WorldWideScience

Sample records for drinking water distribution

  1. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  2. 30 CFR 71.602 - Drinking water; distribution.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  3. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  4. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  5. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  6. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  7. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  8. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  9. Removal of soft deposits from the distribution system improves the drinking water quality.

    Science.gov (United States)

    Lehtola, Markku J; Nissinen, Tarja K; Miettinen, Ilkka T; Martikainen, Pertti J; Vartiainen, Terttu

    2004-02-01

    Deterioration in drinking water quality in distribution networks represents a problem in drinking water distribution. These can be an increase in microbial numbers, an elevated concentration of iron or increased turbidity, all of which affect taste, odor and color in the drinking water. We studied if pipe cleaning would improve the drinking water quality in pipelines. Cleaning was arranged by flushing the pipes with compressed air and water. The numbers of bacteria and the concentrations of iron and turbidity in drinking water were highest at 9 p.m., when the water consumption was highest. Soft deposits inside the pipeline were occasionally released to bulk water, increasing the concentrations of iron, bacteria, microbially available organic carbon and phosphorus in drinking water. The cleaning of the pipeline decreased the diurnal variation in drinking water quality. With respect to iron, only short-term positive effects were obtained. However, removing of the nutrient-rich soft deposits did decrease the microbial growth in the distribution system during summer when there were favorable warm temperatures for microbial growth. No Norwalk-like viruses or coliform bacteria were detected in the soft deposits, in contrast to the high numbers of heterotrophic bacteria.

  10. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  11. Effect of the Distribution System on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    A. Grünwald

    2001-01-01

    Full Text Available The overall objective of this paper is to characterise the main aspects of water quality deterioration in a distribution system. The effect of residence time on chlorine uptake and the formation and evolution of disinfection by-products in distributed drinking water are discussed.

  12. Contamination potential of drinking water distribution network biofilms.

    Science.gov (United States)

    Wingender, J; Flemming, H C

    2004-01-01

    Drinking water distribution system biofilms were investigated for the presence of hygienically relevant microorganisms. Early biofilm formation was evaluated in biofilm reactors on stainless steel, copper, polyvinyl chloride (PVC) and polyethylene coupons exposed to unchlorinated drinking water. After 12 to 18 months, a plateau phase of biofilm development was reached. Surface colonization on the materials ranged between 4 x 10(6) and 3 x 10(7) cells/cm2, with heterotrophic plate count (HPC) bacteria between 9 x 10(3) and 7 x 10(5) colony-forming units (cfu)/cm2. Established biofilms were investigated in 18 pipe sections (2 to 99 years old) cut out from distribution pipelines. Materials included cast iron, galvanized steel, cement and PVC. Colonization ranged from 4 x 10(5) to 2 x 10(8) cells/cm2, HPC levels varied between 1 and 2 x 10(5) cfu/cm2. No correlation was found between extent of colonization and age of the pipes. Using cultural detection methods, coliform bacteria were rarely found, while Escherichia coli, Pseudomonas aeruginosa and Legionella spp. were not detected in the biofilms. In regular operation, distribution system biofilms do not seem to be common habitats for pathogens. However, nutrient-leaching materials like rubber-coated valves were observed with massive biofilms which harboured coliform bacteria contaminating drinking water.

  13. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    Science.gov (United States)

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.

  14. Impact of particles on sediment accumulation in a drinking water distribution system.

    Science.gov (United States)

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough.

  15. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... other crustaceans and nematodes protect bacteria from treatment processes. The influence of A. aquaticus has never previously been investigated. Investigations in this PhD project revealed that presence of A. aquaticus did not influence microbial water quality measurably in full scale distribution...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  16. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks

    International Nuclear Information System (INIS)

    Francis, Royce A.; Guikema, Seth D.; Henneman, Lucas

    2014-01-01

    In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a water zone. To the authors’ knowledge, this is the first attempt to model drinking water distribution system pipe breaks using BBNs. Development of expert systems such as BBNs for analyzing drinking water distribution system data is not only important for pipe break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate data-based distribution system monitoring and asset management. Due to the difficulties in collecting, preparing, and managing drinking water distribution system data, most pipe break models can be classified as “statistical–physical” or “hypothesis-generating.” We develop the BBN with the hope of contributing to the “hypothesis-generating” class of models, while demonstrating the possibility that BBNs might also be used as “statistical–physical” models. Our model is learned from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network. BBN models are learned using a constraint-based method, a score-based method, and a hybrid method. Model evaluation is based on log-likelihood scoring. Sensitivity analysis using mutual information criterion is also reported. While our results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may be difficult to select among model alternatives. This model uncertainty may mean that more research is needed for understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter might be important for asset management planning. - Highlights: • We show Bayesian Networks for predictive and diagnostic management of water distribution systems. • Our model may enable system operators and managers to prioritize system

  17. Fundamentals and control of nitrification in chloraminated drinking water distribution systems

    National Research Council Canada - National Science Library

    American Water Works Association

    2006-01-01

    ... Introduction, 25 Nitrification in Drinking Water Distribution System, 25 Nitrification in Pipelines and Effects of Biofilms, 31 Nitrification in Water Storage Facilities, 34 Conclusions, 39 Refere...

  18. Molybdenum distributions and variability in drinking water from England and Wales.

    Science.gov (United States)

    Smedley, P L; Cooper, D M; Lapworth, D J

    2014-10-01

    An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p  0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in all cases less than 2 μg/l, were more than an order of magnitude below the WHO health-based value and suggest that Mo is unlikely to pose a significant health or water supply problem in England and Wales.

  19. Gastrointestinal illness linked to incidents in drinking water distribution networks in Sweden.

    Science.gov (United States)

    Säve-Söderbergh, Melle; Bylund, John; Malm, Annika; Simonsson, Magnus; Toljander, Jonas

    2017-10-01

    During recent years, knowledge gaps on drinking water-related gastrointestinal illness have been identified, especially for non-epidemic cases. Pathogen contamination of drinking water during distribution has been suggested to contribute to these cases, but the risk factors are not yet fully understood. During 2014-2015, we conducted an epidemiological study in five municipalities in Sweden, to assess whether incidents in the drinking water distribution system influence the risk of gastrointestinal illness. Telephone interviews were conducted in the affected areas and in reference areas 7-14 days after a reported incident. Symptoms of gastrointestinal illness occurring during the period were documented for each household member. The results showed a significantly elevated risk of vomiting and acute gastrointestinal illness (AGI) in the affected areas, compared to the reference areas (OR vom.  = 2.0, 95% CI: 1.2-3.3; OR AGI  = 1.9, 95% CI: 1.2-3.0). Certain conditions, or risk factors, during the incidents, such as sewage and drinking water pipelines at the same level in the trench, were associated with an elevated risk of AGI and vomiting. Safety measures taken during repair work, like flushing, were also associated with an elevated risk of AGI and vomiting. These results show that incidents in the drinking water distribution network contribute to endemic gastrointestinal illness, especially AGI and vomiting, and that external pathogen contamination of the drinking water is a likely cause of these cases of gastrointestinal illness. The results also indicate that safety measures used today may not be sufficient for eliminating the risk of gastrointestinal illness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Drinking Water Quality and the Geospatial Distribution of Notified Gastro-Intestinal Infections.

    Science.gov (United States)

    Grilc, Eva; Gale, Ivanka; Veršič, Aleš; Žagar, Tina; Sočan, Maja

    2015-09-01

    Even brief episodes of fecal contamination of drinking water can lead directly to illness in the consumers. In water-borne outbreaks, the connection between poor microbial water quality and disease can be quickly identified. The impact of non-compliant drinking water samples due to E. coli taken for regular monitoring on the incidence of notified acute gastrointestinal infections has not yet been studied. The objective of this study was to analyse the geographical distribution of notified acute gastrointestinal infections (AGI) in Slovenia in 2010, with hotspot identification. The second aim of the study was to correlate the fecal contamination of water supply system on the settlement level with the distribution of notified AGI cases. Spatial analysis using geo-information technology and other methods were used. Hot spots with the highest proportion of notified AGI cases were mainly identified in areas with small supply zones. The risk for getting AGI was drinking water contaminated with E. coli from supply zones with 50-1000 users: RR was 1.25 and significantly greater than one (p-value less than 0.001). This study showed the correlation between the frequency of notified AGI cases and non-compliant results in drinking water monitoring.

  1. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  2. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems.

    Science.gov (United States)

    Koskinen, R; Ali-Vehmas, T; Kämpfer, P; Laurikkala, M; Tsitko, I; Kostyal, E; Atroshi, F; Salkinoja-Salonen, M

    2000-10-01

    Sphingomonas species were commonly isolated from biofilms in drinking water distribution systems in Finland (three water meters) and Sweden (five water taps in different buildings). The Sphingomonas isolates (n = 38) were characterized by chemotaxonomic, physiological and phylogenetic methods. Fifteen isolates were designated to species Sphingomonas aromaticivorans, seven isolates to S. subterranea, two isolates to S. xenophaga and one isolate to S. stygia. Thirteen isolates represented one or more new species of Sphingomonas. Thirty-three isolates out of 38 grew at 5 degrees C on trypticase soy broth agar (TSBA) and may therefore proliferate in the Nordic drinking water pipeline where the temperature typically ranges from 2 to 12 degrees C. Thirty-three isolates out of 38 grew at 37 degrees C on TSBA and 15 isolates also grew on blood agar at 37 degrees C. Considering the potentially pathogenic features of sphingomonas, their presence in drinking water distribution systems may not be desirable.

  3. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems

    Science.gov (United States)

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and

  5. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  6. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An evaluation of invertebrate dynamics in a drinking water distribution system: a South African perspective

    OpenAIRE

    2008-01-01

    M.Sc. The occurrence of invertebrates in drinking water supplies is a common consumer complaint with studies showing that very few drinking water distribution networks are totally free of organisms. A detailed investigation of different types of metazoan animals in the drinking water supply networks of South Africa has not been undertaken. In limited worldwide studies, invertebrates (mainly Amphipoda, Chironomidae, Cladocera, Copepoda and Ostracoda) have been detected in produced drinking ...

  8. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; Van Loosdrecht, M. C M; Vrouwenvelder, Johannes S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  9. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    E I Prest

    Full Text Available Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP effluent and at one fixed location in the drinking water distribution network (NET. The samples were analysed for heterotrophic plate counts (HPC, Aeromonas plate counts, adenosine-tri-phosphate (ATP concentrations, and flow cytometric (FCM total and intact cell counts (TCC, ICC, water temperature, pH, conductivity, total organic carbon (TOC and assimilable organic carbon (AOC. Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time and in bacterial ATP concentrations (<1-3.6 ng L-1, which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35, and positively correlated with water temperature (r = 0.49. Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  10. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  11. [Geographic distribution and exposure population of drinking water with high concentration of arsenic in China].

    Science.gov (United States)

    Zhang, L; Chen, C

    1997-09-01

    According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.

  12. Evaluation of exposure scenarios on intentional microbiological contamination in a drinking water distribution network.

    Science.gov (United States)

    Schijven, Jack; Forêt, Jean Marie; Chardon, Jurgen; Teunis, Peter; Bouwknegt, Martijn; Tangena, Ben

    2016-06-01

    Drinking water distribution networks are vulnerable to accidental or intentional contamination events. The objective of this study was to investigate the effects of seeding duration and concentration, exposure pathway (ingestion via drinking of water and tooth brushing and inhalation by taking a shower) and pathogen infectivity on exposure and infection risk in the case of an intentional pathogenic contamination in a drinking water distribution network. Seeding of a pathogen for 10 min and 120 min, and subsequent spreading through a drinking water distribution network were simulated. For exposure via drinking, actual data on drinking events and volumes were used. Ingestion of a small volume of water by tooth brushing twice a day by every person in the network was assumed. Inhalation of contaminated aerosol droplets took place when taking a shower. Infection risks were estimated for pathogens with low (r = 0.0001) and high (r = 0.1) infectivity. In the served population (48 000 persons) and within 24 h, about 1400 persons were exposed to the pathogen by ingestion of water in the 10-min seeding scenario and about 3400 persons in the 120-min scenario. The numbers of exposed persons via tooth brushing were about the same as via drinking of water. Showering caused (inhalation) exposure in about 450 persons in the 10-min scenario and about 1500 in the 120-min scenario. Regardless of pathogen infectivity, if the seeding concentration is 10(6) pathogens per litre or more, infection risks are close to one. Exposure by taking a shower is of relevance if the pathogen is highly infectious via inhalation. A longer duration of the seeding of a pathogen increases the probability of exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Rossella Briancesco

    2010-01-01

    Full Text Available Data on the occurrence of non-tuberculous mycobacteria (NTM, in parallel with those obtained for bacterial indicators and amoebae, are presented with the aim to collect information on the spread of NTM in drinking water distribution systems in Italy. Samples were collected from taps of hospitals and households in Central and Southern Italy. The concentration values obtained for the more traditional microbial parameters complied with the mandatory requirements for drinking water. Conversely, moderate-to-high microbial loads (till 300 CFU/L were observed for the NTM. Positive samples were obtained from 62% of the investigated water samples. Analogous results were observed for amoebae showing a higher percentage of positive samples (76%. In terms of public health, the presence of mycobacteria in water distribution systems may represent a potential risk especially for vulnerable people such as children, the elderly or immunocompromised individuals.

  14. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  15. A STUDY OF LEAKAGE OF TRACE METALS FROM CORROSION OF THE MUNICIPAL DRINKING WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2003-09-01

    Full Text Available Introduction: A high portion of lead and copper concentration in municipal drinking water is related to the metallic structure of the distribution system and facets. The corrosive water in pipes and facets cause dissolution of the metals such as Pb, Cu, Cd, Zn, Fe and Mn into the water. Due to the lack of research work in this area, a study of the trace metals were performed in the drinking water distribution system in Zarin Shahr and Mobareke of Isfahan province. Methods: Based on the united states Environmental protection Agency (USEPA for the cities over than 50,000 population such as Zarin Shahr and Mobareke, 30 water samples from home facets with the minimum 6 hours retention time of water in pipes, were collected. Lead and cadmium concentration were determined using flameless Atomic Absorption. Cupper, Zinc, Iron and Manganese were determined using Atomic Absorption. Results: The average concentration of Pb, Cd, Zn, Fe and Mn in water distribution system fo Zarin Shahr were 5.7, 0.1, 80, 3042, 23065 and in Mobareke were 7.83, 0.8,210,3100, 253, 17µg respectively. The cocentration of Pb, Cd and Zn were zero at the beginning of the water samples from the municipal drinking water distribution system for both cities. Conclusion: The study showed that the corrosion by products (such as Pb, Cd and Zn was the results of dissolution of the galvanized pipes and brass facets. Lead concentration in over that 10 percent of the water samples in zarin shahr exceeded the drinking water standard level, which emphasize the evaluation and control of corrosion in drinking water distribution systems.

  16. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  17. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network.

    Science.gov (United States)

    El-Chakhtoura, Joline; Prest, Emmanuelle; Saikaly, Pascal; van Loosdrecht, Mark; Hammes, Frederik; Vrouwenvelder, Hans

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El Chakhtoura, Joline

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic.

  19. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  20. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  1. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  2. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  3. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  4. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Weissbrodt, D.G.; Hammes, F; van Loosdrecht, Mark C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year

  6. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    OpenAIRE

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammon...

  7. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  8. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems.

    Science.gov (United States)

    Lin, Huirong; Zhu, Xuan; Wang, Yuxin; Yu, Xin

    2017-04-01

    Human health and biological safety problems resulting from urban drinking water pipe network biofilms pollution have attracted wide concern. Despite the inclusion of residual chlorine in drinking water distribution systems supplies, the bacterium is a recalcitrant human pathogen capable of forming biofilms on pipe walls and causing health risks. Typical drinking water bacterial biofilms and their response to different concentrations of chlorination was monitored. The results showed that the four bacteria all formed single biofilms susceptible to sodium hypochlorite. After 30 min disinfection, biomass and cultivability decreased with increasing concentration of disinfectant but then increased in high disinfectant doses. PMA-qPCR results indicated that it resulted in little cellular damage. Flow cytometry analysis showed that with increasing doses of disinfectant, the numbers of clusters increased and the sizes of clusters decreased. Under high disinfectant treatment, EPS was depleted by disinfectant and about 0.5-1 mg/L of residual chlorine seemed to be appropriate for drinking water treatment. This research provides an insight into the EPS protection to biofilms. Resistance of biofilms against high levels of chlorine has implications for the delivery of drinking water.

  9. Risk of viral acute gastrointestinal illness from non-disinfected drinking water distribution systems

    Science.gov (United States)

    Acute gastrointestinal illness (AGI) resulting from pathogens directly entering the piping of drinking water distribution systems is insufficiently understood. Here, we estimate AGI incidence attributable to virus intrusions into non-disinfecting municipal distribution systems. Viruses were enumerat...

  10. Study on Microbiological Quality of Rural and Urban Drinking Water in Distribution Systems of Ijroud, Zanjan in 2013-2015

    Directory of Open Access Journals (Sweden)

    Zahra Tohidloo

    2017-12-01

    Full Text Available Background: Providing safe drinking water has critical importance to human societies. The aim of this study was to investigate microbiological quality of drinking water in distribution system of urban and rural regions of Ijroud, in Zanjan province. Methods: In present descriptive study, the microbiological examination of drinking water was conducted in 15 facilities with 401 samples. Transportation and test procedures were according to standard methods for the examination of water and wastewater. Results: Total number of microbial samples were 401 and 66.66% of them were positive for total and fecal coliforms. Also, water of 10 villages were not suitable for drinking with respecting to national standards. In addition, samples of only 5 villages were suitable for human consumption. The range of fecal coliforms in distribution networks' samples were from 4 to 75 MPN/100 ml. Conclusion: This study showed that as microbiological aspect, drinking water is not potable in some rural communities. The consumption of drinking water in this distribution networks can threaten the health of consumers, thus, the water supply organizations have to improve operation and maintenance measurements due to prevent the spread of water-borne diseases.

  11. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  12. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Robustness of the Drinking Water Distribution Network under Changing Future Demand

    NARCIS (Netherlands)

    Agudelo-Vera, C.; Blokker, M.; Vreeburg, J.; Bongard, T.; Hillegers, S.; Van der Hoek, J.P.

    2014-01-01

    A methodology to determine the robustness of the drinking water distribution system is proposed. The performance of three networks under ten future demand scenarios was tested, using head loss and residence time as indicators. The scenarios consider technological and demographic changes. Daily

  14. Biofilm in drinking water networks

    International Nuclear Information System (INIS)

    Cristiani, Pietrangela

    2005-01-01

    Bacterial growth in drinking waters is today controlled adding small and non toxic quantities of sanitising products. An innovative electrochemical biofilm monitoring system, already successfully applied in industrial waters, could be confirmed as an effective diagnostic tool of water quality also for drinking distributions systems [it

  15. Virus contamination from operation and maintenance practices in small drinking water distribution systems

    Science.gov (United States)

    We tested the association of common events in drinking water distribution systems with contamination of household tap water with human enteric viruses. Viruses were enumerated by qPCR in the tap water of 14 municipal systems that use non-disinfected groundwater. Ultra-violet disinfection was install...

  16. Drinking Water - National Drinking Water Clearinghouse

    Science.gov (United States)

    Savings Septic Unsafe Disposable Wipe Woes FacebookLogo FOCUS AREAS Drinking Water Wastewater Training Security Conservation & Water Efficiency Water We Drink Source Water Protection SORA/COI EPA MOU CartIcon Links Listserv Educators Homeowners Operators Small Systems Drinking Water Read On Tap Latest

  17. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...

  18. Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System▿

    Science.gov (United States)

    White, Colin; Tancos, Matthew; Lytle, Darren A.

    2011-01-01

    A corroded lead service line was removed from a drinking water distribution system, and the microbial community was profiled using 16S rRNA gene techniques. This is the first report of the characterization of a biofilm on the surface of a corroded lead drinking water service line. The majority of phylotypes have been linked to heavy-metal-contaminated environments. PMID:21652741

  19. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingqing [College of Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Chen, Huanyu [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300000 (China); Yao, Lingdan; Wei, Zongyuan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Lou, Liping, E-mail: loulp@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda [Environmental Protection Agency, Office of Research and Development, NRMRL, Cincinnati, OH 45220 (United States); Hu, Baolan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhou, Xiaoyan [Shaoxing Water Environmental Science Institute Co. Ltd, Zhejiang 312000 (China)

    2016-11-05

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  20. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    International Nuclear Information System (INIS)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-01-01

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  1. Significance of bacteria associated with invertebrates in drinking water distribution networks.

    Science.gov (United States)

    Wolmarans, E; du Preez, H H; de Wet, C M E; Venter, S N

    2005-01-01

    The implication of invertebrates found in drinking water distribution networks to public health is of concern to water utilities. Previous studies have shown that the bacteria associated with the invertebrates could be potentially pathogenic to humans. This study investigated the level and identity of bacteria commonly associated with invertebrates collected from the drinking water treatment systems as well as from the main pipelines leaving the treatment works. On all sampling occasions bacteria were isolated from the invertebrate samples collected. The highest bacterial counts were observed for the samples taken before filtration as was expected. There were, however, indications that optimal removal of invertebrates from water did not always occur. During the investigation, 116 colonies were sampled for further identification. The isolates represent several bacterial genera and species that are pathogenic or opportunistic pathogens of humans. Diarrhoea, meningitis, septicaemia and skin infections are among the diseases associated with these organisms. The estimated number of bacteria that could be associated with a single invertebrate (as based on average invertebrate numbers) could range from 10 to 4000 bacteria per organism. It can, therefore, be concluded that bacteria associated with invertebrates might under the worst case scenario pose a potential health risk to water users. In the light of the above findings it is clear that invertebrates in drinking water should be controlled at levels as low as technically and economically feasible.

  2. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER DISTRIBUTION SYSTEM AFTER THE ADDITION OF FILTRATION TREATMENT

    Science.gov (United States)

    There is evidence that drinking water may be a source of pathogenic nontuberculous mycobacteria (NTM) infections in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular location within protozoa. Our goal was to determ...

  3. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    Science.gov (United States)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    Science.gov (United States)

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  5. An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system (DWDS).

    Science.gov (United States)

    Zhou, Xinyan; Zhang, Kejia; Zhang, Tuqiao; Li, Cong; Mao, Xinwei

    2017-05-01

    It is important for water utilities to provide esthetically acceptable drinking water to the public, because our consumers always initially judge the quality of the tap water by its color, taste, and odor (T&O). Microorganisms in drinking water contribute largely to T&O production and drinking water distribution systems (DWDS) are known to harbor biofilms and microorganisms in bulk water, even in the presence of a disinfectant. These microbes include T&O-causing bacteria, fungi, and algae, which may lead to unwanted effects on the organoleptic quality of distributed water. Importantly, the understanding of types of these microbes and their T&O compound-producing mechanisms is needed to prevent T&O formation during drinking water distribution. Additionally, new disinfection strategies and operation methods of DWDS are also needed for better control of T&O problems in drinking water. This review covers: (1) the microbial species which can produce T&O compounds in DWDS; (2) typical T&O compounds in DWDS and their formation mechanisms by microorganisms; (3) several common factors in DWDS which can influence the growth and T&O generation of microbes; and (4) several strategies to control biofilm and T&O compound formation in DWDS. At the end of this review, recommendations were given based on the conclusion of this review.

  6. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modeling particle transport and discoloration risk in drinking water distribution networks

    Directory of Open Access Journals (Sweden)

    J. van Summeren

    2017-10-01

    Full Text Available Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs. It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  8. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  9. Bacteriology of drinking water distribution systems: an integral and multidimensional review.

    Science.gov (United States)

    Liu, G; Verberk, J Q J C; Van Dijk, J C

    2013-11-01

    A drinking water distribution system (DWDS) is the final and essential step to supply safe and high-quality drinking water to customers. Biological processes, such as biofilm formation and detachment, microbial growth in bulk water, and the formation of loose deposits, may occur. These processes will lead to deterioration of the water quality during distribution. In extreme conditions, pathogens and opportunistic pathogens may proliferate and pose a health risk to consumers. It is, therefore, necessary to understand the bacteriology of DWDSs to develop effective strategies that can ensure the water quality at consumers' taps. The bacteriology of DWDSs, both the quantitative growth and the qualitative bacterial community, has attracted considerable research attention. However, the researchers have focused mainly on the pipe wall biofilm. In this review, DWDS bacteriology has been reviewed multidimensionally, including both the bacterial quantification and identification. For the first time, the available literature was reviewed with an emphasis on the subdivision of DWDS into four phases: bulk water, suspended solids, loose deposits, and pipe wall biofilm. Special concentration has been given to potential contribution of particulate matter: suspended particles and loose deposits. Two highlighted questions were reviewed and discussed: (1) where does most of the growth occur? And (2) what is the contribution of particle-associated bacteria to DWDS bacteriology and ecology? At the end of this review, recommendations were given based on the conclusion of this review to better understand the integral DWDS bacteriology.

  10. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    Science.gov (United States)

    2014-02-04

    disinfected drinking water and the other with the same water with secondary chloramine disinfection . Flow...systems (DWDS). One system was maintained with chlorine- disinfected drinking water and the other with the same water with secondary chloramine... disinfectant concen- tration in drinking water can decrease during periods of stagnation, i.e., minimal to no water flow (Al-Jasser 2007). These

  11. Overview of Causes and Control of Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    This chapter provides an integrated overview of nitrification causes and control in chloraminated drinking water distribution systems, leading to an in-depth discussion of nitrification microbiology, monitoring, prevention, response, and engineering improvements in subsequent man...

  12. DRINKING WATER QUALITY IN DISTRIBUTION SYSTEMS OF SURFACE AND GROUND WATERWORKS IN FINLAND

    Directory of Open Access Journals (Sweden)

    Jenni Meirami Ikonen

    2017-06-01

    Full Text Available Physico-chemical and microbiological water quality in the drinking water distribution systems (DWDSs of five waterworks in Finland with different raw water sources and treatment processes was explored. Water quality was monitored during four seasons with on-line equipment and bulk water samples were analysed in laboratory. Seasonal changes in the water quality were more evident in DWDSs of surface waterworks compared to the ground waterworks and artificially recharging ground waterworks (AGR. Between seasons, temperature changed significantly in every system but pH and EC changed only in one AGR system. Seasonal change was seen also in the absorbance values of all systems. The concentration of microbially available phosphorus (MAP, μg PO₄-P/l was the highest in drinking water originating from the waterworks supplying groundwater. Total assimilable organic carbon (AOC, μg AOC-C/l concentrations were significantly different between the DWDSs other than between the two AGR systems. This study reports differences in the water quality between surface and ground waterworks using a wide set of parameters commonly used for monitoring. The results confirm that every distribution system is unique, and the water quality is affected by environmental factors, raw water source, treatment methods and disinfection.

  13. Microbial interactions in drinking water biofilms

    OpenAIRE

    Simões, Lúcia C.; Simões, M.; Vieira, M. J.

    2007-01-01

    Drinking water distribution networks may be viewed as a large reactor where a number of chemical and microbiological processes are taking place. Control of microbial growth in drinking water distribution systems (DWDS) often achieved through the addition of disinfectants, is essential to limit the spread of waterborne pathogens. However, microorganisms can resist disinfection through protection within biofilms and resistant host cells. Recent studies into the microbial ecology ...

  14. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China.

    Science.gov (United States)

    Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng

    2015-08-01

    We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.

  15. New England's Drinking Water | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  16. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschlä ger, Karin; Hwang, Chiachi; Liu, Wentso; Boon, Nico; Kö ster, Oliver; Vrouwenvelder, Johannes S.; Egli, Thomas; Hammes, Frederik A.

    2013-01-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (±0.6)×104cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, sofar for unknown reasons, recorded a slight but significantly higher TCC (1.3(±0.1)×105cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful

  17. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    Science.gov (United States)

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used

  18. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschläger, Karin

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (±0.6)×104cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, sofar for unknown reasons, recorded a slight but significantly higher TCC (1.3(±0.1)×105cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful

  19. pH prediction by artificial neural networks for the drinking water of the distribution system of Hyderabad city

    International Nuclear Information System (INIS)

    Memon, N.A.; Unar, M.A.; Ansari, A.K.

    2012-01-01

    In this research, feed forward ANN (Artificial Neural Network) model is developed and validated for predicting the pH at 10 different locations of the distribution system of drinking water of Hyderabad city. The developed model is MLP (Multilayer Perceptron) with back propagation algorithm. The data for the training and testing of the model are collected through an experimental analysis on weekly basis in a routine examination for maintaining the quality of drinking water in the city. 17 parameters are taken into consideration including pH. These all parameters are taken as input variables for the model and then pH is predicted for 03 phases;raw water of river Indus,treated water in the treatment plants and then treated water in the distribution system of drinking water. The training and testing results of this model reveal that MLP neural networks are exceedingly extrapolative for predicting the pH of river water, untreated and treated water at all locations of the distribution system of drinking water of Hyderabad city. The optimum input and output weights are generated with minimum MSE (Mean Square Error) < 5%. Experimental, predicted and tested values of pH are plotted and the effectiveness of the model is determined by calculating the coefficient of correlation (R2=0.999) of trained and tested results. (author)

  20. Phthalate esters in main source water and drinking water of Zhejiang Province (China): Distribution and health risks.

    Science.gov (United States)

    Wang, Xiaofeng; Lou, Xiaoming; Zhang, Nianhua; Ding, Gangqiang; Chen, Zhijian; Xu, Peiwei; Wu, Lizhi; Cai, Jianmin; Han, Jianlong; Qiu, Xueting

    2015-10-01

    To evaluate the distributions and health risks of phthalate esters in the main source water and corresponding drinking water of Zhejiang Province, the concentrations of 16 phthalate esters in water samples from 19 sites were measured from samples taken in the dry season and wet season. The concentration of the total phthalate ester congeners in source water ranged from 1.07 μg/L to 7.12 μg/L in the wet season, from 0.01 μg/L to 1.58 μg/L in the dry season, from 1.18 μg/L to 15.28 μg/L from drinking water in the wet season, and from 0.16 μg/L to 1.86 μg/L from drinking water in the dry season. Of the 16 phthalate esters, dimethyl phthalate, dibutyl phthalate, di-(2-ethyl-hexyl) phthalate, di-iso-butyl phthalate, bis-2-n-butoxyethyl phthalate, and dicyclohexyl phthalate were present in the samples analyzed, dominated by di-iso-butyl phthalate and di-(2-ethyl-hexyl) phthalate. The concentrations of phthalate esters in the wet season were all relatively higher than those in the dry season, and the drinking water had higher concentrations of phthalate esters than source water. The phthalate ester congeners studied pose little health risk to nearby citizens. Environ Toxicol Chem 2015;34:2205-2212. © 2015 SETAC. © 2015 SETAC.

  1. Methodological approaches for studying the microbial ecology of drinking water distribution systems

    OpenAIRE

    Douterelo, Isabel; Boxall, Joby B.; Deines, Peter; Sekar, Raju; Fish, Katherine E.; Biggs, Catherine A.

    2014-01-01

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for chara...

  2. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    International Nuclear Information System (INIS)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S.; Makris, Konstantinos C.

    2016-01-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L"−"1, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L"−"1. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L"−"1). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L"−"1 and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system

  3. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S. [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.cy [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Department of Environmental Health, Harvard School of Public Health, Boston, MA (United States)

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L{sup −1}, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L{sup −1}. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L{sup −1}). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L{sup −1} and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system.

  4. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz; El Chakhtoura, Joline; Saikaly, Pascal; Van Loosdrecht, M. C M; Vrouwenvelder, Johannes S.

    2016-01-01

    community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters

  5. On the way to identify microorganisms in drinking water distribution networks via DNA analysis of the gut content of freshwater isopods.

    Science.gov (United States)

    Mayer, Michael; Keller, Adrian; Szewzyk, Ulrich; Warnecke, Hans-Joachim

    2015-05-10

    Pure drinking water is the basis for a healthy society. In Germany the drinking water regulations demand for analysis of water via detection of certain microbiological parameters by cultivation only. However, not all prokaryotes can be detected by these standard methods. How to gain more and better information about the bacteria present in drinking water and its distribution systems? The biofilms in drinking water distribution systems are built by bacteria and therefore represent a valuable source of information about the species present. Unfortunately, these biofilms are badly accessible. We thus exploited the circumstance that a lot of metazoans graze the biofilms, so that the content of their guts partly reflects the respective biofilm biocenosis. Therefore, we collected omnivorous isopods, prepared their guts and examined and characterized their contents based on 16S und 18S rDNA analysis. These molecularbiological investigations provide a profound basis for the characterization of the biocenosis and thereby biologically assess the drinking water ecosystems. Combined with a thorough identification of the species and the knowledge of their habitats, this approach can provide useful indications for the assessment of drinking-water quality and the early detection of problems in the distribution system. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  7. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  8. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  9. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system

    NARCIS (Netherlands)

    Liu, Gang; Tao, Yu; Zhang, Ya Ping; Lut, Maarten; Knibbe, Willem Jan; Wielen, van der Paul; Liu, Wentso; Medema, Gertjan; Meer, van der Walter

    2017-01-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm) and

  11. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system

    NARCIS (Netherlands)

    Liu, G.; Tao, Yu; Zhang, Ya; Lut, M.C.; Knibbe, Willem Jan; van der Wielen, Paul; Liu, Wentso; Medema, G.; van der Meer, W.G.J.

    2017-01-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm)

  12. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-03-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a 'core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.

  13. The accumulation of radioactive contaminants in drinking water distribution systems.

    Science.gov (United States)

    Lytle, Darren A; Sorg, Thomas; Wang, Lili; Chen, Abe

    2014-03-01

    The accumulation of trace contaminants in drinking water distribution system sediment and scales has been documented, raising concerns that the subsequent release of the contaminants back to the water is a potential human exposure pathway. Radioactive contaminants are of concern because of their known health effects and because of their persistence within associated distribution system materials. The objective of this work was to measure the amount of a number of radioactive contaminants (radium, thorium, and uranium isotopes, and gross alpha and beta activity) in distribution solids collected from water systems in four states (Wisconsin, Illinois, Minnesota, and Texas). The water utilities chosen had measurable levels of radium in their source waters. In addition, 19 other elements in the solids were quantified. Water systems provided solids primarily collected during routine fire hydrant flushing. Iron was the dominant element in nearly all of the solids and was followed by calcium, phosphorus, magnesium, manganese, silicon, aluminum and barium in descending order. Gross alpha and beta radiation averaged 255 and 181 pCi/g, and were as high as 1602 and 1169 pCi/g, respectively. Total radium, thorium and uranium averaged 143, 40 and 6.4 pCi/g, respectively. Radium-226 and -228 averaged 74 and 69 pCi/g, and were as high as 250 and 351 pCi/g, respectively. Published by Elsevier Ltd.

  14. Zoning of Isfahan Drinking Water Distribution Network Corrosion Potential in Summer and Autumn of 2011 Using Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Fatemeh Setayesh

    2014-07-01

    Full Text Available This cross-sectional study has been conducted to determine the corrosion potential of water in Isfahan drinking water distribution system in 2011. Eighty samples during summer and fall 2011(40 samples for each season were collected from different parts of the Isfahan drinking water distribution system. The temperature, calcium hardness, alkalinity, total dissolved solids, and pH were measured. Values of Langelier, Ryznar, Corrosiveness, and Puckorius indexes were calculated. Zoning maps were prepared using ArcGIS 9.3 software. The calculated mean values of Langelier, Ryznar, Corrosiveness, and Puckorius indexes in the summer and fall were (-0.52, 8.83, 10.37, 10.84 and (-0.71, 9.27, 10.94, 10.88, respectively. These results indicated that the Isfahan drinking water based on Langelier, Ryznar, and Puckorius indexes had a corrosive tendency and based on aggressiveness index had a moderate corrosivity potential. The corrosiveness of water may be as a basis for gradual deterioration of water distribution and transmission pipeline systems or as a route for contaminant entrance and finally can cause unhealthy impacts. Therefore, remedial measures are necessary to corrosion control of Isfahan drinking water

  15. Regional Distribution of Longevity Population and Elements in Drinking Water in Jiangjin District, Chongqing City, China.

    Science.gov (United States)

    Liu, Yonglin; Yuan, Yuyang; Luo, Kunli

    2017-10-25

    In order to determine the spatial variation of longevity population and elements contained in the drinking water of longevity region in Jiangjin and investigate the relationship between the elements in drinking water and longevity, population censuses on township level and 98 drinking water samples from Jiangjin District, Chongqing City in West China were collected and analyzed. Population statistics on township level showed that the number of centenarians per 100,000 inhabitants (OC), centenarity index (CI), and number of centenarians per 10,000 over 65-year-old subjects (UC) present obvious geographic distribution properties, generally Central region > Northern region > Southern region (Kruskal-Wallis test, p water (150 mg/L water from longevity township (OC > 7.5) in Jiangjin District, whereas soft water (75 mg/L strontium (Sr) (0.73 mg/L) in drinking water from the longevity township was apparently higher than that of non-longevity township (0.44 mg/L) (Mann-Whitney U test, p = 0.019 water from longevity township were also higher than those of non-longevity township (Mann-Whitney U test, p water might be good for the health and prolong people's life.

  16. Drinking Water Program 1992 annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG ampersand G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG ampersand G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a open-quotes community water systemclose quotes (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG ampersand G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG ampersand G Idaho production wells

  17. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    Science.gov (United States)

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  18. Methodological approaches for studying the microbial ecology of drinking water distribution systems.

    Science.gov (United States)

    Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A

    2014-11-15

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  20. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Lehtola, Markku J; Miettinen, Ilkka T; Zacheus, Outi; Paulin, Lars; Katila, Marja-Leena; Martikainen, Pertti J

    2004-04-01

    Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.

  1. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Science.gov (United States)

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  2. Flow cytometry total cell counts : A field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A

  3. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Science.gov (United States)

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  5. A distributed command governor strategy for the operational control of drinking water networks

    OpenAIRE

    Tedesco, Francesco; Ocampo-Martínez, Carlos; Casavola, Alessandro; Puig Cayuela, Vicenç

    2014-01-01

    This paper proposes the application of a distributed command governor (DCG) strategy for the operational control of drinking water networks (DWN). This approach is very suitable to this kind of management problems given the large-scale and complex nature of DWNs, the relevant effect of persistent disturbances (water demands) over the network evolutions and their marginal stability feature. The performance improvement offered by DCG is compared with the consideration of two non-centralized mod...

  6. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El Chakhtoura, Joline; Prest, Emmanuelle I E C; Saikaly, Pascal; van Loosdrecht, Mark C.M.; Hammes, Frederik A.; Vrouwenvelder, Johannes S.

    2015-01-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during

  7. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  8. The Dependence of Chlorine Decay and DBP Formation Kinetics On Pipe Flow Properties in Drinking Water Distribution

    Science.gov (United States)

    Simultaneous chlorine decay and disinfection byproduct (DBP) formation has long been discussed because of its regulatory and operational significance. This study further examines the water quality changes under hydrodynamic settings during drinking water distribution. Comparative...

  9. Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system.

    Science.gov (United States)

    Rodríguez-Martínez, Sarah; Sharaby, Yehonatan; Pecellín, Marina; Brettar, Ingrid; Höfle, Manfred; Halpern, Malka

    2015-06-15

    Bacteria of the genus Legionella cause water-based infections, resulting in severe pneumonia. To improve our knowledge about Legionella spp. ecology, its prevalence and its relationships with environmental factors were studied. Seasonal samples were taken from both water and biofilm at seven sampling points of a small drinking water distribution system in Israel. Representative isolates were obtained from each sample and identified to the species level. Legionella pneumophila was further determined to the serotype and genotype level. High resolution genotyping of L. pneumophila isolates was achieved by Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Within the studied water system, Legionella plate counts were higher in summer and highly variable even between adjacent sampling points. Legionella was present in six out of the seven selected sampling points, with counts ranging from 1.0 × 10(1) to 5.8 × 10(3) cfu/l. Water counts were significantly higher in points where Legionella was present in biofilms. The main fraction of the isolated Legionella was L. pneumophila serogroup 1. Serogroup 3 and Legionella sainthelensis were also isolated. Legionella counts were positively correlated with heterotrophic plate counts at 37 °C and negatively correlated with chlorine. Five MLVA-genotypes of L. pneumophila were identified at different buildings of the sampled area. The presence of a specific genotype, "MLVA-genotype 4", consistently co-occurred with high Legionella counts and seemed to "trigger" high Legionella counts in cold water. Our hypothesis is that both the presence of L. pneumophila in biofilm and the presence of specific genotypes, may indicate and/or even lead to high Legionella concentration in water. This observation deserves further studies in a broad range of drinking water systems to assess its potential for general use in drinking water monitoring and management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Controlled erosion in asbestos-cement pipe used in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Mariana Ramos, P.

    1990-06-01

    Full Text Available Samples of asbestos-cement pipe used for drinking water conveyance, were submerged in distilled water, and subjected to two controlled erosive treatments, namely agitation (300 rpm for 60 min and ultrasound (47 kHz for 30 min. SEM was used to observe and compare the morphology of the new pipe with and without erosive treatment, and of samples taken from asbestos-cement pipes used in the distribution system of drinking water in Santiago city for 10 and 40-years of service. TEM was used to determine the concentration of asbestos fibers in the test water: 365 MFL and 1690 MFL (millions of fibers per litre as an agitation and result ultrasound, respectively. The erosive treatments by means of agitation or ultrasound applied to new asbestos-cement pipes used in the drinking water distribution system were evaluated as being equivalent to 4 and 10 years of service, respectively.

    Se sometió a dos tratamientos erosivos controlados uno por agitación (300 rpm, 60 min. y otro por ultrasonido (47 kHz, 30 min. a muestras de tubos de asbesto cemento, sumergidas en agua destilada, usados para el trasporte de agua potable. Con SEM se observó la morfología de muestras de tubos sin uso, con y sin tratamiento erosivo y la de muestras extraídas de tubos de asbesto cemento de la red de distribución de agua potable de ía ciudad de Santiago con 10 y 14 años de servicio. Con TEM se determinó la concentración de fibras de asbesto en el agua de ensayo: 365 MFL y 1690 MFL (millones de fibras por litro en agitación y ultrasonido, respectivamente. Se estimó en 4 y 10 años de servicio equivalente los tratamientos erosivos de agitación y ultrasonido, respectivamente en tubos de asbesto cemento empleados en la red de agua potable.

  11. Asellus aquaticus as a potential carrier of Escherichia coli and other coliform bacteria into drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine Boesgaard; Arvin, Erik; Nissen, E.

    2013-01-01

    Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. Populations of A. aquaticus in surface water from 2 ponds were analysed for associated faecal indicator bacteria and the risk of A....... coli and 6 total coliforms A. aquaticus-1. During exposure to high concn. of coliforms, concn. reached 350 coliforms A. aquaticus-1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water...... for evaluating incidents with the presence of coliform indicators in drinking water by showing that intruding A. aquaticus are not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters....

  12. Monitoring of biofilm formation and activity in drinking water distribution networks under oligotrophic conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Martiny, Adam Camillo; Arvin, Erik

    2003-01-01

    In this study, the construction a model distribution system suitable for studies of attached and suspended microbial activity in drinking water under controlled circumstances is outlined. The model system consisted of two loops connected in series with a total of 140 biofilm sampling points...

  13. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz

    2016-12-01

    Eukaryotic microorganisms are naturally present in many water resources and can enter, grow and colonize water treatment and transport systems, including reservoirs, pipes and premise plumbing. In this study, we explored the eukaryotic microbial community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters), reverse osmosis (RO) membrane filtration and post-treatment steps (e.g. remineralization). 454 pyrosequencing analysis of the 18S rRNA gene revealed a highly diverse (35 phyla) and spatially variable eukaryotic community during water treatment and distribution. The desalination plant feed water contained a typical marine picoeukaryotic community dominated by Stramenopiles, Alveolates and Porifera. In the desalination plant Ascomycota was the most dominant phylum (15.5% relative abundance), followed by Alveolata (11.9%), unclassified fungi clade (10.9%) and Porifera (10.7%). In the drinking water distribution network, an uncultured fungi phylum was the major group (44.0%), followed by Chordata (17.0%), Ascomycota (11.0%) and Arthropoda (8.0%). Fungi constituted 40% of the total eukaryotic community in the treatment plant and the distribution network and their taxonomic composition was dominated by an uncultured fungi clade (55%). Comparing the plant effluent to the network samples, 84 OTUs (2.1%) formed the core eukaryotic community while 35 (8.4%) and 299 (71.5%) constituted unique OTUs in the produced water at the plant and combined tap water samples from the network, respectively. RO membrane filtration treatment significantly changed the water eukaryotic community composition and structure, highlighting the fact that (i) RO produced water is not sterile and (ii) the microbial community in the final tap water is influenced by the downstream distribution system. The study

  14. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  15. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    KAUST Repository

    Ling, Fangqiong

    2015-08-07

    © 2015 International Society for Microbial Ecology Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite’ model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.The ISME Journal advance online publication, 7 August 2015; doi:10.1038/ismej.2015.136.

  16. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Residence time distributions of artificially infiltrated groundwater used for drinking water production

    Science.gov (United States)

    Popp, A. L.; Marçais, J.; Moeck, C.; Brennwald, M. S.; Kipfer, R.

    2017-12-01

    Public drinking water supply in urban areas is often challenging due to exposure to potential contamination and high water demands. At our study site, a drinking water supply field in Switzerland, managed aquifer recharge (MAR) was implemented to overcome an increasing water demand and decreasing water quality. Water from the river Rhine is put on a system of channels and ponds to artificially infiltrate and hence, increase the natural groundwater availability. The groundwater system consists of two overlying aquifers, with hydraulic connections related to fractures and faults. The deeper aquifer contains contaminants, which possibly originate from nearby landfills and industrial areas. The operating water works aims to pump recently infiltrated water only. However, we suspect that the pumped water contains a fraction of old water due to the fractured zones which serve as hydraulic connection between the two aquifers. With this study, we aim to better understand the mixing patterns between recently infiltrated water and old groundwater to evaluate the risk for contamination of the system. To reach our objective, we used a set of gas tracers (222Rn, 3H/3He, 4He) from fifteen wells distributed throughout the area to estimate the residence time distribution (RTD) of each well. We calibrated the RTD with a Binary Mixing Model, where the fraction of young groundwater is assumed to follow a Piston Flow Model. The older groundwater fraction is calibrated with a Dispersion Model. Our results reflect the heterogeneity of the system with some abstraction wells containing young water only and others showing an admixture of old water which can only be explained by a connection to the deeper aquifer. We also show that our results on calibrated RTDs are in accordance with other geochemical data such as electrical conductivity, major ions and pH. Our results will contribute to a sound conceptual flow and transport understanding and will help to optimize the water supply system.

  18. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    Science.gov (United States)

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However

  19. Element distribution study of drinking water and well sediments using the method of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Vircavs, M.; Taure, I.; Eglite, G.; Brike, Z.

    1996-01-01

    The method of instrumental activation analysis was used to estimate the distribution of major, minor and trace elements in well sediments, Riga tap water and well water used for drinking and for preparation of food. The chemical composition of drinking water (tap and well water) varies considerably in different districts of Riga and in different wells. The greatest concentration differences for Zn, Fe and Al are observed in tap water. Median concentrations of determined elements are smaller than maximum permissible concentrations (MPC). However, in some cases the concentration of Al and Fe higher than their MPC for tap water. The highest concentration ratios were observed for Ti, Cr and Zn in well sediments. (author). 19 refs, 2 tabs

  20. Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02

    Science.gov (United States)

    Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

    2004-01-01

    Selected organic wastewater compounds (OWCs) such as household, industrial, and agricultural-use compounds, pharmaceuticals, antibiotics, and sterols and hormones were measured at 65 sites in Minnesota as part of a cooperative study among the Minnesota Department of Health, Minnesota Pollution Control Agency, and the U.S. Geological Survey. Samples were collected in Minnesota during October 2000 through November 2002 and analyzed for the presence and distribution of 91 OWCs at sites including wastewater treatment plant influent and effluent; landfill and feedlot lagoon leachate; surface water; ground water (underlying sewered and unsewered mixed urban land use, a waste dump, and feedlots); and the intake and finished drinking water from drinking water facilities.

  1. Artificial sweetener sucralose in U.S. drinking water systems.

    Science.gov (United States)

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  2. Biofilm formation in surface and drinking water distribution systems in Mafikeng, South Africa

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-11-01

    Full Text Available Poor quality source water and poorly treated reused wastewater may result in poor quality drinking water that has a higher potential to form biofilms. A biofilm is a group of microorganisms which adhere to a surface. We investigated biofilm growth in the drinking water distribution systems in the Mafikeng area, in the North- West Province of South Africa. Analysis was conducted to determine the presence of faecal coliforms, total coliforms, Pseudomonas spp. and Aeromonas spp. in the biofilms. Biofilms were grown on a device that contained copper and galvanised steel coupons. A mini tap filter – a point-of-use treatment device which can be used at a single faucet – was also used to collect samples. Scanning electron microscopy demonstrated that multi-species biofilms developed on all the coupons as well as on the point-of-use filters. Galvanised steel and carbon filters had the highest density of biofilm. Total coliforms, faecal coliforms and Pseudomonas spp. were isolated from raw water biofilm coupons only. Aeromonas spp. and Pseudomonas spp. were isolated from filters. The susceptibility of selected isolates was tested against 11 antibiotics of clinical interest. The most prevalent antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. The presence of virulence genes was determined using the polymerase chain reaction. These results indicate that bacteria present in the water have the ability to colonise as biofilms and drinking water biofilms may be a reservoir for opportunistic bacteria including Pseudomonas and Aeromonas species.

  3. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks.

    Science.gov (United States)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.

    2016-01-06

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach combines (i) quantification of changes in autochthonous bacterial cell concentrations in full-scale distribution systems with (ii) laboratoryscale batch bacterial growth potential tests of drinking water samples under defined conditions. The growth potential tests were done by direct incubation of water samples, without modification of the original bacterial flora, and with flow cytometric quantification of bacterial growth. This method was shown to be reproducible (ca. 4% relative standard deviation) and sensitive (detection of bacterial growth down to 5 μg L-1 of added assimilable organic carbon). The principle of step-wise assessment of bacterial growth-controlling factors was demonstrated on bottled water, shown to be primarily carbon limited at 133 (±18) × 103 cells mL-1 and secondarily limited by inorganic nutrients at 5,500 (±1,700) × 103 cells mL-1. Analysis of the effluent of a Dutch full-scale drinking water treatment plant showed (1) bacterial growth inhibition as a result of end-point chlorination, (2) organic carbon limitation at 192 (±72) × 103 cells mL-1 and (3) inorganic nutrient limitation at 375 (±31) × 103 cells mL-1. Significantly lower net bacterial growth was measured in the corresponding full-scale distribution system (176 (±25) × 103 cells mL-1) than in the laboratory-scale growth potential test of the same water (294 (±35) × 103 cells mL-1), highlighting the influence of distribution on bacterial growth. The systematic approach described herein provides quantitative information on the effect of drinking water properties and distribution system conditions on biological stability, which can assist water utilities in decision-making on treatment or distribution system improvements to

  5. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking--United States, 2003-2004.

    Science.gov (United States)

    Liang, Jennifer L; Dziuban, Eric J; Craun, Gunther F; Hill, Vincent; Moore, Matthew R; Gelting, Richard J; Calderon, Rebecca L; Beach, Michael J; Roy, Sharon L

    2006-12-22

    to WBDOs has been revised to reflect the categories of concerns associated with contamination at or in the source water, treatment facility, or distribution system (SWTD) that are under the jurisdiction of water utilities, versus those at points not under the jurisdiction of a water utility or at the point of water use (NWU/POU), which includes commercially bottled water. A total of 33 deficiencies were cited in the 30 WBDOs associated with drinking water: 17 (51.5%) NWU/POU, 14 (42.4%) SWTD, and two (6.1%) unknown. The most frequently cited NWU/POU deficiencies involved Legionella spp. in the drinking water system (n = eight [47.1%]). The most frequently cited SWTD deficiencies were associated with distribution system contamination (n = six [42.9%]). Contaminated ground water was a contributing factor in seven times as many WBDOs (n = seven) as contaminated surface water (n = one). Approximately half (51.5%) of the drinking water deficiencies occurred outside the jurisdiction of a water utility in situations not currently regulated by EPA. The majority of the WBDOs in which deficiencies were not regulated by EPA were associated with Legionella spp. or chemicals/toxins. Problems in the distribution system were the most commonly identified deficiencies under the jurisdiction of a water utility, underscoring the importance of preventing contamination after water treatment. The substantial proportion of WBDOs involving contaminated ground water provides support for the Ground Water Rule (finalized in October 2006), which specifies when corrective action is required for public ground water systems. CDC and EPA use surveillance data to identify the types of water systems, deficiencies, and etiologic agents associated with WBDOs and to evaluate the adequacy of current technologies and practices for providing safe drinking water. Surveillance data also are used to establish research priorities, which can lead to improved water-quality regulation development. The growing

  6. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.

    Science.gov (United States)

    Regan, John M; Harrington, Gregory W; Noguera, Daniel R

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.

  7. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    Science.gov (United States)

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-05

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  9. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    -depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up

  10. Corrosion and Scaling Potential in Drinking Water Distribution of Babol, Northern Iran Based on the Scaling and Corrosion Indices

    Directory of Open Access Journals (Sweden)

    Abdoliman Amouei

    2017-01-01

    Full Text Available Background & Aims of the Study: Corrosion and scaling play undesirable effects on transmission and distribution system of drinking water. The aim of this study was to assess the corrosion and scaling potential of drinking water resources in Babol city, Iran. Materials and Methods: Totally, 54 water samples were collected from 27 wells in spring and autumn. Calcium hardness, pH, total alkalinity, total dissolved solids, and temperature were measured, using standard methods. The Langelier, Rayzner, Puckhorius, Larson and aggressive indices were calculated and data were analyzed by SPSS 19. To compare the mean values of each index, the results were analyzed using t-test. Results: The range of temperature, pH, TDS, total alkalinity and calcium hardness were 16-24°c; 6.8-7.89; 445-1331 mg/l; 322.9-396 mg/l and 250.50-490 mg/l, respectively. The mean of Langelier and Ryznar indices in drinking water samples in spring and autumn was 0.14, 0.15; 7.28 and 7.35, respectively. The mean of Puckhorius and Larson indices in these seasons was 11.9, 11.95 and 0.95 and 0.93, respectively. The mean of aggressive index was 6.17 and 6.27, respectively. Overall, 82.2%, 100%, 94.6%, 100% and 85.7% of water samples were corrosive based on the Langelier, Ryznar, Puckhorius, Larson and aggressive indices, respectively. Conclusion: According to these results, drinking water of Babol city has corrosion potential. Therefore, the water quality should be controlled based on pH, alkalinity and hardness parameters, along with the use of corrosion resisting materials and pipes in drinking water distribution systems.

  11. Uranium in Kosovo's drinking water.

    Science.gov (United States)

    Berisha, Fatlume; Goessler, Walter

    2013-11-01

    The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Natural radionuclides in drinking water in Argentina

    International Nuclear Information System (INIS)

    Bomben, A.M.; Palacios, M.A.

    2000-01-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of natural uranium and 226 Ra have been analyzed in over 300 drinking water samples taken from different locations in Argentina. 226 Ra was determined by 222 Rn emanation and liquid scintillation counting, and natural uranium by a fluorimetric procedure. Values ranging from 0.03 to 24 μg.l -1 of natural uranium and from 0.06 to 50 μg.l -1 , were measured on drinking water samples taken from tap water systems and private wells, respectively. Concentrations up to 15 mBq.l -1 and to 22 mBq.l -1 of 226 Ra were found in drinking water samples taken from tap water systems and private wells, respectively. These values are compared with the reference values accepted for drinking water. Based on the water intake rate, the age distribution and the measured concentrations, an annual collective effective dose of 1.9 man Sv and an individual committed effective dose of 0.49 μSv.y -1 were calculated for the city of Buenos Aires adult inhabitants, for the ingestion of both natural radionuclides analyzed in drinking water. (author)

  13. Biological stability of drinking water : Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  14. Investigation of Drinking Water Quality in Kosovo

    Directory of Open Access Journals (Sweden)

    Fatlume Berisha

    2013-01-01

    Full Text Available In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water. The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U. Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  15. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    Science.gov (United States)

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  16. Effects of Climate Change on Drinking Water Distribution Network Integrity : Predicting Pipe Failure Resulting from Differential Soil Settlement

    NARCIS (Netherlands)

    Wols, B.A.; Van Daal, K.; Van Thienen, P.

    2014-01-01

    Climate change may result in lowering of ground water levels and consolidation of the soil. The resulting (differential) settlements, associated with soil property transitions, may damage underground pipe infrastructure, such as drinking water distribution sys- tems. The work presented here offers

  17. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  18. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  19. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burnet, Jean-Baptiste, E-mail: jeanbaptiste.burnet@gmail.com [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Université de Liège (ULg), Department of Environmental Sciences and Management, 165 avenue de Longwy, B-6700 Arlon (Belgium); Penny, Christian, E-mail: penny@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Ogorzaly, Leslie, E-mail: ogorzaly@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Cauchie, Henry-Michel, E-mail: cauchie@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2014-02-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10{sup 9} and 10{sup 10} (oo)cysts.d{sup −1}, respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log{sub 10} removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10{sup 6} to 10{sup 7} (oo)cysts.d{sup −1}) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment

  20. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    International Nuclear Information System (INIS)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-01-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10 9 and 10 10 (oo)cysts.d −1 , respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log 10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10 6 to 10 7 (oo)cysts.d −1 ) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  1. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  2. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods.

    Science.gov (United States)

    Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja

    2008-05-01

    The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.

  3. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Drinking water quality was investigated at source and corresponding point-of-use in 2 peri-urban areas receiving drinking water either by communal water tanker or by delivery directly from the distribution system to household-based groundtanks with taps. Water quality variables measured were heterotrophic bacteria, total ...

  4. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  5. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    NARCIS (Netherlands)

    Zlatanović, Lj; Hoek, van der J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the

  6. Drinking water protection plan; a discussion document

    International Nuclear Information System (INIS)

    2001-01-01

    This draft document outlines the plan of action devised by the Government of British Columbia in an effort to safeguard the purity of the drinking water supply in the province, and invites British Columbians to participate in the elaboration of such a plan. This document concentrates on the assessment of the sources of the water supply (watersheds and aquifers) and on measures to ensure the integrity of the system of water treatment and distribution as the principal components of a comprehensive plan to protect drinking water. The proposed plan involves a multi-barrier approach that will use a combination of measures to ensure that water sources are properly managed and waterworks systems provide safe drinking water. New drinking water planning procedures, more effective local influence and authority, enforceable standards, better access to information and public education programs form the essence of the plan. A series of public meetings are scheduled to provide the public at large with opportunities to comment on the government's plan of action and to offer suggestions for additional measures

  7. Drinking Water

    Science.gov (United States)

    This encyclopedic entry deals with various aspects of microbiology as it relates to drinking water treatment. The use of microbial indicators for assessing fecal contamination is discussed as well as current national drinking water regulations (U.S. EPA) and guidelines proposed ...

  8. Asellus aquaticus as a Potential Carrier of Escherichia coli and Other Coliform Bacteria into Drinking Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Hans-Jørgen Albrechtsen

    2013-03-01

    Full Text Available Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL−1 were measured in the water and 200 E. coli and >240 total coliforms·mL−1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus−1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus−1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters.

  9. [Analysis on the exposure level and geographic distribution trend of toxicological indicators in rural drinking water, Shandong Province, in 2015].

    Science.gov (United States)

    Shi, F; Lyu, S P; Kong, F L; Yang, X T; Zhou, J Y

    2017-09-06

    Objective: To analyze the exposure level and the geographical distribution trend of toxicological indicators of rural drinking water in Shandong Province. Methods: The drawing method was used to randomly select no less than 60% villages and towns from 137 counties (cities, districts) of 17 cities in Shandong Province in 2015, and then 1-3 rural centralized water supply units were selected according to the circumstance of rural centralized water supply units in each village and town. In total, 735 villages and towns, 1 473 rural centralized water supply units were selected, and 1 473 water samples were collected. The water treatment process, water supply population and other circumstances of the rural centralized water supply units were investigated, the water quality was monitored, the content of toxicological indicators of drinking water in different areas was compared, and the trend surface isogram of excessive toxicological indicators was drawn. Results: The qualified rate of toxicological indicators in 1 473 water samples was 83.64% ( n =1 232). The main toxicological indicators that affected the qualified rate of toxicological indicators of drinking water in rural areas in Shandong Province were nitrate and fluoride. The excessive rate of fluoride was 5.70% ( n =84) and the exposed population was 1 736 709 (4.22%). The excessive rate of nitrate (as nitrogen) was 12.29% ( n =181) and the exposed population was 1 393 612 (3.39%). The P (5)0 content of fluoride in the eastern, middle and western regions was 0.24, 0.29 and 0.59 mg/L, respective;which was higher in the western region than in the east and the middle regions ( P 0.05). The P (50) content of nitrate (as nitrogen) in the eastern, middle and western regions was 8.00, 7.48, and 2.00 mg/L, which was higher in the eastern and middle regions than in the west region ( P 0.05). The trend surface isogram of nitrate and fluoride content showed that the content of nitrate (as nitrogen) in rural drinking water in

  10. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  11. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  12. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  13. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  14. Water quality modeling in the dead end sections of drinking water distribution networks.

    Science.gov (United States)

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-02-01

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated

  15. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An assessment of drinking-water quality post-Haiyan.

    Science.gov (United States)

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  17. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  18. Draft Genome Sequences of Six Mycobacterium immunogenum, Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...

  19. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: implications for monitoring and risk assessment.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-02-15

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10(9) and 10(10) (oo)cysts.d(-1), respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10(6) to 10(7) (oo)cysts.d(-1)) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  20. Quantitative method to determine the regional drinking water odorant regulation goals based on odor sensitivity distribution: illustrated using 2-MIB.

    Science.gov (United States)

    Yu, Jianwei; An, Wei; Cao, Nan; Yang, Min; Gu, Junong; Zhang, Dong; Lu, Ning

    2014-07-01

    Taste and odor (T/O) in drinking water often cause consumer complaints and are thus regulated in many countries. However, people in different regions may exhibit different sensitivities toward T/O. This study proposed a method to determine the regional drinking water odorant regulation goals (ORGs) based on the odor sensitivity distribution of the local population. The distribution of odor sensitivity to 2-methylisoborneol (2-MIB) by the local population in Beijing, China was revealed by using a normal distribution function/model to describe the odor complaint response to a 2-MIB episode in 2005, and a 2-MIB concentration of 12.9 ng/L and FPA (flavor profile analysis) intensity of 2.5 was found to be the critical point to cause odor complaints. Thus the Beijing ORG for 2-MIB was determined to be 12.9 ng/L. Based on the assumption that the local FPA panel can represent the local population in terms of sensitivity to odor, and that the critical FPA intensity causing odor complaints was 2.5, this study tried to determine the ORGs for seven other cities of China by performing FPA tests using an FPA panel from the corresponding city. ORG values between 12.9 and 31.6 ng/L were determined, showing that a unified ORG may not be suitable for drinking water odor regulations. This study presents a novel approach for setting drinking water odor regulations. Copyright © 2014. Published by Elsevier B.V.

  1. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  2. The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands

    Directory of Open Access Journals (Sweden)

    G. J. Medema

    2009-03-01

    Full Text Available The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not compromising microbial safety at the tap, can be summarized as follows:
    1. Use the best source available, in order of preference:
        – microbiologically safe groundwater,
        – surface water with soil passage such as artificial recharge or bank filtration,
        – direct treatment of surface water in a multiple barrier treatment;
    2. Use a preferred physical process treatment such as sedimentation, filtration and UV-disinfection. If absolutely necessary, also oxidation by means of ozone or peroxide can be used, but chlorine is avoided;
    3. Prevent ingress of contamination during distribution;
    4. Prevent microbial growth in the distribution system by production and distribution of biologically stable (biostable water and the use of biostable materials;
    5. Monitor for timely detection of any failure of the system to prevent significant health consequences.

    New developments in safe drinking water in the Netherlands include the adaptation of the Dutch drinking water decree, implementation of quantitative microbial risk assessment (QMRA by water companies and research into source water quality, drinking water treatment efficacy, safe distribution and biostability of drinking water during distribution and Legionella. This paper summarizes how the Dutch water companies warrant the safety of the drinking water without chlorine.

  3. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  4. Muddying the Waters: A New Area of Concern for Drinking Water Contamination in Cameroon

    Directory of Open Access Journals (Sweden)

    Jessica M. Healy Profitós

    2014-11-01

    Full Text Available In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries, leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship’s impact on drinking water quality.

  5. Muddying the Waters: A New Area of Concern for Drinking Water Contamination in Cameroon

    Science.gov (United States)

    Healy Profitós, Jessica M.; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung

    2014-01-01

    In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship’s impact on drinking water quality. PMID:25464137

  6. Water quality modeling in the dead end sections of drinking water (Supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to...

  7. The association of drinking water treatment and distribution network disturbances with Health Call Centre contacts for gastrointestinal illness symptoms.

    Science.gov (United States)

    Malm, Annika; Axelsson, Gösta; Barregard, Lars; Ljungqvist, Jakob; Forsberg, Bertil; Bergstedt, Olof; Pettersson, Thomas J R

    2013-09-01

    There are relatively few studies on the association between disturbances in drinking water services and symptoms of gastrointestinal (GI) illness. Health Call Centres data concerning GI illness may be a useful source of information. This study investigates if there is an increased frequency of contacts with the Health Call Centre (HCC) concerning gastrointestinal symptoms at times when there is a risk of impaired water quality due to disturbances at water works or the distribution network. The study was conducted in Gothenburg, a Swedish city with 0.5 million inhabitants with a surface water source of drinking water and two water works. All HCC contacts due to GI symptoms (diarrhoea, vomiting or abdominal pain) were recorded for a three-year period, including also sex, age, and geocoded location of residence. The number of contacts with the HCC in the affected geographical areas were recorded during eight periods of disturbances in the water works (e.g. short stops of chlorine dosing), six periods of large disturbances in the distribution network (e.g. pumping station failure or pipe breaks with major consequences), and 818 pipe break and leak repairs over a three-year period. For each period of disturbance the observed number of calls was compared with the number of calls during a control period without disturbances in the same geographical area. In total about 55, 000 calls to the HCC due to GI symptoms were recorded over the three-year period, 35 per 1000 inhabitants and year, but much higher (>200) for children water works or in the distribution network. Our results indicate that GI symptoms due to disturbances in water works or the distribution network are rare. The number of serious failures was, however limited, and further studies are needed to be able to assess the risk of GI illness in such cases. The technique of using geocoded HCC data together with geocoded records of disturbances in the drinking water network was feasible. Copyright © 2013 Elsevier

  8. The Effects of Intermittent Drinking Water Supply in Arraiján, Panama

    OpenAIRE

    Erickson, John Joseph

    2016-01-01

    Over three hundred million people throughout the world receive supply from piped drinking water distribution networks that operate intermittently. This dissertation evaluates the effects of intermittent supply on water quality, pipe damage and service reliability in four study zones (one continuous and three intermittent) in a peri-urban drinking water distribution network in Arraiján, Panama. Normal water quality in all zones was good, with 97% of routine water quality grab samples from the ...

  9. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time

    Science.gov (United States)

    Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.

  10. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  11. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Schurer, R.; Bahlman, J.A.; Ketelaars, H.A.M.; Italiaander, R.; Wal, van der A.; Wielen, van der P.W.J.J.

    2018-01-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production

  12. Evaluation of drinking water quality indices (case study: Bushehr province, Iran

    Directory of Open Access Journals (Sweden)

    Nematollah Jafarzadeh

    2017-05-01

    Full Text Available Background: Internal corrosion and the formation of scale in water distribution pipes are the most important problems for an urban water distribution system. Physical, chemical, or biological factors can lead to these two processes. Internal corrosion and scale formation can impact health, economy, and aesthetics. This study assessed the physicochemical quality parameters and evaluated the potential for corrosion and scale formation in drinking water at the distribution systems of 5 selected cities in Bushehr province (Kangan, Dashtestan, Dashti, Bushehr, and Ganaveh from 2009-2012. Methods: This study was carried out based on laboratory data collected from monthly samplings of tap water in the Water and Wastewater Company of Bushehr province during the years 2009-2012. Internal corrosion and scale formation rates were calculated using the Ryznar, Langelier, Aggressive, and Puckorius indices. Results: The results of the Ryznar, Puckorius, Aggressive and Langelier indices indicated that the drinking water in the 5 selected cities of Bushehr province was corrosive. Moreover, the majority of parameters used to determine water quality exceeded Iran’s national standards. Conclusion: It is concluded that there is problem of water corrosion and scaling in drinking water of distribution systems in selected cities.

  13. Whole-Genome Sequences of Four Strains Closely Related to Members of the Mycobacterium chelonae Group, Isolated from Biofilms in a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome sequences of four Mycobacterium chelonae group strains from biofilms obtained after a ‘chlorine burn’ in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in drinking and hospital water distr...

  14. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  15. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  16. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg

    is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter......Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  18. Natural radio-nuclides in drinking water

    International Nuclear Information System (INIS)

    Deflorin, O.

    2003-01-01

    This article discusses the presence of radio-nuclides in Switzerland's drinking water. The article describes research done into the natural radioactivity to be found in various drinking water samples taken from the public water supply in the Canton of Grisons in eastern Switzerland. The various natural nuclides to be expected are listed and the methods used to take the samples are described. The results of the analysis are presented in the form of sketches showing the geographical distribution of the nuclide samples. Diagrams of the cumulative frequency of the quantities of nuclides found are presented, as are such diagrams for the yearly radioactive doses that the population is exposed to. The results and their consequences for the water supply are discussed in detail and further investigations to be made in the region are proposed

  19. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources.

    Science.gov (United States)

    Liu, G; Ling, F Q; van der Mark, E J; Zhang, X D; Knezev, A; Verberk, J Q J C; van der Meer, W G J; Medema, G J; Liu, W T; van Dijk, J C

    2016-02-02

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8-4.5 × 10(3) cells ml(-1) with a biological activity of 0.01-0.04 ng l(-1) ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers' taps and be ingested.

  20. Assessment of heavy metals in loose deposits in drinking water distribution system.

    Science.gov (United States)

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  1. Monitoring for the Presence of Parasitic Protozoa and Free-living Amoebae in Drinking Water Plants

    Directory of Open Access Journals (Sweden)

    Amany Saad Amer.

    2012-07-01

    Full Text Available Contamination of drinking water by microorganisms represents a major human health hazard in many parts of the world. The main objective of drinking water treatment is to provide microbiologically safe drinking water. The conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. A number of processes; namely water treatment, disinfection and changes influence the quality of drinking water delivered to the customer’s tap during transport of treated water via the distribution system. At least 325 water-associated outbreaks of parasitic protozoan disease have reported. In this study, drinking water from treatment plants evaluated for the presence of parasitic protozoa. Water samples collected from two main points: (a outlet of the water treatment plants (b distribution system at different distances from the water treatment plants. Protozoa were concentrated from each water sample by adsorption and accumulation on the nitrocellulose membrane filters (0.45 μm pore size and detected by conventional staining methods.

  2. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    Science.gov (United States)

    Liu, G.; Van der Mark, E. J.; Verberk, J. Q. J. C.; Van Dijk, J. C.

    2013-01-01

    The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R 2 = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP. PMID:23819117

  3. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    G. Liu

    2013-01-01

    Full Text Available The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R2=0.63. Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP.

  4. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution,...... be separated from the water phase by filtration.......Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  5. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.; Hammes, F.; Kotzsch, S.; van Loosdrecht, M. C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach

  6. Uranium contamination of drinking water in Kazakhstan and Uzbekistan

    International Nuclear Information System (INIS)

    Kawabata, Y.; Aparin, V.; Shiraishi, K.; Ko, S.; Yamamoto, M.; Nagaia, M.; Katayama, Y.

    2006-01-01

    Uranium is a naturally occurring radioactive metal, and is widely distributed in the Earth's crust. But it is concentrated in certain rock formations. Most of the uranium for nuclear weapon produced in the Soviet Union during the Cold War came from Central Asia. Uranium has negative effects on the human body, both as a carcinogen and as a kidney toxin. WHO (2004) prescribed that uranium concentrations in drinking water should be less than 15 mcg/l for only chemical aspects of uranium addressed. We determined high uranium concentrations in drinking water in the central region of Uzbekistan (Y. KAWABATA et al. 2004). In this area, some discharge water from farmland has higher uranium concentration. Irrigation systems Kyzyl-orda in Republic of Kazakhstan and in Karakalpakstan in the Republic of Uzbekistan have drains deeper than 5 m, in order to protect against salinization. Water in these drains can mix with ground water. In this area, ground water is used for drinking water. We investigated uranium concentrations in water in Kazakhstan and Uzbekistan. In the half of drinking water sampling points, uranium concentrations exceeded the WHO (2004) guideline level for drinking water. Uranium is a suspected carcinogen that can also have a toxic effect on kidney. However, WHO addresses only the chemical aspects of uranium by giving uranium concentrations in drinking water. The effect of uranium exposure from drinking water on people in these areas is significant. The uranium concentration in the Aral Sea was higher than that in sea water. Aral Sea is accumulating uranium. (author)

  7. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Drinking Water Treatability Database (TDB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities,...

  9. Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Ljiljana Zlatanović

    2018-04-01

    Full Text Available Drinking water and fire safety are strongly bonded to each other. Actual drinking water demand and fire flows are both delivered through the same network, and are both devoted to public health and safety. In The Netherlands, the discussion about fire flows supplied by the drinking water networks has drawn fire fighters and drinking water companies together, searching for novel approaches to improve public safety. One of these approaches is the application of residential fire sprinkler systems fed by drinking water. This approach has an impact on the layout of domestic drinking water systems (DDWSs, as extra plumbing is required. This study examined the influence of the added plumbing on quality of both fresh and 10 h stagnant water in two full scale DDWSs: a conventional and an extended system. Overnight stagnation was found to promote copper and zinc leaching from pipes in both DDWSs. Microbial numbers and viability in the stagnant water, measured by heterotrophic plate count (HPC, flow cytometry (FCM and adenosine tri-phosphate (ATP, depended on the temperature of fresh water, as increased microbial numbers and viability was measured in both DDWSs when the temperature of fresh water was below the observed tipping point (15 °C for the HPC and 17 °C for the FCM and ATP measurements respectively and vice versa. A high level of similarity between water and biofilm communities, >98% and >70–94% respectively, indicates that the extension of the DDWS did not affect either the microbial quality of fresh drinking water or the biofilm composition.

  10. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system.

    Science.gov (United States)

    Liu, Gang; Tao, Yu; Zhang, Ya; Lut, Maarten; Knibbe, Willem-Jan; van der Wielen, Paul; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-11-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm) and their corresponding potential contribution to water quality deterioration remain unknown. This precludes an in-depth understanding of water quality deterioration and the development of proactive management strategies. The present study quantitatively evaluated the distribution of elements, ATP, Aeromonas spp., and bacterial communities in distribution pipes (PVC-U, D = 110 mm, loose deposit and biofilm niches) and household connection pipes (HDPE, D = 32 mm, HDPE biofilm niches) at ten locations in an unchlorinated distribution system. The results show that loose deposits in PVC-U pipes, acting as sinks, constitute a hotspot (highest total amount per meter pipe) for elements, ATP, and target bacteria groups (e.g., Aeromonas spp., Mycobacterium spp., and Legionella spp.). When drinking water distribution system niches with harbored elements and microbes become sources in the event of disturbances, the highest quality deterioration potential (QDP) is that of HDPE biofilm; this can be attributed to its high surface-to-volume ratio. 16s rRNA analysis demonstrates that, at the genus level, the bacterial communities in the water, loose deposits, PVC-U biofilm, and HDPE biofilm were dominated, respectively, by Polaromonas spp. (2-23%), Nitrosipra spp. (1-47%), Flavobacterium spp. (1-36%), and Flavobacterium spp. (5-67%). The combined results of elemental composition and bacterial community analyses indicate that different dominant bio-chemical processes might occur within the different niches-for example, iron-arsenic oxidizing in loose deposits, bio-calumniation in PVC-U biofilm, and methane oxidizing in HDPE biofilm. The release of 20% loose deposits, 20% PVC-U biofilm

  11. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems - Interference Corrections and Feasibility Assessment

    Science.gov (United States)

    Do, T. D.; Pifer, A.; Chowdhury, Z.; Wahman, D.; Zhang, W.; Fairey, J.

    2017-12-01

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events that necessitate extensive flushing, resulting in the loss of billions of gallons of finished water. Biological techniques used to quantify the activity of nitrifying bacteria are impractical for real-time monitoring because they require significant laboratory efforts and/or lengthy incubation times. At present, DWU and CoH regularly rely on physicochemical parameters including total chlorine and monochloramine residual, and free ammonia, nitrite, and nitrate as indicators of nitrification, but these metrics lack specificity to nitrifying bacteria. To improve detection of nitrification in chloraminated drinking water distribution systems, we seek to develop a real-time fluorescence-based sensor system to detect the early onset of nitrification events by measuring the fluorescence of soluble microbial products (SMPs) specific to nitrifying bacteria. Preliminary data indicates that fluorescence-based metrics have the sensitivity to detect these SMPs in the early stages of nitrification, but several remaining challenges will be explored in this presentation. We will focus on benchtop and sensor results from ongoing batch and annular reactor experiments designed to (1) identify fluorescence wavelength pairs and data processing techniques suitable for measurement of SMPs from nitrification and (2) assess and correct potential interferences, such as those from monochloramine, pH, iron, nitrite, nitrate and humic substances. This work will serve as the basis for developing fluorescence sensor packages for full-scale testing and validation in the DWU and CoH systems. Findings from this research could be leveraged to identify nitrification events in their early stages, facilitating proactive

  12. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    Science.gov (United States)

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  13. Assessment of drinking water quality at the tap using fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina

    2017-01-01

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively......, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half...

  14. Distribution of 226Ra and 228Ra in drinking water and dose assessment

    International Nuclear Information System (INIS)

    Ajay Kumar; Sugandhi, S.; Usha, N.; Rupali, K.; Gurg, R.P.

    2002-01-01

    The radioactivity concentrations of 226 Ra and 228 Ra have been analysed in 123 drinking water samples received from different regions of India. The maximum concentrations of 226 Ra and 228 Ra in drinking water are 8 mBq/l and 11.5 mBq/l respectively. The higher doses due to intake of 228 Ra through drinking water suggests that 228 Ra should also be measured in the assessment of ingestion dose to the population. The estimated committed effective doses range from 0.082 to 2.45 μSv/year and from 1.53 to 8.81 μSv/year for the ingestion of 226 Ra and 228 Ra respectively. (author)

  15. Nitrogen Transformation and Microbial Spatial Distribution in Drinking Water Biofilter

    Science.gov (United States)

    Qian, Yongxing; Zhang, Huining; Jin, Huizheng; Wu, Chengxia

    2018-02-01

    Well understanding the rule of nitrogen mutual transformation in biofilters is important for controlling the DBPs formation in the subsequent disinfection process. Ammonia nitrogen removal effect and nitrogen transformation approach in biofilter of drinking water was researched in the study. The biofilter removed ammonia of 48.5% and total phosphorus of 72.3%. And the removal rate of TN, NO3 --N, DON were 37.1%, 33.1%, 46.9%, respectively. Biomass and bioactivity of different depth of the biofilter were determined, too. The overall distribution of biomass showed a decreasing trend from top to bottom. The bioactivity in lower layer gradually increased. Especially the bioactivity of heterotrophic microorganisms showed a gradual increase trend. The amount of the nitrogen loss was 3.06mg/L. Non-nitrification pathway of “nitrogen loss” phenomenon in biofilter might exist assimilation, nitrification and denitrification in autotrophic.

  16. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  17. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  18. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  19. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

    Science.gov (United States)

    Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was u...

  20. A survey of indicator parameters to monitor regrowth in unchlorinated drinking water

    NARCIS (Netherlands)

    Wielen, P.W.J.J. van der; Bakker, G.; Atsma, A.; Lut, M.; Roeselers, G.; Graaf, B. de

    2016-01-01

    The objective of our study was to explore microbiological parameters that are suitable as indicators for regrowth in distribution systems that receive unchlorinated drinking water in the Netherlands. Treated water and distributed water at two locations in the distribution system of 28 treatment

  1. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  2. Increasing the availability and consumption of drinking water in middle schools: a pilot study.

    Science.gov (United States)

    Patel, Anisha I; Bogart, Laura M; Elliott, Marc N; Lamb, Sheila; Uyeda, Kimberly E; Hawes-Dawson, Jennifer; Klein, David J; Schuster, Mark A

    2011-05-01

    Although several studies suggest that drinking water may help prevent obesity, no US studies have examined the effect of school drinking water provision and promotion on student beverage intake. We assessed the acceptability, feasibility, and outcomes of a school-based intervention to improve drinking water consumption among adolescents. The 5-week program, conducted in a Los Angeles middle school in 2008, consisted of providing cold, filtered drinking water in cafeterias; distributing reusable water bottles to students and staff; conducting school promotional activities; and providing education. Self-reported consumption of water, nondiet soda, sports drinks, and 100% fruit juice was assessed by conducting surveys among students (n = 876), preintervention and at 1 week and 2 months postintervention, from the intervention school and the comparison school. Daily water (in gallons) distributed in the cafeteria during the intervention was recorded. After adjusting for sociodemographic characteristics and baseline intake of water at school, the odds of drinking water at school were higher for students at the intervention school than students at the comparison school. Students from the intervention school had higher adjusted odds of drinking water from fountains and from reusable water bottles at school than students from the comparison school. Intervention effects for other beverages were not significant. Provision of filtered, chilled drinking water in school cafeterias coupled with promotion and education is associated with increased consumption of drinking water at school. A randomized controlled trial is necessary to assess the intervention's influence on students' consumption of water and sugar-sweetened beverages, as well as obesity-related outcomes.

  3. Life cycle assessment of central softening of very hard drinking water

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2012-01-01

    Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking......Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking...... water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used...

  4. Formation of brominated trihalomethanes in chlorinated drinking-water from Lake Constance

    International Nuclear Information System (INIS)

    Petri, M.; Stabel, H.H.

    1994-01-01

    The formation of trihalomethanes (THMs) in raw water and drinking water from Lake Constance containing low amounts of DOC and bromide was studied with special emphasis on brominated trihalomethanes (Br-THMs). If the raw water was ozonated prior to chlorination, the formation of THMs was reduced by 37%, and if a rapid sandfiltration was interposed, the THM-formation was again slightly enhanced. The percentage of Br-THMs on total-THMs increased from 16% to 35% during the treatment process. In the drinking water distribution system of BWV the formation of Br-THMs and CHCl 3 was studied with respect to residence time and post-chlorination. Unless the post-chlorination was performed, the THM-formation in the distribution system resembled that obtained from laboratory studies, except for small amounts of THMs being purged due to transport in the mains and residence in the reservoirs. Post-chlorination increased CHCl 3 - and the CHBrCl 2 -formation, but there was no effect on the formation of CHBr 2 Cl and CHBr 3 . However, the total THM-concentration in the drinking water never exceeded the German drinking water standard of 10 μg/L. (orig.) [de

  5. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  6. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system.

    Science.gov (United States)

    Miller, Haylea C; Morgan, Matthew J; Wylie, Jason T; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2017-03-01

    Global incidence of primary amoebic meningoencephalitis cases associated with domestic drinking water is increasing. The need for understanding disinfectant regimes capable of eliminating the causative microorganism, Naegleria fowleri, from bulk water and pipe wall biofilms is critical. This field study demonstrated the successful elimination of N. fowleri from the bulk water and pipe wall biofilm of a persistently colonised operational drinking water distribution system (DWDS), and the prevention of further re-colonisation. A new chlorination unit was installed along the pipe line to boost the free chlorine residual to combat the persistence of N. fowleri. Biofilm and bulk water were monitored prior to and after re-chlorination (RCl), pre-rechlorination (pre-RCl) and post-rechlorination (post-RCl), respectively, for one year. A constant free chlorine concentration of > 1 mg/L resulted in the elimination of N. fowleri from both the bulk water and biofilm at the post-RCl site. Other amoeba species were detected during the first two months of chlorination, but all amoebae were eliminated from both the bulk water and biofilm at post-RCl after 60 days of chlorination with free chlorine concentrations > 1 mg/L. In addition, a dynamic change in the biofilm community composition and a four log reduction in biofilm cell density occurred post-RCl. The pre-RCl site continued to be seasonally colonised by N. fowleri, but the constant free chlorine residual of > 1 mg/L prevented N. fowleri from recolonising the bulk and pipe wall biofilm at the post-RCl site. To our knowledge, this is the first study to demonstrate successful removal of N. fowleri from both the bulk and pipe wall biofilm and prevention of re-colonisation of N. fowleri in an operational DWDS. The findings of this study are of importance to water utilities in addressing the presence of N. fowleri and other amoeba in susceptible DWDSs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    Science.gov (United States)

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  8. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  9. Fluoride Concentration of Drinking-Water of Qom, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2016-03-01

    Full Text Available Background and Purpose: Fluoride is a natural element essential for human nutrition due to its benefits for dental enamel. It is well-documented that standard amounts of fluoride in drinkingwater can decrease the rate of dental caries. This study was conducted with the aim of measuring fluoride concentration of drinking-water supplies and urban distribution system in Qom, Iran. Materials and Methods: Results were subsequently compared against national and international standards. All sources of drinking-water of rural and urban areas were examined. To measure fluoride, the standard SPADNS method and a DR/4000s spectrophotometer were used. Results: Results showed that the mean of fluoride concentration in rural areas, mainly supplied with groundwater sources, was 0.41 mg/L, that of the urban distribution system 0.82 mg/L, that of Ali-Abad station 0.11 mg/L, and that of the private water desalination system 0.24 mg/L. Due to the hot climate of Qom, fluoride concentration means of all sources were lower than the permissible standards set by Iranian Standards and the WHO guidelines (except those of some of the groundwater sources and urban distribution systems. Conclusion: It seems that in most of the drinking-water sources the average fluoride concentration is not enough to prevent dental caries or strengthen dental enamel. It is concluded that Qom’s drinkingwater would require at least 0.4 mg/L to reach the minimum desirable standard.

  10. Bulk water phase and biofilm growth in drinking water at low nutrient conditions.

    Science.gov (United States)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus

    2002-11-01

    In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.

  11. Drinking water for dairy cattle: always a benefit or a microbiological risk?

    Science.gov (United States)

    Van Eenige, M J E M; Counotte, G H M; Noordhuizen, J P T M

    2013-02-01

    Drinking water can be considered an essential nutrient for dairy cattle. However, because it comes from different sources, its chemical and microbiological quality does not always reach accepted standards. Moreover, water quality is not routinely assessed on dairy farms. The microecology of drinking water sources and distribution systems is rather complex and still not fully understood. Water quality is adversely affected by the formation of biofilms in distribution systems, which form a persistent reservoir for potentially pathogenic bacteria. Saprophytic microorganisms associated with such biofilms interact with organic and inorganic matter in water, with pathogens, and even with each other. In addition, the presence of biofilms in water distribution systems makes cleaning and disinfection difficult and sometimes impossible. This article describes the complex dynamics of microorganisms in water distribution systems. Water quality is diminished primarily as a result of faecal contamination and rarely as a result of putrefaction in water distribution systems. The design of such systems (with/ without anti-backflow valves and pressure) and the materials used (polyethylene enhances biofilm; stainless steel does not) affect the quality of water they provide. The best option is an open, funnel-shaped galvanized drinking trough, possibly with a pressure system, air inlet, and anti-backflow valves. A poor microbiological quality of drinking water may adversely affect feed intake, and herd health and productivity. In turn, public health may be affected because cattle can become a reservoir of microorganisms hazardous to humans, such as some strains of E. coli, Yersinia enterocolitica, and Campylobacter jejuni. A better understanding of the biological processes in water sources and distribution systems and of the viability of microorganisms in these systems may contribute to better advice on herd health and productivity at a farm level. Certain on-farm risk factors for

  12. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water.

    Science.gov (United States)

    Hijnen, W A M; Schurer, R; Bahlman, J A; Ketelaars, H A M; Italiaander, R; van der Wal, A; van der Wielen, P W J J

    2018-02-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L -1 ) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L -1 . The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC 14 ). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Drinking water standard for tritium-what's the risk?

    Science.gov (United States)

    Kocher, D C; Hoffman, F O

    2011-09-01

    This paper presents an assessment of lifetime risks of cancer incidence associated with the drinking water standard for tritium established by the U.S. Environmental Protection Agency (USEPA); this standard is an annual-average maximum contaminant level (MCL) of 740 Bq L(-1). This risk assessment has several defining characteristics: (1) an accounting of uncertainty in all parameters that relate a given concentration of tritium in drinking water to lifetime risk (except the number of days of consumption of drinking water in a year and the number of years of consumption) and an accounting of correlations of uncertain parameters to obtain probability distributions that represent uncertainty in estimated lifetime risks of cancer incidence; (2) inclusion of a radiation effectiveness factor (REF) to represent an increased biological effectiveness of low-energy electrons emitted in decay of tritium compared with high-energy photons; (3) use of recent estimates of risks of cancer incidence from exposure to high-energy photons, including the dependence of risks on an individual's gender and age, in the BEIR VII report; and (4) inclusion of risks of incidence of skin cancer, principally basal cell carcinoma. By assuming ingestion of tritium in drinking water at the MCL over an average life expectancy of 80 y in females and 75 y in males, 95% credibility intervals of lifetime risks of cancer incidence obtained in this assessment are (0.35, 12) × 10(-4) in females and (0.30, 15) × 10(-4) in males. Mean risks, which are considered to provide the best single measure of expected risks, are about 3 × 10(-4) in both genders. In comparison, USEPA's point estimate of the lifetime risk of cancer incidence, assuming a daily consumption of drinking water of 2 L over an average life expectancy of 75.2 y and excluding an REF for tritium and incidence of skin cancer, is 5.6 × 10(-5). Probability distributions of annual equivalent doses to the whole body associated with the drinking

  14. In situ examination of microbial populations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, Adam Camillo; Nielsen, Alex Toftgaard; Arvin, Erik

    2002-01-01

    A flow cell set-up was used as a model drinking water distribution system to analyze the in situ microbial population. Biofilm growth was followed by transmission light microscopy for 81 days and showed a biofilm consisting of microcolonies separated by a monolayer of cells. Protozoans (ciliates...... of a mixed population of α- and β-Proteobacteria. 65 strains from the inlet water and 20 from the biofilm were isolated on R2A agar plates and sorted into groups with amplified rDNA restriction analysis. The 16S rDNA gene was sequenced for representatives of the abundant groups. A phylogenetic analysis...... revealed that the majority of the isolated strains from the bulk water and biofilm were affiliated to the family of Comamonadaceae in the β-lineage of Proteobacteria. The majority of the strains from the α-lineage were affiliated to the family of Sphingomonadaceae. We were unable to detect any strains from...

  15. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  16. Drinking Water Quality Forecast of Peshawar Valley on the Basis of Sample Data

    International Nuclear Information System (INIS)

    Khan, S.U.; Bangash, F.K.

    2001-01-01

    Microbiological and related parameters of 75 portable water samples collected from source, distribution line and consumer tap in 25 different locations were investigated. The findings were used to forecast statistically the quality of drinking water of hole valley at all three sites and compared with WHO's standards. The study shows that the valley has good water deposits and suitable for drinking purposes however the same quality is not maintained throughout the distribution systems. The presence of total and fecal coliform in the samples collected from distribution line and consumer tap shows the mixing of wastewater through leaky joints and corroded underground supply system. The study also shows poor disinfecting practices in the study area. On the basis of this study we can say that the area got excellent subsoil water deposits but most of the consumers are supplied with water not fit for drinking purposes which is the main cause of Heath problems in the area. (author)

  17. Deterioration of drinking water quality in the distribution system and gastrointestinal morbidity in a Russian city.

    Science.gov (United States)

    Egorov, Andrey; Ford, Timothy; Tereschenko, Andrey; Drizhd, Nina; Segedevich, Irena; Fourman, Vladislav

    2002-09-01

    Few studies have been conducted in Russia to assess the relationship between drinking water quality and gastrointestinal (GI) infections. In the city of Cherepovets, effluent water at the treatment plant usually meets the country's hygienic standards. To provide protection against secondary water contamination in the distribution system, concentrations of total residual chlorine in effluent water are maintained#10; at levels from 1 to 2 mg x l(-1). However, residual chlorine concentrations rapidly decline in the distribution system and rechlorination is not practiced. Some areas of the city routinely have very low residual chlorine at taps and little protection against secondary microbiological contamination of water in pipelines. A cross-sectional epidemiological study was conducted in Cherepovets to assess an association between decline in residual chlorine concentrations and risk of GI illness. This study included water quality monitoring and an extensive questionnaire survey of city residents. The results demonstrated a consistent spatial pattern of free chlorine decline in the distribution system. An interquartile range variability in free residual chlorine decline (0.22 mg x l(-1)) was associated with 1.42 (95% confidence interval (CI) = 1.05, 1.91) relative risk of self-reported gastrointestinal illness after control for socioeconomic, hygienic and demographic parameters.

  18. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada.

    Science.gov (United States)

    Sultana, Tamanna; Murray, Craig; Kleywegt, Sonya; Metcalfe, Chris D

    2018-07-01

    Because of the persistence and solubility of neonicotinoid insecticides (NNIs), there is concern that these compounds may contaminate sources of drinking water. The objective of this project was to evaluate the distribution of NNIs in raw and treated drinking water from selected municipalities that draw their water from the lower Great Lakes in areas of southern Ontario, Canada where there is high intensity agriculture. Sites were monitored using Polar Organic Chemical Integrative Samplers (POCIS) and by collecting grab samples at six drinking water treatment plants. Thiamethoxam, clothianidin and imidacloprid were detected in both POCIS and grab samples of raw water. The frequency of detection of NNIs was much lower in treated drinking water, but some compounds were still detected at estimated concentrations in the low ng L -1 range. Thiamethoxam was detected in one grab sample of raw drinking water at a mean concentration of 0.28 μg L -1 , which is above the guidelines for drinking water recommended in some jurisdictions, including the European Union directive on pesticide levels water intended for human consumption. Further work is required to determine whether contamination of sources of drinking water with this class of insecticides is a global problem in agricultural regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Report of the NATO/CCMS drinking water pilot study on health aspects of drinking water contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Borzelleca, J F

    1981-04-01

    Various methods of disinfection are being successfully used to control water borne diseases due to biological contaminants in water (viruses, bacteria, protozoa). These methods of chemical control are adding chemical contaminants to the drinking water. For example, trihalomethanes may be formed by the interaction of chlorine with humic and/or fulvic acids. In addition, chemical contaminants may arise from natural, agricultural, industrial or distributional sources. Acute or chronic exposures to these chemicals may result in adverse health effects that are immediate or delayed, reversible or irreversible. Since these contaminants rarely occur singly, chemical interactions (additives, synergistic, antagonistic) must be considered. The nature of the adverse health effects can usually be determined from properly designed and executed animal experiments and/or human epidemiological studies. Potentially toxic agents may also be identified by the use of short term or in vitro tests. Other methods of identification of potentially toxic agents include chemical similarity with known toxicants. Attempts should be made to reduce the number of potentially toxic chemical contaminants but the microbiological quality of drinking water must not be compromised.

  20. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  1. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  2. Hydraulic Network Modelling of Small Community Water Distribution ...

    African Journals Online (AJOL)

    Prof Anyata

    ... design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using ..... self cleansing drinking water distribution system is set at 0.4m/s, .... distribution network offers advantages over manual ...

  3. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    KAUST Repository

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2015-01-01

    -/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.The ISME Journal advance online publication, 7 August 2015; doi:10.1038

  4. Drinking Water Microbiome as a Screening Tool for ...

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of the bulk water (BW) microbiome from a chloraminated drinking water distribution system (DWDS) simulator. The DWDS was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. Specifically, this study focuses on biomarker discovery and their potential use to classify SF episodes. Principal coordinate analysis identified two major clusters (SS and SF; PERMANOVA, p 0.976, p < 0.01). Furthermore, models were able to correctly predict 95% (AUC = 0.983, n = 104) and 96% (AUC = 0.973, n = 72) of samples of the DWDS (community structure of two published studies) and water quality datasets, respectively. The results from this study demonstrate the feasibility of selected BW microbiome signatures as predictive biomarkers of nitrification in DWDS. This new information can be used to optimize current nitrification monitoring plans. The purpose of this research is to add to our knowledge of chloramine and chlorine disinfectants, with regards to effects on the microbial communities in drinking water distribution systems. We used a

  5. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    Science.gov (United States)

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  6. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  8. Standardization of sequential separation of naturally occurring radionuclides in drinking water

    International Nuclear Information System (INIS)

    Nair, Madhu G.; Rao, D.D.; Sathyapriya, R.S.; Sarkar, P.K.

    2012-01-01

    Human are constantly exposed to radiation originating from natural or manmade sources. The main contribution for internal dose is due to radionuclides from uranium and thorium series in drinking water. The distribution of these elements varies depending on the geological and physiological characteristics of the aquifer. With increased concern for radiological safety of public, it is necessary to evaluate the naturally occurring radionuclides in the drinking water

  9. Investigating aftergrowth potential of polymers in drinking water – the effect of water replacement and temperature

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    The aftergrowth potential of polymers used in drinking water distribution was investigated by a batch set-up, where test pieces were incubated in biostable, inorganic nutrient amended drinking water inoculated with surface water. Biomass production was measured as ATP and followed over 16 weeks...... difference on the biomass production of no replacement of the test water, replacement once a week or every second week. Periodical water replacement could nevertheless be considered beneficial, since a substantial NVOC migration occurred within the first six weeks of incubation, which potentially could...

  10. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.

    Science.gov (United States)

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-11-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.

  12. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  14. Drinking Water Consequences Tools. A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    In support of the goals of Department of Homeland Security’s (DHS) National Protection and Programs Directorate and the Federal Emergency Management Agency, the DHS Office of Science and Technology is seeking to develop and/or modify consequence assessment tools to enable drinking water systems owner/operators to estimate the societal and economic consequences of drinking water disruption due to the threats and hazards. This work will expand the breadth of consequence estimation methods and tools using the best-available data describing water distribution infrastructure, owner/assetlevel economic losses, regional-scale economic activity, and health. In addition, this project will deploy the consequence methodology and capability within a Web-based platform. This report is intended to support DHS effort providing a review literature review of existing assessment tools of water and wastewater systems consequences to disruptions. The review includes tools that assess water systems resilience, vulnerability, and risk. This will help to understand gaps and limitations of these tools in order to plan for the development of the next-generation consequences tool for water and waste water systems disruption.

  15. Natural and Artificial Radioactivity in Drinking Water in Malaga, Spain

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Gordo, E.; Canete, S.; Perez, M.

    2011-01-01

    Water has a vast importance for numerous human activities, so that securing supplies of drinking water of a standard quality is becoming more and more difficult. The measurement of radioactivity in drinking water permits us to determine the exposure of the population to radiation from the habitual consumption of water. The occurrence of radionuclides in drinking water gives rise to internal exposure of humans, directly on the decay of radionuclides taken into the body through ingestion and inhalation and indirectly when they are incorporated as part of the food-chain The measurement of radioactivity in drinking water permits us to determine the exposure of population to radiation from the habitual consumption of water. An intensive study of the water supply in the city of Malaga during 2002-2010 has been carried out in order to determine the gross alpha activities, gross beta activities and natural and artificial radionuclides present in drinking water. A data base on natural and artificial radioactivity in water was produced. The results indicated that a high percentage of the water sample contains a total gross alpha and beta less than 0.10 Bq/l and 1 Bq/l respectively. The main objectives were: 1) to analyses gross alpha and gross beta activities and to know the statistical distributions. 2) to study the levels of natural and artificial radionuclides 3) to determine a possible mathematical correlation between the radionuclides and several factors.

  16. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  17. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China.

    Science.gov (United States)

    Huang, Huang; Zhu, Haihui; Gan, Wenhui; Chen, Xue; Yang, Xin

    2017-12-01

    A 12-month sampling program was conducted throughout a drinking water distribution system in Shenzhen and the data from 251 samples provide a comprehensive picture of the spatial and seasonal variability of 17 species disinfection by-products (DBPs) in a city with subtropical monsoon climate. The carbonaceous disinfection by-product (C-DBPs) included four trihalomethanes (THMs), three trihaloacetaldehydes (THAs) and two haloketones (HKs). Their median concentrations over the entire period were 19.9 μg/L, 3.4 μg/L and 1.4 μg/L, respectively. The nitrogenous DBPs (N-DBPs) monitored were four haloacetonitriles (HANs) and four haloacetamides (HAcAms). Their median levels were 2.0 μg/L and 1.5 μg/L, respectively. Low levels of brominated DBP species (bromine substitution factors ≤ 0.5) were observed. The BSF of each DBP class followed the trend: THMs ≈ DHAcAms > DHANs > THAs. All the DBP concentrations showed clear seasonal variations with the highest average concentrations in spring. Correlation analyses showed that the THMs and CH levels in Shenzhen drinking water could be used as statistical indicators of the levels of unregulated N-DBPs (0.4 water in China, and provide an important reference data set for DBP occurrence in cities with a subtropical monsoon climate around the world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Assessment of drinking water quality at the tap using fluorescence spectroscopy.

    Science.gov (United States)

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R

    2017-11-15

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD infiltration of soil water would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a sensitive indicator of water quality changes in drinking water networks, as long as potential interferents are taken into account. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.

    Science.gov (United States)

    Abbaszadegan, Morteza; Yi, Min; Alum, Absar

    2015-01-01

    The impact of fluctuation in chlorine residual on actinomycetes and the production of 2-methylisoborneol (MIB) were studied in cast-iron and PVC model distribution systems. Actinomycetes were spiked in each system and continued operation for a 12-day non-chlorine experiment, resulting in no changes in actinomycetes and MIB concentrations. Three cyclic chlorination events were performed and chlorine residuals were maintained as follows: 1.0 mg L(-1) for 24 h, 0 mg L(-1) for 48 h, 0.5 mg L(-1) for 48 h, 0 mg L(-1) for 48 h and 2 mg L(-1) for 24 h. After each chlorination event, 2 -3 log decrease in actinomycetes was noted in both systems. However, within 48 h at 0 mg L(-1) chlorine, the actinomycetes recovered to the pre-chlorination levels. On the contrary, MIB concentration in both systems remained un-impacted after the first cycle and increased by fourfold ( 20 mg L(-1)) after the second cycle, which lasted through the third cycle despite the fact that actinomycetes numbers fluctuated 2-3 logs during this time period. For obtaining biofilm samples from field, water meters were collected from municipality drinking water distribution systems located in central Arizona. The actinomycetes concentration in asbestos cement pipe and cast iron pipe averaged 3.1 × 10(3) and 1.9 × 10(4) CFU cm(-2), respectively. The study shows that production of MIB is associated with changes in chlorine residual in the systems. This is the first report of cyclic chlorine shock as a stimulus for MIB production by actinomycetes in drinking water distribution system's ecology.

  20. Basic Information about Your Drinking Water

    Science.gov (United States)

    ... Offices Regional Offices Labs and Research Centers Ground Water and Drinking Water Contact Us Share Basic Information about Your Drinking Water Infographic: How does your water system work? The ...

  1. Surveillance for waterborne disease outbreaks associated with drinking water---United States, 2007--2008.

    Science.gov (United States)

    Brunkard, Joan M; Ailes, Elizabeth; Roberts, Virginia A; Hill, Vincent; Hilborn, Elizabeth D; Craun, Gunther F; Rajasingham, Anu; Kahler, Amy; Garrison, Laurel; Hicks, Lauri; Carpenter, Joe; Wade, Timothy J; Beach, Michael J; Yoder Msw, Jonathan S

    2011-09-23

    acute gastrointestinal illness (AGI), 12 (33.3%) were outbreaks of acute respiratory illness (ARI), one (2.8%) was an outbreak associated with skin irritation, and one (2.8%) was an outbreak of hepatitis. All outbreaks of ARI were caused by Legionella spp. A total of 37 deficiencies were identified in the 36 outbreaks associated with drinking water. Of the 37 deficiencies, 22 (59.5%) involved contamination at or in the source water, treatment facility, or distribution system; 13 (35.1%) occurred at points not under the jurisdiction of a water utility; and two (5.4%) had unknown/insufficient deficiency information. Among the 21 outbreaks associated with source water, treatment, or distribution system deficiencies, 13 (61.9%) were associated with untreated ground water, six (28.6%) with treatment deficiencies, one (4.8%) with a distribution system deficiency, and one (4.8%) with both a treatment and a distribution system deficiency. No outbreaks were associated with untreated surface water. Of the 21 outbreaks, 16 (76.2%) occurred in public water systems (drinking water systems under the jurisdiction of EPA regulations and water utility management), and five (23.8%) outbreaks occurred in individual systems (all of which were associated with untreated ground water). Among the 13 outbreaks with deficiencies not under the jurisdiction of a water system, 12 (92.3%) were associated with the growth of Legionella spp. in the drinking water system, and one (7.7%) was associated with a plumbing deficiency. In the two outbreaks with unknown deficiencies, one was associated with a public water supply, and the other was associated with commercially bottled water. The 70 previously unreported outbreaks included 69 Legionella outbreaks during 1973--2000 that were not reportable previously to WBDOSS and one previously unreported outbreak from 2002. More than half of the drinking water--associated outbreaks reported during the 2007--2008 surveillance period were associated with untreated

  2. Evaluation of drinking water quality in Rawalpindi and Islamabad

    International Nuclear Information System (INIS)

    Uzaira, R.; Sumreen, I.; Uzma, R.

    2005-01-01

    Drinking water quality of Rawalpindi and Islamabad was determined in terms of its microbiological and physicochemical characteristics. Water samples were collected from fifty schools of cantonment area Rawalpindi and fifty houses of Sector G-9/4 Islamabad. Survey revealed that surface and ground water are the two major sources of drinking water. Efficiency of domestic filtration units was determined by taking samples before and after filtration, whereas, level of contamination was assessed by collecting samples from storage and dispensing devices in schools. Water quality was determined by pH, conductivity, total dissolved solids, total hardness, concentration of anions and cations, coliforms, viable and colony counts using multiple tube fermentation, titrimetry, UV-Visible spectrophotometry and flame emission photometry. Drinking water quality of Islamabad was found to be better than Rawalpindi. However filtration showed no significant impact in improving water quality due to improper cleaning of filters. Samples were found to exceed WHO guidelines and EPA standards for total dissolved solids and microbiological parameters (WHO, 1996 and EPA, 1980) making water unfit for use due to poor sanitation and cross contamination with sewers in distribution network. (author)

  3. 30 CFR 75.1718 - Drinking water.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  4. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    Science.gov (United States)

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  5. Responsibility for drinking water; Verantwortung fuer Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Lein, Peter [Ingenieurbuero Dipl.-Ing. Peter Lein, Berlin (Germany)

    2008-03-15

    Planners of drinking water supply systems, implementing sanitary companies as well as building owners probably can be made liable, if the user of drinking water supply systems suffer health damages by drinking water hygienic problems. The germinating of the drinking water with legionella often is the consequence of a not professional start-up of a plant immediately after completion.

  6. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking--United States, 2005-2006.

    Science.gov (United States)

    Yoder, Jonathan; Roberts, Virginia; Craun, Gunther F; Hill, Vincent; Hicks, Lauri A; Alexander, Nicole T; Radke, Vince; Calderon, Rebecca L; Hlavsa, Michele C; Beach, Michael J; Roy, Sharon L

    2008-09-12

    (16.7%) with viruses, two (11.1%) with parasites, and one (5.6%) mixed WBDO with both bacteria and viruses. In both WBDOs where the etiology was not determined, norovirus was the suspected etiology. Of the 20 drinking water WBDOs, 10 (50) were outbreaks of acute respiratory illness (ARI), nine (45%) were outbreaks of acute gastrointestinal illness (AGI), and one (5.0%) was an outbreak of hepatitis. All WBDOs of ARI were caused by Legionella, and this is the first reporting period in which the proportion of ARI WBDOs has surpassed that of AGI WBDOs since the reporting of Legionella WBDOs was initiated in 2001. A total of 23 deficiencies were cited in the 20 WBDOs associated with drinking water: 12 (52.2%) deficiencies fell under the classification NWU/POU (deficiencies occurred at points not under the jurisdiction of a water utility or at the point-of-use), 10 (43.5%) deficiencies fell under the classification SWTDs (contamination at or in the source water, treatment facility, or distribution system), and for one (4.3%) deficiency, classification was unknown. Among the 12 NWU/POU deficiencies, 10 (83.3%) involved Legionella spp. in the drinking water system. The most frequently cited SWTD deficiencies were associated with a treatment deficiency (n = four [40.0%]) and untreated ground water (n = four [40.0%]). Three of the four WBDOs with treatment deficiencies used ground water sources. Approximately half (52.2%) of the drinking water deficiencies occurred outside the jurisdiction of a water utility. The majority of these WBDOs were associated with Legionella spp, which suggests that increased attention should be targeted towards reducing illness risks associated with Legionella spp. Nearly all of WBDOs associated with SWTD deficiencies occurred in systems using ground water. EPA's new Ground Water Rule might prevent similar outbreaks in the future in public water systems. CDC and EPA use surveillance data to identify the types of water systems, deficiencies, and

  7. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    Science.gov (United States)

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, road ( = 0.76, road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting

  9. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  10. The real water consumption behind drinking water: the case of Italy.

    Science.gov (United States)

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    OpenAIRE

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amou...

  12. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2017-01-01

    plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks......Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank...... inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of 0.2 mg/L free chlorine). Some buildings...

  13. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (pwater in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    Science.gov (United States)

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Spatial and temporal variations of manganese concentrations in drinking water.

    Science.gov (United States)

    Barbeau, Benoit; Carrière, Annie; Bouchard, Maryse F

    2011-01-01

    The objective of this study was to assess the variability of manganese concentrations in drinking water (daily, seasonal, spatial) for eight communities who participated in an epidemiological study on neurotoxic effects associated with exposure to manganese in drinking water. We also assessed the performance of residential point-of-use and point-of-entry devices (POE) for reducing manganese concentrations in water. While the total Mn concentrations measured during this study were highly variable depending on the location (manganese concentration for 4 out of 5 sampling locations. The efficiency of reverse osmosis and ion exchange for total Mn removal was consistently high while activated carbon provided variable results. The four POE greensand filters investigated all increased (29 to 199%) manganese concentration, indicating deficient operation and/or maintenance practices. Manganese concentrations in the distribution system were equal or lower than at the inlet, indicating that sampling at the inlet of the distribution system is conservative. The decline in total Mn concentration was linked to higher water residence time in the distribution system.

  16. Assesment of disinfectant by product in chlorinated drinking water

    International Nuclear Information System (INIS)

    Khattak, M.I.

    2010-01-01

    The present study was design to establish the report of spatial pattern and variations of Trihalomethanes (THMs) in drinking water sample collected from the area of Karachi. This is the first attempt of its nature to assess mainly the THMs level in drinking water samples of this region. THMs occurrence in water samples as investigated based on a program for preliminary monitoring of water quality throughout the distribution system. The most important species CHCl/sub 3/ of THMs were measured in the samples and were found at average level. The results of present investigation demonstrated that there are more than 95.06% of total Trihalomethanes spatial variations. Specially the CHCl/sub 3/ is considerable in all the utilities in question. (author)

  17. Assessment of microbiological quality of drinking water treated with ...

    African Journals Online (AJOL)

    ... quality of drinking water at the point of delivery to the consumer is crucial in safeguarding consumer's health. The current study was undertaken to assess the changes in residual chlorine content with distance in water distribution system in Gwalior city of Madhya Pradesh and assess its relation with the occurrence of total ...

  18. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    Science.gov (United States)

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp

    DEFF Research Database (Denmark)

    Tatari, Karolina; Musovic, Sanin; Gülay, Arda

    2017-01-01

    distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities......We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial...

  20. Drinking water and health hazards in environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Zoeteman, B C

    1985-12-01

    Among the present environmental issues drinking water quality and more specifically organic micropollutants receive not the highest priority. The long tradition of potable water quality assurance and the sophisticated evaluation methodologies provide a very useful approach which has great potential for wider application in environmental research and policy making. Water consumption patterns and the relative importance of the drinking water exposure route show that inorganic water contaminants generally contribute much more to the total daily intake than organic micropollutants. An exception is chloroform and probably the group of typical chlorination by-products. Among the carcinogenic organic pollutants in drinking water only chlorination by-products may potentially increase the health risk. Treatment should therefore be designed to reduce chemical oxidant application as much as possible. It is expected that in the beginning of next century organic micropollutants will receive much less attention and that the present focus on treatment by-products will shift to distribution problems. Within the total context of water quality monitoring microbiological tests will grow in relative importance and might once again dominate chemical analysis the next century. As disinfection is the central issue of the present water treatment practice the search for the ideal disinfection procedure will continue and might result in a further reduction in the use of chemical oxidants. 26 references.

  1. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  2. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  3. PFAS - A threat for groundwater and drinking water supply in Sweden?

    Science.gov (United States)

    Lewis, Jeffrey; Banzhaf, Stefan; Ahlkrona, Malva; Arnheimer, Berit; Barthel, Roland; Bergvall, Martin; Blomquist, Niklas; Jacks, Gunnar; Jansson, Cecilia; Lissel, Patrik; Marklund, Lars; Olofsson, Bo; Persson, Kenneth M.; Sjöström, Jan; Sparrenbom, Charlotte

    2015-04-01

    Perfluoroalkyl substances (PFAS) are a group of anthropogenic environmental pollutants that are widely distributed in the global environment. They have multiple industrial uses, including water repellents in clothing, paper coatings and firefighting foam. According to a study released by the Environmental Directorate of the OECD, they are persistent, bioaccumulative and toxic to mammalian species (OECD, 2002). In some municipal drinking water wells in Sweden, measured concentrations of PFAS found to be several hundred times higher than the allowed threshold values. This has created a huge public concern and has recently attracted much media attention in Sweden (e.g. Afzelius et al., 2014; Bergman et al., 2014; Lewis et al., 2014). PFAS findings raised questions such as "What can we do to solve the problem?" When it comes to drinking water, there are a number of techniques that can ensure that PFAS levels are reduced to acceptable levels. This may be a costly challenge, but from a technical point of view it is possible. To ensure the safety of drinking water from a public health perspective is obviously a top priority. However, international experience shows that the cost of cleaning up PFAS in groundwater may be significantly higher than continuously treat drinking water in water works. Approximately fifty percent of Sweden's drinking water comes from groundwater. As a result, there are several ongoing and planned PFAS-related environmental and drinking-water investigations in Sweden. Many aquifers that supply municipal water plants are located in areas of sand and gravel deposits. Such soils have relatively high permeabilities, which permits extraction of large volumes of water. However, the downside to high permeabilities is that they also allow dissolved contaminants as PFAS to spread over large areas. If one disregards the health risks linked to its presence in drinking water, PFAS have an impact on three of Sweden's national environmental quality objectives

  4. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  5. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    Science.gov (United States)

    Stoler, Justin; Weeks, John R; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  6. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    Science.gov (United States)

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Drinking Water Quality Status and Contamination in Pakistan

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2017-01-01

    Full Text Available Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  8. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  9. Drinking Water in your Home

    Science.gov (United States)

    Many people choose to filter or test the drinking water that comes out of their tap or from their private well for a variety of reasons. And whether at home, at work or while traveling, many Americans drink bottled water.

  10. Drinking water and biofilm disinfection by Fenton-like reaction.

    Science.gov (United States)

    Gosselin, F; Madeira, L M; Juhna, T; Block, J C

    2013-10-01

    A Fenton-like disinfection process was conducted with Fenton's reagent (H2O2) at pH 3 or 5 on autochthonous drinking water biofilms grown on corroded or non-corroded pipe material. The biofilm disinfection by Fenton-like oxidation was limited by the low content of iron and copper in the biomass grown on non-corroded plumbing. It was slightly improved by spiking the distribution system with some additional iron source (soluble iron II or ferrihydrite particles appeared as interesting candidates). However successful in situ disinfection of biofilms was only achieved in fully corroded cast iron pipes using H2O2 and adjusting the pH to 5. These new results provide additional support for the use of Fenton's processes for cleaning drinking water distribution systems contaminated with biological agents or organics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Carcinogenic and mutagenic properties of chemicals in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R J

    1985-12-01

    Isolated cases of careless handling of industrial and domestic waste has lead to a wide variety of dangerous chemicals being inadvertently introduced into drinking water. However, chemicals with established carcinogenic and mutagenic properties that occur with a high frequency and in multiple locations are limited in number. To date, the chief offenders have been chemicals of relatively low carcinogenic potency. Some of the more common chemicals are formed as by-products of disinfection. The latter process is generally regarded as essential to the production of a ''microbiologically safe'' drinking water. Consequently, any reductions in what may be a relatively small carcinogenic risk must be balanced against a potential for a higher frequency of waterborne infectious disease. The results of recent toxicological investigations will be reviewed to place the potential carcinogenic and mutagenic hazards frequently associated with drinking water into perspective. First, evidence for the carcinogenicity of certain volatile organic compounds such as trichloroethylene, tetrachloroethylene and carbon tetrachloride is considered. Second, the carcinogenic activity that can be ascribed to various by-products of chlorination is reviewed in some detail. Finally, recent evidence that other chemicals derived from the treatment and distribution of drinking water is highlighted as an area requiring move systematic attention. 72 references.

  12. Radiological investigation of drinking water

    International Nuclear Information System (INIS)

    Kunz, E.

    1981-01-01

    An analysis is made of the report ''Radiological investigation of drinking water'' submitted by a working group of WHO to the Brussels meeting held between Nov 7 and 10, 1978. Annex II is emphasized of the WHO publication bearing the title ''The revision of WHO standards for drinking water''. It is shown that the draft of the revision does not basically differ from the revision introduced in Czechoslovakia and published in a revised standard CSN 83 0611 Drinking Water from 1978, including its harmonization with the Decree 59/72 Collect. of Laws on the protection of health from ionizing radiation, and from the standard CSN 83 0523 Radiometric analysis of drinking water. It is also shown that the text of the working group report contains some incorrect or unclear statements and views, which is explained by the misunderstanding of some ICRP recommendations. (H.S.)

  13. Radon in private drinking water wells

    International Nuclear Information System (INIS)

    Otahal, P.; Merta, J.; Burian, I.

    2014-01-01

    At least 10 % of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq.l -1 . This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. (authors)

  14. Consumer protection on the drinking water market

    OpenAIRE

    Kosová, Martina

    2009-01-01

    The goal of Bachelor thesis is marketing research on consumer preferences and knowledge in the field of drinking water and also analyze and compare the price of tap water and bottled water. The theoretical part describes how the consumer market with drinking water is protected in the Czech Republic. They compared the advantages and disadvantages of both types of drinking water.

  15. Drinking water quality in a Mexico city university community: perception and preferences.

    Science.gov (United States)

    Espinosa-García, Ana C; Díaz-Ávalos, Carlos; González-Villarreal, Fernando J; Val-Segura, Rafael; Malvaez-Orozco, Velvet; Mazari-Hiriart, Marisa

    2015-03-01

    A transversal study was conducted at the University City campus of the National Autonomous University of Mexico (UNAM) in Mexico City, with the goal of estimating the university community preference for drinking either tap water or bottled water and the reasons for their selection. A representative sample of three university community subpopulations (students, workers/administrative staff, and academic personnel) were interviewed with respect to their water consumption habits. The results showed that 75% of the university community drinks only bottled water and that the consumption of tap water is low. The interviewees responded that the main reason for this preference is the organoleptic features of tap water independent of quality. In general, the participants in this study do not trust the quality of the tap water, which could be caused by the facilities that distribute bottled water encouraging a general disinterest in learning about the origin and management of the tap water that is distributed on campus.

  16. The use of packed water in urban drinking water and its advantages to other methods of separating drinking water from undrinkable water (The case study : Ferdows city in south Khorasan)

    OpenAIRE

    Mehdi Akhgari; Ahmad Mansuri; Saeed Mansuri; Sara Mirzaei

    2014-01-01

    Today,more than one billion people of the world don't have access to safe drinking water.  Therefore, due to the population increase andconsequently increasing water needs, and the reduction of drinking watersources available, separating drinking water and non-drinking water seemsnecessary. In this article, the use of packed water is compared to other methods,such as two networks (drinkable and non-drinkable) water supply, public waterstations, purifying drinking water, and transferring high ...

  17. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  18. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-02-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water vary significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates based

  19. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-01-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m 3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water varies significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates

  20. Drinking Water FAQ

    Science.gov (United States)

    ... 90 different contaminants in public drinking water, including E.coli , Salmonella , and Cryptosporidium species. More information regarding the ... page. Water Quality Indicators: Total Coliforms Fecal Coliforms / Escherichia coli (E. coli) pH Contaminants: Nitrate Volatile Organic Compounds ( ...

  1. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    Science.gov (United States)

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Protecting health from metal exposures in drinking water.

    Science.gov (United States)

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  3. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.

    Science.gov (United States)

    Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson

    2016-03-09

    Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.

  4. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    Science.gov (United States)

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  5. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization

    Science.gov (United States)

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  6. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  7. Detection of mutagens in water-distribution systems after disinfection.

    Science.gov (United States)

    Guzzella, Licia; Di Caterino, Filomena; Monarca, Silvano; Zani, Claudia; Feretti, Donatella; Zerbini, Ilaria; Nardi, Giuseppe; Buschini, Annamaria; Poli, Paola; Rossi, Carlo

    2006-09-19

    This research examined the quality of water-before and after distribution-of four drinking-water production plants located in Northern Italy, two of which collected water from local aquifers and two from the River Po. A battery of genotoxicity assays for monitoring drinking-water was performed to assess the quality of the water produced by the treatment plants under study. Three different sampling stations were selected at each plant, one right at the outlet of the treatment plant and two along with the distribution pipelines. Raw river water was also sampled and analysed as a control. The water samples (500 l) were concentrated on silica C18 cartridges and the extracts were tested in in vitro mutagenicity assays (Salmonella/microsome assay with strains TA 98 and TA 100; SOS Chromotest with Escherichia coli strain PQ37); gene conversion, point mutation and mitochondrial DNA mutability assays with the diploid Saccharomyces cerevisiae strain D7 and a toxicity test using the bioluminescent bacterium Vibrio fischeri (Microtox). The Microtox test and the mitochondrial DNA mutability assay showed the greatest sensitivity towards toxic or mutagenic substances in the water extracts considered. The results show that this battery of short-term tests is applicable in the routine monitoring of drinking-water quality before and after distribution.

  8. Naphthalene: Drinking water health advisory

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The Drinking Water Health Advisory, Office of Water, U.S. Environmental Protection Agency, has issued its report on the chemical, naphthalene. Naphthalene is used in the manufacture of phthalic and anthranilic acids and other derivatives, and in making dyes; in the manufacture of resins, celluloid, lampblack and smokeless gunpowder; and as moth repellant, insecticide, anthelmintic, vermicide, and intestinal antiseptic. The report covers the following areas: the occurrence of the chemical in the environment; its environmental fate; the chemical's absorption, distribution, metabolism, and excretion in the human body; and its health effects on humans and animals, including its mutagenicity and carcinogenicity characteristics. Also included is the quantification of its toxicological effects.

  9. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    Directory of Open Access Journals (Sweden)

    Justin Stoler

    Full Text Available Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  10. Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects.

    Science.gov (United States)

    Chowdhury, Chitta R; Shahnawaz, Khijmatgar; Kumari, Divya; Chowdhury, Avidyuti; Bedi, Raman; Lynch, Edward; Harding, Stewart; Grootveld, Martin

    2016-11-01

    (1) To estimate the concentrations of fluoride in drinking water throughout different zones and districts of the state of Karnataka. (2) To investigate the variation of fluoride concentration in drinking water from different sources, and its relationships to daily temperature and rainfall status in the regional districts. (3) To develop an updated fluoride concentration intensity map of the state of Karnataka, and to evaluate these data in the context of fluoride-related health effects such as fluorosis and their prevalence. Aqueous standard solutions of 10, 100 and 1,000 ppm fluoride (F - ) were prepared with analytical grade Na + /F - and a buffer; TISAB II was incorporated in both calibration standard and analysis solutions in order to remove the potentially interfering effects of trace metal ions. This analysis was performed using an ion-selective electrode (ISE), and mean determination readings for n = 5 samples collected at each Karnataka water source were recorded. The F - concentration in drinking water in Karnataka state was found to vary substantially, with the highest mean values recorded being in the north-eastern zone (1.61 ppm), and the lowest in the south-western one (only 0.41 ppm). Analysis of variance (ANOVA) demonstrated that there were very highly significant 'between-zone' and 'between-districts-within-zones' sources of variation (p water source F - levels within this state. The southern part of Karnataka has low levels of F - in its drinking water, and may require fluoridation treatment in order to mitigate for dental caries and further ailments related to fluoride deficiency. However, districts within the north-eastern region have contrastingly high levels of fluoride, an observation which has been linked to dental and skeletal fluorosis. This highlights a major requirement for interventional actions in order to ensure maintenance of the recommended range of fluoride concentrations (0.8-1.5 ppm) in Karnataka's drinking water

  11. Risk of waterborne illness via drinking water in the United States.

    Science.gov (United States)

    Reynolds, Kelly A; Mena, Kristina D; Gerba, Charles P

    2008-01-01

    Outbreaks of disease attributable to drinking water are not common in the U.S., but they do still occur and can lead to serious acute, chronic, or sometimes fatal health consequences, particularly in sensitive and immunocompromised populations. From 1971 to 2002, there were 764 documented waterborne outbreaks associated with drinking water, resulting in 575,457 cases of illness and 79 deaths (Blackburn et al. 2004; Calderon 2004); however, the true impact of disease is estimated to be much higher. If properly applied, current protocols in municipal water treatment are effective at eliminating pathogens from water. However, inadequate, interrupted, or intermittent treatment has repeatedly been associated with waterborne disease outbreaks. Contamination is not evenly distributed but rather affected by the number of pathogens in the source water, the age of the distribution system, the quality of the delivered water, and climatic events that can tax treatment plant operations. Private water supplies are not regulated by the USEPA and are generally not treated or monitored, although very few of the municipal systems involved in documented outbreaks exceeded the USEPA's total coliform standard in the preceding 12 mon (Craun et al. 2002). We provide here estimates of waterborne infection and illness risks in the U.S. based on the total number of water systems, source water type, and total populations exposed. Furthermore, we evaluated all possible illnesses associated with the microbial infection and not just gastroenteritis. Our results indicate that 10.7 M infections/yr and 5.4 M illnesses/yr occur in populations served by community groundwater systems; 2.2 M infections/yr and 1.1 M illnesses/yr occur in noncommunity groundwater systems; and 26.0 M infections/yr and 13.0 M illnesses/yr occur in municipal surface water systems. The total estimated number of waterborne illnesses/yr in the U.S. is therefore estimated to be 19.5 M/yr. Others have recently estimated

  12. Regulation Development for Drinking Water Contaminants

    Science.gov (United States)

    To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.

  13. Exploring Perceptions and Behaviors about Drinking Water in Australia and New Zealand: Is It Risky to Drink Water, When and Why?

    Directory of Open Access Journals (Sweden)

    Andrea Crampton

    2016-02-01

    Full Text Available Consumers in most developed countries, including Australia and New Zealand, presume their drinking water is safe. How social perceptions about drinking water are formed, however, remains inadequately explored in the research literature. This research contributes exploratory insights by examining factors that affect consumer perceptions and behaviors. Individual perceptions of drinking water quality and actions undertaken to mitigate perceived risks were collected during 183 face-to-face interviews conducted at six research sites. Qualitative thematic analysis revealed the majority did not consider drinking water a “risky” activity, trusted water management authorities to manage all safety issues and believed self-evaluation of drinking water’s taste and appearance were sufficient measures to ensure safe consumption. Quantitatively, significant relationships emerged between water quality perceptions and sex, employment status, drinking water treatment and trust in government to provide safe water. Expert advice was rarely sought, even by those who believed drinking tap water posed some health risks. Generational differences emerged in media usage for drinking water advice. Finally, precautionary measures taken at home and abroad often failed to meet national drinking water guidelines. Three major conclusions are drawn: a. broad lack of awareness exists about the most suitable and safe water treatment activities, as well as risks posed; b. health literacy and interest may be improved through greater consumer involvement in watershed management; and c. development of health campaigns that clearly communicate drinking water safety messages in a timely, relevant and easily understandable fashion may help mitigate actual risks and dispel myths.

  14. Sanitary survey of the drinking water supply of Kombinati suburb-Tirana, Albania.

    Science.gov (United States)

    Angjeli, V; Reme, B; Leno, L; Bukli, R; Bushati, G

    2000-01-01

    Microbiological pollution of drinking water is a major health problem in the suburbs of the Albanian capital. Intermittent supply and contamination, resulting in several gastrointestinal manifestations, are the main concerns for the population and health workers. The risk of outbreaks of water-borne diseases is high. Pollution originates from contamination of drinking water with domestic sewage. This research investigated the drinking water cycle from its natural source to the consumer, analysing samples and verifying pollution levels in the microbiological and chemical setting. The most important pollution sources were found in the distribution network, due to cross-contamination with sewers and illegal connections. The second pollution source was found around the extraction wells. This is related to abusive constructions within the sanitary zone around the wells and maybe the highly sewage-contaminated river water which feeds the aquifer.

  15. Cost-benefit analysis of central softening for production of drinking water.

    Science.gov (United States)

    Van der Bruggen, B; Goossens, H; Everard, P A; Stemgée, K; Rogge, W

    2009-01-01

    Softening drinking water before distribution yields advantages with environmental impact, such as lower household products consumption, less scaling in piping and machines, and the avoidance of decentralized, domestic softeners. Central softening is under consideration in Flanders by the largest water supplier, VMW (Dutch acronym for "Flemish Company for Water Supply"), to deliver soft (15 degrees F) water to their customers. A case study is presented for a region with hard water (47 degrees F). The chosen technique is the pellet reactor, based on precipitation of CaCO(3) by NaOH addition. This softening operation has possibly large impact on the environment and the water consumption pattern. A cost-benefit analysis has been made to estimate the added value of central softening, by investigating the impact on the drinking water company, on their customers, on employment, on environment, on health, etc. The analysis for the region of study revealed benefits for customers which were higher than the costs for the drinking water company. However, pricing of drinking water remains an important problem. A sensitivity analysis of these results has also been made, to evaluate the impact of important hypothesis, and to be able to expand this study to other regions. The conclusions for this part show that softening is beneficial if water hardness is to be decreased by at least 5 degrees F.

  16. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    International Nuclear Information System (INIS)

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule

  17. Drinking water quality of Sukkur municipal corporation

    International Nuclear Information System (INIS)

    Kandhar, I.A.; Ansari, A.K.

    2002-01-01

    SMC (Sukkur Municipal Corporation) supply the (filtered/settled) water for domestic purpose to the consumers, through intermittent water supply, from Phases I to IV. The water supply distribution network is underground and at most places pass parallel to sewerage lines. The grab sampling technique was followed for collecting representative samples. The official US-EPA and standard methods of water analysis have been used for drinking water quality analysis. DR/2000 spectrophotometer has been used for monitoring: Nitrates, Fluorides, Sulfates, Copper, Chromium, Iron and manganese. The trace metals Cr/sup 6/, Fe/sup 2+/ and other contaminants like; Turbidity and TSS (Total Suspended Solids) have been found higher than World Health Organization (WHO-1993) guideline values. (author)

  18. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  19. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  20. Uranium and drinking water; Uran und Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Konietzka, Rainer [Umweltbundesamt, Berlin (Germany). Fachgebiet II 3.6 - Toxikologie des Trink- und Badebeckenwassers; Dieter, Hermann H.

    2014-03-01

    Uranium is provoking public anxiety based on the radioactivity of several isotopes and the connection to nuclear technology. Drinking water contains at the most geogenic uranium in low concentrations that might be interesting in the frame of chemical of toxicology, but not due to radiological impact. The contribution gives an overview on the uranium content in drinking water and health effects for the human population based on animal tests. These experiments indicate a daily tolerable intake of 0.2 microgram per kg body mass. The actual limiting value for uranium in drinking water is 0.3 microgram per kg body mass water (drinking water regulation from 2001).

  1. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  2. Chlorine and Solute Transport and Reactions in Drinking Water Distribution: The Role of Flow Hydrodynamics on Water Quality Changes and Multi-Criteria Compliance

    Science.gov (United States)

    Safe drinking water supply is one of the most notable modern engineering achievements in the 20th century. It is a centerpiece of the U.S. environmental protection effort under the federal Safe Drinking Water Act (SDWA) and its amendments. In this chapter, water quality changes a...

  3. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    Science.gov (United States)

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  4. Distribution of natural radionuclides of uranium and thorium series in the process of artesian water treatment for drinking consumption

    International Nuclear Information System (INIS)

    Grashchenko, S.M.; Gritchenko, Z.G.; Shishkunova, L.V.

    1997-01-01

    Distribution of natural radionuclides of uranium and thorium series during the treatment of artesian water for drinking consumption is studied using vacuum-emanation and gamma spectrometry methods. During the water treatment hydroxide precipitates are produced at the station, which are isolated using a sand filter, radium isotopes being coprecipitated alongside with them. As a result of this radioactive waste is accumulated at the station, radium isotope concentration in it being equivalent to radium isotope concentration in uranium-thorium ores with 0:11% uranium and 0.56% thorium content. radium isotope concentration in water, delivered to the user do not exceed the established domestic normatives do not exceed the established domestic normatives

  5. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    Science.gov (United States)

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Biofilm in water pipelines; a potential source for off-flavours in the drinking water.

    Science.gov (United States)

    Skjevrak, I; Lund, V; Ormerod, K; Due, A; Herikstad, H

    2004-01-01

    Volatile organic compounds (VOC) are identified in natural biofilm established in plastic pipes used at the drinking water supply. Odour potent VOCs such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone, 6-methyl-5-hepten-2-one, menthol and menthone were prominent compounds in biofilm in the distribution network and at raw water test sites, and are associated with algae and cyanobacteria present in the raw water source.

  7. Drinking Water Contaminants -- Standards and Regulations

    Science.gov (United States)

    ... and Research Centers Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate ... other partners to implement these SDWA provisions. Regulated Contaminants National Primary Drinking Water Regulations (NPDWRs) - table of ...

  8. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spatial variations in the occurrence of potentially genotoxic disinfection by-products in drinking water distribution systems in China.

    Science.gov (United States)

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian

    2017-12-01

    We investigated the occurrence of disinfection by-products (DBPs) with genotoxic potential in plant effluent and distribution water samples from four drinking water treatment plants in two Chinese cities using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. We tested the samples for 37 DBPs with genotoxic potential, which we had previously identified and prioritized in water under controlled laboratory conditions. Thirty of these DBPs were found in the water samples at detection frequencies of between 10% and 100%, and at concentrations between 3.90 and 1.77 × 10 3  ng/L. Of the DBPs detected, the concentrations of 1,1,1-trichloropropan-2-one were highest, and ranged from 299 to 1.77 × 10 3  ng/L with an average of 796 ng/L. The concentrations of 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine and 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione were also much higher, and ranged from 107 to 721 ng/L, and from 152 to 504 ng/L, respectively. Concentrations of 1,1,1-trichloropropan-2-one, 2-chloro-1-phenylethanone, 2,2-dichloro-1-phenylethanone and 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine were highest at or near the treatment plants and decreased with increasing distance from the plants. Patterns in the concentrations of benzaldehyde, 2-phenylpropan-2-ol, and 1-methylnaphthalene differed between plants. The levels of DBPs such as 4-ethylbenzaldehyde, (E)-non-2-enal, and 1-phenylethanone were relatively constant within the distribution systems, even at the furthest sampling points (20 km drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Risk management for assuring safe drinking water.

    Science.gov (United States)

    Hrudey, Steve E; Hrudey, Elizabeth J; Pollard, Simon J T

    2006-12-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that disease outbreaks remain a risk that could be better managed and prevented even in affluent nations. A detailed retrospective analysis of more than 70 case studies of disease outbreaks in 15 affluent nations over the past 30 years provides the basis for much of our discussion [Hrudey, S.E. and Hrudey, E.J. Safe Drinking Water--Lessons from Recent Outbreaks in Affluent Nations. London, UK: IWA Publishing; 2004.]. The insights provided can assist in developing a better understanding within the water industry of the causes of drinking water disease outbreaks, so that more effective preventive measures can be adopted by water systems that are vulnerable. This preventive feature lies at the core of risk management for the provision of safe drinking water.

  11. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization - abstract

    Science.gov (United States)

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  12. [Disinfection efficiency of peracetic acid, alone and in combination with hypochlorite, against Mycobacterium avium in drinking water].

    Science.gov (United States)

    Schiavano, G F; Sisti, M; De Santi, M; Brandi, G

    2006-01-01

    Peracetic acid (PAA) is a disinfectant with a wide spectrum of antimicrobial activity, but little is known about the feasibility of using it in the field of drinking water treatment. The aim of this study has been assess disinfectant efficacy of PAA, alone or in combination with hypochlorite, against M. avium in drinking water M. avium is a common opportunistic pathogen in immunocompromised subjects that is able to survive and grow in drinking water distribution systems. In this study PAA did not show appreciable activity against the greater number of tested strains (16/21) up to 5 ppm of PAA, a weak activity was seen on 4 strains, while a significant reduction in viable cells (about 50%) was seen only on 1 strain after 48 h of treatment with 5 ppm of PAA. We also evidenced that M. avium was unaffected by chlorine concentration usually present in drinking water distribution system. Finally, the combination of PAA and sodium hypochlorite did not promote enhanced antimicrobial efficacy respect to the single disinfectants. In conclusion, our result would indicate that PAA is an unlikely candidate for the disinfection of drinking water from M. avium and further strategies are required to eliminate M. avium from drinking water system.

  13. Dose from drinking water Finland

    International Nuclear Information System (INIS)

    Maekelaeinen, Ilona; Salonen, Laina; Huikuri, Pia; Arvela, Hannu

    1999-01-01

    The dose from drinking water originates almost totally from naturally occurring radionuclides in the uranium-238 series, the most important nuclide being radon-222. Second comes lead-210, and third polonium-210. The mean age-group-weighted dose received by ingestion of drinking water is 0.14 mSv per year. More than half of the total cumulative dose of 750 manSv is received by the users of private wells, forming 13% of the population. The most exposed group comprises the users of wells drilled in bedrock, who receive 320 manSv while comprising only 4% of the population. The calculated number of annual cancer incidences due to drinking water is very sensitive to the dose-conversion factors of ingested radon used, as well as to the estimated lung cancer incidences caused by radon released from water into indoor air. (au)

  14. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    Science.gov (United States)

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  16. Safe drinking water act: Amendments, regulations and standards

    International Nuclear Information System (INIS)

    Calabrese, E.J.; Gilbert, C.E.; Pastides, H.

    1989-01-01

    This book approaches the topic of safe drinking water by communicating how the EPA has responded to the mandates of Congress. Chapter 1 summarizes what is and will be involved in achieving safe drinking water. Chapter 2 describes the historical development of drinking water regulations. Chapter 3 summarizes the directives of the Safe Drinking Water Act Amendments of 1986. Chapters 4 through 9 discuss each phase of the regulatory program in turn. Specific problems associated with volatile organic chemicals, synthetic organics, inorganic chemicals, and microbiological contaminants are assessed in Chapter 4 and 5. The unique characteristics of radionuclides and their regulation are treated in Chapter 6. The disinfection process and its resultant disinfection by-products are presented in Chapter 7. The contaminant selection process and the additional contaminants to be regulated by 1989 and 1991 and in future years are discussed in Chapters 8 and 9. EPA's Office of Drinking Water's Health Advisory Program is explained in Chapter 10. The record of public water system compliance with the primary drinking water regulations is detailed in Chapter 11. Chapter 12 offers a nongovernmental perspective on the general quality of drinking water and how this is affected by a wide range of drinking water treatment technologies. Separate abstracts are processed for 5 chapters in this book for inclusion in the appropriate data bases

  17. Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia

    OpenAIRE

    Hoque, M. A.; Scheelbeek, P. F. D.; Vineis, P.; Khan, A. E.; Ahmed, K. M.; Butler, A. P.

    2016-01-01

    Drinking water in much of Asia, particularly in coastal and rural settings, is provided by a variety of sources, which are widely distributed and frequently managed at an individual or local community level. Coastal and near-inland drinking water sources in South and South East (SSE) Asia are vulnerable to contamination by seawater, most dramatically from tropical cyclone induced storm surges. This paper assesses spatial vulnerabilities to salinisation of drinking water sources due to meteoro...

  18. COMPARISON OF MYCOBACTERIUM AVIUM ISOLATES FROM A DRINKING WATER DISTRIBUTION SYSTEM AND FROM THE POPULATION SERVED BY THE SYSTEM

    Science.gov (United States)

    Background: Current evidence suggests that drinking water, soil, and produce are potential sources of Mycobacterium avium infections, a pathogen not known to be transmitted person-to-person. Methods: We sampled water during 2000-2002 from a large municipal drinking water ...

  19. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Lee F Stanish

    Full Text Available The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria, MLE1-12 (phylum Cyanobacteria, Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  20. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil

    Directory of Open Access Journals (Sweden)

    Helena M.B. Oliveira

    2016-03-01

    Full Text Available Filamentous fungi in drinking water distribution systems are known to (a block water pipes; (b cause organoleptic biodeterioration; (c act as pathogens or allergens and (d cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively, followed by Trichoderma and Fusarium (9% each, Curvularia (5% and finally the species Pestalotiopsis karstenii (2%. Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.

  1. Nitrates in drinking water and the risk of death from brain cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh

    2011-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.

  2. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  3. Lead and Drinking Water from Private Wells

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  4. Towards the global quality in the production and distribution of drinking water: a practical case; Avanzado hacia la calidad global del servicio en la produccion y distribucion de aguas de consumo humano: aplicacion practica

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2008-07-01

    The implementation of the Water Safety Plans (WSP) in the complex process of the production and distribution of drinking water intended to users is probably the nest item for the suppliers of drinking water. To approach to this subject we describe here how has been carried out the management of risk associated to the production and distribution of water in the city of Cordoba (Spain). The experience of the supplier Emacsa has became to the establishment of a practical dynamics to act and solve the problems that could be potentially detected in all the global process bounded to drinking water. These actuations have been very well evaluated for the users and, almost, they have had the positive consequence for the organization to be awared by two prizes to its management. (Author)

  5. Disinfection of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Ensenauer, P

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection.

  6. SDWISFED Drinking Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — SDWIS/FED is EPA's national regulatory compliance database for the drinking water program. It includes information on the nation's 160,000 public water systems and...

  7. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  8. Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater

    Science.gov (United States)

    Uejio, Christopher K.; Christenson, Megan; Moran, Colleen; Gorelick, Mark

    2017-06-01

    This study examined the relative importance of climate change and drinking-water treatment for gastrointestinal illness incidence in children (age first quantified the observed (1991-2010) precipitation and gastrointestinal illness associations after controlling for seasonality and temporal trends. Precipitation likely transported pathogens into drinking-water sources or into leaking water-distribution networks. Building on observed relationships, the second analysis projected how climate change and drinking-water treatment installation may alter gastrointestinal illness incidence. Future precipitation values were modeled by 13 global climate models and three greenhouse-gas emissions levels. The second analysis was rerun using three pathways: (1) only climate change, (2) climate change and the same slow pace of treatment installation observed over 1991-2010, and (3) climate change and the rapid rate of installation observed over 2011-2016. The results illustrate the risks that climate change presents to small rural groundwater municipalities without drinking water treatment. Climate-change-related seasonal precipitation changes will marginally increase the gastrointestinal illness incidence rate (mean: ˜1.5%, range: -3.6-4.3%). A slow pace of treatment installation somewhat decreased precipitation-associated gastrointestinal illness incidence (mean: ˜3.0%, range: 0.2-7.8%) in spite of climate change. The rapid treatment installation rate largely decreases the gastrointestinal illness incidence (mean: ˜82.0%, range: 82.0-83.0%).

  9. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method

    KAUST Repository

    Prest, Emmanuelle I E C; Hammes, Frederik A.; Kö tzsch, Stefan; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2013-01-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. © 2013 Elsevier Ltd.

  10. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method

    KAUST Repository

    Prest, Emmanuelle I E C

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. © 2013 Elsevier Ltd.

  11. Model-based leakage localization in drinking water distribution networks using structured residuals

    OpenAIRE

    Puig Cayuela, Vicenç; Rosich, Albert

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  12. Drinking water consumption patterns among adults-SMS as a novel tool for collection of repeated self-reported water consumption.

    Science.gov (United States)

    Säve-Söderbergh, Melle; Toljander, Jonas; Mattisson, Irene; Åkesson, Agneta; Simonsson, Magnus

    2018-03-01

    Studies have shown that the average drinking water consumption ranges between 0.075 and 3 L/day for adults with both national and regional differences. For exposure assessment of drinking water hazards, country-specific drinking water consumption data including sources of the consumed water may therefore be warranted. To estimate the amount and source of drinking water consumed among adults in Sweden, we collected self-reported estimates using both traditional methods (telephone interviews, web questionnaire) and a novel method (Short Message Service, SMS questionnaires) in a population from an average sized Swedish municipality. Monthly SMS questionnaires were sent out during one year to obtain longitudinal information as well. SMS showed to be a promising tool for collecting self-reported consumption, as most citizens could participate and the method showed high response rate. Data collected via the SMS questionnaire shows an average consumption of cold tap water of 4.9 glasses/24 h (one glass=200 ml), while the average estimates of cold tap water collected by the traditional methods range from 4.5 to 7.0 glasses/24 h. For statistical distributions, the mean daily consumption of cold tap water for the population was best fitted to a gamma distribution. About 70% of the cold tap water is consumed at home. Based on the results from the SMS study, we suggest using 1 l/day for the average adult population and 2.5 l/day for high consumers for risk assessment of cold tap water consumption. As 46% of the tap water consumed is heated, we suggest using 1.85 l/day for total tap water consumption.

  13. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.

    Science.gov (United States)

    Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy

    2014-09-16

    Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.

  14. Disinfection of drinking water

    International Nuclear Information System (INIS)

    Ensenauer, P.

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection. (AJ) [de

  15. Presence of Toxoplasma gondii in Drinking Water from an Endemic Region in Southern Mexico.

    Science.gov (United States)

    Hernandez-Cortazar, Ivonne B; Acosta-Viana, Karla Y; Guzman-Marin, Eugenia; Ortega-Pacheco, Antonio; Segura-Correa, Jose C; Jimenez-Coello, Matilde

    2017-05-01

    Toxoplasmosis can be acquired through the ingestion of contaminated drinking water with oocysts of Toxoplasma gondii, highly resistant to the routinely disinfection processes; based on chlorination commonly used in the water supply industry. The aim of this study was to determine the presence of T. gondii DNA in samples of public drinking water from an endemic region of southern Mexico. In total 74 samples of water (5 L each) were collected from the three well fields (I, II, and III) and 71 independent wells, distributing public drinking water to the city of Merida Yucatan, after passing through the chlorination process. Water samples were filtered and concentrated by a sucrose solution, then DNA was extracted and evaluated through a nested-PCR (nPCR) specific for T. gondii. Positive samples were detected in 5.4% (4/74) of the water samples. This is the first report of the presence of T. gondii DNA in public drinking water from a large city in southern Mexico, where their consumption without any postpurification treatment could pose a risk for acquiring the infection in the urban population.

  16. Hot Topics/New Initiatives | Drinking Water in New England ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  17. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  18. Particulate fingerprinting of water quality in the distribution system ...

    African Journals Online (AJOL)

    Particles in the distribution system play an important role in the perception? Not clear what is meant) of drinking water quality, particularly in association with discolouration. In The Netherlands the water quality in the distribution system is traditionally monitored by turbidity measurements. However, turbidity is hard to quantify ...

  19. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    Science.gov (United States)

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  20. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Ginige, Maneesha P; Wylie, Jason; Plumb, Jason

    2011-02-01

    biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks.

  1. 30 CFR 71.600 - Drinking water; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  2. Growing pigs' drinking behaviour: number of visits, duration, water intake and diurnal variation.

    Science.gov (United States)

    Andersen, H M-L; Dybkjær, L; Herskin, M S

    2014-11-01

    Individual drinking patterns are a potential tool for disease monitoring in pigs. However, to date, individual pig drinking behaviour has not been described, and effects of external factors have not been examined. The aim of this study was to perform detailed quantification of drinking behaviour of growing pigs and to examine effects of period of day and effects of competition for access to the drinking nipple on the drinking behaviour, amount of water used and water wastage. In all, 52 cross-bred castrated male pigs (live weight 20.5±1.7 kg; mean±s.d.) maintained as either 3 (N3) or 10 (N10) pigs per pen and water nipple (four groups/treatment) were used. All pigs were fitted with a transponder ear tag. A radio frequency identification reader recorded and time stamped visits at the nipple. In each pen, water flow was logged every second. The drinking behaviour was recorded for 4 consecutive days and analysed using a linear mixed model. Overall, the pigs spent 594 s at the nipple during 24 h distributed among 44 visits. During this period, 5 l of water were used, of which >30% was wasted. Social competition did not affect the drinking behaviour over 24 h, except for the proportion of interrupted visits where pigs, kept with recommended nipple availability (N10), showed an increased proportion of interrupted drinking bouts compared with pigs kept at very low level of competition (N3) (0.18±0.01 v. 0.11±0.01; Pbehavioural variables involved in drinking. This dynamic characteristic of drinking behaviour means that if individual drinking patterns are to be used as disease monitoring tools, it is important to consider effects of external factors and include data on period level to allow rapid detection of behavioural changes.

  3. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    Science.gov (United States)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  4. Dynamic hydraulic models to study sedimentation in drinking water networks in detail

    Directory of Open Access Journals (Sweden)

    I. W. M. Pothof

    2012-12-01

    Full Text Available Sedimentation in drinking water networks can lead to discolouration complaints. A sufficient criterion to prevent sedimentation in the Dutch drinking water networks is a daily maximum velocity of 0.25 m s−1. Flushing experiments have shown that this criterion is a sufficient condition for a clean network, but not a necessary condition. Drinking water networks include many locations with a maximum velocity well below 0.25 m s−1 without accumulated sediments. Other criteria need to be developed to predict which locations are susceptible to sedimentation and to prevent sedimentation in future networks. More distinctive criteria are helpful to prioritise flushing operations and to prevent water quality complaints.

    The authors use three different numerical modelling approaches – quasi-steady, rigid column and water hammer – with a temporal discretisation of 1 s in order to assess the influence of unsteady flows on the wall shear stress, causing resuspension of sediment particles. The model predictions are combined with results from flushing experiments in the drinking water distribution system of Purmerend, the Netherlands. The waterhammer model does not result in essentially different flow distribution patterns, compared to the rigid column and quasi-steady modelling approach. The extra information from the waterhammer model is a velocity oscillation of approximately 0.02 m s−1 around the quasi-steady solution. The presence of stagnation zones and multiple flow direction reversals seem to be interesting new parameters to predict sediment accumulation, which are consistent with the observed turbidity data and theoretical considerations on critical shear stresses.

  5. Risk management for assuring safe drinking water.

    OpenAIRE

    Hrudey, Steve E.; Hrudey, Elizabeth J.; Pollard, Simon J. T.

    2006-01-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that dis...

  6. STABILITY: AN INVESTIGATION OF AS(III)/AS(V) STABILITY IN IRON RICH DRINKING WATER MATRICES

    Science.gov (United States)

    Arsenic in drinking water is predominantly inorganic arsenic. The two oxidation states of inorganic arsenic are As(III)(pKa=9.3) and As(V)(pKa2=6.9). The distribution of As(III) and AS(V) in a water is dependent on the redox potential of the water. The actual distribution can ...

  7. Removal of Natural Organic Matter Fractions by Anion Exchange : Impact on drinking water treatment processes and biological stability

    NARCIS (Netherlands)

    Grefte, A.

    2013-01-01

    This researched focused on improving drinking water quality, specifically the biological stability of the produced drinking water. Natural organic matter (NOM) can be a source of nutrients for bacteria present in the distribution system, which can cause regrowth. Specifically, small organic acids

  8. Start-up of a drinking water biofilter

    DEFF Research Database (Denmark)

    Ramsay, Loren; Søborg, Ditte; Breda, Inês Lousinha Ribeiro

    When virgin filter media is placed in drinking water biofilters, a start-up period of some months typically ensues. During this period, the necessary inorganic coating and bacterial community are established on the filter medium, after which the treated water complies with drinking water criteria...

  9. Drinking water purification in the Czech Republic and worldwide

    International Nuclear Information System (INIS)

    Krmela, Jan; Beckova, Vera; Vlcek, Jaroslav; Marhol, Milan

    2012-06-01

    The report is structured as follows: (i) Legislative (hygienic) requirements for technologies applied to drinking water purification with focus on uranium elimination; (ii) Technological drinking water treatment processes (settling, filtration, precipitation, acidification, iron and manganese removal) ; (iii) State Office for Nuclear Safety requirements for the operation of facilities to separate uranium from drinking water and for the handling of saturated ionexes from such facilities; (iv) Material requirements for the operation of ionex filters serving to separate uranium from drinking water; (v) Effect of enhanced uranium concentrations in drinking waters on human body; (vi) Uranium speciation in ground waters; (vii) Brief description of technologies which are used worldwide for uranium removal; (viii) Technologies which are usable and are used in the Czech Republic for drinking water purification from uranium; (ix) Inorganic and organic ion exchangers and sorbents. (P.A.)

  10. Drinking water quality from the aspect of element concentrations

    International Nuclear Information System (INIS)

    Chiba, M.; Shinohara, A.; Sekine, M.; Hiraishi, S.

    2006-01-01

    Drinking water in developed countries is usually treated by the water-purification system, while in developing countries untreated natural water such as well water, river water, rain water, or pond water are used. On the other hand, many kinds of mineral water bottled in plastic containers are sold as drinking water with or without gas in urban areas in many countries. Seawater under hundreds meters from the surface is also bottled and sold as drinking water with advertising good mineral balance. Various element concentrations in water samples for drinking were analyzed, and then it was considered the effects of elements on human health. (author)

  11. Analysis of selected elements in water in the drinking water preparation plants in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Antanasijević Davor Z.

    2011-01-01

    Full Text Available Belgrade's water supply relies mainly on the River Sava and groundwater supply wells, which are located in the vicinity of the river and Ada Ciganlija. In this paper, the content of aluminum, boron, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, cadmium, barium and lead was analyzed in raw water as well as drinking water distributed by the Water Supply and Sewage of Belgrade. A total of 14 samples were examined from all water treatment plants that are part of the distribution system. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. The aim of this research was to examine the effectiveness of drinking water preparation process in the plants belonging to the Water Supply and Sewage of Belgrade. The content of certain elements varies considerably in raw water (river and groundwater: the concentration of boron in river water is two to three times lower than the concentration in groundwater; the concentration of arsenic in river water is ten to twenty five times lower than the concentration in groundwater; the concentration of aluminum in all groundwater samples was below the detection limit of the instrument (0.50 μg/dm3, whilst in the river water the content of aluminum was about 50 μg/dm3 and the concentration of manganese in the river water was up to 10 times lower than the concentrations in groundwater. In all drinking water samples the concentration of the elements were bellow the maximum allowed levels according to the Serbian regulations. Correlation coefficients determined for boron, manganese, cobalt, nickel, copper, zinc, arsenic, barium and lead, which were analyzed in raw waters, show that four groups of elements can be distinguished. Boron, manganese, arsenic and barium are related to each other and probably have a common natural origin; copper and lead probably have a common anthropogenic origin; correlation of nickel and cobalt was observed, while zinc was not in

  12. 1994 Environmental monitoring drinking water and nonradiological effluent programs annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Brock, T.A.; Meachum, T.R.

    1995-10-01

    EG ampersand G Idaho, Inc., initiated monitoring programs for drinking water in 1988 and for nonradiological parameters and pollutants in liquid effluents in 1985. These programs were initiated for the facilities operated by EG ampersand G Idaho for the US Department of Energy at the Idaho National Engineering Laboratory. On October 1, 1994, Lockheed Idaho Technologies Company (LITCO) replaced EG ampersand G Idaho as the prime contractor at the INEL and assumed responsibility for these programs. Section I discusses the general site characteristics, the analytical laboratories, and sampling methodology general to both programs. Section 2, the Drinking Water Program, tracks the bacteriological, chemical, and radiological parameters required by State and Federal regulations. This section describes the drinking water monitoring activities conducted at 17 LITCO-operated production wells and 11 distribution systems. It also contains all of the drinking water parameters detected and the regulatory limits exceeded during calendar year 1994. In addition, groundwater quality is discussed as it relates to contaminants identified at the wellhead for LITCO production wells. Section 3 discusses the nonradiological liquid effluent monitoring results for 27 liquid effluent streams. These streams are presented with emphasis on calendar year 1994 activities. All parameter measurements and concentrations were below the Resource Conservation and Recovery Act toxic characteristics limits

  13. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.

    Science.gov (United States)

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2011-05-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus

  14. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    Science.gov (United States)

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...

  16. Mutagenic and carcinogenic properties of drinking water

    International Nuclear Information System (INIS)

    Kool, H.J.; van Kreijl, C.F.; Hrubec, J.

    1985-01-01

    In this chapter results of oxidation treatments with chlorine, ozone, chlorine dioxide, and ultraviolet (UV), with respect to their effects on activity (Ames test) in drinking water supplies are reviewed. In addition, the authors present the preliminary results of a pilot plant study on the effects of chlorine and chlorine dioxide on mutagenicity. Furthermore, results of several carcinogenicity studies performed with organic drinking water concentrates are discussed in relation to the results of a Dutch carcinogenicity study with mutagenic drinking water concentrates

  17. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system – Effects of pipe material and sedimentation

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik

    2011-01-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (......Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (...

  18. Perceived agricultural runoff impact on drinking water.

    Science.gov (United States)

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  19. Characteristics of Nanoparticles in Drinking Water Treatment using Biological Activated Carbon

    Directory of Open Access Journals (Sweden)

    Desmiarti Reni

    2018-01-01

    Full Text Available Characteristics of nanoparticles in drinking water treatment were performed using five types of biological activated carbon (BAC columns (BAC1-BAC5 in continuous flow experiments. The BAC was created by covering granular activated carbon (GAC with attached microorganisms from water samples taken from the Nagara River in Japan. The total running time was about 2000 h. The characteristics of the nanoparticles were investigated based on size distribution and volume distribution measured by Zetasizer Nano. Total dissolved organic carbon (DOC and ultraviolet absorbance at 260 nm (UV260 were also studied. The important results in this study were that the detached nanoparticles in the effluent were within the size distribution ranges of 0.26~5.62 nm, 0.62~3.62 nm, 0.62~3.12 nm, 0.62~4.19 nm, and 0.62~6.50 for BAC 1, 2, 3, 4 and 5, respectively. The profile of peak size and peak number along the bed depth of the BAC columns was evaluated for better understanding the characteristics of the nanoparticles. This result is very important for improving drinking water treatment using granular activated carbon to remove microorganisms.

  20. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  1. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Monika Novak Babič

    2017-06-01

    Full Text Available Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  2. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    Science.gov (United States)

    Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João

    2017-01-01

    Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  3. Investigation of Trihalomethanes in Drinking Water of Abbas Abad Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Kiani R

    2017-06-01

    Full Text Available Introduction: Chlorination is the most common and successful method for disinfection of drinking water, especially in developing countries. However, due to the probability of formation of disinfection by-products especially Trihalomethanes (THMs that are known as hazardous and usually carcinogenic compounds, this study was conducted to assess the investigation of THMs in drinking water of Abbas Abad water treatment plant in 2015. Methods: In this study, 81 water samples were gathered during autumn season of 2015. Temperature, pH, Ec, turbidity, and residual chlorine were measured on site. After samples preparation in the laboratory, THMs concentrations were determined using gas chromatography. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations (µg/l for bromodichloromethane were 1.47 ± 0.57 and 1.90 ± 0.26, for bromoform were 1.47 ± 0.35 and 2.36 ± 1.10, for dibromochloromethane were 1.47 ± 0.42 and 1.53 ± 0.55, and for chloroform were 3.40 ± 0.70 and 7.53 ± 1.00, and all compounds were determined for stations 1 and 3, respectively. Also comparing the mean concentrations of assessed THMs with ISIRI and World Health Organization (WHO Maximum Permissible Limits (MPL showed significant differences (P < 0.05. Thus, the mean concentrations of all Trihalomethanes compounds were significantly lower than the maximum permissible limits. Conclusions: Although the mean concentrations of THMs were lower than MPL, yet due to discharge of restaurants and gardens’ wastewater into the Abbas Abad River, pre-chlorination process of water in Abbas Abad water treatment plant, high retention time and increasing loss of foliage into the water, especially in autumn season, the formation of Trihalomethanes compounds could increase. Therefore, periodic monitoring of THMs in drinking water distribution network is recommended.

  4. Social representations of drinking water: subsidies for water quality surveillance programmes.

    Science.gov (United States)

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  5. Elasticity and physico-chemical properties during drinking water biofilm formation.

    Science.gov (United States)

    Abe, Yumiko; Polyakov, Pavel; Skali-Lami, Salaheddine; Francius, Grégory

    2011-08-01

    Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.

  6. Control of New Copper Corrosion in High-Alkalinity Drinking Water using Orthophosphate - article

    Science.gov (United States)

    Research and field experience have shown that high-alkalinity waters can be associated with elevated copper levels in drinking water. The objective of this study was to document the application of orthophosphate to the distribution system of a building with a copper problem asso...

  7. Microbial biogeography of drinking water: patterns in phylogenetic diversity across space and time

    NARCIS (Netherlands)

    Roeselers, G.; Coolen, J.; Wielen, P.W. van der; Jaspers, M.C.; Atsma, A.; Graaf, B. de; Schuren, F.

    2015-01-01

    In this study, we collected water from different locations in 32 drinking water distribution networks in the Netherlands and analysed the spatial and temporal variation in microbial community composition by high-throughput sequencing of 16S rRNA gene amplicons. We observed that microbial community

  8. Sanitary risks related to the installation of hydroelectric turbines on drinking water networks

    International Nuclear Information System (INIS)

    Novelli, A.; Montiel, A.; Cabillic, P.J.; Fourrier, P.; Levi, Y.; Potelon, J.L.; Welte, B.; Fourrier, P.; Levi, Y.; Potelon, J.L.; Welte, B.

    2010-01-01

    With the notion of sustainable development gaining ground, practices aimed at saving water and energy are more and more frequent, particularly the installation of hydroelectric turbine on drinking water networks. It is essential in this case that the water quality should not be deteriorated, and the water supply for consumption and fire protection has to be prioritized over energy production. Thus, a sanitary risk assessment must be done and actions to control the described critical points have to be taken. The installation of a turbine is an additional risk whereas it is not necessary for drinking water production and distribution. As a consequence, a quality management system including the turbine and additional quality water monitoring should be carried out. (authors)

  9. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Husband, S; Boxall, J B

    2014-05-01

    This study investigates the influence of pipe characteristics on the bacteriological composition of material mobilised from a drinking water distribution system (DWDS) and the impact of biofilm removal on water quality. Hydrants in a single UK Distribution Management Area (DMA) with both polyethylene and cast iron pipe sections were subjected to incremental increases in flow to mobilise material from the pipe walls. Turbidity was monitored during these operations and water samples were collected for physico-chemical and bacteriological analysis. DNA was extracted from the material mobilised into the bulk water before and during flushing. Bacterial tag-encoded 454 pyrosequencing was then used to characterize the bacterial communities present in this material. Turbidity values were high in the samples from cast iron pipes. Iron, aluminium, manganese and phosphate concentrations were found to correlate to observed turbidity. The bacterial community composition of the material mobilised from the pipes was significantly different between plastic and cast iron pipe sections (p < 0.5). High relative abundances of Alphaproteobacteria (23.3%), Clostridia (10.3%) and Actinobacteria (10.3%) were detected in the material removed from plastic pipes. Sequences related to Alphaproteobacteria (22.8%), Bacilli (16.6%), and Gammaproteobacteria (1.4%) were predominant in the samples obtained from cast iron pipes. The highest species richness and diversity were found in the samples from material mobilised from plastic pipes. Spirochaeta spp., Methylobacterium spp. Clostridium spp. and Desulfobacterium spp., were the most represented genera in the material obtained prior to and during the flushing of the plastic pipes. In cast iron pipes a high relative abundance of bacteria able to utilise different iron and manganese compounds were found such as Lysinibacillus spp., Geobacillus spp. and Magnetobacterium spp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inactivation model for disinfection of biofilms in drinking water

    International Nuclear Information System (INIS)

    Karlicki, A.; O'Leary, K.C.; Gagnon, G.A.

    2002-01-01

    The purpose of the project was to investigate experimentally the effects of free chlorine, monochloramine and chlorine dioxide on the removal of biofilm growth in water as it applies to drinking water in distribution systems. In particular, biofilm kill for a particular dosage of disinfectant was measured as a function of time for each disinfectant over a range of disinfectant concentrations. These results were used to formulate concentration-time (Ct) inactivation values for each disinfectant to compare the efficacy of the three disinfectants for biofilm control. The biofilm reactor system consisted of a 125 mL columns, each containing tightly packed 3 mm glass beads on which heterotrophic bacterial biofilm is established. Following an initial biofilm inoculation period, the glass beads were removed from the columns and placed into glass jars for disinfection with free chlorine, monochloramine and chlorine dioxide. Cell counts were determined on a time series basis with the goal of achieving a Ct inactivation model that is similar to models presently used for inactivation of suspended cells. Ultimately this research could be used to develop a rationale method for setting regulatory values for secondary disinfection in drinking water distribution systems, which presently in only a few states and provinces. (author)

  11. A study of pollution extent in some drinking water resources by heavy elements in Hadramout governorate

    International Nuclear Information System (INIS)

    Barheyan, Saad Awadh

    2001-01-01

    The paper is considered as a preliminary study of pollution extent in some drinking water resources in Hadramout governorate by heavy elements which differ in their toxicity. The elements subjected to study are Cd, Pb, Fe, Cr, Mn, Zn, Co and Cu. Atomic absorption spectrometric method of analysis (AAS) is used for the determination of heavy elements concentrations. The elemental analysis of drinking water samples shows that the concentration of the above-mentioned elements in drinking water resources, lies in the permissible limit given by the WHO. Similarity of elements content is observed in Thela and Fuwah waters, bu the case is different for Ghail Bawzeer and Asshihir waters due to their different lithospheric structures. Drinking water used by the civilians is not subjected to physical, biological or chemical treatment which may lead to total or partial removal of heavy elements and other rejected impurities. Drinking water running in distribution nets is a hard water and has a weak base (Ph which explains the reason why heavy elements are absorbed and precipitated inside drinking water pipes before they reach consumers. This type of hard water causes accumulation of salt precipitates inside the water pipes which results in many economic and health disturbances to consumers. The slight increase of Cr, Mn, and Co concentration in drinking water flowing in the pipes may be due to the effect of some anions such as nitrates which form soluble compounds with the elements contained in the chemical composition of the drinking water pipes. This paper is a strong indicator for determination of heavy elements concentrations in different drinking water resources in Hadramout govemorate. Such approach seeks a further comprehensive work with special focus on the study of lithospheric structure of the feeding water regions of Hadramout aquifers. (author)

  12. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  13. A bibliometric analysis of drinking water research in Africa | Wambu ...

    African Journals Online (AJOL)

    A total of 1 917 publications of drinking water research in Africa from 1991 to 2013 were identified from the data hosted in online version of SCI-Expanded, Thomson Reuters Web of Science, for bibliometric analysis. The analysis included publication output, distribution of keywords, journals and subject areas, and ...

  14. Exposure to low-dose barium by drinking water causes hearing loss in mice.

    Science.gov (United States)

    Ohgami, Nobutaka; Hori, Sohjiro; Ohgami, Kyoko; Tamura, Haruka; Tsuzuki, Toyonori; Ohnuma, Shoko; Kato, Masashi

    2012-10-01

    We continuously ingest barium as a general element by drinking water and foods in our daily life. Exposure to high-dose barium (>100mg/kg/day) has been shown to cause physiological impairments. Direct administration of barium to inner ears by vascular perfusion has been shown to cause physiological impairments in inner ears. However, the toxic influence of oral exposure to low-dose barium on hearing levels has not been clarified in vivo. We analyzed the toxic influence of oral exposure to low-dose barium on hearing levels and inner ears in mice. We orally administered barium at low doses of 0.14 and 1.4 mg/kg/day to wild-type ICR mice by drinking water. The doses are equivalent to and 10-fold higher than the limit level (0.7 mg/l) of WHO health-based guidelines for drinking water, respectively. After 2-week exposure, hearing levels were measured by auditory brain stem responses and inner ears were morphologically analyzed. After 2-month exposure, tissue distribution of barium was measured by inductively coupled plasma mass spectrometry. Low-dose barium in drinking water caused severe hearing loss in mice. Inner ears including inner and outer hair cells, stria vascularis and spiral ganglion neurons showed severe degeneration. The Barium-administered group showed significantly higher levels of barium in inner ears than those in the control group, while barium levels in bone did not show a significant difference between the two groups. Barium levels in other tissues including the cerebrum, cerebellum, heart, liver and kidney were undetectably low in both groups. Our results demonstrate for the first time that low-dose barium administered by drinking water specifically distributes to inner ears resulting in severe ototoxicity with degeneration of inner ears in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    Science.gov (United States)

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  16. Ingestion Exposure to Nitrosamines in Chlorinated Drinking Water

    Science.gov (United States)

    Han, Kichan

    2011-01-01

    Objectives N-Nitrosodimethylamine (NDMA) is classified as a probable human carcinogen by the United States Environmental Protection Agency (US EPA) and is formed during the chlorination of municipal drinking water. In this study, selected nitrosamines were measured in chlorinated drinking water collected from Chuncheon, Kangwon-do, Republic of Korea, and a risk assessment for NDMA was conducted. Methods Twelve water samples were collected from 2 treatment plants and 10 household taps. Samples were analyzed for 6 nitrosamines via solid-phase extraction cleanup followed by conversion to dansyl derivatives and high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Considering the dietary patterns of Korean people and the concentration change of NDMA by boiling, a carcinogenic risk assessment from ingestion exposure was conducted following the US EPA guidelines. Results NDMA concentrations ranged between 26.1 and 112.0 ng/L. NDMA in water was found to be thermally stable, and thus its concentration at the end of boiling was greater than before thermal treatment owing to the decrease in water volume. The estimated excess lifetime carcinogenic risk exceeded the regulatory baseline risk of 10-5. Conclusions This result suggests that more extensive studies need to be conducted on nitrosamine concentration distributions over the country and the source of relatively high nitrosamine concentrations. PMID:22125764

  17. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  18. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  19. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    Science.gov (United States)

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  20. [The EU drinking water recommendations: objectives and perspectives].

    Science.gov (United States)

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Physical, chemical and microbial analysis of bottled drinking water.

    Science.gov (United States)

    Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V

    2012-09-01

    People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.

  2. Public services for distribution of drinking water and liquid sanitation in urban zones in Morocco Relevance of introduction the performance indicators for preservation water resources.

    Science.gov (United States)

    Habib, Akka; Abdelhamid, Bouzidi; Said, Housni

    2018-05-01

    Because of the absence of regulations and specific national norms, the unilaterally applied indicators for performance evaluation of water distribution management services are insufficient. This does not pave the way for a clear visibility of water resources. The indicators are also so heterogeneous that they are not in equilibrium with the applied management patterns. In fact: 1- The performance (yield and Linear loss index) of drinking water networks presents a discrepancy between operators and lack of homogeneity in terms of parameters put in its equation. Hence, It these indicators lose efficiency and reliability; 2- Liquid sanitation service has to go beyond the quantitative evaluation target in order to consider the qualitative aspects of water. To reach this aim, a reasonable enlargement of performance indicators is of paramount importance in order to better manage water resource which is becoming scarce and insufficient.

  3. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  4. Drinking water-a pipe dream

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    Every third person deprived of clean drinking water in the world is an Indian, according to a report based on studies conducted by the National Environmental Engineering Research Institute (NEERI), Nagpur. The study further states that almost 70 per cent of our available water is polluted. This causes deaths of about 15 Iakh Indian children every year. A WHO report says that 80 per cent of the illnesses in India could be prevented if safe potable water was available to our entire population. The Union Ministry of Rural Development aims at providing at least one source of safe drinking water supply to each of 5.75 Iakh villages. Each source is expected to be about 0.5 km away from the village and will supply 70 liters of water per person everyday.

  5. Spatial distribution of tritium in surface water and assessment of ingestion dose

    International Nuclear Information System (INIS)

    Rupali, C.K.; Jha, S.K.; Tripathi, R.M.; Sonali, B.; Reddy, Priyanka

    2014-01-01

    The present study focuses on the distribution of tritium in drinking water samples from Mumbai and other suburban areas. Measurement of tritium in the drinking water was carried out using an ultra-low background LKB Quantulus Spectrometer, model 1220. The concentration of tritium in the drinking water ranged between ≤12.3-19.8TU with a geometric mean of 13.3TU. The observed values doesn't indicate any fresh input of tritium and are well within prescribed limit of 740 Bq/L (approx. 6,271.2 TU) given by USEPA for tritium ingestion through drinking water. The estimated dose due to tritium ingestion through drinking was 0.02 μSv/y which is negligible when compared to the limit of 1000 μSv/y assigned to general public. (author)

  6. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  7. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  8. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004.

    Science.gov (United States)

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2010-01-01

    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the United States, and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240,000 emergency department visits for gastrointestinal illness during 1993-2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants.

  9. Determination of strontium in drinking water and consequences of radioactive elements present in drinking water for human health

    International Nuclear Information System (INIS)

    Rajkovic, M.B.; Stojanovic, M.D.; Pantelic, G.K.; Vuletic, V.V.

    2006-01-01

    In this paper the analysis of strontium and uranium content in drinking water has been done, indirectly, according to the scale which originates from drinking water in water-supply system of the city of Belgrade. Gamaspectrometric analysis showed the presence of free natural radionuclide in low activities. The activity of 90Sr in scale which is 0.72±0.11 Bq/kg was determined by radiochemical. Because of the small quantities of fur in the house heater this activity can be considered as irrelevant, but the accumulation of scale can have intensified influence. In this paper, the analysis of effects of the radioactive isotopes presence (first of all 238U and 235U) in drinking water on human health has been done

  10. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  11. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    Science.gov (United States)

    Brima, Eid I.

    2017-03-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  12. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    ... or well supplies to consumers’ taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management...

  13. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  14. Quantitative risk assessment of drinking water contaminants

    International Nuclear Information System (INIS)

    Cothern, C.R.; Coniglio, W.A.; Marcus, W.L.

    1986-01-01

    The development of criteria and standards for the regulation of drinking water contaminants involves a variety of processes, one of which is risk estimation. This estimation process, called quantitative risk assessment, involves combining data on the occurrence of the contaminant in drinking water and its toxicity. The human exposure to a contaminant can be estimated from occurrence data. Usually the toxicity or number of health effects per concentration level is estimated from animal bioassay studies using the multistage model. For comparison, other models will be used including the Weibull, probit, logit and quadratic ones. Because exposure and toxicity data are generally incomplete, assumptions need to be made and this generally results in a wide range of certainty in the estimates. This range can be as wide as four to six orders of magnitude in the case of the volatile organic compounds in drinking water and a factor of four to five for estimation of risk due to radionuclides in drinking water. As examples of the differences encountered in risk assessment of drinking water contaminants, discussions are presented on benzene, lead, radon and alachlor. The lifetime population risk estimates for these contaminants are, respectively, in the ranges of: <1 - 3000, <1 - 8000, 2000-40,000 and <1 - 80. 11 references, 1 figure, 1 table

  15. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  16. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  17. Bulk water phase and biofilm growth in drinking water at low nutrient conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    , and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilmexhibited a bacterial growth rate of 0.30 day1. The biofilmwas radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilmdetachm ent rate of 0.013 day1...... the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day1. The bulk water phase bacteria exhibited a higher activity than the biofilmbacteria in terms of culturability, cell-specific ATP content......In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used...

  18. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toxicological relevance of emerging contaminants for drinking water quality

    OpenAIRE

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values ...

  20. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  1. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    Science.gov (United States)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  2. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  3. A new method to assess the influence of migration from polymeric materials on the biostability of drinking water.

    Science.gov (United States)

    Bucheli-Witschel, Margarete; Kötzsch, Stefan; Darr, Stephan; Widler, Roland; Egli, Thomas

    2012-09-01

    After having produced drinking water of high quality it is of vital interest to distribute the water without compromising its quality neither by recontamination nor by microbial regrowth. To minimize regrowth, the strategy of distributing biostable water is followed in several European countries. This implies on one hand the production of water that has a low level of growth-supporting nutrients, in particular organic carbon compounds, and, on the other hand, using materials for storage/distribution that have a low biofilm formation potential and from which only low amounts of total organic carbon (TOC) leach into the water phase. Currently, the approval of materials in contact with drinking water relies on two tests, a migration test and a biofilm formation test. Here we describe an extended migration testing procedure that allows to obtain information not only on the amount of chemical compounds but also on the amount of growth-supporting compounds leaching into the water. In short, the test developed combines several migration cycles and subsequent measurement of the TOC with a novel, fast and reliable test method for determining the assimilable organic carbon (AOC) in the migration waters. AOC gives an indication on the growth-supporting properties of the material. Thus, an initial characterisation of a material with respect to its suitability for usage in contact with drinking water can be performed in a single assay. Results obtained with the new assay for a number of materials typically used in drinking water and sanitary installations are reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    Science.gov (United States)

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  5. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    Science.gov (United States)

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  6. Availability of drinking water in US public school cafeterias.

    Science.gov (United States)

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  8. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  9. RISK ASSOCIATED WITH HUMAN EXPOSURE TO TRIHALOMETHANES (THMs IN THE WATER DISTRIBUTION NETWORK OF CLUJ-NAPOCA

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA ROMAN

    2013-03-01

    Full Text Available Trihalomethanes (THMs, as disinfection by-products resulted from water chlorination, can get into the body through ingestion of beverages, food or drinking water. This paper discusses the relationship between the use of drinking water from the public distribution network of Cluj-Napoca and exposure to trihalomethanes. To better characterize individual water consumption, at home and at work, we applied a questionnaire to a group of 211 subjects from Cluj-Napoca, while assessing their current exposure to THMs by collecting and analyzing water from different points of the distribution network. The data obtained were statistically processed and then used to calculate the exposure dose and cancer risk for both adults and children. The results showed that subjects consumed for drinking both bottled water and water from the distribution network, but for preparing food and beverages (tea, coffee they used only water from the public distribution network. The average daily consumption of drinking water from the distribution network, is 1.4 l/day for adults, including beverages prepared with treated water. The surveyed subjects declared that they consume coffee or tea, in percentage of 88%, 94.4% respectively. The calculation of the exposure dose, daily intake and risk of cancer was achieved by using a model developed by the Agency for Toxic Substances and Disease Registry (ATSDR from the USA to calculate the dose and assess the risk of cancer. Our study shows that the cancer risk to THMs is increasing related to the higher daily intake of the drinking water, being higher for chloroform compared to dibromochloroform. For the measured concentrations of chloroform and dibromochloroform in drinking water and the average daily consumption of 1.4 l water/day, the probability of new cancers occurrence is at least 2.4 additional cases for 25 years of exposure and maximum 4.61 cases for 35 years of exposure in the existing background of a 1 million people.

  10. National trends in drinking water quality violations.

    Science.gov (United States)

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  11. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  12. Demonstration of a Model-Based Technology for Monitoring Water Quality and Corrosion in Water-Distribution systems

    Science.gov (United States)

    2016-12-01

    that Fort Drum uses water from two sources: (1) treated groundwater from its on-post wells and (2) treated surface water supplied by the Development...Complete replacement of distribution system piping $21 million Year 10 and Year 30 Leak repair $40,000 Annual Bottled water for drinking $20,000 per...about effects of the instal- lation’s dual water supplies on operation of the water -distribution system. 5.2 Recommendations 5.2.1 Applicability Model

  13. Coliform bacteria as in indicator of sewerage water mixing with drinking water sources in Rawalpindi city

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Bibi, S.; Javed, T.; Shah, Z.; Sajjad, M.I.

    1993-12-01

    The coliform group of bacteria are consider to be one of the prominent indicators of surface/groundwater pollution as their presence in drinking water sources shows that water has been in contact with soil, plants, septic tanks or sewerage lines/drains. As a part of surface/groundwater pollution studies in various areas of Rawalpindi city coliform bacteria have been determined in the available drinking sources to evaluate their possible connection with the nearby septic tanks and sewerage lines/drains. Selective water samples were tapped from 72 domestic dug wells, and 98 municipal corporation tube-wells and associated water supply lines in some poorly drained areas of Rawalpindi. These samples were analyzed using membrane filter technique. In general, the sampled areas have indicated poor water quality w.r.t. coliform activity. 52% samples of the collected samples have indicated presence of Ecoli. Of these, 73% samples mostly collected from the poorly drained areas have shown significant counts of Ecoli. These water are rendered unfit for drinking purposes. Thirteen water samples collected indicated toxic levels of Ecoli in the municipal water supply caused due to a known leakage in the main domestic water supply line. The presence of coliform in the tube-well water supply taps are thus attributed to ruptures in the underground water supply lines. Present study reveals that general sanitary condition and water quality in the city are poor and that there is an urgent need of improvement in the water treatment and distribution systems by the concern quaters. (Orig./A.B.)

  14. New Perspectives in Monitoring Drinking Water Microbial Quality

    Directory of Open Access Journals (Sweden)

    Juan J. Borrego

    2010-12-01

    Full Text Available The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs, in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated.

  15. Inequalities in microbial contamination of drinking water supplies in urban areas: the case of Lilongwe, Malawi.

    Science.gov (United States)

    Boakye-Ansah, Akosua Sarpong; Ferrero, Giuliana; Rusca, Maria; van der Zaag, Pieter

    2016-10-01

    Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.

  16. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  17. Assessment of drinking water quality at the tap using fluorescence spectroscopy

    OpenAIRE

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R.

    2017-01-01

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the syst...

  18. The Dutch secret : How to provide safe drinking water without chlorine in the Netherlands

    NARCIS (Netherlands)

    Smeets, P.W.M.H.; Medema, G.J.; Van Dijk, J.C.

    2009-01-01

    The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not

  19. Towards lower carbon footprint patterns of consumption: The case of drinking water in Italy

    International Nuclear Information System (INIS)

    Botto, S.; Niccolucci, V.; Rugani, B.; Nicolardi, V.; Bastianoni, S.; Gaggi, C.

    2011-01-01

    The effects that individual consumption behaviours have on climate change are explored, focusing on products that satisfy the same need but with different carbon footprints. Two types of drinking water, produced, distributed and consumed in Italy, were compared as a case study: tap water and PET-bottled natural mineral water. The first is the one supplied to the municipality of Siena, while the second is a set of 6 different Italian bottled water brands. The results showed that drinking 1.5 L of tap water instead of PET-bottled water saves 0.34 kg CO 2 eq. Thus, a PET-bottled water consumer (2 L per day) who changes to tap water may prevent 163.50 kg CO 2 eq of greenhouse gas emissions per year. In monetary terms, this translates into a tradable annual verified emission reduction (VER) between US$ 0.20 and 7.67 per drinker. Analysing a mature bottled water market, such as the Italian one, may provide insights into the growing global bottled-water market and its effects on climate change. The environmental and economic benefits of changing drinking water habits are also discussed.

  20. PARASITIC CONTAMINATION OF WELLS DRINKING WATER IN MAZANDARAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Z. Yousefi ، H. Ziaei hezarjaribi ، A. A. Enayati ، R. A. Mohammadpoor

    2009-10-01

    Full Text Available There is a direct relation between the prevalence of some parasitic diseases and the presence of those etiologic agents in water. The purpose of this research was to determine the contamination rate of wells drinking water to parasites in Mazandaran province in the north of Iran. 989 water samples were randomly taken based on the population of towns and number of health centers from 12 cities of Mazandaran province and transferred to the laboratory in sterile containers. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Direct method and Gram staining procedure were used to identify the parasites. If cryptosporidium was seen, floatation (sheather’s sugar and modified Ziehl-Neelsen staining method were performed. Parasites count was undertaken using McMaster counting slide (0.3 mL. 197 out of 989 water samples were contaminated with different parasites. From 197 contaminated samples, 20 different types of parasites were separated of which 53 (26.9% were pathogenic, 100 (50.8% non pathogenic, and 44 non-infective stages of parasites. Distance between wells and sources of contamination, type of water distribution systems, city and chlorination status had significantly statistical relationship with contamination prevalence (p<0.001. According to the results and considering the direct correlation between safe water and human health, proper implementation of providing hygienic drinking water should be enforced.

  1. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    Science.gov (United States)

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  2. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Science.gov (United States)

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  3. Analysis of physico-chemical and bacteriological quality of drinking water in Mafikeng, South Africa.

    Science.gov (United States)

    Mulamattathil, Suma George; Bezuidenhout, Carlos; Mbewe, Moses

    2015-12-01

    Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).

  4. [Presence of Legionella spp. in household drinking water reservoirs in Resistencia, Chaco, Argentina. Preliminary report].

    Science.gov (United States)

    Lösch, Liliana S; Merino, Luis A

    Legionella spp. is an environmental bacterium that can survive in a wide range of physicochemical conditions and may colonize distribution systems of drinking water and storage tanks. Legionella pneumophila is the major waterborne pathogen that can cause 90% of Legionnaires' disease cases. The aim of this study was to detect the presence of Legionella spp. in household drinking water tanks in the city of Resistencia, Chaco. The detection of Legionella in water samples was performed by culture methods as set out in ISO 11731:1998. Thirty two water samples were analyzed and Legionella spp. was recovered in 12 (37.5%) of them. The monitoring of this microorganism in drinking water is the first step towards addressing the control of its spread to susceptible hosts. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  6. Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water

    DEFF Research Database (Denmark)

    Saunders, Aaron Marc; Kristiansen, Anja; Lund, Marie Braad

    2009-01-01

    doi:10.1016/j.syapm.2008.11.004 The results of this study support the use of fecal Bacteroidales qPCR as a rapid method to complement traditional, culture dependent, water quality indicators in systems where drinking water is supplied without chlorination or other forms of disinfection. A SYBR...... green based, quantitative PCR assay was developed to determine the concentration of fecal Bacteroidales 16S rRNA gene copies. The persistence of a Bacteroides vulgatus pure culture and fecal Bacteroidales from a wastewater inoculum was determined in unchlorinated drinking water at10°C. B. vulgatus 16S r......RNA gene copies persisted throughout the experimental period (200 days) in sterile drinking water but decayed faster in natural drinking water, indicating that the natural microbiota accelerated decay. In a simulated fecal contamination of unchlorinated drinking water, the decay of fecal Bacteroidales 16S...

  7. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Radioactivity monitoring in drinking water of Zahedan, Iran

    International Nuclear Information System (INIS)

    Hosseini, S. A.

    2007-01-01

    The present research has focused on the effect of radioactivity on drinking water from five sites in the region of Zahedan city. Materials and Methods: The measurement of water activity in wells, river and spring has been used as a screening method. The determination of gamma emitters was performed by use the application of gamma spectrometry. Results: The values of Radium concentration was between less than 2 mBq/l to 3±0.4 for water wells, 5±0.4 mBq/L for river, and less than 2 mBq/L for spring. Conclusion: All values of activity in the selected water samples were lower than the permissible limit for drinking water consumption. The water was safe for drinking, washing and agricultural use

  9. Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: seven years of monitoring (2000-2006).

    Science.gov (United States)

    Abu Amr, S S; Yassin, M M

    2008-11-01

    To assess total and faecal coliform contamination in water wells and distribution networks over the past 7 years, and their association with human health in Khan Yunis Governorate, Gaza Strip. Historical data and interview questionnaire. Data were obtained from the Palestinian Ministry of Health on total and faecal coliform contamination in water wells and distribution networks, and on the incidence of water-related diseases in Khan Yunis Governorate. An interview questionnaire was conducted with 210 residents of Khan Yunis Governorate. Total and faecal coliform contamination exceeded the World Health Organization's limit for water wells and networks. However, the contamination percentages were higher in networks than in wells. Diarrhoeal diseases were strongly correlated with faecal coliform contamination in water networks (r=0.98). This is consistent with the finding that diarrhoeal diseases were the most common self-reported diseases among the interviewees. Such diseases were more prevalent among subjects who drank municipal water than subjects who drank desalinated or home-filtered water (odds ratio=2.03). Intermittent water supply, insufficient chlorination and sewage flooding seem to be associated with self-reported diseases. Residents in the Gaza Strip have a good level of knowledge about drinking water contamination, and this is reflected in good practice. Water quality has deteriorated in the Gaza Strip, and this may contribute to the prevalence of water-related diseases. Self-reported diseases among interviewees in Khan Yunis Governorate were associated with source of drinking water, intermittent water supply, insufficient chlorination, sewage flooding and age of water networks.

  10. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    Science.gov (United States)

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by

  11. Nitrate in drinking water and colorectal cancer risk

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene

    2018-01-01

    based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person......Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited...... population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults...

  12. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Directory of Open Access Journals (Sweden)

    Wang Leilei

    2008-06-01

    Full Text Available The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 µm in size. The concentration in the GAC effluent (561 particles/mL was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 µm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 µm and 15 µm increasing. The most probable number (MPN of carbon fines reached 43 unit/L after six hours and fines between 0.45 µm and 8.0 µm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units/mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90% was higher than that with chlorine (70%. Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  13. A bibliometric analysis of drinking water research in Africa

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Keywords: Africa, bibliometric review, drinking water, publications, research ...... and 'heavy metal water pollution' (1 article) with 89 citations. The high ..... KHAN MA and HO YS (2011) Arsenic in drinking water: A review on.

  14. Radium-226 on drinking water of Camaguey, Cuba

    International Nuclear Information System (INIS)

    Montalvan Estrada, Adelmo; Brigido Flores, Osvaldo; Barrera Caballero, Aldo; Escalante, Alexander

    2001-01-01

    The specific activity of Ra-226 in drinking water of Camaguey city, Cuba, was measured using the emanometric method. The specific activity of Ra-226 in drinking water ranged from 15 ± 5 mBq.l -1 to 39 ±12 mBq.l -1 . The mean specific activity of Ra-226 was found to be 27 ± 8 mBq.l -1 . No seasonal variation was found. Water samples were collected from the two main sources of drinking water: private wells and governmental water supply system, being the mean specific activities of Ra-226: 25 ± 7 mBq.l -1 and 31 ± 9 mBq.l -1 , respectively. Based upon measured concentrations the age-dependent associated effective doses due to the ingestion of Ra-226, as a consequence of direct consumption of drinking water, have been calculated. For the age interval 1 year to 5 years, the average effective dose was 6,2 μSv.y -1 , and for adults the average effective dose was 5,2 μSv.y -1 . (author)

  15. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks

    Directory of Open Access Journals (Sweden)

    Grant Ligon

    2016-05-01

    Full Text Available Waterborne disease outbreaks attributed to various pathogens and drinking water system characteristics have adversely affected public health worldwide throughout recorded history. Data from drinking water disease outbreak (DWDO reports of widely varying breadth and depth were synthesized to investigate associations between outbreak attributes and human health impacts. Among 1519 outbreaks described in 475 sources identified during review of the primarily peer-reviewed, English language literature, most occurred in the U.S., the U.K. and Canada (in descending order. The outbreaks are most frequently associated with pathogens of unknown etiology, groundwater and untreated systems, and catchment realm-associated deficiencies (i.e., contamination events. Relative frequencies of outbreaks by various attributes are comparable with those within other DWDO reviews, with water system size and treatment type likely driving most of the (often statistically-significant at p < 0.05 differences in outbreak frequency, case count and attack rate. Temporal analysis suggests that while implementation of surface (drinking water management policies is associated with decreased disease burden, further strengthening of related policies is needed to address the remaining burden attributed to catchment and distribution realm-associated deficiencies and to groundwater viral and disinfection-only system outbreaks.

  16. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.

    Science.gov (United States)

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-10-06

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  17. Life cycle assessment of central softening of very hard drinking water.

    Science.gov (United States)

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2012-08-30

    Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  19. Cleaning Up Our Drinking Water

    International Nuclear Information System (INIS)

    Manke, Kristin L.

    2007-01-01

    Imagine drinking water that you wring out of the sponge you've just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. 'We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,' said Pacific Northwest National Laboratory's Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues

  20. Determination of strontium in drinking water and consequences of radioactive elements present in drinking water for human health

    OpenAIRE

    Rajković Miloš B.; Stojanović Mirjana D.; Pantelić Gordana K.; Vuletić Vedrana V.

    2006-01-01

    In this paper the analysis of strontium and uranium content in drinking water has been done, indirectly, according to the scale which originates from drinking water in water-supply system of the city of Belgrade. Gamaspectrometric analysis showed the presence of free natural radionuclide in low activities. The activity of 90Sr in scale which is 0.72±0.11 Bq/kg was determined by radiochemical. Because of the small quantities of fur in the house heater this activity can be considered as irrelev...

  1. Assessment of the school drinking water supply and the water quality in Pingtung County, Taiwan.

    Science.gov (United States)

    Chung, Pei-Ling; Chung, Chung-Yi; Liao, Shao-Wei; Miaw, Chang-Ling

    2009-12-01

    In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value.

  2. Drinking Water Maximum Contaminant Levels (MCLs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards...

  3. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Dissolved nitrogen in drinking water resources of farming communities in Ghana. ... African Journal of Environmental Science and Technology ... Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking ...

  4. Small Drinking Water Systems Communication and Outreach Highlights

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  5. Improving Drinking Water Quality by Remineralisation.

    Science.gov (United States)

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.

  6. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners.

    Science.gov (United States)

    Zhang, Ling; Liu, Shuming; Liu, Wenjun

    2014-02-01

    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC

  7. Drinking water disinfection by means of ultraviolet radiation

    International Nuclear Information System (INIS)

    Gelzhaeuser, P.; Bewig, F.; Holm, K.; Kryschi, R.; Reich, G.; Steuer, W.

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice. (orig./PW) [de

  8. A Decision Support System for Drinking Water Production Integrating Health Risks Assessment

    Science.gov (United States)

    Delpla, Ianis; Monteith, Donald T.; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G.; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier

    2014-01-01

    The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation. PMID:25046634

  9. [Parasitic zoonoses transmitted by drinking water. Giardiasis and cryptosporidiosis].

    Science.gov (United States)

    Exner, M; Gornik, V

    2004-07-01

    Nowadays, the parasitic zoonose organisms Giardia lamblia und Cryptosporidium spp. are among the most relevant pathogens of drinking water-associated disease outbreaks. These pathogens are transmitted via a fecal-oral route; in both cases the dose of infection is low. Apart from person-to-person or animal-to-person transmissions, the consumption of contaminated food and water are further modes of transmission. The disease is mainly characterized by gastrointestinal symptoms. In industrialized countries, the prevalence rate of giardiasis is 2-5 % and of cryptosporidiosis 1-3%. Throughout the world, a large number of giardiasis and cryptosporidiosis outbreaks associated with drinking water were published; in 2001 the first case in Germany was identified. Giardia and Cryptosporidium are detected in surface water and sporadically in unprotected groundwater. Use of these waters for drinking water abstraction makes high demands on the technology of the treatment process: because of the disinfectant resistance of the parasites, safe elimination methods are needed, which even at high contamination levels of source water guarantee safe drinking water. Further measures for prevention and control are implementation of the HACCP concept, which includes the whole chain of procedures of drinking water supply from catchment via treatment to tap and a quality management system.

  10. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    Science.gov (United States)

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  12. Drinking water intake by infants living in rural Quebec (Canada).

    Science.gov (United States)

    Levallois, Patrick; Gingras, Suzanne; Caron, Madeleine; Phaneuf, Denise

    2008-07-01

    Drinking water is a potential source of toxic contaminant and it is well known that water intake on a body weight basis decreases rapidly with increasing age. Nevertheless, few studies have been conducted on water intake of very young infants who might be particularly sensitive to some toxic chemicals. The objective of this study was to describe the mean and distribution of total water intake of 2-month old infants living in agricultural areas. Mothers (n=642) of 8 to 9 week old infants were interviewed by phone to evaluate their feeding practice, including juice and cereal intake. There were 393 infants (61%) who drank some quantity of water and 278 (43%) consumed formula reconstituted with water. For formula-fed infants, the 10, 50 and 90th percentiles of daily water intake were 79, 112, and 179 ml/kg respectively. These values are much higher than the intake recommended by US EPA for infants under one year (US EPA, 1997). This study demonstrates the importance of considering water distribution intake in very young infants who may be particularly susceptible to water contaminants.

  13. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    Science.gov (United States)

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  14. A bibliometric analysis of drinking water research in Africa

    OpenAIRE

    Wambu, Enos W; Ho, Yuh-Shan

    2016-01-01

    A total of 1 917 publications of drinking water research in Africa from 1991 to 2013 were identified from the data hosted in online version of SCI-Expanded, Thomson Reuters Web of Science, for bibliometric analysis. The analysis included publication output, distribution of keywords, journals and subject areas, and performances of countries, institutions, and authors. Citation trends and highly-cited publications are also reported. We found that the publication output of related documents incr...

  15. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Jereb

    2017-10-01

    Full Text Available The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  16. Irrigation water as a source of drinking water: is safe use possible?

    Science.gov (United States)

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0

  17. Time to revisit arsenic regulations: comparing drinking water and rice.

    Science.gov (United States)

    Sauvé, Sébastien

    2014-05-17

    Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.

  18. Uptake of uranium from drinking water

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1987-01-01

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234 U and 238 U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion the subjects collected 24 hour total output of both urine and feces for seven days prior to drinking water. During the next day they drank, at their normal rate of drinking water intake, 900 ml of water containing approximately 90 pCi 238 U and 90 pCi 234 U (274 μg U) and continued to collect their urine and feces for seven additional days. Utilizing one technique for analyzing data, the G.I. absorption of 234 U ranged from -0.07% to 1.88% with an average of 0.51% and G.I. absorption of 238 U ranged from -0.07% to 1.79% with an average of 0.50%. Employing another technique for analyzing the data, the G.I. absorption ranged from -0.04 to 1.46% with a mean of 0.53% for 234 U and from 0.03% to 1.43% with a mean of 0.52 for 238 U. The dietary intake of U was also estimated from measurements of urinary and fecal excretion of U in eight subjects prior to drinking water containing U. The estimated average dietary intake of U for these subjects is 3.30 +/- 0.65 or 4.22 +/- 0.65 μg/day. These averages are two to four times higher than the values reported in the literature for dietary intake

  19. Drinking water in Cuba and seawater desalination

    International Nuclear Information System (INIS)

    Meneses-Ruiz, E.; Turtos-Carbonell, L.M.; Oviedo-Rivero, I.

    2004-01-01

    The lack of drinking water has become a problem at world level because, in many places, supplies are very limited and, in other places, their reserves have been drained. At the present time there are estimated to be around two thousand million people that don't have drinking water for several reasons, such as drought, contamination and the presence of saline waters not suitable for human consumption. Because of the human need for water, they have always taken residence in areas where the supply was guaranteed, sometimes impeding the exploitation of other areas that can be economically very interesting. However, this resource is usually very close and in abundance in the form of seawater but its salinity makes it unusable for many basic requirements. Humanity has been forced, therefore, to take into consideration the possibilities of the economic treatment of seawater. Cuba has regions where the supplies of drinking water are scarce and others where the lack of this resource limits economic exploitation. The present work is approached with regard to the situation of hydro resources in Cuba, it includes: a description of the main hydrographic basins of the country; the contamination levels of the waters and the measures for mitigation; analysis of the supplies and demand for drinking water and its quality; regulatory aspects. The state of seawater desalination in Cuba is also included and the possibility of its realisation using nuclear energy and the advantages that this would bring is evaluated. (author)

  20. Levels of trace elements in MWSS drinking water

    International Nuclear Information System (INIS)

    Andal, T.T.

    1998-01-01

    As a water supplier for the metropolis, vigilance over the water quality has not been taken for granted at the Metropolitan Waterworks and Sewerage System (MWSS). By the early 1980's, a control laboratory equipped with modern facilities had been set up to supplement the already existing control laboratory at Filter Plant II handling physical, chemical, bacteriological, biological and mineral analyses and examinations, efficiently. The new central laboratory is intended to monitor trace elements, organic constituents and other elements with health related impact so as to assure the consumers of a safe drinking water supply at all times. This presentation reviews the levels of trace element pollution in MWSS tap water, then and now, in justification of the rehabilitation projects along the distribution network, in the treatment plants and other pertinent innovations corresponding to budgeted capital outlays as invested by the system. (author)

  1. Isolation of viruses from drinking water at the Point-Viau water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Payment, P.

    1981-04-01

    Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were formed but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1-10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.

  2. Bacteriological and Physicochemical Quality of Drinking Water and ...

    African Journals Online (AJOL)

    BACKGROUND: Lack of safe drinking water, basic sanitation, and hygienic practices are associated with high morbidity and mortality from excreta related diseases. The aims of this study were to determine the bacteriological and physico-chemical quality of drinking water and investigate the hygiene and sanitation practices ...

  3. Mapping of tritium in drinking water from various Indian states

    International Nuclear Information System (INIS)

    Shah, Chirag A.; Baburajan, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The tritium in fresh water used for drinking purpose across five state of India was analyzed for tritium activity. The tritium data obtained were compared with the monitoring data of tritium in drinking water sources at Tarapur site, which houses a number of nuclear facilities. It is observed that the tritium activity in the water sample from various out station locations were in the range of < 0.48 to 1.33 Bq/l. The tritium value obtained in the drinking water sources at Tarapur was found to be in the range of 0.91 to 3.10 Bq/l. The monitoring of tritium in drinking water from Tarapur and from various out station location indicate that the level is negligible compared to the USEPA limit of 10000 Bq/l and the contribution of operation nuclear facilities to the tritium activity in drinking water source at Tarapur is insignificant. (author)

  4. 76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate

    Science.gov (United States)

    2011-02-11

    ...-9262-8] RIN 2040-AF08 Drinking Water: Regulatory Determination on Perchlorate AGENCY: Environmental...'s) regulatory determination for perchlorate in accordance with the Safe Drinking Water Act (SDWA... substantial likelihood that perchlorate will occur in public water systems with a frequency and at levels of...

  5. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  6. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  7. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  8. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications...

  9. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  10. Colon cancer and content of nitrates and magnesium in drinking water.

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-06-01

    The objective of this study was to explore whether magnesium levels (Mg) in drinking water modify the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year-of-birth, and year-of-death. Information on the levels of nitrate-nitrogen (NO3-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO3-N and Mg exposure via drinking water. The results of our study show that there is a significant trend towards an elevated risk of death from colon cancer with increasing nitrate levels in drinking water. Furthermore, we observed evidence of an interaction between drinking water NO3-N and Mg intake via drinking water. This is the first study to report effect modification by Mg intake from drinking water on the association between NO3-N exposure and colon cancer risk.

  11. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  13. Organochlorine pesticides residues in bottled drinking water from Mexico City.

    Science.gov (United States)

    Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey

    2009-06-01

    This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.

  14. Drinking Water State Revolving Fund

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for...

  15. European Communities (Drinking water) Regulations, 2000

    International Nuclear Information System (INIS)

    2000-12-01

    These Regulations were adopted as Statutory Instrument No. 439 of 2000 on 18 December 2000 and come in to operation on 1 January 2004. The regulations give effect to provisions of EU Council Directive 98/83/EC on the quality of water intended for human consumption.. They prescribe quality standards to be applied in relation to certain supplies of drinking water. S.I. 439 of 2000 stipulates that the radiation dose arising from one year's consumption of drinking water should not exceed 0.1 mSv. It further stipulates that the dose calculation should include contributions from all natural and artificial radionuclides with the exception of tritium, potassium-40, radon and radon decay products

  16. CHARACTERIZING THE EFFECT OF CHLORINE AND CHLORAMINES ON THE FORMATION OF BIOFILM IN A SIMULATED DRINKING WATER DISTRIBUTION SYSTEM

    Science.gov (United States)

    Drinking wate treatment in the US has played a major role in protecting public health through the reduction of wateborne disease. However, carcinogenic and toxic contaminants continue to threaten the quality of surface and ground water in the US. The passage of the Safe Drinking ...

  17. Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byproduct derived from chlorination of phenylalanine in drinking water.

    Science.gov (United States)

    Ma, Xiaoyan; Deng, Jing; Feng, Jiao; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Dietrich, Andrea M

    2016-10-01

    Unregulated disinfection byproducts (DBPs), including nitrogenous disinfection byproducts (N-DBPs), originating from chlorination of the precursor amino acid phenylalanine in aqueous systems, were identified in laboratory reactions and distributed tap. The major N-DBP identified was phenylacetonitrile, and minor DBPs of benzyl chloride, phenylacetaldehyde, 2-chlorobenzyl cyanide, and 2, 6-diphenylpyridine were also formed. Phenylacetonitrile was generated through decarboxylation, dechlorination and/or hydrolysis processes. With an aromatic structure, phenylacetonitrile has an unpleasant odor of various descriptors and an odor threshold concentration of 0.2 ppt-v as measured through gas chromatography-olfactometry. The half-life of phenylacetonitrile in reagent water and chlorinated water at 19 °C were 121 h and 792 h, respectively. The occurrence of phenylacetonitrile as an N-DBP in tap water was investigated for the first time; the results revealed that μg/L concentrations were present in nine different distributed drinking waters in China and the United States. Phenylacetonitrile deteriorates the aesthetic quality of drinking water and may present risk due to its prolonged existence in drinking water, especially in the presence of residual chlorine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  19. In vitro bioanalysis of drinking water from source to tap.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  20. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    Science.gov (United States)

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  1. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Cotrim, Marycel Elena Barboza

    2006-01-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g -1 , respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  2. DRINKING WATER CONSUMPTION AND LOSS IN ALGERIA THE CASE OF NETWORKS WITH LOW LEVEL COUNTING

    Directory of Open Access Journals (Sweden)

    Rachid Masmoudi

    2016-01-01

    Full Text Available Demand for drinking domestic water is continuously increasing specially in urban centres which experience high demographic expansion. The decrease of water losses in water supply networks can help preserve such a rare resource. Low number of water meters and intermittent supply make it difficult to quantify the leaking volumes of water. This article presents an analysis of the consumption for drinking water based on an extrapolation from a sample of consumers on whom data are available. Comparison of the volumes of water produced allows a determination of the losses in the water supply system. This analysis is completed by measurements of night flows. The results obtained may be relied on for an evaluation of the needs for drinking water in the South of Algeria, and for future regional development. The study indicates a high rate of water losses in the distribution network, reaching about 40%, and over-consumption due to an insufficient number of water meters and discontinuous supply. It is recommended that water meters come into general use and defective parts of the network are rehabilitated. We will try then to make the necessary recommendations in order to better functioning of the water supply systems in Algeria.

  3. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Chian, S.S.

    2011-01-01

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  4. Determination of sources and analysis of micro-pollutants in drinking water

    International Nuclear Information System (INIS)

    Md Pauzi Abdullah; Soh Shiau Chian

    2005-01-01

    The objectives of the study are to develop and validate selected analytical methods for the analysis of micro organics and metals in water; to identify, monitor and assess the levels of micro organics and metals in drinking water supplies; to evaluate the relevancy of the guidelines set in the National Standard of Drinking Water Quality 2001; and to identify the sources of pollution and to carryout risk assessment of exposure to drinking water. The presentation discussed the progress of the work include determination of VOCs (Volatile organic compounds) in drinking water using SPME (Solid phase micro-extraction) extraction techniques, analysis of heavy metals in drinking water, determination of Cr(VI) with ICPES (Inductively coupled plasma emission spectrometry) and the presence of halogenated volatile organic compounds (HVOCs), which is heavily used by agricultural sector, in trace concentrations in waters

  5. Molecular Survey of the Occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba Hosts in Two Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Wang, Hong; Edwards, Marc; Falkinham, Joseph O.

    2012-01-01

    The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems. PMID:22752174

  6. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.

    Science.gov (United States)

    Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P

    2018-06-13

    Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for

  7. Drinking Water Cyanotoxin Risk Communication Toolbox

    Science.gov (United States)

    The drinking water cyanotoxin risk communication toolbox is a ready-to-use, “one-stop-shop” to support public water systems, states, and local governments in developing, as they deem appropriate, their own risk communication materials.

  8. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    Science.gov (United States)

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  9. Laboratory study on the adsorption of Mn(2+) on suspended and deposited amorphous Al(OH)(3) in drinking water distribution systems.

    Science.gov (United States)

    Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting

    2012-09-01

    Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  11. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion

    Science.gov (United States)

    Fewtrell, Lorna

    2004-01-01

    On behalf of the World Health Organization (WHO), I have undertaken a series of literature-based investigations examining the global burden of disease related to a number of environmental risk factors associated with drinking water. In this article I outline the investigation of drinking-water nitrate concentration and methemoglobinemia. The exposure assessment was based on levels of nitrate in drinking water greater than the WHO guideline value of 50 mg/L. No exposure–response relationship, however, could be identified that related drinking-water nitrate level to methemoglobinemia. Indeed, although it has previously been accepted that consumption of drinking water high in nitrates causes methemoglobinemia in infants, it appears now that nitrate may be one of a number of co-factors that play a sometimes complex role in causing the disease. I conclude that, given the apparently low incidence of possible water-related methemoglobinemia, the complex nature of the role of nitrates, and that of individual behavior, it is currently inappropriate to attempt to link illness rates with drinking-water nitrate levels. PMID:15471727

  12. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-3] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION...-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water...

  13. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-01-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9101-9] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION... meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory...

  14. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  15. Identification of Viable Helicobacter pylori in Drinking Water Supplies by Cultural and Molecular Techniques.

    Science.gov (United States)

    Santiago, Paula; Moreno, Yolanda; Ferrús, M Antonía

    2015-08-01

    Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, directly related to peptic ulcer and gastric cancer. It has been suggested that H. pylori can be acquired through different transmission routes, including water. In this study, culture and qPCR were used to detect and identify the presence of H. pylori in drinking water. Furthermore, the combined techniques PMA-qPCR and DVC-FISH were applied for detection of viable cells of H. pylori. Among 24 drinking water samples, 16 samples were positive for the presence of H. pylori, but viable cells were only detected in six samples. Characteristic colonies, covered by a mass of bacterial unspecific growth, were observed on selective agar plates from an only sample, after enrichment. The mixed culture was submitted to DVC-FISH and qPCR analysis, followed by sequencing of the amplicons. Molecular techniques confirmed the growth of H. pylori on the agar plate. Our results demonstrate for the first time that H. pylori can survive and be potentially infective in drinking water, showing that water distribution systems could be a potential route for H. pylori transmission. © 2015 John Wiley & Sons Ltd.

  16. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  17. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    Science.gov (United States)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  18. Radon concentration in drinking water and water for living use and their study status

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    Low quality water is the chief reason for resulting in decrease of human group's physique, and in early appearance of nutrition and supersession diseases. The assimilation of radon released from water by human body may cause radioactive impact to those organs such as stomach and lungs. The monitoring determination for chemical quality of drinking water in developed countries comprises as many as 350 items, and the maximum contamination level of international standards is adopted for checking the radon concentration in drinking water, However, at present, only 35 items of the chemical quality of drinking water are determined in China. The monitoring determination of radon concentration in running water of cities, in distillation water, mineral water, pure water, deep well water in country side, as well as natural surface water is of great market potential in the future. (authors)

  19. LEAK DETECTION AND WIRELESS TELEMETRY FOR WATER DISTRIBUTION AND SEWERAGE SYSTEMS - PHASE I

    Science.gov (United States)

    According to the study EPA 2000 Community Water System Survey Data on Pipe Assets, the infrastructure for water distribution and sewerage systems is aging and requires replacement.  In addition, in EPA’s September 2002 report Clean Water and Drinking Water Infr...

  20. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    Science.gov (United States)

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.