron L A P; van Leeuwen, Stefan P J

    2015-01-01

    In the present study 11 perfluoroalkylated substances (PFASs) were analysed in drinking tap water samples from the Netherlands (n = 37) and from Greece (n = 43) by applying LC-MS/MS and isotope dilution. PFASs concentrations above the limit of quantification, LOQ (0.6 ng/l) were detected in 20.9% of the samples from Greece. Total PFAS concentrations ranged between water from the western part of the Netherlands. This seems attributable to the source, which is purified surface water in this area. Short-chain PFASs and especially perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFHxS) were detected most frequently, whereas long-chain PFASs (C > 8) were only rarely detected. In the drinking water samples from the eastern part of the Netherlands, where drinking water is sourced from groundwater reservoirs, no PFASs were detected. This demonstrates that exposure to PFASs through drinking water in the Netherlands is dependent on the source. Additionally, five samples of bottled water from each country were analysed in the current study, with all of them originating from ground wells. In these samples, all PFASs were below the LOQ.

  15. Aerial view of the water reservoirs for Lab II

    CERN Multimedia

    1974-01-01

    Two large reservoirs (5000 m3 each) were built on the Swiss part of the site (Lab I is on the left). The water was drawn from the pumping station at Le Vengeron on Lac Léman, through a 10 km long pipe to be distributed over all Lab II.

  16. Assessment of the water balance of the Barekese reservoir in ...

    African Journals Online (AJOL)

    A 10 year water balance has been assessed for the Barekese Reservoir using an integrated Remote Sensing and GIS approach for estimation of surface runoff based on Soil Conservation Service Curve Number (SCS-CN). The SCS-CN model was calibrated against observed discharges recorded at Offinso located 10.3km ...

  17. Water contamination events in UK drinking-water supply systems.

    Science.gov (United States)

    Gray, John

    2008-01-01

    Water supply companies in the UK have a duty under prime UK legislation to notify the Drinking Water Inspectorate of events affecting or potentially affecting the quality of drinking-water supplies. Under the same legislation, the Inspectorate has a duty to investigate each event. After assessing all of the information available, including companies' reports, the Inspectorate advises on the way in which the event was handled and whether any statutory requirements were contravened. If appropriate, a prosecution of the water company may be initiated. Copies of the assessment are sent to the water company, relevant local and health authorities, Ofwat (the economic regulator), the regional Consumer Council for Water and any other interested parties, including consumers who request it. Generic guidance may be issued to the industry on matters of wider concern. This paper considers the role of the Inspectorate, the powers available to it and reporting arrangements. An overview is presented of events that occurred between 1990 and 2005 and common features are identified. Causes of different types of event are discussed. The importance of well-established contacts between the various interested parties involved in protecting public health is emphasised through discussion of example incidents.

  18. The Variation Characteristic of Sulfides and VOSc in a Source Water Reservoir and Its Control Using a Water-Lifting Aerator

    Directory of Open Access Journals (Sweden)

    Jian-Chao Shi

    2016-04-01

    Full Text Available Sulfides and volatile organic sulfur compounds (VOSc in water are not only malodorous but also toxic to humans and aquatic organisms. They cause serious deterioration in the ecological environment and pollute drinking water sources. In the present study, a source water reservoir—Zhoucun Reservoir in East China—was selected as the study site. Through a combination of field monitoring and in situ release experiments of sulfides, the characteristics of seasonal variation and distribution of sulfides and VOSc in the reservoir were studied, and the cause of the sulfide pollution was explained. The results show that sulfide pollution was quite severe in August and September 2014 in the Zhoucun Reservoir, with up to 1.59 mg·L−1 of sulfides in the lower layer water. The main source of sulfides is endogenous pollution. VOSc concentration correlates very well with that of sulfides during the summer, with a peak VOSc concentration of 44.37 μg·L−1. An installed water-lifting aeration system was shown to directly oxygenate the lower layer water, as well as mix water from the lower and the upper layers. Finally, the principle and results of controlling sulfides and VOSc in reservoirs using water-lifting aerators are clarified. Information about sulfides and VOSc fluctuation and control gained in this study may be applicable to similar reservoirs, and useful in practical water quality improvement and pollution prevention.

  19. Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples.

    Science.gov (United States)

    Kummrow, Fábio; Rech, Celia M; Coimbrão, Carlos A; Roubicek, Deborah A; Umbuzeiro, Gisela de A

    2003-11-10

    The combination of mutagenicity tests and selective extraction methodologies can be useful to indicate the possible classes of genotoxic organic contaminants in water samples. Treated and source water samples from two sites were analyzed: a river under the influence of an azo dye-processing plant discharge and a reservoir not directly impacted with industrial discharges, but contaminated with untreated domestic sewage. Organic extraction was performed in columns packed with XAD4 resin, that adsorbs a broad class of mutagenic compounds like polycyclic aromatic hydrocarbons (PAHs), arylamines, nitrocompounds, quinolines, antraquinones, etc., including the halogenated disinfection by-products; and with blue rayon that selectively adsorbs polycyclic planar structures. The organic extracts were tested for mutagenicity with the Salmonella assay using TA98 and TA100 strains and the potencies were compared. A protocol for cleaning the blue rayon fibers was developed and the efficiency of the reused fibers was analyzed with spiked samples. For the river water samples under the influence of the azo-type dye-processing plant, the mutagenicity was much higher for both blue rayon and XAD4 extracts when compared to the water from the reservoir not directly impacted with industrial discharges. For the drinking water samples, although both sites showed mutagenic responses with XAD4, only samples from the site under the influence of the industrial discharge showed mutagenic activity with the blue rayon extraction, suggesting the presence of polycyclic compounds in those samples. As expected, negative results were found with the blue rayon extracts of the drinking water collected from the reservoir not contaminated with industrial discharges. In this case, it appears that using the blue rayon to extract drinking water samples and comparing the results with the XAD resin extracts we were able to distinguish the mutagenicity caused by industrial contaminants from the halogenated

  20. Models and statistical analysis of organic micropollutants in groundwater-based drinking water resources

    DEFF Research Database (Denmark)

    Malaguerra, Flavio

    The access to safe drinking water is essential for the well being of the population. The spread of micropollutant contamination jeopardise many freshwater reservoirs, and is a serious threat for human health, especially because of its long-term effects. To asses the threat of contamination, models...... are required to study the main contamination pathways, and to make predictions of pollution fluxes. Groundwater is used as drinking water in many countries because subsurface processes can mitigate pollution and purify the water by removing xenobiotic compounds. However, groundwater often interacts...... with surface water, which is more vulnerable to contamination, and can transfer pollution to groundwater. The fate of micropollutants in aquifers is influenced by many factors: sorption, degradation and dilution are processes that can interact together and create very complex systems, which are difficult...

  1. Management of toxic cyanobacteria for drinking water production of Ain Zada Dam.

    Science.gov (United States)

    Saoudi, Amel; Brient, Luc; Boucetta, Sabrine; Ouzrout, Rachid; Bormans, Myriam; Bensouilah, Mourad

    2017-07-01

    Blooms of toxic cyanobacteria in Algerian reservoirs represent a potential health problem, mainly from drinking water that supplies the local population of Ain Zada (Bordj Bou Arreridj). The objective of this study is to monitor, detect, and identify the existence of cyanobacteria and microcystins during blooming times. Samples were taken in 2013 from eight stations. The results show that three potentially toxic cyanobacterial genera with the species Planktothrix agardhii were dominant. Cyanobacterial biomass, phycocyanin (PC) concentrations, and microcystin (MC) concentrations were high in the surface layer and at 14 m depth; these values were also high in the treated water. On 11 May 2013, MC concentrations were 6.3 μg/L in MC-LR equivalent in the drinking water. This study shows for the first time the presence of cyanotoxins in raw and treated waters, highlighting that regular monitoring of cyanobacteria and cyanotoxins must be undertaken to avoid potential health problems.

  2. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples...... water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses...... a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD...

  3. Drinking Water Quality in Hospitals and Other Buildings

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pa...

  4. Time-Of-Travel Tool Protects Drinking Water

    Science.gov (United States)

    The Lower Susquehanna Source Water Protection (SWP) Partnership utilizes the Incident Command Tool for Drinking Water Protection (ICWater) to support the Pennsylvania Department of Environmental Protection (PADEP) with real-time spill tracking information.

  5. Emergency Supplies of Water for Drinking and Food Preparation

    OpenAIRE

    Parrott, Kathleen R. (Kathleen Rose), 1950-; Roberts, Tim, 1960-; Ross, B. B.

    2009-01-01

    When preparing for a disaster, it is important to provide for an adequate supply of water for drinking and cooking. In natural disasters, such as floods, hurricanes, or earthquakes, the municipal water supply is likely to be disrupted.

  6. Strontium 90 in silts of the Dnieper cascade water reservoirs

    International Nuclear Information System (INIS)

    Romanenko, V.D.; Kuz'menko, M.I.; Matvienko, L.P.; Klenus, V.G.; Nasvit, O.I.

    1989-01-01

    The change of strontium-90 content in water and silts of the Dnieper cascade water reservoirs was analyzed. It was shown, that decrease of strontium-90 content in water in time connected basically with ion exchange adsorption of strontium-90 by residues. A high sorption ability of residues made it possible for radioisotopes to reduce sharply their concentration along depth of soils. The highest concentration of radioisotopes was in the upper layers, enriched by silt. It was ascertained, that strontium-90 migration along depth of residues took place rapidly in the Kiev's water reservoir. Down the cascade strontium-90 content reduced in lower layers of residues as well as in upper layers. 4 tabs

  7. Outbreak of hepatitis A in a college traced to contaminated water reservoir in cafeteria.

    Science.gov (United States)

    Poonawagul, U; Warintrawat, S; Snitbhan, R; Kitisriwarapoj, S; Chaiyakunt, V; Foy, H M

    1995-12-01

    A sharp but short outbreak of hepatitis A occurred in a college during September and October 1992. The epidemic pattern suggested a common source. The attack rate of clinically recognizable hepatitis A was 8% all cases were HAV IgM positive. Among 31 students with minor symptoms but without jaundice 8 (26%) were also HAV IgM positive, as were 8 (10%) of 77 totally asymptomatic students tested. A case control study of eating and drinking habits of the students showed no other significant differences other than that 45 of 56 cases and 18 of 34 controls interviewed had filled their water glasses by dipping them in a overflow water reservoir. This gives an odds ratio of 3.8. The reservoir was heavily contaminated with coliform bacteria and the residual chlorine was at lower than standard concentration, whereas other water resources were clean. It is suggested that the reservoir had been contaminated with hepatitis A virus by somebody with fecally contaminated hands a couple of weeks prior to the beginning of the outbreak.

  8. Microbial quality of drinking water from microfiltered water dispensers.

    Science.gov (United States)

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Consumer Perception and Preference of Drinking Water Sources

    OpenAIRE

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-01-01

    Introduction Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. Methods This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were a...

  10. Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources.

    Science.gov (United States)

    Lee, Ju Young; Yang, Jung-Seok; Han, Mooyoung; Choi, Jaeyoung

    2010-01-15

    Rainwater harvesting (RWH) offers considerable potential as an alternative water supply. In this study, all of the harvested rainwater samples met the requirements for grey water but not for drinking water. In terms of microbiological parameters, total coliform (TC) and Escherichia coli (EC) were measured in 91.6% and 72%, respectively, of harvested rainwater samples at levels exceeding the guidelines for drinking water, consistent with rainfall events. In the case of the reservoir water samples, TC and EC were detected in 94.4% and 85.2%, respectively, of the samples at levels exceeding the guidelines for drinking water. Both indicators gradually increased in summer and fall. The highest median values of both TC and EC were detected during the fall. Chemical parameters such as common anions and major cations as well as metal ions in harvested rainwater were within the acceptable ranges for drinking water. By contrast, Al shows a notable increase to over 200mugL(-1) in the spring due to the intense periodic dust storms that can pass over the Gobi Desert in northern China. In terms of statistical analysis, the harvested rainwater quality showed that TC and EC exhibit high positive correlations with NO(3)(-) (rho(TC)=0.786 and rho(EC)=0.42) and PO(4)(-) (rho(TC)=0.646 and rho(EC)=0.653), which originally derive from catchment contamination, but strong negative correlations with Cl(-) (rho(TC)=-0.688 and rho(EC)=-0.484) and Na(+) (rho(TC)=-0.469 and rho(EC)=-0.418), which originate from seawater. Copyright 2009. Published by Elsevier B.V.

  11. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    Science.gov (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  12. Integration of Aquifer Storage Transfer and Recovery and HACCP for Ensuring Drinking Water Quality

    Science.gov (United States)

    Lee, S. I.; Ji, H. W.

    2015-12-01

    The integration of ASTR (Aquifer Storage Transfer and Recovery) and HACCP (Hazard Analysis and Critical Control Point) is being attempted to ensure drinking water quality in a delta area. ASTR is a water supply system in which surface water is injected into a well for storage and recovered from a different well. During the process natural water treatment is achieved in the aquifer. ASTR has advantages over surface reservoirs in that the water is protected from external contaminants and free from water loss by evaporation. HACCP, originated from the food industry, can efficiently manage hazards and reduce risks when it is introduced to the drinking water production. The study area is the located in the Nakdong River Delta, South Korea. Water quality of this region has been deteriorated due to the increased pollution loads from the upstream cities and industrial complexes. ASTR equipped with HACCP system is suggested as a means to heighten the public trust in drinking water. After the drinking water supply system using ASTR was decomposed into ten processes, principles of HACCP were applied. Hazardous event analysis was conducted for 114 hazardous events and nine major hazardous events were identified based on the likelihood and the severity assessment. Potential risk of chemical hazards, as a function of amounts, travel distance and toxicity, was evaluated and the result shows the relative threat a city poses to the drinking water supply facility. Next, critical control points were determined using decision tree analysis. Critical limits, maximum and/or minimum values to which biological, chemical or physical parameters must be controlled, were established. Other procedures such as monitoring, corrective actions and will be presented.

  13. Reservoir operation schemes for water pollution accidents in Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2012-03-01

    Full Text Available After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.

  14. Tribal Set-Aside Program of the Drinking Water Infrastructure Grant

    Science.gov (United States)

    The Safe Drinking Water Act (SWDA), as amended in 1996, established the Drinking Water State Revolving Fund (DWSRF) to make funds available to drinking water systems to finance infrastructure improvements.

  15. Effects of reservoirs water level variations on fish recruitment

    Directory of Open Access Journals (Sweden)

    Fabíula T. de Lima

    2017-10-01

    Full Text Available ABSTRACT The construction of hydroelectric power plants has many social and environmental impacts. Among them, the impacts on fish communities, which habitats are drastically modified by dams, with consequences across the ecosystem. This study aimed to assess the influence of water level (WL variations in the reservoirs of the Itá and Machadinho hydroelectric plants on the recruitment of fish species from the upper Uruguay River in southern Brazil. The data analyzed resulted from the WL variation produced exclusively by the hydroelectric plants generation and were collected between the years 2001 and 2012. The results showed significant correlations between the abundance of juvenile fish and the hydrological parameters only for some reproductive guilds. The species that spawn in nests showed, in general, a clear preference for the stability in the WL of the reservoirs, while the species that spawn in macrophytes or that release demersal eggs showed no significant correlation between the abundance of juvenile fish and hydrological parameters. A divergence of results between the two reservoirs was observed between the species that release semi-dense eggs; a positive correlation with a more stable WL was only observed in the Machadinho reservoir. This result can be driven by a wider range of WL variation in Machadinho reservoir.

  16. Cardiovascular responses to water drinking: does osmolality play a role?

    Science.gov (United States)

    Brown, Clive M; Barberini, Luc; Dulloo, Abdul G; Montani, Jean-Pierre

    2005-12-01

    Water drinking activates the autonomic nervous system and induces acute hemodynamic changes. The actual stimulus for these effects is undetermined but might be related to either gastric distension or to osmotic factors. In the present study, we tested whether the cardiovascular responses to water drinking are related to water's relative hypoosmolality. Therefore, we compared the cardiovascular effects of a water drink (7.5 ml/kg body wt) with an identical volume of a physiological (0.9%) saline solution in nine healthy subjects (6 male, 3 female, aged 26 +/- 2 years), while continuously monitoring beat-to-beat blood pressure (finger plethysmography), cardiac intervals (electrocardiography), and cardiac output (thoracic impedance). Total peripheral resistance was calculated as mean blood pressure/cardiac output. Cardiac interval variability (high-frequency power) was assessed by spectral analysis as an index of cardiac vagal tone. Baroreceptor sensitivity was evaluated using the sequence technique. Drinking water, but not saline, decreased heart rate (P = 0.01) and increased total peripheral resistance (P water nor saline substantially increased blood pressure. These responses suggest that water drinking simultaneously increases sympathetic vasoconstrictor activity and cardiac vagal tone. That these effects were absent after drinking physiological saline indicate that the cardiovascular responses to water drinking are influenced by its hypoosmotic properties.

  17. Development of a drinking water regulation for perchlorate in California.

    Science.gov (United States)

    Tikkanen, Maria W

    2006-05-10

    Perchlorate is an environmental contaminant often associated with military installations and rocket propellant manufacture and testing facilities across the U.S. Highly water soluble, perchlorate has been found by federal and state agencies at almost 400 sites within the U.S. in groundwater, surface water, soil or public drinking water. There is no federal drinking water standard for perchlorate, but it is on the drinking water Contaminant Candidate List, and falls under the Unregulated Contaminant Monitoring Rule (UCMR) for which monitoring is required. The recent National Academy of Science (NAS) report on the potential health effects of perchlorate recommended a perchlorate reference dose of 0.0007 mg/kg of body weight which would be equivalent to a drinking water concentration of 24.5 microg/L. In California, approximately 395 wells in 96 water systems have been shown to contain perchlorate, and about 90% of these are located in Southern California. Water taken from the Colorado River, a major surface water supply to Southern California, has had reported detections of perchlorate ranging from non-detect to 9 microg/L. California has established a Public Health Goal (PHG) of 6 microg/L for perchlorate, and a proposed drinking water regulation is imminent. This review details the regulatory process involved with particular attention given to the occurrence of perchlorate in California drinking water sources and analytical methodology utilized.

  18. Level of Faecal Coliform Contamination of Drinking Water Sources ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... CONCLUSION: In this study, the prevalence of positive faecal coliform at water source was high. Educational status, sanitary. Risk of contamination at the water source, water shortage experience had significant associations with the presence of faecal coliform in drinking water sources. KEYWORDS: Water ...

  19. Assessing the Bacteriological Quality of Drinking Water from ...

    African Journals Online (AJOL)

    Assessing the Bacteriological Quality of Drinking Water from Sources to Household Water Samples of the Rural Communities of Dire Dawa Administrative Council, Eastern Ethiopia. ... This is due to lack of good water treatment, improper water handling practices and lack of the protection of the water sources. Consequently ...

  20. Biological effects of water reservoir radioactive contamination

    International Nuclear Information System (INIS)

    Mashneva, N.I.

    1983-01-01

    Radiation damage to fresh water fishes at early stages of ontogenesis is revealed only during the spawn incubation in a solution with 10 -5 to 10 -3 Cu/l radioactivity and at relatively high dosages exceeding 500-1000 rad. Damaging effect of a fission product mixture of 9, 30 and 100 day age as well as of several separate radionuclides on embryogenesis of freshwater fishes depends mainly on fish species, concentration, toxicity, chemical form of radionuclides in the residence medium, on peculiarities of metabolism between the aqueous medium and an organism, stage of the embryo development by the moment of radiation effect and duration of this effect

  1. On the water saturation calculation in hydrocarbon sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Stein Ottar

    2002-07-01

    The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A

  2. Assessment of quality of drinking water in Amasaman, Accra (Ghana)

    International Nuclear Information System (INIS)

    Quarcoo, G.; Hodgson, I. O. A.; Ampofo, J. A.; Cobbina, S. J.; Koku, J. E.

    2014-01-01

    The physico-chemical and microbial quality attributes of untreated water samples from hand dug wells and treated water delivered by tankers (mobile services) were assessed to determine the susceptibility of Amasaman community to water borne diseases. The physico-chemical parameters of all the water sources for domestic use were within the World Health Organization (WHO) drinking water guidelines and Ghana Standards (GS), with the exception of turbidity and colour which showed higher values for the well waters. With respect to the microbial quality, the waters from the hand-dug wells and tanker services showed presence of both total and faecal coliforms, at levels higher than WHO and GS values of zero counts per 100 mL for drinking water. The poor microbial quality (presence of coliform bacteria) of all the water samples suggested susceptibility and exposure of the community to waterborne diseases on continuously drinking the available water. (au)

  3. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems.

    Science.gov (United States)

    Post, Gloria B; Louis, Judith B; Lippincott, R Lee; Procopio, Nicholas A

    2013-01-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were previously detected (≥ 4 ng/L) in 65% and 30%, respectively, of 23 New Jersey (NJ) public drinking water systems (PWS) sampled in 2006. We now report on a 2009 study of the occurrence of PFOA, PFOS, and eight other perfluorinated compounds (PFCs) in raw water samples from 30 intakes (18 groundwater and 12 surface water) from 29 additional NJ PWS. Between 1 and 8 PFCs were detected (≥ 5 ng/L) in 21 (70%) of 30 PWS samples at total PFC concentrations of 5-174 ng/L. Although PFOA was the most commonly detected PFC (57% of samples) and was found at the highest maximum concentration (100 ng/L), some of the higher levels of other PFCs were at sites with little or no PFOA. Perfluorononanoic acid was detected more frequently (30%) and at higher concentrations (up to 96 ng/L) than in raw or finished drinking water elsewhere, and it was found at several sites as the sole or predominant PFC, a pattern not reported in other drinking water studies. PFOS, perfluoropentanoic acid, and perfluorohexanoic acid were each detected in more than 20% of samples, while perfluoroheptanoic acid, perfluorobutane sulfonic acid, and perfluorohexane sulfonic acid were detected less frequently. Perfluorobutanoic acid was found only once (6 ng/L), and perfluorodecanoic acid was not detected. Total PFCs were highest in two reservoirs near an airfield; these were also the only sites with total perfluorosulfonic acids higher than total perfluorocarboxylic acids (PFCAs). PFC levels in raw and finished water from the same source were similar at those sites where both were tested. Five wells of two additional NJ PWS known to be contaminated with PFOA were also each sampled 4-9 times in 2010-13 for nine of the same PFCs. Total PFCs (almost completely PFCAs) at one of these PWS located near an industrial source of PFCs were higher than in any other PWS tested (up to 330 ng/L). These results show that multiple PFCs are

  4. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    Science.gov (United States)

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  5. An assessment of drinking-water quality post-Haiyan.

    Science.gov (United States)

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  6. Public Health Consequences of Lead in Drinking Water.

    Science.gov (United States)

    Levallois, Patrick; Barn, Prabjit; Valcke, Mathieu; Gauvin, Denis; Kosatsky, Tom

    2018-03-19

    Lead can enter drinking water from lead service lines and lead-containing plumbing, particularly in the presence of corrosive water. We review the current evidence on the role of drinking water as a source of lead exposure and its potential impacts on health, with an emphasis on children. Drinking water guidelines and mitigation strategies are also presented. The impact of lead on neurodevelopmental effects in children even at low levels of exposure is well established. Population and toxicokinetic modeling studies have found a clear relationship between water lead levels and blood lead levels in children at low levels of lead in drinking water. Various mitigation strategies can lower lead levels in water. The importance of drinking water as a contributor to total lead exposure depends on water lead levels and the amount consumed, as well as the relative contribution of other sources. Efforts should be made to reduce lead exposure for all sources, including drinking water, considering that no threshold level of exposure exists for the neurodevelopmental effects of lead in children.

  7. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Directory of Open Access Journals (Sweden)

    Renzhi Liu

    2015-12-01

    Full Text Available Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA, designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River. Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  8. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  9. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  10. Fluoride content in bottled drinking waters, carbonated soft drinks and fruit juices in Davangere city, India.

    Science.gov (United States)

    Thippeswamy, H M; Kumar, Nanditha; Anand, S R; Prashant, G M; Chandu, G N

    2010-01-01

    The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19) F/L, 0.29 mg (±0.06) F/L and 0.22 mg (±0.05) F/L, respectively. In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.

  11. Fluoride content in bottled drinking waters, carbonated soft drinks and fruit juices in Davangere city, India

    Directory of Open Access Journals (Sweden)

    Thippeswamy H

    2010-01-01

    Full Text Available Background: The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. Objective: To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Materials and Methods: Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. Results: The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19 F/L, 0.29 mg (±0.06 F/L and 0.22 mg (±0.05 F/L, respectively. Conclusion: In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.

  12. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    Science.gov (United States)

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  14. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  15. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    NARCIS (Netherlands)

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, P.R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts

  16. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    Science.gov (United States)

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  17. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  18. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  19. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  20. Time to revisit arsenic regulations: comparing drinking water and rice.

    Science.gov (United States)

    Sauvé, Sébastien

    2014-05-17

    Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.

  1. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-09-09

    ... Protection Agency (EPA or Agency) is announcing the fifth and final in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC). The.... Environmental Protection Agency, Office of Ground Water and Drinking Water, Water Security Division (Mail Code...

  2. Application of factor analysis to the water quality in reservoirs

    Science.gov (United States)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this work we present a Factor Analysis of chemical and environmental variables of the water column and hydro-morphological features of several Portuguese reservoirs. The objective is to reduce the initial number of variables, keeping their common characteristics. Using the Factor Analysis, the environmental variables measured in the epilimnion and in the hypolimnion, together with the hydromorphological characteristics of the dams were reduced from 63 variables to only 13 factors, which explained a total of 83.348% of the variance in the original data. After performing rotation using the Varimax method, the relations between the factors and the original variables got clearer and more explainable, which provided a Factor Analysis model for these environmental variables using 13 varifactors: Water quality and distance to the source, Hypolimnion chemical composition, Sulfite-reducing bacteria and nutrients, Coliforms and faecal streptococci, Reservoir depth, Temperature, Location, among other factors.

  3. The use of packed water in urban drinking water and its advantages to other methods of separating drinking water from undrinkable water (The case study : Ferdows city in south Khorasan)

    OpenAIRE

    Mehdi Akhgari; Ahmad Mansuri; Saeed Mansuri; Sara Mirzaei

    2014-01-01

    Today,more than one billion people of the world don't have access to safe drinking water.  Therefore, due to the population increase andconsequently increasing water needs, and the reduction of drinking watersources available, separating drinking water and non-drinking water seemsnecessary. In this article, the use of packed water is compared to other methods,such as two networks (drinkable and non-drinkable) water supply, public waterstations, purifying drinking water, and transferring high ...

  4. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    Science.gov (United States)

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  5. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    Science.gov (United States)

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  6. Natural and Artificial Radioactivity in Drinking Water in Malaga, Spain

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Gordo, E.; Canete, S.; Perez, M.

    2011-01-01

    Water has a vast importance for numerous human activities, so that securing supplies of drinking water of a standard quality is becoming more and more difficult. The measurement of radioactivity in drinking water permits us to determine the exposure of the population to radiation from the habitual consumption of water. The occurrence of radionuclides in drinking water gives rise to internal exposure of humans, directly on the decay of radionuclides taken into the body through ingestion and inhalation and indirectly when they are incorporated as part of the food-chain The measurement of radioactivity in drinking water permits us to determine the exposure of population to radiation from the habitual consumption of water. An intensive study of the water supply in the city of Malaga during 2002-2010 has been carried out in order to determine the gross alpha activities, gross beta activities and natural and artificial radionuclides present in drinking water. A data base on natural and artificial radioactivity in water was produced. The results indicated that a high percentage of the water sample contains a total gross alpha and beta less than 0.10 Bq/l and 1 Bq/l respectively. The main objectives were: 1) to analyses gross alpha and gross beta activities and to know the statistical distributions. 2) to study the levels of natural and artificial radionuclides 3) to determine a possible mathematical correlation between the radionuclides and several factors.

  7. Multipurpose Water Reservoir Management: An Evolutionary Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Luís A. Scola

    2014-01-01

    Full Text Available The reservoirs that feed large hydropower plants should be managed in order to provide other uses for the water resources. Those uses include, for instance, flood control and avoidance, irrigation, navigability in the rivers, and other ones. This work presents an evolutionary multiobjective optimization approach for the study of multiple water usages in multiple interlinked reservoirs, including both power generation objectives and other objectives not related to energy generation. The classical evolutionary algorithm NSGA-II is employed as the basic multiobjective optimization machinery, being modified in order to cope with specific problem features. The case studies, which include the analysis of a problem which involves an objective of navigability on the river, are tailored in order to illustrate the usefulness of the data generated by the proposed methodology for decision-making on the problem of operation planning of multiple reservoirs with multiple usages. It is shown that it is even possible to use the generated data in order to determine the cost of any new usage of the water, in terms of the opportunity cost that can be measured on the revenues related to electric energy sales.

  8. Assessment of Reservoir Water Quality Using Multivariate Statistical Techniques: A Case Study of Qiandao Lake, China

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2016-03-01

    Full Text Available Qiandao Lake (Xin’an Jiang reservoir plays a significant role in drinking water supply for eastern China, and it is an attractive tourist destination. Three multivariate statistical methods were comprehensively applied to assess the spatial and temporal variations in water quality as well as potential pollution sources in Qiandao Lake. Data sets of nine parameters from 12 monitoring sites during 2010–2013 were obtained for analysis. Cluster analysis (CA was applied to classify the 12 sampling sites into three groups (Groups A, B and C and the 12 monitoring months into two clusters (April-July, and the remaining months. Discriminant analysis (DA identified Secchi disc depth, dissolved oxygen, permanganate index and total phosphorus as the significant variables for distinguishing variations of different years, with 79.9% correct assignments. Dissolved oxygen, pH and chlorophyll-a were determined to discriminate between the two sampling periods classified by CA, with 87.8% correct assignments. For spatial variation, DA identified Secchi disc depth and ammonia nitrogen as the significant discriminating parameters, with 81.6% correct assignments. Principal component analysis (PCA identified organic pollution, nutrient pollution, domestic sewage, and agricultural and surface runoff as the primary pollution sources, explaining 84.58%, 81.61% and 78.68% of the total variance in Groups A, B and C, respectively. These results demonstrate the effectiveness of integrated use of CA, DA and PCA for reservoir water quality evaluation and could assist managers in improving water resources management.

  9. Cyanobacteria species identified in the Weija and Kpong reservoirs ...

    African Journals Online (AJOL)

    The Kpong and Weija reservoirs supply drinking water to Accra, Ghana. This study was conducted to identify the cyanobacteria present in these reservoirs and to ascertain whether current treatment processes remove whole cyanobacteria cells from the drinking water produced. Cyanotoxins are mostly cell bound and could ...

  10. Optimal drinking water composition for caries control in populations

    DEFF Research Database (Denmark)

    Bruvo, M.; Ekstrand, K.; Arvin, Erik

    2008-01-01

    Apart from the well-documented effect of fluoride in drinking water on dental caries, little is known about other chemical effects. Since other ions in drinking water may also theoretically influence caries, as well as binding of fluoride in the oral environment, we hypothesized that the effect...... of drinking water on caries may not be limited to fluoride only. Among 22 standard chemical variables, including 15 ions and trace elements as well as gases, organic compounds, and physical measures, iterative search and testing identified that calcium and fluoride together explained 45% of the variations...... in the numbers of decayed, filled, and missing tooth surfaces (DMF-S) among 52,057 15-year-old schoolchildren in 249 Danish municipalities. Both ions had reducing effects on DMF-S independently of each other, and could be used in combination for the design of optimal drinking water for caries control...

  11. Private Well Owners | Drinking Water in New England | US ...

    Science.gov (United States)

    2017-07-06

    Recent studies in New England identified contamination of some private wells from methyl-tertiary-butyl ether (MtBE), radon and arsenic. But, many homeowners are not aware of this risk to their drinking water.

  12. Nitrate in drinking water and colorectal cancer risk

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene

    2018-01-01

    based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person......Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited...... population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults...

  13. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  14. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  15. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  16. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  17. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements......Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface...... water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water...

  18. Water in the Martian Crust Locked in Hydrated Minerals: A Significant Planetary Reservoir of Water

    Science.gov (United States)

    Mustard, J. F.

    2017-10-01

    Calculations for a reservoir of water locked in hydrated minerals is estimated to range from a low of < 20 m global equivalent layer to approximately 1 km for the high end. This is sufficient to strongly impact surface geomorphic processes.

  19. Drinking-water hydropower station in Sachseln, Switzerland; Trinkwasserkraftwerk Mettental Sachseln. Programm Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Cappelletti, R.; Siegrist, W.; Schwab, B.

    2007-06-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) describes a small hydropower project realised in the Mettental valley in Sachseln, Switzerland. The system installed is described. This provides the necessary pressure reduction in the drinking-water supply system between the springs in the mountains and the reservoir in the valley whilst generating electrical power at the same time. A Pelton turbine that meets all drinking-water quality requirements is used to generate 300 kW of electrical power using the pressure obtained from the height-difference of around 880 metres. The first two years of operation have proved that the system provides over 30% more power than expected. The report includes technical details on the installation and reports on initial experience gained with the system.

  20. Household characteristics affecting drinking water quality and human health

    International Nuclear Information System (INIS)

    Kausar, S.; Maann, A.A.; Zafar, I.; Ali, T.

    2009-01-01

    Pakistan's water crisis, especially serious water shortages have had a great impact on the health of the general population. Today majority of Pakistanis have no access to improved water sources which force people to consume polluted drinking water that results in the shape of waterborne diseases. In addition to this, household characteristics, includes mother's education and family income, also have an impact on drinking water quality and ultimately on human health. This study was conducted in three districts of Province Punjab both in urban and rural areas. The sample size of this study was 600 females of age group 20-60 years. From the data, it was concluded that mother's education and family income were affecting drinking water quality and human health. As the mother's years of education increased, the health issues decreased. Similarly, as the level of income increased, people suffered from water related diseases decreased. (author)

  1. Availability of drinking water in US public school cafeterias.

    Science.gov (United States)

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  2. Is the selenium drinking water standard justified?

    Science.gov (United States)

    Lafond, M G; Calabrese, E J

    1979-08-01

    Four cases are presented which suggest that the present U.S.E.P.A. drinking water standard for selenium of 10 micrograms/L in inappropriate. The rationale upon which this standard is based is that selenium is carcinogenic, induces dental caries formation, and is highly toxic to animals. However, a critical assessment of this literature can not support these claims. Case no. 1 demonstrates that there is insufficient evidence to classify selenium as a carcinogen. Data derived from the three respective groups of researchers claiming a carcinogenic effect induced by selenium are obscure due to 1) the inability to accurately identify malignancies, 2) the apparent opposite effects of different selenium compounds, and 3) the lack of proper controls. Case no. 2 reviews recent evidence that selenium reduces the incidence of cancer in laboratory animals and in man, an effect which can probably be attributed to the antioxidant properties of selenium compounds. Case no. 3 provides evidence which does not permit the classification of selenium as a cariogenic element. Epidemiological studies supporting such a claim are inadequate since they lack properly matched control groups. Animal data do not support this link as well. Case no. 4 is a review of studies which clearly demonstrate the essentiality of selenium, an aspect of selenium metabolism that was not considered when the 10 micrograms/L standard was promulgated. In light of the four cases presented and an assessment of selenium toxicity in man, it is concluded that the 10 micrograms/L standard can not be justified. Instead, it is suggested that 50 micrograms/L selenium should provide sufficient protection from the toxic effects of this element. This is consistent with the current state of knowledge with respect to the potential adverse health effects associated with selenium.

  3. USGS investigations of water produced during hydrocarbon reservoir development

    Science.gov (United States)

    Engle, Mark A.; Cozzarelli, Isabelle M.; Smith, Bruce D.

    2014-01-01

    Significant quantities of water are present in hydrocarbon reservoirs. When brought to the land surface during oil, gas, and coalbed methane production, the water—either naturally occurring or injected as a method to enhance production—is termed produced water. Produced water is currently managed through processes such as recycling, treatment and discharge, spreading on roads, evaporation or infiltration, and deep well injection. U.S. Geological Survey (USGS) scientists conduct research and publish data related to produced water, thus providing information and insight to scientists, decisionmakers, the energy industry, and the public. The information advances scientific knowledge, informs resource management decisions, and facilitates environmental protection. This fact sheet discusses integrated research being conducted by USGS scientists supported by programs in the Energy and Minerals and Environmental Health Mission Areas. The research products help inform decisions pertaining to understanding the nature and management of produced water in the United States.

  4. Water column attenuation coefficient estimations in Alqueva reservoir

    Science.gov (United States)

    Potes, Miguel; João Costa, Maria; Salgado, Rui; Rodrigues, Gonçalo; Bortoli, Daniele

    2017-04-01

    The vertical structure of the underwater radiative absorption plays an important role in the thermal dynamics of the water surface layer and consequently on the energy budget at the water-lake interface. Thus, a better estimation of the irradiance at different levels is relevant to understand the lake-air interactions. The main purpose of this dataset of measurements is to estimate the spectral attenuation coefficient of the water column. The apparatus exploited in this work are composed of an optical cable linked to a portable FieldSpec UV/VNIR (ASD). This version has hemispherical field-of-view (FOV) of 180° allowing for measurements under all range of solar zenith. In situ water spectral reflectances were also obtained to help in the validation of satellite water leaving reflectances obtained from satellite spectroradiometers. It is intention of the team to develop an algorithm to derive the attenuation coefficient from satellite data in this reservoir.

  5. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  6. Occurrence and distribution of taste and odor compounds in subtropical water supply reservoirs and their fates in water treatment plants.

    Science.gov (United States)

    Bai, Xiuzhi; Zhang, Ting; Wang, Chaoyi; Zong, Dongliang; Li, Haipu; Yang, Zhaoguang

    2017-01-01

    Taste and odor (T&O) problems in surface water supplies attract growing environmental and ecological concerns. In this study, 10 T&O compounds, 2-methylisoborneol (2-MIB), geosmin, β-ionone, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2,4,6-trichloroanisole (2,4,6-TCA), 2,3,6-trichloroanisole (2,3,6-TCA), 2,3,4-trichloroanisole (2,3,4-TCA), 2,4,6-tribromoanisole (2,4,6-TBA), and trans-2,cis-6-nonadienal (NDE) were investigated in 13 water supply reservoirs and 2 water treatment plants (WTPs) in S City of China. 2-MIB, geosmin, and β-ionone were detected in most of the reservoirs and WTPs. The highest concentrations in reservoirs reached 196.0 ng L -1 for 2-MIB, 11.4 ng L -1 for geosmin, and 39.7 ng L -1 for β-ionone. Canonical correspondence analysis (CCA) was used to examine the relationship between the 3 T&O compounds and environmental parameters of the reservoirs. The results showed that TP was strongly positively correlated with 2-MIB in wet season and negatively correlated in dry season. It was suggested that controlling nutrient (TP, TN/TP, and NH 3 -N) inputs was required for better management of drinking water reservoirs. Furthermore, the maximum concentrations in raw water of WTPs was kept at 82.1 ng L -1 for 2-MIB, 5.6 ng L -1 for geosmin, and 66.1 ng L -1 for β-ionone. β-Ionone could not be detected in the post-filtration and finished water of two WTPs, and both 2-MIB and geosmin significantly decreased in the water of XWTP. It was indicated that T&O compounds could be removed partly or completely by the filtration of conventional treatment processes.

  7. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    Science.gov (United States)

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-04

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies.

  8. Low risk of male suicide and lithium in drinking water.

    Science.gov (United States)

    Ishii, Nobuyoshi; Terao, Takeshi; Araki, Yasuo; Kohno, Kentaro; Mizokami, Yoshinori; Shiotsuki, Ippei; Hatano, Koji; Makino, Mayu; Kodama, Kensuke; Iwata, Noboru

    2015-03-01

    Recently, several epidemiologic studies reported that lithium in drinking water may be associated with lower rates of suicide mortality at the population level, but other studies failed to confirm the association. The objective of the present study is to determine whether lithium in drinking water is associated with lower suicide rate after adjustment of potential confounding factors. From 2010 to 2013, 274 mean lithium levels of 434 lithium samples in drinking water were examined in relation to suicide standardized mortality ratios (SMRs) in 274 municipalities of Kyushu Island in Japan. Weighted least squares regression analysis adjusted for the size of each population was used to investigate the association of lithium levels with suicide SMRs. The associations of lithium levels in drinking water with suicide SMRs (total, male, and female) were investigated adjusting for proportion of elderly people, proportion of 1-person households, proportion of people with college education or more, and proportion of people engaging in primary industry (adjusted model 1), and further adjustment was performed with overall unemployment rate, annual marriage rate, annual mean temperature, and annual postal savings per person (adjusted model 2). Lithium levels in drinking water were significantly (β = -.169, P = .019) and inversely associated with male suicide SMRs but not total or female SMRs in the adjusted model 2. The present findings suggest that lithium in drinking water may be associated with the low risk of male suicide in the general population. Further studies are required to confirm these findings and investigate gender differences. © Copyright 2015 Physicians Postgraduate Press, Inc.

  9. Optimal Energy Extraction From a Hot Water Geothermal Reservoir

    Science.gov (United States)

    Golabi, Kamal; Scherer, Charles R.; Tsang, Chin Fu; Mozumder, Sashi

    1981-01-01

    An analytical decision model is presented for determining optimal energy extraction rates from hot water geothermal reservoirs when cooled brine is reinjected into the hot water aquifer. This applied economic management model computes the optimal fluid pumping rate and reinjection temperature and the project (reservoir) life consistent with maximum present worth of the net revenues from sales of energy for space heating. The real value of product energy is assumed to increase with time, as is the cost of energy used in pumping the aquifer. The economic model is implemented by using a hydrothermal model that relates hydraulic pumping rate to the quality (temperature) of remaining heat energy in the aquifer. The results of a numerical application to space heating show that profit-maximizing extraction rate increases with interest (discount) rate and decreases as the rate of rise of real energy value increases. The economic life of the reservoir generally varies inversely with extraction rate. Results were shown to be sensitive to permeability, initial equilibrium temperature, well cost, and well life.

  10. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2017-06-01

    Full Text Available This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE, followed by ampicillin (AM, piperacillin (PIP, trimethoprim/sulfamethoxazole (SXT, and chloramphenicol (C. The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP, as well as quinolones (ciprofloxacin and levofloxacin and cephalosporins or gentamicin (GM. Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87% contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.

  11. Biofilm formation in surface and drinking water distribution systems in Mafikeng, South Africa

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-11-01

    Full Text Available Poor quality source water and poorly treated reused wastewater may result in poor quality drinking water that has a higher potential to form biofilms. A biofilm is a group of microorganisms which adhere to a surface. We investigated biofilm growth in the drinking water distribution systems in the Mafikeng area, in the North- West Province of South Africa. Analysis was conducted to determine the presence of faecal coliforms, total coliforms, Pseudomonas spp. and Aeromonas spp. in the biofilms. Biofilms were grown on a device that contained copper and galvanised steel coupons. A mini tap filter – a point-of-use treatment device which can be used at a single faucet – was also used to collect samples. Scanning electron microscopy demonstrated that multi-species biofilms developed on all the coupons as well as on the point-of-use filters. Galvanised steel and carbon filters had the highest density of biofilm. Total coliforms, faecal coliforms and Pseudomonas spp. were isolated from raw water biofilm coupons only. Aeromonas spp. and Pseudomonas spp. were isolated from filters. The susceptibility of selected isolates was tested against 11 antibiotics of clinical interest. The most prevalent antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. The presence of virulence genes was determined using the polymerase chain reaction. These results indicate that bacteria present in the water have the ability to colonise as biofilms and drinking water biofilms may be a reservoir for opportunistic bacteria including Pseudomonas and Aeromonas species.

  12. Physical, chemical and microbial analysis of bottled drinking water.

    Science.gov (United States)

    Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V

    2012-09-01

    People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.

  13. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  14. Water reservoir characteristics derivation from pubicly available global elevation data

    Science.gov (United States)

    Van De Giesen, N.; van Bemmelen, C.; Mann, M.; de Ridder, M.; Gupta, V.; Rutten, M.

    2017-12-01

    In order to assess human impact on the global hydrological cycle, it is imperative to characterize all major man made reservoirs. One important characteristic is the relationship between the surface area of a reservoir and its stored water volume. Surface areas can readily be determined through optical and radar satellite remote sensing. Once the relationship between the surface area of a reservoir and its stored water volume is known, one can determine the stored volumes over time using remotely sensed surface areas. It has been known for some time that this relationship between surface and stored volume shows a very high level of regional consistency [1]. This implies that if one knows this relationship in a certain region, one can predict the same for any nearby reservoir. We have tried to exploit this fact by examining whether one can build virtual dams in the neighborhood of an existing dam to determine the general relationship between surface area and stored volume. We examined twelve reservoirs around the world and found, generally, very good results. Especially in geomorphologically homogeneous areas, the relationships could reliable be extrapolated over space. Even in very heterogeneous areas, the final results were acceptable and much better than generic relationships used so far. Finally, we have examined to what extent it is possible to select virtual dam sites automatically. The first results for this are promising and show that it may be possible to characterize most major dams in the world according to this approach. It is likely that there will be the need for human detection for a reasonable percentage. For these relatively rare case, some human micro-tasking may be the way forward. It is expected, however, that >90% of the worldś dams can be characterized automatically [1] Liebe, J., N. Van De Giesen, and Marc Andreini. "Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana

  15. Monitoring for the Presence of Parasitic Protozoa and Free-living Amoebae in Drinking Water Plants

    OpenAIRE

    Amany Saad Amer.

    2012-01-01

    Contamination of drinking water by microorganisms represents a major human health hazard in many parts of the world. The main objective of drinking water treatment is to provide microbiologically safe drinking water. The conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. A number of processes; namely water treatment, disinfection and changes influence the quality of drinking water delivered to the customer’s tap dur...

  16. Quantification of Hungry Horse Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1985 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Bruce

    1985-06-01

    The Pacific Northwest Electric Power Planning and Conservation Act passed in 1980 by Congress has provided a mechanism which integrates and provides for stable energy planning in the Pacific Northwest. The Act created the Northwest Power Planning Council and charged the Council with developing a comprehensive fish and wildlife program to protect and enhance fish and wildlife impacted by hydroelectric development in the Columbia River Basin. Implementation of the plan is being carried out by the Bonneville Power Administration. The Hungry Horse Reservoir study is part of that Council's plan. This study proposes to quantify seasonal water levels needed to maintain or enhance principal gamefish species in Hungry Horse Reservoir. The specific study objects are listed below. (1) Quantify the amount of reservoir habitat available at different water level elevations; (2) Estimate recruitment of westslope cutthroat trout juveniles from important spawning and nursery tributaries; (3) Determine the abundance, growth, distribution and use of available habitat by major game species in the reservoir; (4) Determine the abundance and availability of fish food organisms in the reservoir; (5) Quantify the seasonal use of available food items by major fish species; (6) Develop relationships between reservoir drawdown and reservoir habitat used by fish and fish food organisms; and (7) Estimate the impact of reservoir operation on major gamefish species.

  17. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    Science.gov (United States)

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  18. Is risk associated with drinking water in Australia of significant concern to justify mandatory regulation?

    Science.gov (United States)

    McKay, J; Moeller, A

    2001-10-01

    Presently in Australia there are no mandatory drinking water standards. Here we argue that the risk associated with drinking water in Australia is of a dimension discernible to warrant mandatory regulations. The catchments that supply the major metropolitan areas of Sydney and Adelaide, and the groundwater for the city of Perth have been seriously compromised by the encroachment of development and activities. Melbourne in the past has generally relied on a closed catchment reservoir system; however, population growth in the near future will sequester the full online operation of additional reservoirs, which have multiple land use catchments. In addition to the current landscape circumstances, the management of a water system in itself proposes significant issues of risk. Two critical assumptions that are unique to a mass medium substance like water and dramatically alter the appraisal of risk are: (1) very large numbers of people are potentially exposed, and (2) small changes in contaminant levels may have adverse population outcomes. It is also known that water reticulation systems frequently suffer from contamination problems caused solely by the distribution system, and optimal management of these facilities would best be served by statutory protected transparency and dedicated water quality programs. In 1979, an Australian parliamentary committee stated that an "uncontaminated water supply is" a "basic requirement for the obtainment of good health"; however, recent surveys of Australian water systems show many are not meeting basic water quality criteria, and many communities are not receiving regular monitoring or testing as required by government authorized Australian drinking water guidelines. Exacerbating this situation is the lack of reporting and statutory endorsed standardized procedures to ensure information is properly and promptly recorded and that data are centralized for maximum benefit. The evaluation of risk associated with drinking water in

  19. Radioactivity monitoring in drinking water of Zahedan, Iran

    International Nuclear Information System (INIS)

    Hosseini, S. A.

    2007-01-01

    The present research has focused on the effect of radioactivity on drinking water from five sites in the region of Zahedan city. Materials and Methods: The measurement of water activity in wells, river and spring has been used as a screening method. The determination of gamma emitters was performed by use the application of gamma spectrometry. Results: The values of Radium concentration was between less than 2 mBq/l to 3±0.4 for water wells, 5±0.4 mBq/L for river, and less than 2 mBq/L for spring. Conclusion: All values of activity in the selected water samples were lower than the permissible limit for drinking water consumption. The water was safe for drinking, washing and agricultural use

  20. Effect of sunlight, transport and storage vessels on drinking water ...

    African Journals Online (AJOL)

    The objective was to evaluate the effect of sunlight, transport and storage vessels on drinking water quality in rural Ghana with the aim of reducing the high demand for fuel wood in the household treatment of water. Well water was exposed for 6h to direct natural sunlight in aluminium, iron, and plastic receptacles and ...

  1. MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?

    Science.gov (United States)

    Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...

  2. Discolouration in drinking water systems : A particular approach

    NARCIS (Netherlands)

    Vreeburg, J.H.G.

    2007-01-01

    The quality of drinking water in the Netherlands meets high standards as is annually reported by the Ministry of Housing, Spatial Planning and the Environment (VROM)(Versteegh and Dik, 2006). Also the water companies themselves report in the voluntary Benchmark that water quality is one of the least

  3. Evaluation of quality of drinking water from Baghdad, Iraq | Barbooti ...

    African Journals Online (AJOL)

    This is a joint work between the Italian Red Cross and the Environmental Laboratories, Baghdad. The drinking water (DW) samples from 16 residential districts in Baghdad were chemically evaluated with reference to the raw water samples and water directly taken from the purification plants. In addition to the routinely ...

  4. Bisphenol A Detection in Various Brands of Drinking Bottled Water ...

    African Journals Online (AJOL)

    Bisphenol A Detection in Various Brands of Drinking Bottled Water in Riyadh, Saudi Arabia Using Gas Chromatography/Mass Spectrometer. ... amounts of BPA leached from bottle containers into the water. Long storage of bottled water under direct sunlight should be avoided to reduce the risk of human exposure to BPA.

  5. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy

  6. A review of arsenic presence in China drinking water

    Science.gov (United States)

    He, Jing; Charlet, Laurent

    2013-06-01

    Chronic endemic arsenicosis areas have been discovered in China since 1960s. Up to 2012, 19 provinces had been found to have As concentration in drinking water exceeding the standard level (0.05 mg/L). Inner Mongolia, Xinjiang and Shanxi Province are historical well-known “hotspots” of geogenic As-contaminated drinking water. The goal of this review is to examine, summarize and discuss the information of As in drinking water for all provinces and territories in China. Possible natural As sources for elevating As level in drinking water, were documented. Geogenic As-contaminated drinking water examples were taken to introduce typical environmental conditions where the problems occurred: closed basins in arid or semi-arid areas and reducing aquifers under high pH conditions. Geothermal water or mineral water in mountains areas can be high-As water as well. For undiscovered areas, prediction of potential As-affected groundwater has been carried out by some research groups by use of logistic regression. Modeled maps of probability of geogenic As contamination in groundwater are promising to be used as references to discover unknown areas. Furthermore, anthropogenic As contaminations were summarized and mining, smelters and chemical industries were found to be major sources for As pollution in China.

  7. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  8. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    , or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...... of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface...

  9. Contamination of water reservoirs to Legionella in khorramabad hospitals

    Directory of Open Access Journals (Sweden)

    seyed hamed Mirhossaini

    2009-04-01

    Full Text Available Background: Legionella is a negative aquatic bacterium and one of the most common nosocomial pathogen. Hospital environment in case of growth, aerosol transmission system and endangered individuals are the high potential location for growth and prevalence of this agent. The suitable temperature in water reservoirs and water distribution system empowered the growth of this bactria. The purpose of this investigation is the study of legionella presence in khorramabad water distribution system. Materials and Methods: Sampling performed with fifteen-day periods of each cold and hot hospital water reservoirs and also cold and hot water taps in those hospital wards which have more pathogens. Each of samples concentrate high vulnerable membrane and from each sample 2 plates were cultured with BCYE and GVPC optional culture media and the growth of bacteria in third and seventh and tenth days were controlled and registered. Results: From 240 samples of five Khorramabad hospitals 41.7 percent of the samples were positive. The percent of positive samples of Ashayer, Tamin ejtemaee, Tohid, and Asalian were respectively 68.8, 45.5, 33.3, 9.1 and 36.4 percent and the residual mean chlorine of samples were respectively 0.38, 0.52, 0.46, 0.82 and 0.62mg/l. The most positive samples related to hot shower and the lowest value related to cold water taps. Conclusion: In spite of the fact that all hospitals used treated water, but from 240 collected samples, 100 samples in different sections of hospital were positive these results show direct relation between residual chlorine value and presence of legionella, by the manner that in 0.6 mg/l and higher values of residual chlorine none of samples were positive. So usually the residual chlorine value in water distribution system is not enough to legionella against.

  10. Artificial sweetener sucralose in U.S. drinking water systems.

    Science.gov (United States)

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  11. Change in drinking water quality from source to point-of-use and storage: a case study from Guwahati, India.

    Science.gov (United States)

    Khadse, Gajanan Kisan; Kalita, Moromi D; Labhsetwar, Pawan K

    2012-09-01

    To ascertain the quality of drinking water being supplied and maintained at Guwahati, the study was conducted on the status of water supply in city through surveillance of drinking water quality for consecutive 7 days at various treatment stages, distribution network and consumer ends. The performance of five water treatment plants (WTPs), viz. Panbazar WTP, Satpukhuri WTP, Kamakhya WTP, PHED WTP and Hegrabari WTP were assessed for summer, piost-post-monsoon and winter seasons. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/L in the treated water. During post-monsoon, winter, and summer seasons the thermotolerent TC and FC counts ranged between Nil to 168 CFU/100 ml and Nil to 84 CFU/100 ml; Nil to 3356 CFU/100 ml and Nil to 152 CFU/100 ml; and Nil to 960 CFU/100 ml and Nil to 108 CFU/100 ml respectively. There was variation in bacterial counts among the different service reservoirs and consumer ends, which may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicate that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physico-chemical characteristics.

  12. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    Science.gov (United States)

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. © The American Society of Tropical Medicine and Hygiene.

  13. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.

  14. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP...... in drinking water. For on-line continuous real-time monitoring it is essential to choose an adequate enzyme reagent in terms of limit of detection, stability in catalytic activity and an efficient extraction of microbial ATP from cells. Experiments with different types of commercial and R&D reagents...

  15. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    and currently applied methods for removal of invertebrates from distribution systems are discussed and suggestions of control strategies are given, based on the results obtained in this study in order to obtain or maintain an acceptable level of invertebrates in drinking water systems....... hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  16. Estimating the health risks of radon in drinking water

    International Nuclear Information System (INIS)

    Cothern, C.R.

    1987-01-01

    By combining information about the occurrence, transport, exposure, and health effects of radon in drinking water, it has been estimated that over a period of 70 years (the average lifetime in the United States), between 2000 and 40,000 lung cancer fatalities are caused by inhalation of natural radon released from US public water supplies. The average concentration of radon in these water supplies generates a lifetime risk of about 1 in 10,000, the highest level of risk allowed for any contaminant currently regulated under the Safe Drinking Water Act. Reducing the levels of radon in drinking water, which would significantly lessen the risks to health, has been found to be feasible by either aeration or treatment with granular activated carbon

  17. [Assessment of the quality of drinking water in the industrial city and risk for public health].

    Science.gov (United States)

    Konshina, L G; Lezhnin, V L

    2014-01-01

    Karabash city sprang up around the copper plant that uses local copper ore, which was composed of zinc, sulfur, barium, beryllium, arsenic, manganese, lead, antimony, chromium, cadmium, gallium, indium, scandium, thallium, germanium, osmium, and others. Centralized water supply for the city is organized from the lake Serebry and the flowage on the river B. Kialim. Part of the population uses water wells, voids and springs. In Serebry Lake and drinking groundwater there were found significant concentrations of nitrates, manganese, arsenic, cadmium, iron, lead barium, nickel, mercury and zinc. There are most exposed to toxic hazards from drinking water persons using water from Serebry aqueduct (hazard index for--children/ adults 2.75/1.1, respectively) and decentralized water supply sources (hazard index for children/adults--2.35/1.0). Maximal hazard coefficients were calculated for nitrates, arsenic and antimony. Among the systems mostly exposed to toxic effects are digestive, cardiovascular endocrine, nervous system and skin. Carcinogenic risk is caused by arsenic compounds, hexavalent chromium, and dichloroethane. Carcinogenic risk from water sources of decentralized water supply is 9,6 E-05, for water from Kialim reservoir--7,3 E-05. Maximum carcinogenic risk is associated with the water from the Serebry aqueduct, the risk reaches 2,17 E-04 and is characterized as unacceptable.

  18. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  19. Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants.

    Science.gov (United States)

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A; Ontalba-Salamanca, M Á; Jiménez-Ramos, M C

    2017-01-01

    The occurrence of naturally occurring radionuclides in drinking water can pose health hazards in some populations, especially taking into account that routine procedures in Drinking Water Treatment Plants (DWTPs) are normally unable to remove them efficiently from drinking water. In fact, these procedures are practically transparent to them, and in particular to radium. In this paper, the characterization and capabilities of a patented filter designed to remove radium from drinking water with high efficiency is described. This filter is based on a sandwich structure of silica and green sand, with a natural high content manganese oxide. Both sands are authorized by Spanish authorities to be used in Drinking Water Treatment Plants. The Mn distribution in the green sand was found to be homogenous, thus providing a great number of adsorption sites for radium. Kinetic studies showed that the 226 Ra adsorption on green sand was influenced by the content of major cations solved in the treated water, but the saturation level, about 96-99%, was not affected by it. The physico-chemical parameters of the treated water were unaltered by the filter. The efficiency of the filter for the removal of 226 Ra remained unchanged with large water volumes passed through it, proving its potential use in DWTP. This filter was also able to remove initially the uranium content due to the presence of Fe 2 O 3 particles in it, although it is saturated faster than radium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Postexercise rehydration: potassium-rich drinks versus water and a sports drink.

    Science.gov (United States)

    Pérez-Idárraga, Alexandra; Aragón-Vargas, Luis Fernando

    2014-10-01

    Fluid retention, thirst quenching, tolerance, and palatability of different drinks were assessed. On 4 different days, 12 healthy, physically active volunteers (24.4 ± 3.2 years old, 74.75 ± 11.36 kg body mass (mean ± S.D)), were dehydrated to 2.10% ± 0.24% body mass by exercising in an environmental chamber (32.0 ± 0.4 °C dry bulb, 53.8 ± 5.2% relative humidity). Each day they drank 1 of 4 beverages in random order: fresh coconut water (FCW), bottled water (W), sports drink (SD), or potassium-rich drink (NEW); volume was 120% of weight loss. Urine was collected and perceptions self-reported for 3 h. Urine output was higher (p drink (p > 0.05). Fluid retention was higher for SD than W (68.2% ± 13.0% vs. 51.3% ± 12.6%, p = 0.013), but not for FCW and NEW (62.5% ± 15.4% and 65.9% ± 15.4%, p > 0.05). All beverages were palatable and well tolerated; none maintained a positive net fluid balance after 3 h, but deficit was greater in W versus SD (p = 0.001). FCW scored higher for sweetness (p = 0.03). Thirst increased immediately after exercise but returned to baseline after drinking a small volume (p sports drink with sodium.

  1. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  2. Assessing water reservoirs management and development in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    A. Castelletti

    2012-01-01

    Full Text Available In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this paper we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam, and to evaluate the potential improvement by the adoption of a more sophisticated information system. To reach this goal we analyze the historical operation of the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River, explore re-operation options corresponding to different tradeoffs among the three main objectives (hydropower production, flood control and water supply, using multi-objective optimization techniques, namely Multi-Objective Genetic Algorithm. Finally, we assess the structural system potential and the need for capacity expansion by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  3. Detection of a reservoir water level using shape similarity metrics

    Science.gov (United States)

    Pipitone, Claudia; Maltese, Antonino; Dardanelli, Gino; Capodici, Fulvio; Lo Brutto, Mauro; La Loggia, Goffredo

    2017-10-01

    The matching between reservoirs' water edge and digital elevation model's (DEM) contour lines allowed determining the water level at the acquisition date of satellite images. A preliminary study was conducted on the Castello dam (Magazzolo Lake), between Alessandria della Rocca and Bivona (Agrigento, south-Italy). The accuracy assessment of the technique was than evaluated from the comparison between classified and reference objects using similarity metrics about the shape, theme, edge and position, through the plugin STEP of open source software GIS. Moreover, an independent GIS technique was implemented to evaluate the water level, based on a distances' array between existing contour lines and nodes extracted from vectorised classification images. Results have shown the potentiality of the techniques when applied on an ideal case; advantages and disadvantages when the images are characterized by clear sky, and limits when images are acquired during not ideal atmospheric conditions.

  4. Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?

    Directory of Open Access Journals (Sweden)

    Ian R. Falconer

    2006-06-01

    Full Text Available There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where he effluent is directly or indirectly in

  5. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  6. Occurrence of organophosphate flame retardants in drinking water from China.

    Science.gov (United States)

    Li, Jun; Yu, Nanyang; Zhang, Beibei; Jin, Ling; Li, Meiying; Hu, Mengyang; Zhang, Xiaowei; Wei, Si; Yu, Hongxia

    2014-05-01

    Several organophosphate flame retardants (OPFRs) have been identified as known or suspected carcinogens or neurotoxic substances. Given the potential health risks of these compounds, we conducted a comprehensive survey of nine OPFRs in drinking water in China. We found total concentrations of OPFRs in tap water ranging from 85.1 ng/L to 325 ng/L, and tris(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tris(2-chloroisopropyl) phosphate (TCPP) were the most common components. Similar OPFR concentrations and profiles were observed in water samples processed through six different waterworks in Nanjing, China. However, boiling affected OPFR levels in drinking water by either increasing (e.g., TBEP) or decreasing (e.g., tributyl phosphate, TBP) concentrations depending on the particular compound and the state of the indoor environment. We also found that bottled water contained many of the same major OPFR compounds with concentrations 10-25% lower than those in tap water, although TBEP contamination in bottled water remained a concern. Finally, we concluded that the risk of ingesting OPFRs through drinking water was not a major health concern for either adults or children in China. Nevertheless, drinking water ingestion represents an important exposure pathway for OPFRs. Copyright © 2014. Published by Elsevier Ltd.

  7. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources

    Science.gov (United States)

    Clark, John M.; Schaeffer, Blake A.; Darling, John A.; Urquhart, Erin A.; Johnston, John M.; Ignatius, Amber R.; Myer, Mark H.; Loftin, Keith A.; Werdell, P. Jeremy; Stumpf, Richard P.

    2017-01-01

    Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking water sources because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection. In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 ha in area. Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 × 3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 × 3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization’s (WHO) high threshold for risk of 100,000 cells mL−1. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed bloom frequencies per region. The method presented here may indicate

  8. Bottled Water or Tap Water? A Comparative Study of Drinking Water Choices on University Campuses

    Directory of Open Access Journals (Sweden)

    Neng Qian

    2018-01-01

    Full Text Available A cross-regional comparative study was conducted to survey the drinking behaviors of university students, in Singapore, Hong Kong, and Macau. In particular, I tested students’ preference for bottled water over filtered tap water, in a context where the latter option is widely accessible, free of charge, and meets drinking standards. It was found that Singapore has a relatively low rate of bottled water consumption within the young population of university students, while in Hong Kong and Macau one-fourth of the students still drink bottled water more frequently than tap water. Using the Theory of Planned Behavior framework, the perceptions and factors that determine the choices were studied. In terms of determinants of the drinking water choices, “Safety and Hygiene” and “Convenience and Availability” ranked highest for all three regions. “Taste”, “Price”, and “Personal and Family Habits” were valued next by different subsamples. Respondents from Singapore rated relatively high in the accessibility of filtered tap water, safety of tap water transfer, and trust in government, and these factors are considerably significant in driving the result of having the lowest consumption of bottle water on campus. Gender and the behaviors of students who stay in campus dorms were also explored.

  9. Removal of uranium from drinking water by conventional treatment methods

    International Nuclear Information System (INIS)

    Sorg, T.J.

    1989-01-01

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. This paper presents treatment technology information on the effectiveness of conventional methods to removal uranium from drinking water. Treatment information based primarily on laboratory and pilot plant studies is presented on conventional coagulation/filtration, ion exchange, lime softening, and reverse osmosis. Ion-exchange treatment has been applied successfully on ground waters by small systems

  10. Content of Fluorine in Drinking Water in FYR Macedonia

    Directory of Open Access Journals (Sweden)

    Carcev M.

    2014-03-01

    Full Text Available From all the methods applied in preventing dental caries, the most significant is the use of fluorides. Nowadays, 6 decades after its massive use, it can certainly be argued that it is the most efficient, cheapest and safest way of preventing dental caries, confirmed by more than 150 longitudinal studies. In order to determine the presence of fluorides in drinking water, in coordination with the Institute for Public Health of the FYR Macedonia in 2009, we conducted a research for determining the presence of fluorides in drinking water from the public water supply in the country.

  11. Environmental radioactivity and drinking water supply. Pt. 6

    International Nuclear Information System (INIS)

    Haberer, K.

    1987-01-01

    Extensive studies dealt with the formation, the release and atmospheric distribution of radionuclides after various possible reactor incidents. The rate of the reactor inventory released in Chernobyl indicates that this incident is situated between the two maximum possible accidents. A further study published already 1971 on the threat of the drinking water supply by atomic catastrophies is confirmed in its main statement, that the drinking water such as it is gained in Germany is well protected from radioactive pollution. The frequently investigated decontamination efficiency of the water treatment grants an additional security. (orig./HP) [de

  12. Investigation of Fungi in Drinking Water Resources as a Source of Contamination Tap Water in Sari, Iran

    Directory of Open Access Journals (Sweden)

    Z Yousefi

    2013-06-01

    Full Text Available Background and purpose: One of the most prominent concerns for the water consumers is pathogenic microorganism contamination. Wells and underground water resources are the main resources of drinking water in Sari city, Iran. The main objectives of the research project were to explore the distribution and frequency of mycoflora in wells and underground water resources of the city and their contamination effects on humans. Materials and methods: Three reservoirs and 18 wells or underground water resources were analyzed. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Each filter and 0.2 ml of suspension inoculated on SDA+CG media. For fungal growth, plates were incubated at 27’C for 7-10 days. The fungi were identified by standard mycological techniques. Results: Fungal colonies were isolated from all samples. From total of 160 fungal colonies isolated from wells water, 14 species of fungi were distinguished. Rhodotorula (54.4%, Monilinia (13.7%, Alternaria (6.9% were the most commonly isolated. Drechslera, Rhizopus, and Exserohilum (0.6% had the lowest frequency. There was no significant difference between fungal elements isolated from three major reservoirs (P>0.05. Conclusion: This study revealed that resources of drinking water from an area have to monitored and if its fungal CFU be greater than a certain value, medical and health preventive measures should be taken before the water is used by human. In this context, public and private awareness should also be provided through the media, broadcasting, teachers and scholars.

  13. Concentration of natural radionuclides in private drinking water wells

    International Nuclear Information System (INIS)

    Cerny, R.; Otahal, P.; Merta, J.; Burian, I.

    2017-01-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/Euroatom, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. (authors)

  14. PARASITIC CONTAMINATION OF WELLS DRINKING WATER IN MAZANDARAN PROVINCE

    OpenAIRE

    Z. Yousefi ، H. Ziaei hezarjaribi ، A. A. Enayati ، R. A. Mohammadpoor

    2009-01-01

    There is a direct relation between the prevalence of some parasitic diseases and the presence of those etiologic agents in water. The purpose of this research was to determine the contamination rate of wells drinking water to parasites in Mazandaran province in the north of Iran. 989 water samples were randomly taken based on the population of towns and number of health centers from 12 cities of Mazandaran province and transferred to the laboratory in sterile containers. Water samples were th...

  15. The microbial quality of drinking water in Manonyane community ...

    African Journals Online (AJOL)

    The concentration levels of Total coliform and Escherichia coli were above the permissible limits of the World Health Organization drinking water quality guidelines in each case. Protected sources had significantly less number of colony forming units (cfu) per 100 ml of water sample compared to unprotected sources (56% ...

  16. Microbiological and Physicochemical Properties of Drinking Water at ...

    African Journals Online (AJOL)

    Quality drinking water is of basic importance to human physiology and man's continued existence depends much on its availability. Water samples from different outlets and homes in Ado Odo - Ota Local Government, Ogun state, Nigeria were analyzed for their microbiological and physiochemical properties. Total viable ...

  17. investigation of factors affecting drinking water quality from source

    African Journals Online (AJOL)

    user

    storage container by pouring showed a significant reduction on the concentration of faecal coliform than dipping (P<0.05). A similar study in Bolivia indicated that. 52.0% of the respondents admitted that they had introduced their hands into drinking water stored in the house, which results in the contamination of stored water.

  18. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Administrator

    Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking from a dissolved nitrogen perspective. Key words: ammonia, Brong Ahafo, nitrate, nitrite, nitrogen, ground and surface water. INTRODUCTION.

  19. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    Science.gov (United States)

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  20. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  1. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  2. Toxicological relevance of emerging contaminants for drinking water quality

    NARCIS (Netherlands)

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we

  3. Assessment of microbiological quality of drinking water treated with ...

    African Journals Online (AJOL)

    The quality of drinking water at the point of delivery to the consumer is crucial in safeguarding consumer's health. The current study was undertaken to assess the changes in residual chlorine content with distance in water distribution system in Gwalior city of Madhya Pradesh and assess its relation with the occurrence of ...

  4. A drinking water quality framework for South Africa

    African Journals Online (AJOL)

    Being the lead 'early warning' authority and execution agents for medical intervention under emergency .... emergency response model comprising three alert levels to respond to acute drinking water quality failures: • Alert Level I: Routine problems including minor disrup- tions to the water system and single sample ...

  5. Effects of forest cover on drinking water treatment costs

    Science.gov (United States)

    Travis Warziniack; Chi Ho Sham; Robert Morgan; Yasha Feferholtz

    2016-01-01

    This paper explores the relationship between forest cover and drinking water treatment costs using results from a 2014 survey by the American Water Works Association (AWWA) that targeted utilities in forested ecoregions in the United States. On the basis of the data collected, there is a negative relationship between forest cover and turbidity, i.e. as forest...

  6. Sachet drinking water in accra: the potential threats of transmission ...

    African Journals Online (AJOL)

    Objective: To assess the safety of sachet drinking water. Materials and Methods: Twenty seven different brands of 500ml sachet water samples randomly selected and purchased from various vendors in Accra were subjected to microscopic examinations to determine the presence of parasitic protozoa. The study was carried ...

  7. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    Science.gov (United States)

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  8. evaluation of quality of drinking water from baghdad, iraq

    African Journals Online (AJOL)

    Administrator

    The monitoring of drinking water (DW) quality is receiving increasing interest and analytical methods are developed to improve the sensitivity and detection limits for various analytes. However, DW, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of.

  9. A bibliometric analysis of drinking water research in Africa

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... scarcity and enhancing of food security (Pouris and Ho, 2014). In particular, drinking water research ..... and Ho (2014), which showed that 'environmental science', 'water resources', and 'public health' were .... (444 articles; 56% of 799 articles), North America (161; 20%),. Far East (93; 12%), Middle East ...

  10. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  11. Risk assessment and control management of radon in drinking water

    International Nuclear Information System (INIS)

    Mills, W.A.

    1990-01-01

    The role of risk assessment and risk management of radon in drinking water was reviewed. It is noted that risk assessments for the public health consequences of radon in drinking water require information on radon concentration in water, exposure pathways, and dose-response relationships. On the other hand, risk management involves assumptions of risk acceptance and the establishment of governmental policies in accord with society's acceptance of these assumptions. Although risk assessment for radon exposures can be reasonably qualitative, risk management is clearly judgmental. The following conclusions/recommendations were made. (1) The presence of radon in drinking water is estimated to have its greatest health impact on the 18% of the US population served by private wells. (2) Although no direct evidence exists associated radon in water with health problems, the diseases that are associated with radon in drinking water are stomach cancer from ingestion and lung cancer from inhalation of radon decay products released during household use of water. (3) Using a number of questionable assumptions, the total number of cancer deaths per year attributable to radon in water is estimated to be about 5,000 as a maximum value, with essentially all cases occurring in the population served by private wells. (4) Promulgating federal regulations to control radon levels in water under the Safe Drinking Water Act seems unwarranted, since private wells would not likely be regulated. (5) Government control programs should be limited to emphasizing an awareness of possible substantially higher than average levels of radon in water in certain geological areas. 12 refs., 4 tabs

  12. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-01-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m 3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water varies significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates

  13. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-02-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water vary significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates based

  14. Health Risk Assessment of Cyanobacterial (Blue-green Algal Toxins in Drinking Water

    Directory of Open Access Journals (Sweden)

    Andrew R. Humpage

    2005-04-01

    Full Text Available Cyanobacterial toxins have caused human poisoning in the Americas, Europe and Australia. There is accumulating evidence that they are present in treated drinking water supplies when cyanobacterial blooms occur in source waters. With increased population pressure and depleted groundwater reserves, surface water is becoming more used as a raw water source, both from rivers and lakes/reservoirs. Additional nutrients in water which arise from sewage discharge, agricultural run-off or storm water result in overabundance of cyanobacteria, described as a ‘water bloom’. The majority of cyanobacterial water-blooms are of toxic species, producing a diversity of toxins. The most important toxins presenting a risk to the human population are the neurotoxic alkaloids (anatoxins and paralytic shellfish poisons, the cyclic peptide hepatotoxins (microcystins and the cytotoxic alkaloids (cylindrospermopsins. At the present time the only cyanobacteral toxin family that have been internationally assessed for health risk by the WHO are the microcystins, which cause acute liver injury and are active tumour promoters. Based on sub-chronic studies in rodents and pigs, a provisional Guideline Level for drinking water of 1μg/L of microcystin-LR has been determined. This has been adopted in legislation in countries in Europe, South America and Australasia. This may be revised in the light of future teratogenicity, reproductive toxicity and carcinogenicity studies. The other cyanobacterial toxin which has been proposed for detailed health risk assessment is cylindrospermopsin, a cytotoxic compound which has marked genotoxicity, probable mutagenicity, and is a potential carcinogen. This toxin has caused human poisoning from drinking water, and occurs in water supplies in the USA, Europe, Asia, Australia and South America. An initial health risk assessment is presented with a proposed drinking water Guideline Level of 1μg/L. There is a

  15. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of remote sensing methods for detection of water pollution degree in rivers and water reservoirs

    International Nuclear Information System (INIS)

    Krzyworzeka, M.; Piasek, Z.

    1997-01-01

    The paper presents non-contact registration methods of the electromagnetic radiation which can be used for the detection of water pollution in rivers and water reservoirs. These methods include aerial photographs, satellite images and thermograms. The satellite images need reprocessing to obtain the mutual comparability of the images from various multispectral scanners (TM and MSS)

  18. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia.

    Science.gov (United States)

    Nguyen, Hong Hanh; Recknagel, Friedrich; Meyer, Wayne; Frizenschaf, Jacqueline; Shrestha, Manoj Kumar

    2017-11-01

    Sustainable management of drinking water reservoirs requires taking into account the potential effects of their catchments' development. This study is an attempt to estimate the daily patterns of nutrients transport in the catchment - reservoir systems through the application of the ensemble of complementary models SWAT-SALMO. SWAT quantifies flow, nitrate and phosphate loadings originating in catchments before entering downstream reservoirs meanwhile SALMO determines phosphate, nitrate, and chlorophyll-a concentrations within the reservoirs. The study applies to the semi-arid Millbrook catchment-reservoir system that supplies drinking water to north-eastern suburbs of Adelaide, South Australia. The catchment hosts viti- and horticultural land uses. The warm-monomictic, mesotrophic reservoir is artificially aerated in summer. After validating the simulation results for both Millbrook catchment and reservoir, a comprehensive scenario analysis has been conducted to reveal cascading effects of altered management practices, land uses and climate conditions on water quality in the reservoir. Results suggest that the effect on reservoir condition in summer would be severe, most likely resulting in chlorophyll-a concentrations of greater than 40 μg/l if the artificial destratification was not applied from early summer. A 50% curbing of water diversion from an external pipeline to the catchment will slightly limit chlorophyll-a concentrations by 1.22% as an effect of reduced inflow phosphate loads. The simulation of prospective land use scenarios converting 50% of present pasture in the Millbrook catchment into residential and orchards areas indicates an increase of summer chlorophyll-a concentrations by 9.5-107.9%, respectively in the reservoir. Global warming scenarios based on the high emission simulated by SWAT-SALMO did result in earlier growth of chlorophyll-a but overall the effects on water quality in the Millbrook reservoir was not significant. However scenarios

  19. The Health Aspects of Urmia County Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Mohamad Mosaferi

    2015-08-01

    Full Text Available Background and Objectives : Quality of drinking water has considerable effects on citizens’ health and its comparison with available standards and knowledge about permissible limits could provide useful information regarding community health. In the present study, the condition of quality of drinking water of Urmia County has been assessed and analyzed. Material and Methods : Analysis results of drinking water of Urmia city and its villages were composed of 182 available analyses during 2012 and 2013 and were collected from Province Health Center. They were statistically analyzed for general parameters using SPSS and compared with national standard. Results : Hardness of drinking water in Urmia County varied from 100 to 1040 mg/L as calcium carbonate with an average of 309 ± 144 mg/L which indicates a range of soft to very hard water. Dissolved solids were 103 to 1900 mg/L with an average of 366 ± 287 mg/L. Regarding fluoride which is important in health, concentration range varied from zero to 1.5 mg/L with an average of 0.21 ± 0.23 mg/L. Turbidity was less than 0.5 NTU in 44% of analyzed samples, between 0.5 to 1 NTU in 34% and higher than 1 NTU in 22% of samples, respectively. Conclusion : In comparison with national and international standards for drinking water quality, in some parts of Urmia County, the values for some quality parameters were not in accordance with permissible level and this requires corrective action. However, in general, physicochemical quality of studied waters was suitable for drinking purposes.     ​

  20. [Investigation on contamination of Cryptosporidium and Giardia in drinking water and environmental water in Shanghai].

    Science.gov (United States)

    Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li

    2010-12-30

    To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.

  1. Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece.

    Science.gov (United States)

    Samiotis, Georgios; Trikoilidou, Eleni; Tsikritzis, Lazaros; Amanatidou, Elisavet

    2018-03-20

    In this work, a comparative study on the water quality characteristics of two in-line water reservoirs (artificial lakes) in Aliakmon River (Western Macedonia, Greece) is performed. Polyfytos Reservoir and Ilarion Reservoir were created in 1975 and 2012 respectively, in order to serve the homonymous hydroelectric stations. In young artificial lakes, severe deterioration of water quality may occur; thus, the monitoring and assessment of their water quality characteristics and their statistical interpretation are of great importance. In order to evaluate any temporal or spatial variations and to characterize water quality of these two in-line water reservoirs, water quality data from measurements conducted from 2012 to 2015 were statistically processed and interpreted by using a modified National Sanitation Foundation water quality index (WQI). The water physicochemical characteristics of the two reservoirs were found to be generally within the legislation limits, with relatively small temporal and spatial variations. Although Polyfytos Reservoir showed no significant deviations of its water quality, Ilarion Reservoir exhibited deviations in total Kjeldahl nitrogen, nitrite nitrogen, total suspended solids, and turbidity due to the inundated vegetation decomposition. The conducted measurements and the use of the modified NSFWQI revealed that during the inundation period of Ilarion Reservoir, its water quality was "moderate" and that the deviations were softened through time, leading to "good" water quality during its maturation period. Three years since the creation of Ilarion Reservoir, water quality does not match that of Aliakmon River (feeding water) or that of the stabilized reservoir (Polyfytos Reservoir), whose quality is characterized as "high." The use of a WQI, such as the proposed modified NSFWQI, for evaluating water quality of each sampling site and of an entire water system proved to be a rapid and relatively accurate assessment tool.

  2. [On the rating of Helicobacter pylori in drinking water].

    Science.gov (United States)

    Fedichkina, T P; Solenova, L G; Zykova, I E

    2014-01-01

    There are considered the issues related to the possibility to rate of Helicobacter pylori (H. pylori) content in drinking water. There is described the mechanism of of biofilm formation. The description refers to the biofilm formation mechanism in water supply systems and the existence of H. pylori in those systems. The objective premises of the definition of H. pylori as a potential limiting factor for assessing the quality of drinking water have been validated as follows: H. pylori is an etiologic factor associated to the development of chronic antral gastritis, gastric ulcer and duodenal ulcer, and gastric cancer either, in the Russian population the rate of infection with H. pylori falls within range of 56 - 90%, water supply pathway now can be considered as a source of infection of the population with H. pylori, the existence of WHO regulatory documents considering H. pylori as a candidate for standardization of the quality of the drinking water quite common occurrence of biocorrosion, the reduction of sanitary water network reliability, that creates the possibility of concentrating H. pylori in some areas of the water system and its delivery to the consumer of drinking water, and causes the necessity of the prevention of H. pylori-associated gastric pathology of the population. A comprehensive and harmonized approach to H. pylori is required to consider it as a candidate to its rating in drinking water. Bearing in mind the large economic losses due to, on the one hand, the prevalence of disease caused by H. pylori, and, on the other hand, the biocorrosion of water supply system, the problem is both relevant in terms of communal hygiene and economy.

  3. Updating national standards for drinking-water: a Philippine experience.

    Science.gov (United States)

    Lomboy, M; Riego de Dios, J; Magtibay, B; Quizon, R; Molina, V; Fadrilan-Camacho, V; See, J; Enoveso, A; Barbosa, L; Agravante, A

    2017-04-01

    The latest version of the Philippine National Standards for Drinking-Water (PNSDW) was issued in 2007 by the Department of Health (DOH). Due to several issues and concerns, the DOH decided to make an update which is relevant and necessary to meet the needs of the stakeholders. As an output, the water quality parameters are now categorized into mandatory, primary, and secondary. The ten mandatory parameters are core parameters which all water service providers nationwide are obligated to test. These include thermotolerant coliforms or Escherichia coli, arsenic, cadmium, lead, nitrate, color, turbidity, pH, total dissolved solids, and disinfectant residual. The 55 primary parameters are site-specific and can be adopted as enforceable parameters when developing new water sources or when the existing source is at high risk of contamination. The 11 secondary parameters include operational parameters and those that affect the esthetic quality of drinking-water. In addition, the updated PNSDW include new sections: (1) reporting and interpretation of results and corrective actions; (2) emergency drinking-water parameters; (3) proposed Sustainable Development Goal parameters; and (4) standards for other drinking-water sources. The lessons learned and insights gained from the updating of standards are likewise incorporated in this paper.

  4. The quality assessment to drinking water supplied to Islamabad

    International Nuclear Information System (INIS)

    Mohammad, D.; Hussain, F.; Ashraf, H.; Hussain, S.; Rana, N.N.; Anwar, K.; Sami, Z.; Dil, S.

    1997-01-01

    Drinking water supply system of Islamabad draws major quantities of water from sources such as Simli dam, Rawal dam and the underground aquifer through an integrated system of tube wells sunk in different parts of the city. For an extensive assessment of drinking water quality samples were collected at source from 80 CDA tube wells. Samples were also collected from 3 to 5 predetermined consumer points in sectors 1-8, 1-9, 1-10, G-9, G-10, F-9 and F-10. All these samples apart form coliform organisms, cationic and anionic species present, were analyzed for different parameters required to delineate the drinking water quality using the most reliable techniques like ICP-AES, AAS, HPLC, TIMS and Electro-chemistry. The tube well water samples, generally, contained higher amounts of the TDS and hence higher Ca++ and Mg++ concentration as compared with those of dam water samples. Further all these samples contained reasonable concentration of Sr, an element usually associated with calcite deposits. Samples were also checked for the total radioactivity and were found to be free of such contamination. The results have been discussed with a view to assess the quality of drinking water during the stipulated period. (author)

  5. Determination of strontium in drinking water and consequences of radioactive elements present in drinking water for human health

    International Nuclear Information System (INIS)

    Rajkovic, M.B.; Stojanovic, M.D.; Pantelic, G.K.; Vuletic, V.V.

    2006-01-01

    In this paper the analysis of strontium and uranium content in drinking water has been done, indirectly, according to the scale which originates from drinking water in water-supply system of the city of Belgrade. Gamaspectrometric analysis showed the presence of free natural radionuclide in low activities. The activity of 90Sr in scale which is 0.72±0.11 Bq/kg was determined by radiochemical. Because of the small quantities of fur in the house heater this activity can be considered as irrelevant, but the accumulation of scale can have intensified influence. In this paper, the analysis of effects of the radioactive isotopes presence (first of all 238U and 235U) in drinking water on human health has been done

  6. Drinking water consumption patterns in Canadian communities (2001-2007).

    Science.gov (United States)

    Roche, S M; Jones, A Q; Majowicz, S E; McEwen, S A; Pintar, K D M

    2012-03-01

    A pooled analysis of seven cross-sectional studies from Newfoundland and Labrador, Waterloo and Hamilton Regions, Ontario and Vancouver, East Kootenay and Northern Interior Regions, British Columbia (2001 to 2007) was performed to investigate the drinking water consumption patterns of Canadians and to identify factors associated with the volume of tap water consumed. The mean volume of tap water consumed was 1.2 L/day, with a large range (0.03 to 9.0 L/day). In-home water treatment and interactions between age and gender and age and bottled water use were significantly associated with the volume of tap water consumed in multivariable analyses. Approximately 25% (2,221/8,916) of participants were classified as bottled water users, meaning that 75% or more of their total daily drinking water intake was bottled. Approximately 48.6% (4,307/8,799) of participants used an in-home treatment method to treat their tap water for drinking purposes. This study provides a broader geographic perspective and more current estimates of Canadian water consumption patterns than previous studies. The identified factors associated with daily water consumption could be beneficial for risk assessors to identify individuals who may be at greater risk of waterborne illness.

  7. Determination of strontium in drinking water and consequences of radioactive elements present in drinking water for human health

    OpenAIRE

    Rajković Miloš B.; Stojanović Mirjana D.; Pantelić Gordana K.; Vuletić Vedrana V.

    2006-01-01

    In this paper the analysis of strontium and uranium content in drinking water has been done, indirectly, according to the scale which originates from drinking water in water-supply system of the city of Belgrade. Gamaspectrometric analysis showed the presence of free natural radionuclide in low activities. The activity of 90Sr in scale which is 0.72±0.11 Bq/kg was determined by radiochemical. Because of the small quantities of fur in the house heater this activity can be considered as irrelev...

  8. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  9. Water Safety Plan for drinking water risk management: the case study of Mortara (Pavia, Italy)

    OpenAIRE

    Sabrina Sorlini; Michela Biasibetti; Alessandro Abbà; Maria Cristina Collivignarelli; Silvestro Damiani

    2017-01-01

    The Water Safety Plan (WSP) approach is an iterative method focused on analyzing the risks of water contamination in a drinking water supply system, from catchment to consumer, in order to protect human health. This approach is aimed at identifying and drastically reducing water contamination in the entire drinking water system, through the identification and mitigation or, if possible, elimination of all factors that may cause a chemical, physical, microbiological and radiological risk for w...

  10. Water Safety Plan for drinking water risk management: the case study of Mortara (Pavia, Italy)

    OpenAIRE

    Sorlini, Sabrina; Biasibetti, Michela; Abbà, Alessandro; Collivignarelli, Maria Cristina; Damiani, Silvestro

    2017-01-01

    Abstract The Water Safety Plan (WSP) approach is an iterative method focused on analyzing the risks of water contamination in a drinking water supply system, from catchment to consumer, in order to protect human health. This approach is aimed at identifying and drastically reducing water contamination in the entire drinking water system, through the identification and mitigation or, if possible, elimination of all factors that may cause a chemical, physical, microbiological and radiological r...

  11. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  12. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Padma Savithri, P.; Srivastava, S.K.; Balbudhe, A.Y.; Vishwa Prasad, K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238 U, 234 U, 230 Th, 26 Ra, 210 Po, 232 Th, 228 Th 210 Pb and 228 Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy -1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  13. Pathogens in drinking water: Are there any new ones

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  14. Lithium in drinking water and the incidence of bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars V; Gerds, Thomas A; Knudsen, Nikoline N

    2017-01-01

    of bipolar disorder (primary prophylaxis). In a nation-wide population-based study, we investigated whether long-term exposure to micro levels of lithium in drinking water correlates with the incidence of bipolar disorder in the general population, hypothesizing an inverse association in which higher long......-term lithium exposure is associated with lower incidences of bipolar disorder. METHODS: We included longitudinal individual geographical data on municipality of residence, data from drinking water lithium measurements and time-specific data from all cases with a hospital contact with a diagnosis of mania/bipolar...... disorder from 1995 to 2013 (N=14 820) and 10 age- and gender-matched controls from the Danish population (N= 140 311). Average drinking water lithium exposure was estimated for all study individuals. RESULTS: The median of the average lithium exposure did not differ between cases with a diagnosis of mania/bipolar...

  15. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  16. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  17. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  18. Report: EPA Lacks Internal Controls to Prevent Misuse of Emergency Drinking Water Facilities

    Science.gov (United States)

    Report #11-P-0001, October 12, 2010. EPA cannot accurately assess the risk of public water systems delivering contaminated drinking water from emergency facilities because of limitations in Safe Drinking Water Information System (SDWIS) data management.

  19. PRELIMINARY RESULTS OF QUALITY STUDY OF WATER FROM SMALL MICHALICE RESERVOIR ON WIDAWA RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Wiatkowski

    2014-10-01

    Full Text Available The paper presents an analysis of water quality of the small Michalice reservoir. A preliminary assessment of the reservoir water quality and its usability was made. The quality of water in the reservoir is particularly important as the main functions of the reservoir are agricultural irrigation, recreation and flood protection . The following physico-chemical parameters of the Widawa River were analyzed: NO3 -, NO2 -, NH4 +, PO4 3-, COD, water temperature, pH and electrolytic conductivity. Main descriptive statistical data were presented for the analyzed water quality indicators. The research results indicate that the reservoir contributed to the reduced concentrations of the following water quality indicators: nitrates, nitrites, phosphates, electrolytic conductivity and COD (in the outflowing water – St.3 in comparison to the water flowing into the reservoir – St.1. In the water flowing out of the Psurów reservoir higher values of the remaining indicators were observed if compared with the inflowing water. It was stated, as well, that analised waters are not vulnerable to nitrogen compounds pollution coming from the agricultural sources and are eutrophic. For purpose obtaining of the précised information about condition of Michalice reservoir water purity as well as river Widawa it becomes to continue the hydrological monitoring and water quality studies.

  20. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  1. Drinking water treatment technologies in Europe : State of the art - vulnerabilities - research needs

    NARCIS (Netherlands)

    Van der Hoek, J.P.; Bertelkamp, C.; Verliefde, A.R.D.; Singhal, N.

    2012-01-01

    Eureau is the European Federation of National Associations of Water and Wastewater Services. At the request of Eureau Commission 1, dealing with drinking water, a survey was made focusing on raw drinking water sources and drinking water treatment technologies applied in Europe. Raw water sources

  2. Modeling Reservoir Formation Damage due to Water Injection for Oil Recovery

    DEFF Research Database (Denmark)

    Yuan, Hao

    2010-01-01

    The elliptic equation for non-Fickian transport of suspension in porous media is applied to simulate the reservoir formation damage due to water injection for oil recovery. The deposition release (erosion of reservoir formation) and the suspension deposition (pore plugging) are both taken...... into account. 1-D numerical simulations are carried out to reveal the erosion of reservoir formation due to water injection. 2-D numerical simulations are carried out to obtain the suspension and deposition profiles around the injection wells. These preliminary results indicate the non-Fickian behaviors...... of suspended reservoir fines and the corresponding formation damage due to erosion and relocation of reservoir fines....

  3. Report: EPA Is Taking Steps to Improve State Drinking Water Program Reviews and Public Water Systems Compliance Data

    Science.gov (United States)

    Report #17-P-0326, July 18, 2017. The EPA is taking action to improve oversight tools used to determine whether public water systems are monitoring and reporting drinking water quality in accordance with the Safe Drinking Water Act.

  4. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  5. Geophysical remote sensing of water reservoirs suitable for desalinization.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  6. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  7. Internal radiation doses from radioactivity of drinking water in Finland

    International Nuclear Information System (INIS)

    Kahlos, H.; Asikainen, M.

    1980-01-01

    A study of the radioactivity of drinking water in Finland was carried out from 1974 to 1978. Samples were collected from nearly all water supply plants with more than 200 users and from privately dug or drilled wells. This paper considers drinking water as a factor in increasing the natural radiation exposure of the population and estimates the collective and per capita dose rates caused by the 222 Rn present in water. Instead of performing dose calculations, the significance of 226 Ra and uranium is assessed by means of daily intake. The assessment is made for both the whole population and three subgroups using the water from water supply plants and privately dug or drilled wells. (author)

  8. Radium-226 on drinking water of Camaguey, Cuba

    International Nuclear Information System (INIS)

    Montalvan Estrada, Adelmo; Brigido Flores, Osvaldo; Barrera Caballero, Aldo; Escalante, Alexander

    2001-01-01

    The specific activity of Ra-226 in drinking water of Camaguey city, Cuba, was measured using the emanometric method. The specific activity of Ra-226 in drinking water ranged from 15 ± 5 mBq.l -1 to 39 ±12 mBq.l -1 . The mean specific activity of Ra-226 was found to be 27 ± 8 mBq.l -1 . No seasonal variation was found. Water samples were collected from the two main sources of drinking water: private wells and governmental water supply system, being the mean specific activities of Ra-226: 25 ± 7 mBq.l -1 and 31 ± 9 mBq.l -1 , respectively. Based upon measured concentrations the age-dependent associated effective doses due to the ingestion of Ra-226, as a consequence of direct consumption of drinking water, have been calculated. For the age interval 1 year to 5 years, the average effective dose was 6,2 μSv.y -1 , and for adults the average effective dose was 5,2 μSv.y -1 . (author)

  9. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  10. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  11. Testing the robustness of two water distribution system layouts under changing drinking water demand

    NARCIS (Netherlands)

    Agudelo-Vera, Claudia; Blokker, M; Vreeburg, J; Vogelaar, H.; Hillegers, S; van der Hoek, J.P.

    2016-01-01

    A drinking water distribution system (DWDS) is a critical and a costly asset with a long lifetime. Drinking water demand is likely to change in the coming decades. Quantifying these changes involves large uncertainties. This paper proposes a stress test on the robustness of existing DWDS under

  12. Demineralization of drinking water: Is it prudent?

    Science.gov (United States)

    Verma, K C; Kushwaha, A S

    2014-10-01

    Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed.

  13. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    International Nuclear Information System (INIS)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N.

    2000-01-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed

  14. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-08-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed.

  15. A brief overview on radon measurements in drinking water.

    Science.gov (United States)

    Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael

    2017-07-01

    The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Source of drinking water supply and transmission of guinea worm disease in Nigeria.

    Science.gov (United States)

    Ilegbodu, V A; Christensen, B L; Wise, R A; Ilegbodu, A E; Kale, O O

    1987-12-01

    During 1982, ecological factors associated with freshwater pollution were investigated in Idere, a rural Nigerian community with endemic guinea worm infection. Data were collected on the quality of all pond water sources, and on rainfall patterns and potable piped water available in the community. Pond water provided 76% of the total water used in Idere. This source of drinking water provided the classical ecological environment for the transmission of Dracunculus medinensis, other helminth parasites and bacterial enteric infections. The bacteriological analysis of drinking water from the ponds reflects the absence of sanitary arrangements for human waste disposal in the community, as the ponds are collectors of storm run-offs. Okina, the spring-fed pond which was nearest to the households, was the most reliable year-round source of water to the community; however, Okina also contained the highest density of infective Thermocyclops and the highest faecal coliform (FC) to faecal Streptococcus (FS) ratio (FC/FS), thus providing a central reservoir for guinea worm and bacterial infections. The transmission season of guinea worm infection corresponded with the period of greatest water scarcity in Idere. The amount of portable water available to Idere residents in 1981 was 3.6 litres per person per day. Frequent mechanical breakdowns, electric power failures, lack of fuel to run the water pumping engines and the direct link of the water pipeline supplying water to Idere with a water pipeline serving another major city in the same district were some of the reasons for potable water shortage in the community.

  17. Evaluation of semidecentralized emergency drinking water treatment.

    Science.gov (United States)

    Eloidin, Océane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of water supply interventions.

  18. The sources of trace element pollution of dry depositions nearby a drinking water source.

    Science.gov (United States)

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  19. Gross alpha radioactivity of drinking water in Venezuela

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Gomez, J.; Greaves, E.D.; Herrera, O.; Salazar, V.; Smith, A.

    1997-01-01

    Bottled mineral water is consumed by a large population in Venezuela. The alpha emitters concentration was measured in samples of bottled water and water springs collected near the surface. Approximately 30% of the total mineral water suppliers was monitored. a database on natural and artificial radioactivity in drinking water was produced. Results indicate that 54% of the waters sampled contain a total alpha radioactivity of less than 0.185 Bql -1 and only 12% above 0.37 Bql -1 . Our results revealed a total annual dose of 2.3 mSv year -1 . (author)

  20. Loads and yields of deicing compounds and total phosphorus in the Cambridge drinking-water source area, Massachusetts, water years 2009–15

    Science.gov (United States)

    Smith, Kirk P.

    2017-09-12

    The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154

  1. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water.

    Science.gov (United States)

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2011-08-15

    Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water.

  2. POLLUTION OF SMALL RESERVOIRS OF WATER IN BIALYSTOK AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2016-05-01

    Full Text Available The aim of the study work was to evaluate the impact of the emissions of heavy metals of roads and streets in the surface water in reservoirs located near the main roads of the Bialystok City. The analysis was conducted for a period of six weeks from March to April 2014. During the study five reservoirs were selected. Two of them, the first and the forth of them are located in Parks. One of them – the third one is a public bathing beach. The second is located near the crossroads in the center of the city and last one – the fifth object is situated within buildings and parking of trucks. Study includes an analysis of indicators such as total suspended solids, BOD5, CODCr, selected heavy metal such as, lead, nickel, copper, cobalt and chromium. All determinations were made in accordance to given methodology, and the evaluation was performed by comparing achieved results to a limit values presented in the Decree of Environment Ministry.

  3. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  4. Water quality modeling in the dead end sections of drinking water (Supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to...

  5. The Contribution of Reservoirs to Global Land Surface Water Storage Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tian; Nijssen, Bart; Gao, Huilin; Lettenmaier, Dennis P.

    2016-12-21

    Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.

  6. Exploring Perceptions and Behaviors about Drinking Water in Australia and New Zealand: Is It Risky to Drink Water, When and Why?

    Directory of Open Access Journals (Sweden)

    Andrea Crampton

    2016-02-01

    Full Text Available Consumers in most developed countries, including Australia and New Zealand, presume their drinking water is safe. How social perceptions about drinking water are formed, however, remains inadequately explored in the research literature. This research contributes exploratory insights by examining factors that affect consumer perceptions and behaviors. Individual perceptions of drinking water quality and actions undertaken to mitigate perceived risks were collected during 183 face-to-face interviews conducted at six research sites. Qualitative thematic analysis revealed the majority did not consider drinking water a “risky” activity, trusted water management authorities to manage all safety issues and believed self-evaluation of drinking water’s taste and appearance were sufficient measures to ensure safe consumption. Quantitatively, significant relationships emerged between water quality perceptions and sex, employment status, drinking water treatment and trust in government to provide safe water. Expert advice was rarely sought, even by those who believed drinking tap water posed some health risks. Generational differences emerged in media usage for drinking water advice. Finally, precautionary measures taken at home and abroad often failed to meet national drinking water guidelines. Three major conclusions are drawn: a. broad lack of awareness exists about the most suitable and safe water treatment activities, as well as risks posed; b. health literacy and interest may be improved through greater consumer involvement in watershed management; and c. development of health campaigns that clearly communicate drinking water safety messages in a timely, relevant and easily understandable fashion may help mitigate actual risks and dispel myths.

  7. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Organic mutagens and drinking water in The Netherlands : a study on mutagenicity of organic constituents in drinking water in The Netherlands and their possible carcinogenic effects

    OpenAIRE

    Kool, H.J.

    1983-01-01

    Several mutagenic and carcinogenic organic compounds have been detected in Dutch surface waters and in drinking water prepared from these surface waters. Although the levels of these compounds in drinking- and surface water are relatively low, in general below μg per litre, it appeared that organic concentrates tested in the Ames/microsome assay, showed mutagenic activity in 50 ml surface- and 500 ml drinking water.

    Such a result however was not expected based on the concentration of...

  9. Effects of slightly acidic electrolysed drinking water on mice.

    Science.gov (United States)

    Inagaki, Hideaki; Shibata, Yoshiko; Obata, Takahiro; Kawagoe, Masami; Ikeda, Katsuhisa; Sato, Masayoshi; Toida, Kazumi; Kushima, Hidemi; Matsuda, Yukihisa

    2011-10-01

    Slightly acidic electrolysed (SAE) water is a sanitizer with strong bactericidal activity due to hypochlorous acid. We assessed the safety of SAE water as drinking water for mice at a 5 ppm total residual chlorine (TRC) concentration to examine the possibility of SAE water as a labour- and energy-saving alternative to sterile water. We provided SAE water or sterile water to mice for 12 weeks, during which time we recorded changes in body weight and weekly water and food intakes. At the end of the experiment, all of the subject animals were sacrificed to assess serum aspartate aminotransferase, alanine aminotransferase and creatinine levels and to examine the main organs histopathologically under a light microscope. In addition, we investigated the bacteria levels of both types of water. We found no difference in functional and morphological health condition indices between the groups. Compared with sterile water, SAE water had a relatively higher ability to suppress bacterial growth. We suggest that SAE water at 5 ppm TRC is a safe and useful alternative to sterile water for use as drinking water in laboratory animal facilities.

  10. [Moulds and yeasts in bottled water and soft drinks].

    Science.gov (United States)

    Ancasi, E G; Carrillo, L; Benítez Ahrendts, M R

    2006-01-01

    Some damaged cartons of soft drinks and carbonated water were analyzed to detect the microorganisms that caused the damage. The contaminants of sugar used in the production of one of the drinks were also studied. The methods of Déak & Beuchat and Pitt & Hocking were used for the identification of yeasts and moulds, respectively. The agents of the spoilage of soft drinks were Debaryomyces hansenii, Debaryomyces polymorphus, Galactomyces geotrichum, Metschnikowia pulcherrima, Mucor circinelloides, Pichia anomala, Pichia jadinii, Pichia subpelliculosa, Rhodotorula glutinis and Zygosaccharomyces bailii. The microorganisms found in sugar were Aspergillus niger, Aspergillus penicilloides, Aspergillus versicolor, Cladosporium sphaerospermum, Mucor racemosus, P. anomala and Rhizopus stolonifer. Paecilomyces fulvus and Penicillium glabrum were observed in carbonated water.

  11. [Minerals intake from drinking water by young women].

    Science.gov (United States)

    Januszko, Olga; Madej, Dawid; Postaleniec, Emilia; Brzozowska, Anna; Pietruszka, Barbara; Kałuza, Joanna

    2012-01-01

    The aim of this study was to assess the intake of calcium, magnesium, iron, zinc, potassium and sodium with drinking water among 19-26 years old women, students at the Warsaw University of Life Sciences (SGGW). Data on intake of drinking water and food products were collected based on 4-day record method. Information about kind of water usage to prepare beverages and meals were obtained by using a specific questionnaire. Minerals concentrations in water samples were assessed using the atomic spectrophotometer absorption (ASA) technique. The average consumption of drinking water equaled 870 +/- 389 cm3/d (100-2738 cm3/d). The drinking water used by the women for meals or beverages preparation contributed in 9,8% of calcium and 3,8% of magnesium to their daily diet. Contribution of tap water in the intake of calcium and magnesium depended on the contents of these minerals in water, and amounted from 6,0% (water--1st quartile) to 14,8% (> 112 mg/dm3--4th quartile) for calcium and from 2,9% ( 15,4 mg/dm3) for magnesium. The contribution of iron, zinc, potassium and sodium was low, and not exceeded 2%. Comparing the average content of minerals in non-boiled and boiled tap water the cooking process influenced the levels of calcium (95,8 +/- 31,8 vs 89,7 +/- 31,1 mg/dm3), magnesium (12,1 +/- 3,24 vs. 12,7 +/- 3,04 mg/dm3), zinc (0,35 +/- 0,87 vs. 0,17 +/- 0,89 mg/dm3), potassium (3,31 +/- 2,67 vs. 3,66 +/- 4,18 mg/dm3) and sodium (23,2 +/- 15,4 vs. 25,9 +/- 17,2 mg/dm3). Nevertheless, from the nutritional point of view the differences in the concentrations of these minerals were insignificant. Conclusions. Drinking water can be an important source of calcium and magnesium in diet, wherein the amount of the supplied element depends on its content in drinking water used for preparing beverages and/or meals.

  12. Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor

    Science.gov (United States)

    Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad

    2018-03-01

    A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).

  13. Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor

    Directory of Open Access Journals (Sweden)

    Hashim Syarifah Intan Najla Syed

    2018-01-01

    Full Text Available A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17 sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO, water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50.

  14. Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2017-01-01

    Full Text Available Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.

  15. Evaluation of drinking water quality in Rawalpindi and Islamabad

    International Nuclear Information System (INIS)

    Uzaira, R.; Sumreen, I.; Uzma, R.

    2005-01-01

    Drinking water quality of Rawalpindi and Islamabad was determined in terms of its microbiological and physicochemical characteristics. Water samples were collected from fifty schools of cantonment area Rawalpindi and fifty houses of Sector G-9/4 Islamabad. Survey revealed that surface and ground water are the two major sources of drinking water. Efficiency of domestic filtration units was determined by taking samples before and after filtration, whereas, level of contamination was assessed by collecting samples from storage and dispensing devices in schools. Water quality was determined by pH, conductivity, total dissolved solids, total hardness, concentration of anions and cations, coliforms, viable and colony counts using multiple tube fermentation, titrimetry, UV-Visible spectrophotometry and flame emission photometry. Drinking water quality of Islamabad was found to be better than Rawalpindi. However filtration showed no significant impact in improving water quality due to improper cleaning of filters. Samples were found to exceed WHO guidelines and EPA standards for total dissolved solids and microbiological parameters (WHO, 1996 and EPA, 1980) making water unfit for use due to poor sanitation and cross contamination with sewers in distribution network. (author)

  16. Evaluation of Minerals Content of Drinking Water in Malaysia

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  17. Nephrotoxicity of uranium in drinking water from private drilled wells

    Energy Technology Data Exchange (ETDEWEB)

    Selden, Anders I., E-mail: anders.selden@orebroll.se [Department of Occupational and Environmental Medicine, Orebro University Hospital, SE-701 85 Orebro (Sweden); Lundholm, Cecilia [Department of Occupational and Environmental Medicine, Orebro University Hospital, SE-701 85 Orebro (Sweden); Edlund, Bror [Department of Clinical Chemistry, Orebro University Hospital, SE-701 85 Orebro (Sweden); Hoegdahl, Camilla [Office of Environment and Health, Arjaengs kommun, PO Box 906, SE-672 29 Arjaeng (Sweden); Ek, Britt-Marie [Geological Survey of Sweden, PO Box 670, SE-751 28 Uppsala (Sweden); Bergstroem, Bernt E.; Ohlson, Carl-Goeran [Department of Occupational and Environmental Medicine, Orebro University Hospital, SE-701 85 Orebro (Sweden)

    2009-05-15

    Objectives: To investigate the association between uranium in drinking water from drilled wells and aspects of kidney function measured by sensitive urine tests. Methods: Three hundred and one of 398 eligible subjects (75.6%) aged 18-74 years with daily drinking water supplies from private drilled wells located in uranium-rich bedrock (exposed group) volunteered to participate along with 153 of 271 local controls (56.4%) who used municipal water. Participants responded to a questionnaire on their water consumption and general health, and provided a morning urine sample and drinking water for analysis. Results: The uranium content of well water samples (n=153) varied considerably (range <0.20-470 {mu}g/l, median 6.7 {mu}g/l, 5% >100 {mu}g/l), while uranium levels in all samples of municipal water (n=14) were below the limit of quantification (0.2 {mu}g/l). Urinary levels of uranium were more than eight times higher in exposed subjects than in controls (geometric means 38 and 4.3 ng/l, respectively; p<0.001), but their mean urine lead levels were not significantly different. There was a strong curvilinear correlation between uranium in drinking water and in urine (r{sup 2}=0.66). Levels of albumin, {beta}{sub 2}-microglobulin, protein HC as well as kappa and lambda immunoglobulin chains in urine from exposed and controls were similar. The N-acetyl-{beta}-D-glucosaminidase (NAG) activity was significantly lower in the exposed group vs. controls, possibly secondary to differential storage duration of samples from the two groups. Even in regression models adjusting for gender, age and smoking no association of uranium in water and the kidney function parameters was observed. Using uranium in urine in the entire study group as a marker of exposure, however, a tendency of exposure-related increases of {beta}{sub 2}-microglobulin, protein HC and kappa chains were noted. This tendency was enhanced after exclusion of subjects with diabetes mellitus from the analysis

  18. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  19. Arsenic in drinking water and adverse birth outcomes in Ohio.

    Science.gov (United States)

    Almberg, Kirsten S; Turyk, Mary E; Jones, Rachael M; Rankin, Kristin; Freels, Sally; Graber, Judith M; Stayner, Leslie T

    2017-08-01

    Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Wildfire effects on source-water quality--Lessons from Fourmile Canyon fire, Colorado, and implications for drinking-water treatment

    Science.gov (United States)

    Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    Forested watersheds provide high-quality source water for many communities in the western United States. These watersheds are vulnerable to wildfires, and wildfire size, fire severity, and length of fire season have increased since the middle 1980s (Westerling and others, 2006). Burned watersheds are prone to increased flooding and erosion, which can impair water-supply reservoirs, water quality, and drinking-water treatment processes. Limited information exists on the degree, timing, and duration of the effects of wildfire on water quality, making it difficult for drinking-water providers to evaluate the risk and develop management options. In order to evaluate the effects of wildfire on water quality and downstream ecosystems in the Colorado Front Range, the U.S. Geological Survey initiated a study after the 2010 Fourmile Canyon fire near Boulder, Colorado. Hydrologists frequently sampled Fourmile Creek at monitoring sites upstream and downstream of the burned area to study water-quality changes during hydrologic conditions such as base flow, spring snowmelt, and summer thunderstorms. This fact sheet summarizes principal findings from the first year of research. Stream discharge and nitrate concentrations increased downstream of the burned area during snowmelt runoff, but increases were probably within the treatment capacity of most drinking-water plants, and limited changes were observed in downstream ecosystems. During and after high-intensity thunderstorms, however, turbidity, dissolved organic carbon, nitrate, and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. Increases of such magnitude can pose problems for water-supply reservoirs, drinking-water treatment plants, and downstream aquatic ecosystems.