WorldWideScience

Sample records for drinking water concentrations

  1. Lung cancer and arsenic concentrations in drinking water in Chile.

    Science.gov (United States)

    Ferreccio, C; González, C; Milosavjlevic, V; Marshall, G; Sancha, A M; Smith, A H

    2000-11-01

    Cities in northern Chile had arsenic concentrations of 860 microg/liter in drinking water in the period 1958-1970. Concentrations have since been reduced to 40 microg/liter. We investigated the relation between lung cancer and arsenic in drinking water in northern Chile in a case-control study involving patients diagnosed with lung cancer between 1994 and 1996 and frequency-matched hospital controls. The study identified 152 lung cancer cases and 419 controls. Participants were interviewed regarding drinking water sources, cigarette smoking, and other variables. Logistic regression analysis revealed a clear trend in lung cancer odds ratios and 95% confidence intervals (CIs) with increasing concentration of arsenic in drinking water, as follows: 1, 1.6 (95% CI = 0.5-5.3), 3.9 (95% CI = 1.2-12.3), 5.2 (95% CI = 2.3-11.7), and 8.9 (95% CI = 4.0-19.6), for arsenic concentrations ranging from less than 10 microg/liter to a 65-year average concentration of 200-400 microg/liter. There was evidence of synergy between cigarette smoking and ingestion of arsenic in drinking water; the odds ratio for lung cancer was 32.0 (95% CI = 7.2-198.0) among smokers exposed to more than 200 microg/liter of arsenic in drinking water (lifetime average) compared with nonsmokers exposed to less than 50 microg/liter. This study provides strong evidence that ingestion of inorganic arsenic is associated with human lung cancer.

  2. Radon concentrations in drinking water in Wakasa area, Fukui Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Tokuyama, Hideki; Igarashi, Shuichi [Fukui Prefectural Environmental Radiation Research and Monitoring Center, Tsuruga (Japan)

    1997-02-01

    Radon concentration in drinking water was surveyed to make basic data for the investigation of radiation dose due to natural radioisotopes in the general public. Here, the survey data in the Wakasa region were reported. Sampling was carried out at 126 points in this region (ca. 70x50 km{sup 2}). A total of 167 samples were taken from the tap of private wells, and small and large public water supplies. The radon concentration was determined by direct measuring method. The mean concentration of ground water from the wells was 28.5 Bq/l, significantly higher than those of the tap water from small and large water supplies, 5.0 and 11.2 Bq/l, respectively. Rn concentration of ground water was dependent on geological features and it was comparatively high in the granite region. Ground water containing a high concentration of Rn was mixed into the water of some large water supply in the cities, showing that its Rn concentration was higher compared to those for the small water supply. This survey was conducted only in the winter seasons from 1989 to 1993. Therefore, there are no data concerning seasonal changes in Rn concentration to drinking water. (M.N.)

  3. Radon Concentration in the Drinking Water of Aliabad Katoul, Iran

    Science.gov (United States)

    Adinehvand, Karim; Sahebnasagh, Amin; Hashemi-Tilehnoee, Mehdi

    2016-01-01

    Background According to the world health organization, radon is a leading cause of cancer in various internal organs and should be regarded with concern. Objectives The aim of this study is to evaluate the concentration of soluble radon in the drinking water of the city of Aliabad Katoul, Iran. Materials and Methods The radon concentration was measured by using a radon meter, SARADTM model RTM 1688-2, according to accepted standards of evaluation. Results The mean radon concentration in the drinking water of Aliabad Katoul is 2.90 ± 0.57 Bq/L. Conclusions The radon concentration in Aliabad Katoul is below the limit for hazardous levels, but some precautions will make conditions even safer for the local populace. PMID:27651948

  4. Spatial and temporal variations of manganese concentrations in drinking water.

    Science.gov (United States)

    Barbeau, Benoit; Carrière, Annie; Bouchard, Maryse F

    2011-01-01

    The objective of this study was to assess the variability of manganese concentrations in drinking water (daily, seasonal, spatial) for eight communities who participated in an epidemiological study on neurotoxic effects associated with exposure to manganese in drinking water. We also assessed the performance of residential point-of-use and point-of-entry devices (POE) for reducing manganese concentrations in water. While the total Mn concentrations measured during this study were highly variable depending on the location (manganese concentration for 4 out of 5 sampling locations. The efficiency of reverse osmosis and ion exchange for total Mn removal was consistently high while activated carbon provided variable results. The four POE greensand filters investigated all increased (29 to 199%) manganese concentration, indicating deficient operation and/or maintenance practices. Manganese concentrations in the distribution system were equal or lower than at the inlet, indicating that sampling at the inlet of the distribution system is conservative. The decline in total Mn concentration was linked to higher water residence time in the distribution system.

  5. Natural activity concentrations in bottled drinking water and consequent doses.

    Science.gov (United States)

    Kabadayi, Önder; Gümüs, Hasan

    2012-07-01

    The radioactivity concentrations of nuclides (238)U, (232)Th and (40)K in bottled drinking water from six different manufacturers from Turkey were measured using high-resolution gamma-ray spectrometry. The measurement was done using a coaxial high-purity germanium detector system coupled to Ortec-Dspect jr digital MCA system. The average measured activity concentrations of the nuclides (238)U, (232)Th and (40)K are found to be 0.781, 1.05 and 2.19 Bq l(-1), respectively. The measured activity concentrations have been compared with similar studies from different locations. The annual effective doses for ingestion of radionuclides in the water are found to be 0.0246 mSv for (238)U and 0.169 mSv for (232)Th.

  6. [Uranium Concentration in Drinking Water from Small-scale Water Supplies in Schleswig-Holstein, Germany].

    Science.gov (United States)

    Ostendorp, G

    2015-04-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 µg/lL, the 95(th) percentile was 2.5 µg/L. The maximum level was 14 µg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur.

  7. Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China.

    Science.gov (United States)

    Li, Ting; Wang, Nanping; Li, Shijun

    2015-11-01

    A radon survey in surface water and drinking water was conducted using a portable degassing system associated with an ionisation chamber AlphaGUARD (PQ2000) for understanding levels of dissolved radon ((222)Rn) concentration in different types of water sources and risk assessment of radon in drinking water in Shenzhen City (SC) with a population of 10 628 900 in 2013, Guangdong Province of China. The measurements show that arithmetic means ± standard deviations of radon ((222)Rn) concentration are 52.05 ± 6.64, 0.29 ± 0.26, 0.15 ± 0.23 and 0.37 ± 0.42 kBq m(-3) in spring water, surface water, large and small public water supplies, respectively. Only radon concentrations of two water samples collected in mountainous areas are more than 11.10 kBq m(-3), exceeding the limit of radon concentration in drinking water stipulated by the national standard of China (GB5749-2006). The annual effective doses due to radon in drinking water were also calculated. The investigation suggests that there are no risks caused by radon in the drinking water in SC.

  8. Drinking Water

    Science.gov (United States)

    ... the safest water supplies in the world, but drinking water quality can vary from place to place. It ... water supplier must give you annual reports on drinking water. The reports include where your water came from ...

  9. Prolonged exposure to arsenic in UK private water supplies: toenail, hair and drinking water concentrations.

    Science.gov (United States)

    Middleton, D R S; Watts, M J; Hamilton, E M; Fletcher, T; Leonardi, G S; Close, R M; Exley, K S; Crabbe, H; Polya, D A

    2016-05-18

    Chronic exposure to arsenic (As) in drinking water is an established cause of cancer and other adverse health effects. Arsenic concentrations >10 μg L(-1) were previously measured in 5% of private water supplies (PWS) in Cornwall, UK. The present study investigated prolongued exposure to As by measuring biomarkers in hair and toenail samples from 212 volunteers and repeated measurements of As in drinking water from 127 households served by PWS. Strong positive Pearson correlations (rp = 0.95) indicated stability of water As concentrations over the time period investigated (up to 31 months). Drinking water As concentrations were positively correlated with toenail (rp = 0.53) and hair (rp = 0.38) As concentrations - indicative of prolonged exposure. Analysis of washing procedure solutions provided strong evidence of the effective removal of exogenous As from toenail samples. Significantly higher As concentrations were measured in hair samples from males and smokers and As concentrations in toenails were negatively associated with age. A positive association between seafood consumption and toenail As and a negative association between home-grown vegetable consumption and hair As was observed for volunteers exposed to hair biomarkers. Substantial variation in biomarker As concentrations remained unaccounted for, with soil and dust exposure as possible explanations.

  10. 76 FR 2383 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Science.gov (United States)

    2011-01-13

    ... pharyngeal cancers, and sports-related craniofacial injuries: a report on recommendations of the Task Force... HUMAN SERVICES Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention... prevention and control across all age groups. Fluoride in drinking water as one of several available fluoride...

  11. Evaluation of Disinfection Byproducts formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  12. Evaluation of Disinfection Byproducts Formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source - Poster

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  13. Concentration of Ra-226 in Malaysian Drinking and Bottled Mineral Water

    Science.gov (United States)

    Amin, Y. B. Mohd; Jemangin, M. H.; Mahat, R. H.

    2010-07-01

    The concentration of the radionuclide 226Ra was determined in the drinking water which was taken from various sources. It was found that the concentration varies from non-detectable (ND) to highest value of 0.30 Bq per liter. The concentration was found to be high in mineral water as compare with surface water such as domestic pipe water. Some of these values have exceeded the EPA (Environmental Protection Agency) of America regulations. The activity concentrations obtained are compared with data from other countries. The estimated annual effective doses from drinking the water are determined. The values obtained range from 0.02 mSv to about 0.06 mSv per year.

  14. Concentration profiles of metals in breast milk, drinking water, and soil: relationship between matrices.

    Science.gov (United States)

    Cardoso, Osmar O; Julião, Fabiana C; Alves, Renato I S; Baena, Antonio R; Díez, Isabel G; Suzuki, Meire N; Celere, Beatriz S; Nadal, Martí; Domingo, José L; Segura-Muñoz, Susana I

    2014-07-01

    The concentrations of Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, and Zn were determined in breast milk of women living in Conceição das Alagoas, Minas Gerais, Brazil. The potential relationships between metal levels in samples of breast milk, drinking water, and soils collected in the study area were also established. Metal levels in breast milk, except Cr, were lower in comparison to WHO reference concentrations. Zinc was the predominant element in breast milk and drinking water samples, with a median level of 46.2 and 82.2 μg · L(-1), respectively. Soils presented a different pattern of metal concentrations with respect to those found in breast milk and drinking water, Chromium showed the highest median levels (148 mg · kg(-1)), while a certain predominance of Zn and Cu was also observed (47.0 and 43.0 mg · kg(-1), respectively). Similar profiles were observed when comparing metal concentrations in drinking water and breast milk (chi-square χ(2) = 14.36; p < 0.05). In contrast, breast milk-soil and drinking water-soil metal concentration profiles showed significant differences (χ(2) = 635.05 and χ(2) = 721.78, respectively; p < 0.05). These results indicate that drinking water is an important exposure pathway for metals to newborns through breast milk. Further studies should be aimed at assessing the body burdens of metals in that population and at evaluating the potential relationships in the concentrations in biological and environmental matrices as well as at estimating the contribution of dietary intake of metals. In addition, the presence of other chemical pollutants in breast milk should be also studied in order to assess the combined newborn exposure to other contaminants.

  15. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    Science.gov (United States)

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  16. Assessment of Iron and Manganese Concentration Changes in Kaunas City Drinking Water Distribution System

    Directory of Open Access Journals (Sweden)

    Regina Gražulevičienė

    2009-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Environmental factors may affect the quality of drinking water supplied by municipal water distribution network. The aim of this study was to analyze the factors influencing changes in concentrations of iron (Fe and manganese (Mn in Kaunas drinking water distribution network. Analytical study on the drinking water quality was performed. Concentrations of manganese and iron in drinking water were assessed by using an atomic absorption spectrophotometer. Correlation between the changes in manganese concentrations and the distance from the water treatment plant was found, the correlation coefficient was -0.367; p=0.022, however, for iron it was 0.179; p = 0.148. At some sampling points the concentrations of Mn and Fe exceeded the regulated limits. To ensure the water quality and to avoid possible adverse health effects it is recommended to install Mn and Fe filter system in a consumer's drinking water pipeline.

  17. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    Science.gov (United States)

    Brima, Eid I.

    2017-03-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  18. Effects of pumping strategies on pesticide concentration of a drinking water well

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Binning, Philip John; Bjerg, Poul Løgstrup

    are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well’s screen are important parameters that affect...... the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study...... was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing...

  19. Study on radon and radium concentrations in drinking water in west region of Iran

    CERN Document Server

    Forozani, Ghasem

    2011-01-01

    One of the most important characterizations of social health is existence the availability of safe drinking water. Since one of the sources of water contamination is nuclear contamination from radon gas, so in this research radon 222 concentration levels in water supplies in the Toyserkan (a region located in the west of Iran) is investigated. For measuring radon gas in water wells and springs Lucas chamber method is used. Review the results of these measurements that taken from 15th place show that, only five sites have radon concentrations above the limit dose. To reduce radon concentration, it is better to keep water in open pools in contact with air before the water is delivered to users.

  20. The concentrations of arsenic and other toxic elements in Bangladesh's drinking water.

    Science.gov (United States)

    Frisbie, Seth H; Ortega, Richard; Maynard, Donald M; Sarkar, Bibudhendra

    2002-01-01

    For drinking water, the people of Bangladesh used to rely on surface water, which was often contaminated with bacteria causing diarrhea, cholera, typhoid, and other life-threatening diseases. To reduce the incidences of these diseases, millions of tubewells were installed in Bangladesh since independence in 1971. This recent transition from surface water to groundwater has significantly reduced deaths from waterborne pathogens; however, new evidence suggests disease and death from arsenic (As) and other toxic elements in groundwater are affecting large areas of Bangladesh. In this evaluation, the areal and vertical distribution of As and 29 other inorganic chemicals in groundwater were determined throughout Bangladesh. This study of 30 analytes per sample and 112 samples suggests that the most significant health risk from drinking Bangladesh's tubewell water is chronic As poisoning. The As concentration ranged from prevent the toxic effects of As. PMID:12417487

  1. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  2. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wu

    2014-10-01

    Full Text Available 222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  3. Radon concentrations in drinking water in Beijing City, China and contribution to radiation dose.

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-10-27

    (222)Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their (222)Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  4. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  5. Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations.

    Science.gov (United States)

    Roberge, Jason; O'Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L; Harris, Robin B

    2012-04-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  6. Dental fluorosis: concentration of fluoride in drinking water and consumption of bottled beverages in school children.

    Science.gov (United States)

    Pérez-Pérez, N; Torres-Mendoza, N; Borges-Yáñez, A; Irigoyen-Camacho, M E

    2014-01-01

    The purpose of the study was to identify dental fluorosis prevalence and to analyze its association with tap water fluoride concentration and beverage consumption in school children from the city of Oaxaca, who were receiving fluoridated salt. A cross-sectional study was performed on elementary public school children. Dean's Index was applied to assess dental fluorosis. The parents of the children who were studied completed a questionnaire about socio-demographic characteristics and type of beverages consumed by their children. A total of 917 school children participated in this study. Dental fluorosis prevalence was 80.8%. The most frequent fluorosis category was very mild (41.0%), and 16.4% of the children were in the mild category. The mean water fluoride concentration was 0.43 ppm (±0.12). No association was detected between tap water fluoride concentration and fluorosis severity. The multinomial regression model showed an association among the mild fluorosis category and age (OR = 1.25, [95% CI 1.04, 1.50]) and better socio-economic status (OR = 1.78, [95% CI 1.21, 2.60]), controlling for fluoride concentration in water. Moderate and severe fluorosis were associated with soft drink consumption (OR = 2.26, [95% IC 1.01, 5.09]), controlling for age, socio-economic status, and water fluoride concentration. The prevalence of fluorosis was high. Mild fluorosis was associated with higher socio-economic status, while higher fluorosis severity was associated with soft drink consumption.

  7. Association of drinking-water source and use characteristics with urinary antimony concentrations.

    Science.gov (United States)

    Makris, Konstantinos C; Andra, Syam S; Herrick, Lisa; Christophi, Costas A; Snyder, Shane A; Hauser, Russ

    2013-03-01

    Environmental factors, such as storage time, frequency of bottle reuse and temperature, have been shown to facilitate antimony (Sb) leaching from water- and food-packaging materials. The globally escalating consumption of water packaged in Sb-containing bottles, such as that of polyethylene terephthalate (PET), could increase human daily Sb doses. This study set out to investigate the relationship between drinking-water source, use characteristics, and urinary Sb concentrations (U-Sb) accompanied with survey responses of a healthy (n=35) Cypriot participant pool. One spot urine sample was collected during administration of questionnaire, while a second spot urine sample was collected from the same individual about 7 days later. Urinary and water Sb concentrations were measured with an inductively coupled plasma mass spectrometer. Survey responses showed that bottled water summed over various volumes and plastic types, such as polycarbonate and PET contributed to an average 61% of daily water consumption. Water sources such as tap, mobile stations (explained in a following section), and well water contributed to 24%, 14%, and 2% of an individual's daily water consumption pattern, respectively. Average daily potable water use of both bottled and tap water by individuals consisted of 65% drinking-water, while the remaining 35% was water used for preparing cold and hot beverages, such as, tea, coffee, and juices. A significant (P=0.02) association between per capita water consumption from PET bottles and urinary creatinine-unadjusted concentrations was observed, but this relationship did not remain after inclusion of covariates in a multivariate regression model. In the creatinine-adjusted regression model, only gender (female) was a significant (P<0.01) predictor of U-Sb, after adjusting for several covariates. It is proposed that consumption data collection on various water uses and sources among individuals could perhaps decrease the uncertainty associated with

  8. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  9. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs

    Directory of Open Access Journals (Sweden)

    Isidro Vitoria

    2014-07-01

    Full Text Available Introduction: A sufficient intake of calcium enables correct bone mineralization. The bioavailability of calcium in water is similar to that in milk. Objective: To determine the concentration of calcium in public drinking water and bottled mineral water. Methods: We used ion chromatography to analyse the calcium concentrations of public drinking waters in a representative sample of 108 Spanish municipalities (21,290,707 people and of 109 natural mineral waters sold in Spain, 97 of which were produced in Spain and 12 of which were imported. Results: The average calcium concentration of public drinking waters was 38.96 ± 32.44 mg/L (range: 0.40159.68 mg/L. In 27 municipalities, the water contained 50-100 mg/L of calcium and in six municipalities it contained over 100 mg/L. The average calcium concentration of the 97 Spanish natural mineral water brands was 39.6 mg/L (range: 0.6-610.1 mg/L. Of these, 34 contained 50-100 mg/L of calcium and six contained over 100 mg/L. Of the 12 imported brands, 10 contained over 50 mg/L. Assuming water consumption is as recommended, water containing 50-100 mg/L of calcium provides 5.4-12.8% of the recommended intake of calcium for children aged one to thirteen, up to 13.6% for adolescents, 5.8-17.6% for adults, and up to 20.8% for lactating mothers. Water with 100-150 mg/L of calcium provides 10-31% of the recommended dietary allowance, depending on the age of the individual. Discussion: Public drinking water and natural mineral water consumption in a third of Spanish cities can be considered an important complementary source of calcium.

  10. Elevated manganese concentrations in drinking water may be beneficial for fetal survival.

    Science.gov (United States)

    Rahman, Syed Moshfiqur; Akesson, Agneta; Kippler, Maria; Grandér, Margaretha; Hamadani, Jena Derakhshani; Streatfield, Peter Kim; Persson, Lars-Åke; El Arifeen, Shams; Vahter, Marie

    2013-01-01

    Elevated exposure to the essential element manganese (Mn) can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women's drinking water. A total of 1,875 women were included in the analysis of spontaneous abortions (n=158) and 1,887 women in the perinatal mortality analysis (n=70). Water Mn ranged from 3.0-6,550 µg/L (median=217 µg/L). The adjusted odds ratio (OR) for spontaneous abortion was 0.65 (95% CI 0.43-0.99) in the highest water Mn tertile (median=1,292 µg/L) as compared to the lowest tertile (median=56 µg/L). The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28-1.71), which increased to 0.78 (95% CI 0.29-2.08) after adjustment for BMI and place of delivery (home/health facility; n=1,648). Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element's role in antioxidant defense.

  11. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    Science.gov (United States)

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    Science.gov (United States)

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  13. Comparison of the trace metal concentration of drinking water supply options in southwest coastal areas of Bangladesh

    Science.gov (United States)

    Islam, Md. Atikul; Karim, Md. Rezaul; Higuchi, Takaya; Sakakibara, Hiroyuki; Sekine, Masahiko

    2014-06-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as the fresh water aquifers at reasonable depths are not available and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filter (PSF), and rain-fed pond water for drinking purposes. To ascertain the water quality for human consumption, chemical parameters such as pH, conductivity and the concentrations of calcium, magnesium, iron, manganese, copper, zinc, lead, chromium, cadmium, nickel and arsenic were evaluated in the alternative drinking water supply options employed in the southwest coastal areas of Bangladesh. An inductively coupled plasma-optical emission spectroscopy was used for determination of trace metal concentrations. pH and conductivity were measured using HANNA Instrument. The mean iron and manganese concentrations for rain-fed pond and PSF water were much higher than harvested rainwater. The iron concentrations for 41 % of the pond water samples were higher than the Bangladesh guideline value. Iron and manganese removal by PSFs was found to be 74 and 51 %, respectively. Scarcity of calcium and magnesium were found in harvested rainwater. Furthermore, one pond water sample showed arsenic concentration above the 10 μg/l WHO drinking water guideline. The presence of an elevated iron and manganese and low calcium and magnesium concentrations in the drinking water could be a matter of public health concern.

  14. Effect of increasing bromide concentration on toxicity in treated drinking water.

    Science.gov (United States)

    Sawade, Emma; Fabris, Rolando; Humpage, Andrew; Drikas, Mary

    2016-04-01

    Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources. Bioanalytical tests were utilised to determine cytotoxicity of the water post disinfection. Coagulation was shown to significantly reduce the cytotoxicity of the water, indicating that removal of natural organic matter DBP precursors continues to be an important factor in drinking water treatment. Most toxic species appear to form within the first half hour following disinfectant addition. Increasing bromide concentration across the two waters was shown to increase the formation of trihalomethanes and shifted the haloacetic acid species distribution from chlorinated to those with greater bromine substitution. This correlated with increasing cytotoxicity. This work demonstrates the challenges faced by WTPs and the possible effects increasing levels of bromide in source waters could have on public health.

  15. An improved biofilter to control the dissolved organic nitrogen concentration during drinking water treatment.

    Science.gov (United States)

    Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin

    2016-09-01

    Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.

  16. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks.

    Science.gov (United States)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures.

  17. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects

    Science.gov (United States)

    Weyer, Peter J.; Brender, Jean D.; Romitti, Paul A.; Kantamneni, Jiji R.; Crawford, David; Sharkey, Joseph R.; Shinde, Mayura; Horel, Scott A.; Vuong, Ann M.; Langlois, Peter H.

    2016-01-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997–2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers’ overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS. PMID:25473985

  18. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects.

    Science.gov (United States)

    Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H

    2014-12-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.

  19. Fluoride concentration of drinking water and dental fluorosis: A systematic review and meta-analysis in Iran

    OpenAIRE

    Fatemeh Goodarzi; Amir Hossein Mahvi; Mostafa Hosseini; Ramin Nabizadeh Nodehi; Mohammad Javad Kharazifard; Mina Parvizishad

    2016-01-01

    Introduction: Recently, a number of studies have investigated the impact of fluoride concentration of drinking water on dental fluorosis. These Studies should be reviewed to provide a new outlook on the analysis of the causes and effects of dental fluorosis in specific regions. The objective of this study was to systematically review the fluoride concentration of drinking water and investigate its relation to the frequency of dental fluorosis in Iran. Materials and Methods: Dean′s index was u...

  20. Plasma concentrations resulting from florfenicol preparations given to pigs in their drinking water.

    Science.gov (United States)

    Gutiérrez, L; Vargas, D; Ocampo, L; Sumano, H; Martinez, R; Tapia, G

    2011-09-01

    Florfenicol administered through the drinking water has been recommended as a metaphylactic antibacterial drug to control outbreaks of respiratory diseases in pigs caused by strains of Actinobacillus pleuropneumoniae and Pasteurella multocida, yet it is difficult to pinpoint in practice when the drug is given metaphylactically or therapeutically. Further, pigs are likely to reject florfenicol-medicated water, and plasma concentrations of the drug are likely to be marginal for diseases caused by Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The reported minimal inhibitory concentration (MIC) values for these organisms show a breakpoint of 2 to 3 μg/mL. An experiment was conducted during September and October 2009. One hundred twenty healthy crossbred pigs (Landrace-Yorkshire), weighing 23 ± 6.2 kg, were used in this trial. They were randomly assigned to 5 groups, with 3 replicates of 8 animals/group. Two commercial preparations of florfenicol were administered through the drinking water at 2 concentrations (0.01 and 0.015%). Water intake was measured before and after medication, and plasma concentrations of florfenicol were determined by HPLC. Considerable rejection of florfenicol-medicated water was observed. However, plasma florfenicol concentrations were of a range sufficient for a methaphylaxis approach to preventing disease by bacteria, with MIC breakpoints of ≤ 0.25 μg/mL. Decreased efficacy as a metaphylactic medication should be expected for bacteria with MIC >0.25 μg/mL, considering the reported existence of bacteria resistant to florfenicol and the natural resistance of Streptococcus suis or E. coli to this drug.

  1. CONCENTRATION OF TRIHALOMETHANES (THM AND PRECURSORS IN DRINKING WATER WITHIN DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA ROMAN

    2012-03-01

    Full Text Available Concentration of trihalomethanes (THM and precursors in drinking water within distribution networks. Water chlorination is the disinfection method most widely used, having however the disadvantage of producing trihalomethanes (THM as secondary compounds, which are included in the list of priority hazardous substances in water. THM formation is influenced by the raw water composition and chlorine from the disinfection process. This paper intends to highlight the individual values of the chemical compounds precursors of THM in the water network in order to correlate them with the evolution of THM concentration. The cities of Targu Mures and Zalau were chosen as the study area having surface waters with different degrees of contamination as the water source. Pre-treatment with potassium permanganate is used at the water treatment plant in Targu Mures, while pre-chlorination is used at the water treatment plant in Zalau. Water sampling was performed weekly between March-May, 2011 in three sampling points of each city, maintained during the period of study. Total THM and their compounds as well as THM precursors (oxidability, ammonium content, nitrites and nitrates were measured. The water supplied in the distribution network corresponded integrally to the quality standards in terms of the analyzed indicators, including THM concentrations. The higher average THM concentrations in Zalau (52.01±14 μg/L compared to Targu Mures (36.43±9.14 μg/L were expected as a result of precursors concentration. In terms of THM compounds, they had similar proportions in the two localities, chloroform being clearly predominant, followed by dichlorobromoform and dibromochloroform, while bromoform was not identified. Statistical data analysis showed that the presence of THM precursors is correlated with the THM levels but not sufficient for their generation, even if they can be considered in general the basis of a valid prediction.

  2. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  3. Elevated manganese concentrations in drinking water may be beneficial for fetal survival.

    Directory of Open Access Journals (Sweden)

    Syed Moshfiqur Rahman

    Full Text Available BACKGROUND: Elevated exposure to the essential element manganese (Mn can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. METHODS: In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women's drinking water. RESULTS: A total of 1,875 women were included in the analysis of spontaneous abortions (n=158 and 1,887 women in the perinatal mortality analysis (n=70. Water Mn ranged from 3.0-6,550 µg/L (median=217 µg/L. The adjusted odds ratio (OR for spontaneous abortion was 0.65 (95% CI 0.43-0.99 in the highest water Mn tertile (median=1,292 µg/L as compared to the lowest tertile (median=56 µg/L. The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28-1.71, which increased to 0.78 (95% CI 0.29-2.08 after adjustment for BMI and place of delivery (home/health facility; n=1,648. CONCLUSIONS: Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element's role in antioxidant defense.

  4. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature

    Directory of Open Access Journals (Sweden)

    Ali Akbar Mohammadi

    2017-08-01

    Full Text Available Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river was in the range mg/l 0.28–10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7–16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.

  5. Impact of water fluoride concentration on the fluoride content of infant foods and drinks requiring preparation with liquids before feeding.

    Science.gov (United States)

    Zohoori, Fatemeh V; Moynihan, Paula J; Omid, Narges; Abuhaloob, Lamis; Maguire, Anne

    2012-10-01

    To measure the fluoride (F) content of infant foods and drinks requiring reconstitution with liquids prior to consumption and to determine the impact of water F concentration on their F content, as consumed, by measuring F content before and after preparation. In total, 58 infant powdered formula milks, dry foods and concentrated drinks were prepared with deionized water (pasta and rice', 'breakfast cereals', 'savoury meals' and 'powdered infant formula milks' were 0.38, 0.26, 0.18, 0.16 and 0.15 μg/g, respectively. The corresponding mean F concentrations were 0.97, 1.21, 0.86, 0.74 and 0.91 μg/g, respectively, when the same samples were prepared with fluoridated water. Although some nonreconstituted infant foods/drinks showed a high F concentration in their dry or concentrated forms, the concentration of F in prepared foods/drinks primarily reflected the F concentration of liquid used for their preparation. Some infant foods/drinks, when reconstituted with fluoridated water, may result in a F intake in infants above the suggested optimum range (0.05-0.07 mg F/kg body weight) and therefore may put infants at risk of developing dental fluorosis. Further research is necessary to determine the actual F intake of infants living in fluoridated and nonfluoridated communities using reconstituted infant foods and drinks. © 2012 John Wiley & Sons A/S.

  6. Emergency Do Not Consume/do Not Use concentrations for potassium permanganate in drinking water.

    Science.gov (United States)

    Willhite, C C; Bhat, V S; Ball, G L; McLellan, C J

    2013-03-01

    Over the past decade, regulatory authorities and water purveyors have become increasingly concerned with accidental or intentional adulteration of municipal drinking water. Emergency response guidelines, such as the 'Do Not Consume' or use concentration limits derived herein, can be used to notify the public in such cases. Potassium permanganate (KMnO(4)) is used to control iron concentrations and to reduce the levels of nuisance materials that affect odor or taste of finished drinking water. Manganese (Mn) is recognized an essential nutrient, permanganate (MnO4 (-)) and manganous (Mn(+2)) ions are caustic, and the acute toxicity of KMnO(4) is defined by its oxidant/irritant properties and by the toxicity of Mn. Ingestion of small amounts (4-20 mg/kg) of aqueous KMnO(4) solutions that are above 200 mg/L causes gastrointestinal distress, while bolus ingestion has caused respiratory arrest following coagulative necrosis and hemorrhage in the esophagus, stomach, or liver. Dilute KMnO(4) solutions (1-100 mg/L) are used as a topical antiseptics and astringents, but >1:5000 (200 mg/L) dilutions can irritate or discolor sensitive mucous membranes and direct skin or ocular contact with concentrated KMnO(4) can perforate tissues. Based on clinical experience with 200 mg/L KMnO(4), a Do Not Consume concentration of 7 mg/L KMnO(4) (equivalent to 2 mg Mn/L) is recommended. Recognizing limited empirical data from which to calculate an ocular reference value, a skin contact 'Do Not Use' concentration of 30 mg Mn/L is recommended based on the skin irritation in some patients after a 10-min contact with 100 mg KMnO4/L.

  7. Effects of pumping strategies on pesticide concentration of a drinking water well

    Science.gov (United States)

    Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.

    2011-12-01

    Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady

  8. Use of drinking water treatment solids for arsenate removal from desalination concentrate.

    Science.gov (United States)

    Xu, Xuesong; Lin, Lu; Papelis, Charalambos; Myint, Maung; Cath, Tzahi Y; Xu, Pei

    2015-05-01

    Desalination of impaired water can be hindered by the limited options for concentrate disposal. Selective removal of specific contaminants using inexpensive adsorbents is an attractive option to address the challenges of concentrate management. In this study, two types of ferric-based drinking water treatment solids (DWTS) were examined for arsenate removal from reverse osmosis concentrate during continuous-flow once-through column experiments. Arsenate sorption was investigated under different operating conditions including pH, arsenate concentration, hydraulic retention time, loading rate, temperature, and moisture content of the DWTS. Arsenate removal by the DWTS was affected primarily by surface complexation, electrostatic interactions, and arsenate speciation. Results indicated that arsenate sorption was highly dependent on initial pH and initial arsenate concentration. Acidic conditions enhanced arsenate sorption as a result of weaker electrostatic repulsion between predominantly monovalent H2AsO4(-) and negatively charged particles in the DWTS. High initial arsenate concentration increased the driving force for arsenate sorption to the DWTS surface. Tests revealed that the potential risks associated with the use of DWTS include the leaching of organic contaminants and ammonia, which can be alleviated by using wet DWTS or discarding the initially treated effluent that contains high organic concentration.

  9. Effect of heat stress and drinking water salt supplements on plasma electrolytes and aldosterone concentration in broiler chickens

    Science.gov (United States)

    Deyhim, F.; Teeter, R. G.

    1995-12-01

    An experiment was conducted to evaluate the effects of supplementing drinking water with isomolar (0.067 mol/l) KCl or NaCl on mass gain, food and water consumption, rectal temperature, and plasma concentrations of aldosterone, Na+, and K+ in broiler chickens reared in thermoneutral and cycling heat stressing environments. Heat stress decreased ( P≤0.05) mass gain, food consumption, and plasma concentrations of Na+ and K+, while increases ( P≤0.05) in plasma concentrations of aldosterone, rectal temperature, and water consumption were observed. Drinking water supplemented with either KCl or NaCl increased ( P≤0.05) broiler mass gain and water consumption, but had no effect ( P>0.1) on the other variables evaluated. The results of this study indicate that broiler chickens in a heat stress environment are under osmotic stress and supplementing drinking water with 0.067 mol/1 KCl or NaCl does not lessen this stress.

  10. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  11. Determination of iron in drinking water after its flotation concentration by two new dithiocarbamate collectors.

    Science.gov (United States)

    Pavlovska, Gorica; Stafilov, Trajče; Čundeva, Katarina

    2015-01-01

    Two new methods for the determination of iron by atomic absorption spectrometry (AAS) are proposed for drinking water. The determination was made after flotation concentration of Fe by using of two new flotation collectors: lead(II) heptyldithiocarbamate, Pb(HpDTC)2 and cobalt(III) heptyldithiocarbamate Co(HpDTC)3. All important parameters for the two proposed procedures were optimised (pH, mass of Pb, mass of Co, amount of HpDTC(-), type of surfactant, induction time, etc.). Flotation recovery (R) of Fe was very high (from 94.4 to 104.4%) for the two proposed procedures. The detection limit of the methods was 2.17 μg L(-1) for Pb(HpDTC)2 and 2.39 μg L(-1) for Co(HpDTC)3, respectively. The proposed methods have been applied for the analysis of five samples of drinking water. The acquired AAS results for Fe by both new methods were compared with those obtained by inductively coupled plasma-atomic emission spectrometry (AES-ICP). It is shown that they are in good agreement. The results are also confirmed by the method of standard additions.

  12. 76 FR 10899 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Science.gov (United States)

    2011-02-28

    ... while limiting the risk of dental fluorosis. The proposed recommendation was published in the Federal... dental fluorosis, fluid intake among children, and the contribution of fluoride in drinking water...

  13. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study

    Science.gov (United States)

    Some epidemiological studies report associations between drinking water disinfection by-products (DBPs) and adverse reproductive and developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. To address concerns raised by these studies, w...

  14. Comprehensive Assessment of a Chlorinated Drinking Water Concentrate in a Rat Multigenerational Reproductive Toxicity Study##

    Science.gov (United States)

    Some epidemiological studies report associations between drinking water disinfection by-products (DBPs) and adverse reproductive and developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. To address concerns raised by these studies, w...

  15. Low concentrations of copper in drinking water increase AP-1 binding in the brain.

    Science.gov (United States)

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo

    2015-12-01

    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding.

  16. Relationship between fluoride concentration in drinking water and mortality rate from uterine cancer in Okinawa prefecture, Japan.

    Science.gov (United States)

    Tohyama, E

    1996-12-01

    The Okinawa Islands located in the southern-most part of Japan were under U.S. administration from 1945 to 1972. During that time, fluoride was added to the drinking water supplies in most regions. The relationship between fluoride concentration in drinking water and uterine cancer mortality rate was studied in 20 municipalities of Okinawa and the data were analyzed using correlation and multivariate statistics. The main findings were as follows. (1) A significant positive correlation was found between fluoride concentration in drinking water and uterine cancer mortality in 20 municipalities (r = 0.626, p divorce rate, this association was considerably significant. (3) Furthermore, the time trends in the uterine cancer mortality rate appear to be related to changes in water fluoridation practices.

  17. Heavy Metal Concentration in Drinking Water Sources Affected by Dredge Mine Operations of a Gold Mining Company in Ghana

    Directory of Open Access Journals (Sweden)

    Apori Ntiforo

    2012-06-01

    Full Text Available The study assesses concentration of certain heavy metals in water sources affected by the operations of defunct dredged gold mine operations more than a decade to evaluate its quality as a source of drinking water. The concentration of heavy metals were determined from nine (9 surface water sampling points and three (3 boreholes in the Awusu-River basin in comparison with their maximum contaminant levels to assess their suitability as drinking water sources. Results obtained from the analysis of water samples indicated that the concentrations of four heavy metals (Fe, 0.01-14.93 mg/L; Cd, <0.002-0.01 mg/L; As, <0.002-0.003 mg/L and Pb, <0.005-0.05 mg/L analyzed in surface water samples were above WHO threshold values (Fe 300, Cd 3, As 10 and Pb 10 ug/L for drinking water and two (Cu, <0.002-0.05 mg/L and Zc, <0.005-0.03 mg/L were below (Cu 2000 ug/L and Zc 3000 ug/L. Dissolved iron registered the highest concentrations with the Slime Retention Area (SRA dominating with a mean concentration of 4.979 mg/L. All the sampling points were being used as drinking water sources by the two communities. An integrated approach to management of sources of drinking water quality in the mining areas is needed and should involve not only the mining companies and regulatory agencies but also the local communities to enable the latter understand and appreciate post mining issues of water quality.

  18. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.

    Science.gov (United States)

    Pressman, Jonathan G; McCurry, Daniel L; Parvez, Shahid; Rice, Glenn E; Teuschler, Linda K; Miltner, Richard J; Speth, Thomas F

    2012-10-15

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking water research has been limited because the selected NOM sources are atypical of most drinking water sources. The purpose of this research was to demonstrate that reconstituted NOM from a lyophilized reverse-osmosis (RO) concentrate of a typical drinking water source closely represents DBP formation in the original NOM. A preliminary experiment assessed DBP formation kinetics and yields in concentrated NOM, which demonstrated that chlorine decays faster in concentrate, in some cases leading to altered DBP speciation. Potential changes in NOM reactivity caused by lyophilization were evaluated by chlorination of lyophilized and reconstituted NOM, its parent RO concentrate, and the source water. Bromide lost during RO concentration was replaced by adding potassium bromide prior to chlorination. Although total measured DBP formation tended to decrease slightly and unidentified halogenated organic formation tended to increase slightly as a result of RO concentration, the changes associated with lyophilization were minor. In lyophilized NOM reconstituted back to source water TOC levels and then chlorinated, the concentrations of 19 of 21 measured DBPs, constituting 96% of the total identified DBP mass, were statistically indistinguishable from those in the chlorinated source water. Furthermore, the concentrations of 16 of 21 DBPs in lyophilized NOM reconstituted back to the RO concentrate TOC levels, constituting 86% DBP mass, were statistically indistinguishable from those in the RO concentrate. This study suggests that lyophilization can be used to preserve concentrated NOM without substantially altering the precursors to DBP formation.

  19. Geostatistical modelling of arsenic in drinking water wells and related toenail arsenic concentrations across Nova Scotia, Canada.

    Science.gov (United States)

    Dummer, T J B; Yu, Z M; Nauta, L; Murimboh, J D; Parker, L

    2015-02-01

    Arsenic is a naturally occurring class 1 human carcinogen that is widespread in private drinking water wells throughout the province of Nova Scotia in Canada. In this paper we explore the spatial variation in toenail arsenic concentrations (arsenic body burden) in Nova Scotia. We describe the regional distribution of arsenic concentrations in private well water supplies in the province, and evaluate the geological and environmental features associated with higher levels of arsenic in well water. We develop geostatistical process models to predict high toenail arsenic concentrations and high well water arsenic concentrations, which have utility for studies where no direct measurements of arsenic body burden or arsenic exposure are available. 892 men and women who participated in the Atlantic Partnership for Tomorrow's Health Project provided both drinking water and toenail clipping samples. Information on socio-demographic, lifestyle and health factors was obtained with a set of standardized questionnaires. Anthropometric indices and arsenic concentrations in drinking water and toenails were measured. In addition, data on arsenic concentrations in 10,498 private wells were provided by the Nova Scotia Department of Environment. We utilised stepwise multivariable logistic regression modelling to develop separate statistical models to: a) predict high toenail arsenic concentrations (defined as toenail arsenic levels ≥0.12 μg g(-1)) and b) predict high well water arsenic concentrations (defined as well water arsenic levels ≥5.0 μg L(-1)). We found that the geological and environmental information that predicted well water arsenic concentrations can also be used to accurately predict toenail arsenic concentrations. We conclude that geological and environmental factors contributing to arsenic contamination in well water are the major contributing influences on arsenic body burden among Nova Scotia residents. Further studies are warranted to assess appropriate

  20. A STUDY ON THE CONCENTRATION OF HEAVY METALS IN THE DRINKING WATER OF SELECTED AREAS OF IMPHAL EAST DISTRICT, MANIPUR (INDIA

    Directory of Open Access Journals (Sweden)

    Joychandra

    2014-06-01

    Full Text Available The present study attempts to evaluate the quality of the drinking water (tap particularly heavy metal concentrations (Fe, Zn, Pb, Cu and Cd in selected areas of Imphal east district, Manipur. Findings were compared with the Indian Standard (ISI and Indian Council of Medical Research (ICMR for drinking water specification. Concentrations of metals such as iron, cadmium and lead are alarming. They crossed the maximum permissible limit for drinking water standards set by ISI and ICMR

  1. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations.

    Science.gov (United States)

    Vital, Marius; Hammes, Frederik; Egli, Thomas

    2012-12-01

    In contrast to studies on (long-term) survival of enteric pathogens in the environment, investigations on the principles of their growth and competition with autochthonous aquatic bacteria are rare and unexplored. Hence, improved basic knowledge is crucial for an adequate risk assessment and for understanding (and avoiding) the spreading of waterborne diseases. Therefore, the pathogen Escherichia coli O157 was grown in competition with a drinking water bacterial community on natural assimilable organic carbon (AOC) originating from diluted wastewater, in both batch and continuous culture. Growth was monitored by flow cytometry enabling enumeration of total cell concentration as well as specific E. coli O157 detection using fluorescently-labelled antibodies. An enhanced competitive fitness of E. coli O157 with higher AOC concentrations, higher temperatures and increased dilution rates (continuous culture) was observed. A classical "opportunist" versus "gleaner" relationship, where E. coli O157 is the "opportunist", specialised for growth at high nutrient concentrations (μ(max): 0.87 h(-1) and K(s): 489 μg consumed DOC L(-1)), and the bacterial community is the "gleaner" adapted to nutrient-poor environments (μ(max): 0.33 h(-1) and K(s): 7.4 μg consumed DOC L(-1)) was found. The obtained competition results can be explained by the growth properties of the two competitors determined in pure cultures and it was possible to model many of the observed dynamics based on Monod kinetics. The study provides new insights into the principles governing competition of an enteric pathogen with autochthonous aquatic bacteria.

  2. Cancer incidence and pattern of arsenic concentration in drinking water wells in Córdoba, Argentina.

    Science.gov (United States)

    Aballay, Laura Rosana; Díaz, María del Pilar; Francisca, Franco Matías; Muñoz, Sonia Edith

    2012-01-01

    Cancer occurrence is associated with Arsenic (As) in drinking water. In Argentina, there are high As concentrations in groundwater but there is no published evidence yet of an association between geographic patterns of cancer incidence and the distribution of As in groundwater supplies. The purpose of this study is to assess the association between cancer incidence patterns and As in Córdoba province's aquifers. Age standardized incidence rates (ASIRs) were obtained from Córdoba Cancer Registry (CCR), and As data from official reports of monitoring wells. A multilevel model was applied. Total ASIRs by aquifers for males/females were 191.01/249.22 (Rioja plain); 215.03/225.37 (Pampa hills); and 239.42/188.93 (Chaco-Pampa plain). As was associated with increased risk of colon cancer in women, and lung and bladder cancers in both sexes. It had no association with breast cancer. ASIRs were related to As, controlling for unobserved heterogeneity. An overlapping pattern of higher As and higher risks was evident for lung, bladder and female colon cancers.

  3. Comparison of extracts and toxicities of organic compounds in drinking water concentrated by single and composite XAD resins.

    Science.gov (United States)

    Zhou, Xue; Xiang, Lunhui; Wu, Fenghong; Peng, Xiaoling; Xie, Hong; Wang, Jiachun; Yang, Kedi; Lu, Wenqing; Wu, Zhigang

    2013-12-01

    We compared extracts and toxicities of organic compounds (OCs) in drinking water concentrated by composite XAD-2/8 resin (mixed with an equal volume of XAD-2 and XAD-8 resins) with those extracted by single XAD-2 (non-polar) and XAD-8 (polar) resins. Drinking water was processed from raw water of the Han River and the Yangtze River in Wuhan section, China. The extraction efficiency of all resins was controlled at 30%. The types of extracted OCs were detected by gas chromatography-mass spectrometry, and the cytotoxicity and genotoxicity were assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and comet assays, respectively, in human hepatoma HepG2 cells. Our results showed that XAD-2/8 extracted a larger variety of OCs, compared with XAD-8 and XAD-2. The cytotoxicity and genotoxicity of extracted OCs were in the order of XAD-8> XAD-2/8> XAD-2 at almost all tested concentrations after 24 h treatment (P < 0.05). Our findings suggest that single XAD resin selectively extracts either polar or non-polar OCs, which would lead to over- or under-estimation of the toxicity of drinking water. Nevertheless, composite resin extracts both polar and non-polar OCs, and could be utilized as a useful extraction technique to evaluate the level and toxicity of OCs in drinking water.

  4. Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water

    Directory of Open Access Journals (Sweden)

    F. Hammes

    2008-06-01

    Full Text Available The general microbial quality of drinking water is normally monitored by heterotrophic plate counts (HPC. This method has been used for more than 100 years and is recommended in drinking water guidelines. However, the HPC method is handicapped because it is time-consuming and restricted to culturable bacteria. Recently, rapid and accurate detection methods have emerged, such as adenosine tri-phosphate (ATP measurements to assess microbial activity in drinking water, and flow cytometry (FCM to determine the total cell concentration (TCC. It is necessary and important for drinking water quality control to understand the relationships among the conventional and new methods. In the current study, all three methods were applied to 200 drinking water samples obtained from two local buildings connected to the same distribution system. Samples were taken both on normal working days and weekends, and the correlations between the different microbiological parameters were determined. TCC in the samples ranged from 0.37–5.61×105 cells/ml, and two clusters, the so-called high (HNA and low (LNA nucleic acid bacterial groups, were clearly distinguished. The results showed that the rapid determination methods (i.e., FCM and ATP correlated well (R2=0.69, but only a weak correlation (R2=0.31 was observed between the rapid methods and conventional HPC data. With respect to drinking water monitoring, both FCM and ATP measurements were confirmed to be useful and complimentary parameters for rapid assessing of drinking water microbial quality.

  5. Effect of high fluoride concentration in drinking water on children’s intelligence

    Directory of Open Access Journals (Sweden)

    Seraj B

    2006-07-01

    Full Text Available Background and Aim: Human and animal studies linking fluoride with diminished intelligence have been published. Although adverse effects of high intake of fluoride on intelligence and mental acuity continue to be reported, they are still controversial. The aim of this research was to investigate the relationship between fluoride in drinking water and children's intelligence. Materials and Methods: In this cross sectional study, 41 children were selected from the high fluoride area with 2.5mg/l (ppm fluoride in the drinking water and 85 children were selected from low fluoride area with 0.4mg/l (ppm fluoride in the drinking water. The intelligence quotient (IQ of each child was measured by the Raven's test. The history of illnesses affecting the nervous system, head trauma, birth weight (2.5kg or  2.5kg, residental history, age and sex of children were investigated by questionnaires completed by the children's parents. Data were analyzed by Chi-Square test with p<0.05 as the limit of significance. Results: In the high fluoride area the mean IQ of children (87.911 was significantly lower than in the low fluoride area (98.912.9 (P=0.025. Conclusion: Based on the findings of this study, exposure of children to high levels of fluoride may carry the risk of impaired development of intelligence.

  6. Substrate turnover at low carbon concentrations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik;

    2002-01-01

    utilisation and bacterial growth at low nutrient conditions in a model distribution system. The model system consisted of two loops in series, where flow rate and retention time were controlled independently. Spiking the drinking water of the model system with two different environmentally realistic......Water quality changes caused by microbial activity in the distribution network can cause serious problems. Reducing the amount of microbial available substrate may be an effective way to control bacterial aftergrowth. The purpose of the present study was to study the kinetics of substrate...

  7. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats.

    Science.gov (United States)

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2015-01-01

    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD.

  8. An Investigation of Fluoride Concentration in Drinking Water of Sanganer Tehsil, Jaipur District, Rajasthan, India and Defluoridation from Plant Material

    Directory of Open Access Journals (Sweden)

    Mohammed Arif

    2014-01-01

    Full Text Available Forty water samples of 20 villages of Sanganer tehsil, Jaipur district were analyzed for determining fluoride ion concentrations. High fluoride containing regions were identified on the basis of fluoride levels of the water samples and also on the prevalence rate of dental and skeletal fluorosis of the study area. Fluoride maps, which distinguish the regions containing the water sources of different ranges of fluoride ion concentrations, were also prepared by isopleth’s technique, a statistical method. Water samples containing high fluoride levels were defluoridated with low-cost materials prepared from plant byproducts. These materials successfully decrease the fluoride ions concentration to an acceptable limit (from 0.5 to 1.5 mg/L without disturbing drinking water quality standards.

  9. Pesticides in drinking water

    Directory of Open Access Journals (Sweden)

    Irena Grmek-Košnik

    2006-09-01

    Full Text Available Background: Use of pesticides deceives of indisputable advantage, however remainders of pesticides in drinking water might represent potential danger for health on foodstuffs. In European Union (EU pesticides and their relevant metabolic, degrading and reactive products, with exception for aldrin, dieldrin, heptaclor and heptaclor epoxide, should not exceed the concentration of 0.10 μg/l. At limit value 0.10 μg/l we wish to achieve null value these substances in drinking water.Methods: In years 2004 and 2005 monitoring of pesticides in drinking waters on pipes of consumers in all larger towns in state was done. Majority of pesticides were analysed by gas chromatography in combination with mass spectrometry while fluid cromatography was used primarily for badly volatile or polar and termolabile compound.Results: Results of analyses of drinking water and of ground waters for years 2004 and 2005 showed that levels of atrazine, desethyl-atrazine and 2.6 dichlorobenzamide were exceeded few times when compared to required levels. In 2005 bentazone, MCPP, metolachlor, terbuthylazin were exceeded. In 2004 concentration of pesticides were exceeded in 25 samples in 15 different areas, supplying 183,881 inhabitants. In 2005 concentration of pesticides were exceeded in 31 samples in 14 different areas, supplying 151,297 inhabitants. The distribution shows, that contamination was present mostly in the northeast part of Slovenia, where intensive agriculture takes place.Conclusions: Received status review acquired by monitoring of pesticides in drinking water is only an assessment of circumstances that will gain in representativity by enlarged number of sampling locations and longer observation time. For assessment of trends of pollution of drinking water in Slovenia it will be necessary to monitor concentration of pesticides through longer period. We could have unpolluted drinking water only with restricted use of pesticides on water-protection ranges or

  10. Reconstructing Historical VOC Concentrations in Drinking Water for Epidemiological Studies at a U.S. Military Base: Summary of Results

    Science.gov (United States)

    Maslia, Morris L.; Aral, Mustafa M.; Ruckart, Perri Z.; Bove, Frank J.

    2017-01-01

    A U.S. government health agency conducted epidemiological studies to evaluate whether exposures to drinking water contaminated with volatile organic compounds (VOC) at U.S. Marine Corps Base Camp Lejeune, North Carolina, were associated with increased health risks to children and adults. These health studies required knowledge of contaminant concentrations in drinking water—at monthly intervals—delivered to family housing, barracks, and other facilities within the study area. Because concentration data were limited or unavailable during much of the period of contamination (1950s–1985), the historical reconstruction process was used to quantify estimates of monthly mean contaminant-specific concentrations. This paper integrates many efforts, reports, and papers into a synthesis of the overall approach to, and results from, a drinking-water historical reconstruction study. Results show that at the Tarawa Terrace water treatment plant (WTP) reconstructed (simulated) tetrachloroethylene (PCE) concentrations reached a maximum monthly average value of 183 micrograms per liter (μg/L) compared to a one-time maximum measured value of 215 μg/L and exceeded the U.S. Environmental Protection Agency’s current maximum contaminant level (MCL) of 5 μg/L during the period November 1957–February 1987. At the Hadnot Point WTP, reconstructed trichloroethylene (TCE) concentrations reached a maximum monthly average value of 783 μg/L compared to a one-time maximum measured value of 1400 μg/L during the period August 1953–December 1984. The Hadnot Point WTP also provided contaminated drinking water to the Holcomb Boulevard housing area continuously prior to June 1972, when the Holcomb Boulevard WTP came on line (maximum reconstructed TCE concentration of 32 μg/L) and intermittently during the period June 1972–February 1985 (maximum reconstructed TCE concentration of 66 μg/L). Applying the historical reconstruction process to quantify contaminant-specific monthly

  11. Reconstructing Historical VOC Concentrations in Drinking Water for Epidemiological Studies at a U.S. Military Base: Summary of Results

    Directory of Open Access Journals (Sweden)

    Morris L. Maslia

    2016-10-01

    Full Text Available A U.S. government health agency conducted epidemiological studies to evaluate whether exposures to drinking water contaminated with volatile organic compounds (VOC at U.S. Marine Corps Base Camp Lejeune, North Carolina, were associated with increased health risks to children and adults. These health studies required knowledge of contaminant concentrations in drinking water—at monthly intervals—delivered to family housing, barracks, and other facilities within the study area. Because concentration data were limited or unavailable during much of the period of contamination (1950s–1985, the historical reconstruction process was used to quantify estimates of monthly mean contaminant-specific concentrations. This paper integrates many efforts, reports, and papers into a synthesis of the overall approach to, and results from, a drinking-water historical reconstruction study. Results show that at the Tarawa Terrace water treatment plant (WTP reconstructed (simulated tetrachloroethylene (PCE concentrations reached a maximum monthly average value of 183 micrograms per liter (μg/L compared to a one-time maximum measured value of 215 μg/L and exceeded the U.S. Environmental Protection Agency’s current maximum contaminant level (MCL of 5 μg/L during the period November 1957–February 1987. At the Hadnot Point WTP, reconstructed trichloroethylene (TCE concentrations reached a maximum monthly average value of 783 μg/L compared to a one-time maximum measured value of 1400 μg/L during the period August 1953–December 1984. The Hadnot Point WTP also provided contaminated drinking water to the Holcomb Boulevard housing area continuously prior to June 1972, when the Holcomb Boulevard WTP came on line (maximum reconstructed TCE concentration of 32 μg/L and intermittently during the period June 1972–February 1985 (maximum reconstructed TCE concentration of 66 μg/L. Applying the historical reconstruction process to quantify contaminant

  12. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  13. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  14. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  15. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  16. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Directory of Open Access Journals (Sweden)

    Masashi Kato

    Full Text Available Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L and coexposure to barium (137 µg/L and arsenic (225 µg/L. The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L and barium (700 µg/L, but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium, in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  17. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Science.gov (United States)

    Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  18. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake.

  19. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    OpenAIRE

    Mustapha Moshood Keke; Ewulum Joy Chinenye

    2016-01-01

    Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the...

  20. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Sigsgaard, Torben

    Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark...... is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  1. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis.

    Science.gov (United States)

    Geme, Gija; Brown, Michael A; Simone, Paul; Emmert, Gary L

    2005-10-01

    A capillary membrane sampling-flow injection analysis method is presented for selectively measuring the concentrations of total trihalomethanes (THMs) and total haloacetic acids (HAAs) in drinking water. The method is based on the reaction between nicotinamide and THM or HAA species to yield a fluorescent product. Two configurations are presented, one selective for total THMs and another selective for total HAAs. The construction of a capillary membrane sampler is described, and the results of method detection limit, accuracy and precision studies are reported for each method. Interference, selectivity and linearity studies are reported as well as the effect of temperature and ionic strength changes. Drinking water samples were analyzed by each proposed method and the results were compared to USEPA methods 502.2 and 552.3.

  2. Impacts of global change on the concentrations and dilution of combined sewer overflows in a drinking water source.

    Science.gov (United States)

    Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2015-03-01

    This study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario. A spatio-temporal analysis of water quality trends with regard to fecal contamination was performed and the effects of changing flowrates on the dilution of fecal contaminants were analyzed. Along the river, there was a significant spatial trend for increasing fecal pollution downstream of CSO outfalls. Escherichia coli concentrations (upper 95th percentile) increased linearly from 2002 to 2012 at one drinking water treatment plant intake. Two critical periods in the current climate were identified for the drinking water intakes considering both potential contaminant loads and flowrates: local spring snowmelt that precedes river peak flow and extra-tropical storm events that occur during low flows. Regionally, climate change is expected to increase the intensity of the impacts of hydrological conditions on water quality in the studied basin. Based on climate projections, it is expected that spring snowmelt will occur earlier and extreme spring flowrates will increase and low flows will generally decrease. High and low flows are major factors related to the potential degradation of water quality of the river. However, the observed degradation of water quality over the past 10 years suggests that urban development and population growth may have played a greater role than climate. However, climate change impacts will likely be observed over a longer period. Source water protection plans should consider climate change impacts on the dilution of contaminants in addition to local land uses changes in order to maintain or improve water quality.

  3. Radon concentration assessment in water sources of public drinking of Covilhã's county, Portugal

    Directory of Open Access Journals (Sweden)

    M. Inácio

    2017-04-01

    Radon concentration measurements were performed on thirty three samples collected from water wells at different depths and types of aquifers, at Covilhã's County, Portugal with the radon gas analyser DURRIDGE RAD7. Twenty three, of the total of water samples collected, gave, values over 100 Bq/L, being that 1690 Bq/L was the highest measured value.

  4. Drinking Water and Health.

    Science.gov (United States)

    National Academy of Sciences, Washington, DC.

    In response to a provision of the Safe Drinking Water Act of 1974 which called for a study that would serve as a scientific basis for revising the primary drinking water regulations that were promulgated under the Act, a study of the scientific literature was undertaken in order to assess the implications for human health of the constituents of…

  5. Drink Water, Fight Fat?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_165714.html Drink Water, Fight Fat? When you have it in place ... HealthDay News) -- If you choose a glass of water instead of a beer or a sugar-sweetened ...

  6. Drinking Water FAQ

    Science.gov (United States)

    ... your well Who should test your well Drinking Water FAQ Frequently Asked Questions General Where does my ... CDC's Private Wells page. Top of Page Public Water Systems What type of health issues can be ...

  7. SDWISFED Drinking Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — SDWIS/FED is EPA's national regulatory compliance database for the drinking water program. It includes information on the nation's 160,000 public water systems and...

  8. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  9. Measurement of 222Rn concentration in drinking water in the environs of Thirthahalli taluk, Karnataka, India

    Directory of Open Access Journals (Sweden)

    G.M. Shilpa

    2017-07-01

    Full Text Available The dissolved radon concentration in water samples collected from various aquifers in and around Thirthahalli taluk was measured by employing active technique through Scintillation Radon Monitoring system. The measured radon concentration lies in the range of 0.37 ± 0.05 Bq/l to 87.02 ± 2.11 Bq/l. The resulting annual effective radiation dose to the public, who consume this water, lies in the range of 1.01μSvy−1 to 237.56 μSvy−1. However, no significant change in the radon concentration with respect to seasonal variation was observed in majority of the sample. Few samples show higher radon concentration during summer season and lower concentration in rainy season. All these results are presented in this paper.

  10. Drinking Water Treatability Database (TDB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities,...

  11. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    Science.gov (United States)

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  12. Fluoride concentration of drinking water and dental fluorosis: A systematic review and meta-analysis in Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Goodarzi

    2016-01-01

    Full Text Available Introduction: Recently, a number of studies have investigated the impact of fluoride concentration of drinking water on dental fluorosis. These Studies should be reviewed to provide a new outlook on the analysis of the causes and effects of dental fluorosis in specific regions. The objective of this study was to systematically review the fluoride concentration of drinking water and investigate its relation to the frequency of dental fluorosis in Iran. Materials and Methods: Dean′s index was used to classify data, and a meta-analysis was conducted to obtain summary measure with 95% confidence interval (CI. In this regard, Stata/SE 11.1 was employed for data analysis based on random effect models for reporting the results. In this systematic review, Scientific Information Database (SID and IranMedex databases were searched and studies were included based on specific criteria. Data validity was assessed using the strengthening the reporting of observational studies in epidemiology (STROBE checklist adapted for cross-sectional study designs. Furthermore, a series of predefined keywords were used, and the combination of these keywords were considered using operators. The inconsistency was examined using the χ2 test at a significance level of 10%. In addition, heterogeneity was quantified across studies using the І2 statistic. The difference between study variance was analyzed based on τ2 statistic. Results: In the age group of 6-18 years old based on the fluoride level in drinking water and exposure time, there was significant heterogeneity among the studies in all subgroups for determining the frequency of dental fluorosis and assessing the effect of other variables. Conclusions: The variables, water fluoride exposure time, and any exposure to fluoride are considered as confounding factors. Analyzing the subgroups and examining the heterogeneity showed that the results of the studies in all subgroups cannot be pooled.

  13. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  14. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  15. The risks of drinking water

    Science.gov (United States)

    Reichhardt, Tony

    1984-04-01

    Three researchers from the Energy and Environmental Policy Center at Harvard University have come up with a new method of calculating the risk from contaminants in drinking water, one that they believe takes into account some of the uncertainties in pronouncing water safe or dangerous to drink. The new method concentrates on the risk of cancer, which authors Edmund Crouch, Richard Wilson, and Lauren Zeise believe has not been properly considered in establishing drinking water standards.Writing in the December 1983 issue of Water Resources Research, the authors state that “current [drinking water] standards for a given chemical or class of chemicals do not account for the presence of other pollutants” that could combine to create dangerous substances. According to Wilson, “Over a hundred industrial pollutants and chlorination byproducts have been found in various samples of drinking water, some of which are known carcinogens, others suspected carcinogens.” The same chlorine that solves one major health problem—the threat of bacterial disease—can thus contribute to another, according to the authors, by increasing the long-term risk of cancer. The largest risks are due to halomethanes such as chloroform and bromoform, produced as chlorine reacts with organic matter in drinking water.

  16. Mutagenicity and organic halogen determination in body fluids and tissues of rats treated with drinking water and pulp mill bleachery effluent concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Monarca, S.; Hongslo, J.K.; Kringstad, A.; Carlberg, G.E.

    1984-01-01

    Concentrates of either drinking water or chlorination stage pulp mill effluent were injected intraperitonally into rats. Urine, feces, liver, and adipose tissues were treated for mutagenic activity and analysed for organic halogen. For both sample types nearly all the organic halogen taken up, eighteen percent from the chlorination stage sample and four percent from the drinking water sample, was excreted via the urine during the first day. Weak mutagenic activity could only be found in the urine collected the first day from animals treated with the highest dose of drinking water. 31 references, 5 tables.

  17. Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2015-07-01

    Full Text Available The radon activity concentration and toxic elements have been assessed in drinking and irrigated water samples collected from different locations of Sungai Petani, Kedah, Malaysia. The water samples were collected from wells, streams and taps. A calibrated alpha spectrometer RAD-7 (Model 2890 and Atomic Absorption Spectrometers (Perkin–Elmer, Model AAnalyst 200, Shimadzu, Model AA-700 were used to estimate radon activity concentration and toxic elements, respectively. Maximum average value of radon concentration among the various types of water sources was found 14.7 ± 1.44 Bq/l in well water used for drinking and irrigation and minimum was found 5.37 ± 0.58 Bq/l in tap water used for drinking. Contribution of radon in drinking water to indoor air and age dependent associated annual effective doses were calculated from the measured radon concentration and were found less than lower limit of recommended action level. The activity concentrations of Ni > Pb > Cd > As > Cr were found higher for streams water as compared to wells and tap water. Values of radon concentration in well water were found higher than EPA recommended level and lower than WHO action level while the annual effective doses and level of toxic elements in water reported in this study were found lower than recommended level.

  18. Arsenic species in drinking water wells in the USA with high arsenic concentrations.

    Science.gov (United States)

    Sorg, Thomas J; Chen, Abraham S C; Wang, Lili

    2014-01-01

    Arsenic exists in ground water as oxyanions having two oxidation states, As(III) and As(V), and its concentrations vary widely and regionally across the United States (USA). Because of the difference in toxicity and removability of As(III) and As(V), arsenic speciation is important in the selection and design of an arsenic treatment systems. Identifying the arsenic species is also helpful in explaining and understanding the behavior and characteristics of arsenic in the environment. Although laboratory methods exist for speciating arsenic in water samples, the lack of a universal preservation method has led to the predominant use of field separation methods that are somewhat complex and costly. Thus, very few studies have incorporated arsenic speciation. A U.S. Environmental protection Agency (EPA) arsenic treatment research program provided a unique opportunity to speciate the naturally occurring arsenic in 65 well waters scattered across the USA with many of them being speciated monthly for up to three years. Speciation test data showed that 31 wells had predominantly As(V), 29 had predominantly As(III) and five had a mixture of both. A general pattern was found where As(III) was the dominant species in midwest ground waters where anoxic conditions and elevated iron concentrations prevailed and the well waters in the east, west and farwest had either As(III) or As(V) as the dominant species. The monthly (12-36) speciation tests results at many of these sites also found no major changes in arsenic species over time.

  19. Drinking water and cancer.

    OpenAIRE

    Morris, R D

    1995-01-01

    Any and all chemicals generated by human activity can and will find their way into water supplies. The types and quantities of carcinogens present in drinking water at the point of consumption will differ depending on whether they result from contamination of the source water, arise as a consequence of treatment processes, or enter as the water is conveyed to the user. Source-water contaminants of concern include arsenic, asbestos, radon, agricultural chemicals, and hazardous waste. Of these,...

  20. Determination of the odor threshold concentrations of iodinated trihalomethanes in drinking water.

    Science.gov (United States)

    Cancho, B; Fabrellas, C; Diaz, A; Ventura, F; Galceran, M T

    2001-04-01

    Iodinated trihalomethanes (ITHMs) have been usually considered the disinfection byproducts suspected of causing medicinal odor episodes in treated water around the world. The odor threshold concentration (OTC) of mixed ITHMs (bromochloroiodo-, bromodiiodo-, chlorodiiodo-, dibromoiodo-, and dichloroiodomethane) which were previously synthesized -- because commercial standards are not available-- were determined by using two sensory techniques: flavor profile analysis (FPA), performed by an experienced panel trained in identifying odors and tastes in water; and gas chromatography coupled with olfactometry (GCO). FPA results gave a theoretical OTCs range from 0.1 to 8.9 microg/L and ITHMs were described as sweet, solvent, and medicinal products. The lowest experimental value (OTC(exp)) obtained from the six ITHMs, 0.03 microg/L, corresponded to iodoform.

  1. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  2. Increasing concentrations of trihalomethanes (THMs) in a drinking water distribution network; Trihalometanos (THMs) en una red de distribucion de agua potable en alta

    Energy Technology Data Exchange (ETDEWEB)

    Valero Cervera, F.; Carnicero Cercavins, M.

    1999-07-01

    THMs are disinfection by-products (DBPs) generated during water chlorination. Concentration of individual and total THMs, depends on treatment process and THMs precursors level. ATLL water utility has two DWTP (Llobregar and Ter) that produce and supply drinking water to Barcelona and regional area. This work studies the levels of THMs along the ATLL distribution system (450 km). Although, no differences were observed along water pipes system, changes of water resource and mix procedures were related. (Author) 12 refs.

  3. Concentration of Enteroviruses, Adenoviruses, and Noroviruses from Drinking Water by Use of Glass Wool Filters▿

    Science.gov (United States)

    Lambertini, Elisabetta; Spencer, Susan K.; Bertz, Phillip D.; Loge, Frank J.; Kieke, Burney A.; Borchardt, Mark A.

    2008-01-01

    Available filtration methods to concentrate waterborne viruses are either too costly for studies requiring large numbers of samples, limited to small sample volumes, or not very portable for routine field applications. Sodocalcic glass wool filtration is a cost-effective and easy-to-use method to retain viruses, but its efficiency and reliability are not adequately understood. This study evaluated glass wool filter performance to concentrate the four viruses on the U.S. Environmental Protection Agency contaminant candidate list, i.e., coxsackievirus, echovirus, norovirus, and adenovirus, as well as poliovirus. Total virus numbers recovered were measured by quantitative reverse transcription-PCR (qRT-PCR); infectious polioviruses were quantified by integrated cell culture (ICC)-qRT-PCR. Recovery efficiencies averaged 70% for poliovirus, 14% for coxsackievirus B5, 19% for echovirus 18, 21% for adenovirus 41, and 29% for norovirus. Virus strain and water matrix affected recovery, with significant interaction between the two variables. Optimal recovery was obtained at pH 6.5. No evidence was found that water volume, filtration rate, and number of viruses seeded influenced recovery. The method was successful in detecting indigenous viruses in municipal wells in Wisconsin. Long-term continuous filtration retained viruses sufficiently for their detection for up to 16 days after seeding for qRT-PCR and up to 30 days for ICC-qRT-PCR. Glass wool filtration is suitable for large-volume samples (1,000 liters) collected at high filtration rates (4 liters min−1), and its low cost makes it advantageous for studies requiring large numbers of samples. PMID:18359827

  4. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  5. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

    Energy Technology Data Exchange (ETDEWEB)

    Fram, Miranda S., E-mail: mfram@usgs.gov [U.S. Geological Survey California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819-6129 (United States); Belitz, Kenneth, E-mail: kbelitz@usgs.gov [U.S. Geological Survey California Water Science Center, 4165 Spruance Road, Suite 200, San Diego, CA 95101-0812 (United States)

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 {mu}g/L), caffeine (stimulant, 0.24%, 0.29 {mu}g/L), carbamazepine (mood stabilizer, 1.5%, 0.42 {mu}g/L), codeine (opioid analgesic, 0.16%, 0.214 {mu}g/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 {mu}g/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 {mu}g/L), and trimethoprim (antibiotic, 0.08%, 0.018 {mu}g/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of State with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. - Highlights: {yields

  6. Radon in private drinking water wells.

    Science.gov (United States)

    Otahal, P; Merta, J; Burian, I

    2014-07-01

    At least 10% of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq·l(-1). This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined.

  7. 226Ra and 210Po concentration in drinking water of Cauvery river basin south interior Karnataka State, India

    Directory of Open Access Journals (Sweden)

    E. Kavitha

    2017-01-01

    Full Text Available Naturally occurring radionuclide 210Po which is an element of 238U decay series, contribute to the radiation that normally people are exposed. Drinking water samples collected from Cauvery river basin of south interior Karnataka State, India were analysed for the activity of 210Po using radiochemical analysis technique. The estimated concentration of 210Po in river water ranges from 0.86 to 4.49 mBq l−1, and its mean value is 2.67 ± 1.09 mBq l−1. The concentration of 210Po in bore well water ranges from 1.89 to 4.18 mBq l−1 and its mean value is 3.22 ± 0.67 mBq l−1. The dissolved radium concentration in river water varies from 9.09 mBq l−1 to 55.07 mBq l−1 with an average of 32.33 ± 14.16 mBq l−1. Total ingestion dose rate due to 226Ra and 210Po varies from 2.61 to 15.00 μSv y−1 with a mean value of 8.95 ± 3.74 μSv y−1, which is less than the recommended value by ICRP (International commission on radiological protection.

  8. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  9. Manganese in Madison's drinking water.

    Science.gov (United States)

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  10. Water Fit to Drink.

    Science.gov (United States)

    Donovan, Edward P.

    The major objective of this module is to help students understand how water from a source such as a lake is treated to make it fit to drink. The module, consisting of five major activities and a test, is patterned after Individualized Science Instructional System (ISIS) modules. The first activity (Planning) consists of a brief introduction and a…

  11. Chlorate Concentration in the Jejunum and Cecum in Growing Pigs when Supplemented in Drinking Water

    Science.gov (United States)

    Prior research has demonstrated that oral administration of chlorate and nitrate results in reduced risk and / or concentration of Salmonella enterica fecal shedding of infected pigs, poultry and ruminants. The effect of chlorate is concentration dependent in vitro, but the concentrations of chlorat...

  12. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    Science.gov (United States)

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  13. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    Science.gov (United States)

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  14. Physiologically based pharmacokinetic modeling of human exposure to perfluorooctanoic acid suggests historical non drinking-water exposures are important for predicting current serum concentrations.

    Science.gov (United States)

    Worley, Rachel Rogers; Yang, Xiaoxia; Fisher, Jeffrey

    2017-09-01

    Manufacturing of perfluorooctanoic acid (PFOA), a synthetic chemical with a long half-life in humans, peaked between 1970 and 2002, and has since diminished. In the United States, PFOA is detected in the blood of >99% of people tested, but serum concentrations have decreased since 1999. Much is known about exposure to PFOA in drinking water; however, the impact of non-drinking water PFOA exposure on serum PFOA concentrations is not well characterized. The objective of this research is to apply physiologically based pharmacokinetic (PBPK) modeling and Monte Carlo analysis to evaluate the impact of historic non-drinking water PFOA exposure on serum PFOA concentrations. In vitro to in vivo extrapolation was utilized to inform descriptions of PFOA transport in the kidney. Monte Carlo simulations were incorporated to evaluate factors that account for the large inter-individual variability of serum PFOA concentrations measured in individuals from North Alabama in 2010 and 2016, and the Mid-Ohio River Valley between 2005 and 2008. Predicted serum PFOA concentrations were within two-fold of experimental data. With incorporation of Monte Carlo simulations, the model successfully tracked the large variability of serum PFOA concentrations measured in populations from the Mid-Ohio River Valley. Simulation of exposure in a population of 45 adults from North Alabama successfully predicted 98% of individual serum PFOA concentrations measured in 2010 and 2016, respectively, when non-drinking water ingestion of PFOA exposure was included. Variation in serum PFOA concentrations may be due to inter-individual variability in the disposition of PFOA and potentially elevated historical non-drinking water exposures. Published by Elsevier Inc.

  15. Occurrence and concentrations of pharmaceutical compounds in deep groundwater used for public drinking-water supply in California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.

  16. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    Science.gov (United States)

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  17. Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems

    Science.gov (United States)

    2013-04-22

    thoroughly mixed with 2.25 g of cellulose and pressed into 31 mm pellets for X-ray fluorescence (XRF) analysis. Two representative iron corrosion products...events in reticulation systems and evaluation of flushing methods to remove deposited particles: A review. Water Sci. Technol.: Water Supply 2003, 3 (1

  18. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    Science.gov (United States)

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  19. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    Science.gov (United States)

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  20. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  1. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  2. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    OpenAIRE

    Harris, Robin B.; Burgess, Jefferey L; Maria Mercedes Meza-Montenegro; Luis Enrique Gutiérrez-Millán; Mary Kay O’Rourke; Jason Roberge

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and...

  3. The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples.

    Science.gov (United States)

    A national-scale survey of 247 contaminants of emerging concern (CECs), including organic and inorganic chemical compounds, and microbial contaminants, was conducted in source and treated drinking water samples from 25 treatment plants across the United States. Multiple methods w...

  4. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in U.S. ground water used for drinking (simulation depth 50 meters) -- Model output data set (gwava-dw_out)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents predicted nitrate concentration in ground water used for drinking, in milligrams per liter, in the conterminous United States, and was...

  5. Second-step concentration of viruses in drinking and surface waters using polyethylene glycol hydroextraction.

    Science.gov (United States)

    Ramia, S; Sattar, S A

    1979-05-01

    In our laboratory, virus adsorbed to talc--Celite layers is eluted with 100 mL of 10% fetal calf serum (FCS) in normal saline (pH 9.0). A further 10-fold reduction in the volume of the eluate was necessary before its inoculation into cell cultures. A 100-mL volume of an experimentally contaminated sample was placed in a dialysis sac and hydroextracted overnight (4 degrees C) with polyethylene glycol (PEG) 6000. The viscous material remaining in the sac was resuspended in 10 mL of Earle's balanced salt solution. After membrane filtration (0.2 micron), the concentrate was plaque assayed in BS-C-1 cells. Using this technique, recoveries of five laboratory-adapted enteric viruses (polio 1, echo 6, coxsackie B5, coxackie A9, and reo 3) and four freshly isolated enteric virus strains (polio 1, echo 1, coxsackie B3, and reo) ranged from 87 to 97%. In comparative tests, PEG hydroextraction was simpler and superior to organic flocculation.

  6. Manganese concentrations in drinking water from villages near banana plantations with aerial mancozeb spraying in Costa Rica: Results from the Infants' Environmental Health Study (ISA).

    Science.gov (United States)

    van Wendel de Joode, Berna; Barbeau, Benoit; Bouchard, Maryse F; Mora, Ana María; Skytt, Åsa; Córdoba, Leonel; Quesada, Rosario; Lundh, Thomas; Lindh, Christian H; Mergler, Donna

    2016-08-01

    Elevated manganese (Mn) in drinking water has been reported worldwide. While, naturally occurring Mn in groundwater is generally the major source, anthropogenic contamination by Mn-containing fungicides such as mancozeb may also occur. The main objective of this study was to examine factors associated with Mn and ethylenethiourea (ETU), a degradation product of mancozeb, in drinking water samples from villages situated near banana plantations with aerial spraying of mancozeb. Drinking water samples (n = 126) were obtained from 124 homes of women participating in the Infants' Environmental Health Study (ISA, for its acronym in Spanish), living nearby large-scale banana plantations. Concentrations of Mn, iron (Fe), arsenic (As), lead (Pb), cadmium (Cd) and ethylenethiourea (ETU), a degradation product of mancozeb, were measured in water samples. Only six percent of samples had detectable ETU concentrations (limit of detection (LOD) = 0.15 μg/L), whereas 94% of the samples had detectable Mn (LOD = 0.05 μg/L). Mn concentrations were higher than 100 and 500 μg/L in 22% and 7% of the samples, respectively. Mn was highest in samples from private and banana farm wells. Distance from a banana plantation was inversely associated with Mn concentrations, with a 61.5% decrease (95% CI: -97.0, -26.0) in Mn concentrations for each km increase in distance. Mn concentrations in water transported with trucks from one village to another were almost 1000 times higher than Mn in water obtained from taps in houses supplied by the same well but not transported, indicating environmental Mn contamination. Elevated Mn in drinking water may be partly explained by aerial spraying of mancozeb; however, naturally occurring Mn in groundwater, and intensive agriculture may also contribute. Drinking water risk assessment for mancozeb should consider Mn as a health hazard. The findings of this study evidence the need for health-based World Health Organization (WHO) guidelines on Mn in

  7. Health assessment of toluene in California drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Reed, N.; Reed, W.; Beltran, L.; Li, R.; Encomienda, I.

    1989-03-08

    This report reviews existing literature pertinent to the health risk posed by the use of toluene-contaminated drinking water. Also included in the study is an estimate of the toluene exposure of California residents based on the most recent data on toluene concentrations in California drinking water supplies. The concentration of toluene in drinking water that may cause adverse health effects is delineated.

  8. Analysis of elemental concentration using ICP-AES and pathogen indicator in drinking water of Qasim Abad, District Rawalpindi, Pakistan.

    Science.gov (United States)

    Sehar, Shama; Naz, Iffat; Ali, Naeem; Ahmed, Safia

    2013-02-01

    The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250-280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 μS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5-35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.

  9. Concentrations and potential health risks of methyl tertiary-butyl ether (MTBE) in air and drinking water from Nanning, South China.

    Science.gov (United States)

    Zhang, Li'e; Qin, Jian; Zhang, Zhiyong; Li, Qin; Huang, Jiongli; Peng, Xiaowu; Qing, Li; Liang, Guiqiang; Liang, Linhan; Huang, Yuman; Yang, Xiaobo; Zou, Yunfeng

    2016-01-15

    Levels of methyl tertiary-butyl ether (MTBE) in occupational air, ambient air, and drinking water in Nanning, South China, were investigated, and then their potential health risks to occupational workers and the general public were evaluated. Results show that the MTBE concentration in occupational air from 13 service stations was significantly higher than that in ambient air from residential areas (pwater samples from household taps yielded detectable MTBE in the range of 0.04-0.33 μg/L, which is below the US drinking water standard of 20-40 μg/L. The non-carcinogenic risk of MTBE from air inhalation may be negligible because the calculated hazard quotient was less than 1. The mean MTBE lifetime cancer risk was within the acceptable limit of 1 × 10(-6) to 1 × 10(-4), but the lifetime cancer risk of refueling workers in the urban service station at the 95th percentile slightly exceeded the maximum acceptable carcinogen risk (1 × 10(-4)), indicating the potential carcinogenic health effects on the population highly exposed to MTBE in this region. The hazard index and carcinogenic risk of MTBE in drinking water were significantly lower than the safe limit of US Environmental Protection Agency, suggesting that drinking water unlikely poses significant health risks to the residents in Nanning.

  10. Investigation of drinking water quality in Kosovo.

    Science.gov (United States)

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  11. Basic Information about Lead in Drinking Water

    Science.gov (United States)

    ... control treatment to prevent lead and copper from contaminating drinking water. Corrosion control treatment means utilities must ... Page How EPA Requires States and Public Water Systems to Protect Drinking Water The Safe Drinking Water ...

  12. Sample Enrichment for Bioanalytical Assessment of Disinfected Drinking Water: Concentrating the Polar, the Volatiles, and the Unknowns.

    Science.gov (United States)

    Stalter, Daniel; Peters, Leon I; O'Malley, Elissa; Tang, Janet Yat-Man; Revalor, Marion; Farré, Maria José; Watson, Kalinda; von Gunten, Urs; Escher, Beate I

    2016-06-21

    Enrichment methods used in sample preparation for the bioanalytical assessment of disinfected drinking water result in the loss of volatile and hydrophilic disinfection byproducts (DBPs) and hence likely tend to underestimate biological effects. We developed and evaluated methods that are compatible with bioassays, for extracting nonvolatile and volatile DBPs from chlorinated and chloraminated drinking water to minimize the loss of analytes. For nonvolatile DBPs, solid-phase extraction (SPE) with TELOS ENV as solid phase performed superior compared to ten other sorbents. SPE yielded >70% recovery of nonpurgeable adsorbable organic halogens (AOX). For volatile DBPs, cryogenic vacuum distillation performed unsatisfactorily. Purge and cold-trap with crushed ice serving as condensation nuclei achieved recoveries of 50-100% for trihalomethanes and haloacetonitriles and approximately 60-90% for purged AOX from tap water. We compared the purgeable versus the nonpurgeable fraction by combining purge-and-trap extraction with SPE. The purgeable DBP fraction enriched with the purge-and-trap method exerted a lower oxidative stress response in mammalian cells than the nonpurgeable DBPs enriched with SPE after purging, while contributions of both fractions to bacterial cytotoxicity was more variable. 37 quantified DBPs explained almost the entire AOX in the purge-and-trap extracts, but <16% in the SPE extracts demonstrating that the nonpurgeable fraction is dominated by unknown DBPs.

  13. Lead in School Drinking Water.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  14. Radioactive isotopes in Danish drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Sven P. [Risoe National Lab., Roskilde (Denmark)

    2006-08-31

    A screening investigation of radioactivity in Danish drinking water has been carried out during 2001-2003. Samples of drinking water were collected from 296 water supplies representing more than 40% of the water delivered from water works in the country. Total alpha and total beta radioactivity was determined in the samples and compared with screening levels of 0.1 Bq/l total alpha and 1 Bq/l total beta radioactivity. The levels for total beta radioactivity were met in all the water works while total alpha radioactivity exceeded the screening levels for 13 water supplies. Further investigations were carried out for the water works with concentrations of alpha radioactivity above the screening levels in Ebeltoft, Grenae and Frederikssund to estimate the total indicative dose from the water. The elevated levels were found to be due to uranium in the water from individual boreholes. Radiation doses from consumption of water at these uranium levels are estimated to be well below the total indicative dose of 0.1 mSv/y specified in the Drinking Water Directive Groundwater used for drinking water was collected from different types of geological structures including bed rock and areas with potentially elevated levels of natural radioactivity. Also in these cases the concentrations of radioactivity were sufficiently low to meet the requirements in the Drinking Water Directive. In view of the results it seems probable that the risk of finding drinking water in Denmark with unacceptable concentrations of radioactivity is very small. Therefore there is no need for further radiological investigations of the Danish water supply based on natural groundwaters. (au)

  15. Study on the relationship between manganese concentrations in rural drinking water and incidence and mortality caused by cancer in Huai'an city.

    Science.gov (United States)

    Zhang, Qin; Pan, Enchun; Liu, Linfei; Hu, Wei; He, Yuan; Xu, Qiujin; Liang, Cunzhen

    2014-01-01

    Cancer is a significant disease burden in the world. Many studies showed that heavy metals or their compounds had connection with cancer. But the data conflicting about the relationship of manganese (Mn) to cancer are not enough. In this paper, the relationship was discussed between Mn concentrations in drinking water for rural residents and incidence and mortality caused by malignant tumors in Huai'an city. A total of 158 water samples from 28 villages of 14 towns were, respectively, collected during periods of high flow and low flow in 3 counties of Huai'an city, along Chinese Huai'he River. The samples of deep groundwater, shallow groundwater, and surface water were simultaneously collected in all selected villages. Mn concentrations in all water samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS 7500a). The correlation analysis was used to study the relationship between the Mn concentration and cancer incidence and mortality. Mn concentrations detectable rate was 100% in all water samples. The mean concentration was 452.32 μg/L ± 507.76 μg/L. There was significant difference between the high flow period and low flow period (t = -5.23, P water (F = 5.02, P water (χ(2) = 10.66, P water was very high. Mn concentration correlated with cancer incidence and mortality.

  16. Automatic on-line pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Anderson S. [Universidade Federal da Bahia, Instituto de Quimica, Nucleo de Excelencia em Quimica Analitica da Bahia, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil); Universidade Estadual de Santa Cruz, Ilheus, Bahia (Brazil); Brandao, Geovani C. [Universidade Federal da Bahia, Instituto de Quimica, Nucleo de Excelencia em Quimica Analitica da Bahia, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil); Santos, Walter N.L. dos [Universidade Estadual de Santa Cruz, Ilheus, Bahia (Brazil); Lemos, Valfredo A. [Universidade Estadual do Sudoeste da Bahia, Campus de Jequie, Jequie, Bahia 45206-190 (Brazil); Ganzarolli, Edgard M. [Universidade Estadual do Centro-Oeste, Departamento de Quimica, Rua Presidente Zacarias, 875, CP 33010, 85010-990 Guarapuava, PR (Brazil); Bruns, Roy E. [Universidade Estadual de Campinas, Instituto de Quimica, CP 6154, 13083-970 Campinas, SP (Brazil); Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Nucleo de Excelencia em Quimica Analitica da Bahia, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil)]. E-mail: slcf@ufba.br

    2007-03-22

    An automatic on-line pre-concentration system is proposed for lead determination in drinking water using flame atomic absorption spectrometry (FAAS). Lead(II) ions are retained as the 1-(2-pyridylazo)-2-naphthol (PAN) complex in the walls of a knotted reactor, followed by an elution step using 0.50 mol L{sup -1} hydrochloric acid solution. Optimisation involving the sampling flow rate, pH and buffer concentration factors was performed using a Box-Behnken design. Other factors were established considering results of previous experiments. The procedure allows the determination of lead with a 0.43 {mu}g L{sup -1} detection limit (3{sigma}/S) and precisions (expressed as relative standard deviation) of 4.84% (N = 7) and 2.9% (N = 7) for lead concentrations of 5 and 25 {mu}g L{sup -1}, respectively. The accuracy was confirmed by the determination of lead in the NIST SRM 1643d trace elements in natural water standard reference material. The pre-concentration factor obtained is 26.5 and the sampling frequency is 48 h{sup -1}. The recovery achieved for lead determination in the presence of several ions demonstrated that this procedure could be applied to the analysis of drinking water samples. The method was applied for lead determination in drinking water samples collected in Jequie City, Brazil. The lead concentration found in 25 samples were always lower than the permissible maximum levels stipulated by World Health Organization.

  17. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  18. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  19. Drinking Water Contaminants -- Standards and Regulations

    Science.gov (United States)

    ... Protection Agency Search Search Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate in drinking water to protect public health. The ...

  20. Correlation Between Surface Area and Dissolving Properties of Lead - A Step in the Investigation of Higher than Standard Lead Concentration in Drinking Water in Washington, D.C.

    Science.gov (United States)

    Hua, M.; Garduno, L.; Mondragon, J. D.; Cuff, K. E.

    2004-12-01

    Several recently published articles by the Washington Post exposing the alarming concentration of lead in drinking water from schools and homes in the Washington D.C. area sparked our interest in the correlation between lead-containing materials used in plumbing and rate of lead solubility. Elementary children who attend schools in various regions of the District were contacted by San Francisco Bay Area- based high school students who are participants in the NSF-sponsored Environmental Science Information Technology Activities (ESITA) project. After receiving a thorough explanation of required sampling procedures, the elementary school children sent 500 ml water samples from their homes and schools to Berkeley along with information on the locations from which the water samples were collected. These water samples were analyzed for lead content at the Environmental Science Research Program laboratory at Lawrence Hall of Science. The majority of the samples contained more than 15 ppb of lead, which is the EPA action level. We hypothesize that there are three possible sources of lead in the drinking water: 1) lead pipes in the water main; 2) lead pipes in the service main; and 3) lead soldering that was often previously used to connect piping. We chose to investigate the effect of lead-based solder on the overall lead concentration in water. Using a soldering iron, we melted lead solder to create discs ranging from one to five centimeter diameter and one to thirty-six grams of mass. These discs were then placed into a beaker with 500 ml of 7.1pH distilled water and allowed to stand for 48 hours. At the end of 48 hours, the water samples were prepared for analysis using the EPA approved lead-dithizone procedure. Results showed an exponential relationship between disc surface area and the concentration of dissolved lead measured in the sample. Therefore, lead-based solder can represent a possible major source of lead contamination.

  1. Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico.

    Science.gov (United States)

    Irigoyen-Camacho, M E; García Pérez, A; Mejía González, A; Huizar Alvarez, R

    2016-01-15

    Poor water quality and under nutrition are important factors affecting the health of many communities in developing countries. The aims of this study were: i) to describe the fluoride water concentration and the hydrogeological conditions in a region of a state located in the central in Mexico ii) to measure the association between undernutrition and dental fluorosis in children living in communities with different drinking water fluoride concentrations in a state located in the central region of Mexico. Field work was performed in the region to identify the prevailing groundwater flow characteristics and water wells were sampled to analyze water fluoride concentration. Children were selected from three communities that had different drinking water fluoride concentrations (i.e., 0.56, 0.70 and 1.60 mg/l). Fluoridated salt was available in these communities. The Thylstrup-Fejerskov Index (TFI) was used to assess dental fluorosis. Categories four or higher of this index involve changes in the entire tooth surface (ITF ≥ 4). The weight and height of the children were measured. The assessment of undernutrition was based on the World Health Organization criteria: children were classified as being at risk of low-height (Height-for-Age Z score fluorosis categories (ITF ≥ 4) was 15.9%, 21.1% of the children were at risk of low height-for-age, and 8.0% had low height-for-age. The percentage of children with fluorosis (ITF ≥ 4) was 6.3%, 9.1% and 31.9% (p ˂ 0.001) and low high-for-age was 2.9%, 2.5% and 8.4% (p ˂ 0.001), for the communities with F concentrations of 0.56 mg/l, 0.70 mg/l and 1.6 mg/l, respectively. The logistic regression model showed an association between dental fluorosis (TFI ≥ 4) and low height-for-age (OR 2.09, p = 0.022) after adjusting for sex, number of teeth erupted, source of drinking water, use of fluoridated toothpaste and tap water fluoride concentration in the community. Children with low height-for-age were more likely to have dental

  2. Effects of high doses of magnesium in drinking water and voluntary wheel running on magnesium and calcium concentrations in rats.

    Science.gov (United States)

    Meludu, S C; Nishimuta, M; Aboh, N A; Okonkwo, C; Dioka, C E

    2002-12-01

    The effect of high magnesium intake in addition to supplementation and voluntary wheel activity on magnesium and calcium homeostasis was investigated in rats. Thirty-six 5-week-old male Wistar rats were divided into four groups (n = 9). Groups 2 and 4 received five hundred ppm of elemental magnesium as MgCl2 provided in drinking water. After 1 week of acclimatization and 4 weeks of supplement and/or exercise, the animals were fasted and sacrificed. It appears that magnesium supplementation as well as exercise played some significant role in the homeostatic changes of magnesium and calcium. This could be of great significance in better understanding of mineral homeostasis particularly in sports medicine.

  3. Pharmaceutical compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Vikas Chander

    2016-06-01

    Full Text Available Pharmaceutical products and their wastes play a major role in the degradation of environment. These drugs have positive as well as negative consequences on different environmental components including biota in different ways. Many types of pharmaceutical substances have been detected with significant concentrations through various advanced instrumental techniques in surface water, subsurface water, ground water, domestic waste water, municipal waste water and industrial effluents. The central as well as state governments in India are providing supports by creating excise duty free zones to promote the pharmaceutical manufacturers for their production. As a result, pharmaceutical companies are producing different types of pharmaceutical products at large scale and also producing complex non-biodegradable toxic wastes byproducts and releasing untreated or partially treated wastes in the environment in absence of strong regulations. These waste pollutants are contaminating all types of drinking water sources. The present paper focuses on water quality pollution by pharmaceutical pollutants, their occurrences, nature, metabolites and their fate in the environment.

  4. Drinking Water State Revolving Fund

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for...

  5. Study on the Relationship between Manganese Concentrations in Rural Drinking Water and Incidence and Mortality Caused by Cancer in Huai’an City

    Directory of Open Access Journals (Sweden)

    Qin Zhang

    2014-01-01

    Full Text Available Background. Cancer is a significant disease burden in the world. Many studies showed that heavy metals or their compounds had connection with cancer. But the data conflicting about the relationship of manganese (Mn to cancer are not enough. In this paper, the relationship was discussed between Mn concentrations in drinking water for rural residents and incidence and mortality caused by malignant tumors in Huai’an city. Methods. A total of 158 water samples from 28 villages of 14 towns were, respectively, collected during periods of high flow and low flow in 3 counties of Huai’an city, along Chinese Huai’he River. The samples of deep groundwater, shallow groundwater, and surface water were simultaneously collected in all selected villages. Mn concentrations in all water samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS 7500a. The correlation analysis was used to study the relationship between the Mn concentration and cancer incidence and mortality. Results. Mn concentrations detectable rate was 100% in all water samples. The mean concentration was 452.32 μg/L ± 507.76 μg/L. There was significant difference between the high flow period and low flow period (t=-5.23, P<0.05 and also among deep groundwater, shallow groundwater, and surface water (F=5.02, P<0.05. The ratio of superscale of Mn was 75.32%. There was significant difference of Mn level between samples in the high flow period and low flow period (χ2=45.62,  P<0.05 and also among deep groundwater, shallow groundwater, and surface water (χ2=10.66, P<0.05. And also we found that, during the low flow period, Mn concentration has positive correlation with cancer incidence and mortality; for a 1 μg/L increase in Mn concentration, there was a corresponding increase of 0.45/100000 new cancer cases and 0.35/100000 cancer deaths (P<0.05. Conclusions. In Huai’an city, the mean concentration of Mn in drinking water was very high. Mn concentration

  6. Responsibility for drinking water; Verantwortung fuer Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Lein, Peter [Ingenieurbuero Dipl.-Ing. Peter Lein, Berlin (Germany)

    2008-03-15

    Planners of drinking water supply systems, implementing sanitary companies as well as building owners probably can be made liable, if the user of drinking water supply systems suffer health damages by drinking water hygienic problems. The germinating of the drinking water with legionella often is the consequence of a not professional start-up of a plant immediately after completion.

  7. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water.

    Science.gov (United States)

    Hopenhayn-Rich, C; Biggs, M L; Kalman, D A; Moore, L E; Smith, A H

    1996-01-01

    Inorganic arsenic (In-As), an occupational and environmental human carcinogen, undergoes biomethylation to monomethylarsonate (MMA) and dimethylarsinate (DMA). It has been proposed that saturation of methylation capacity at high exposure levels may lead to a threshold for the carcinogenicity of In-As. The relative distribution of urinary In-As, MMA, and DMA is used as a measure of human methylation capacity. The most common pathway for elevated environmental exposure to In-As worldwide is through drinking water. We conducted a biomarker study in northern Chile of a population chronically exposed to water naturally contaminated with high arsenic content (600 micrograms/l). In this paper we present the results of a prospective follow-up of 73 exposed individuals, who were provided with water of lower arsenic content (45 micrograms/l) for 2 months. The proportions of In-As, MMA, and DMA in urine were compared before and after intervention, and the effect of other factors on the distribution of arsenic metabolites was also analyzed. The findings of this study indicate that the decrease in arsenic exposure was associated with a small decrease in the percent In-As in urine (from 17.8% to 14.6%) and in the MMA/DMA ratio (from 0.23 to 0.18). Other factors such as smoking, gender, age, years of residence, and ethnicity were associated mainly with changes in the MMA/DMA ratio, with smoking having the strongest effect. Nevertheless, the factors investigated accounted for only about 20% of the large interindividual variability observed. Genetic polymorphisms in As-methylating enzymes and other co-factors are likely to contribute to some of the unexplained variation. The changes observed in the percent In-As and in the MMA/DMA ratio do not support an exposure-based threshold for arsenic methylation in humans. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B PMID:8959409

  9. How dogs drink water

    Science.gov (United States)

    Gart, Sean; Socha, Jake; Vlachos, Pavlos; Jung, Sunghwan

    2014-11-01

    Animals with incomplete cheeks (i.e. dogs and cats) need to move fluid against gravity into the body by means other than suction. They do this by lapping fluid with their tongue. When a dog drinks, it curls its tongue posteriorly while plunging it into the fluid and then quickly withdraws its tongue back into the mouth. During this fast retraction fluid sticks to the ventral part of the curled tongue and is drawn into the mouth due to inertia. We show several variations of this drinking behavior among many dog breeds, specifically, the relationship between tongue dynamics and geometry, lapping frequency, and dog weight. We also compare the results with the physical experiment of a rounded rod impact onto a fluid surface. Supported by NSF PoLS #1205642.

  10. Influence of methionine and vitamin E on fluoride concentration in bones and teeth of rats exposed to sodium fluoride in drinking water.

    Science.gov (United States)

    Błaszczyk, Iwona; Birkner, Ewa; Gutowska, Izabela; Romuk, Ewa; Chlubek, Dariusz

    2012-06-01

    Increased exposure to fluorine-containing compounds leads to accumulation of fluorides in hard tissues of bones and teeth, which may result in numerous skeletal and dental disorders. This study evaluates the influence of methionine and vitamin E on fluoride concentration in bones and teeth of rats subjected to long-term exposure to sodium fluoride in drinking water. The study was conducted in 30 3-month-old female Wistar FL rats. The animals were divided into five groups, six rats per group. The control group consisted of rats receiving only distilled water as drinking water. All other groups received NaF in the amount of 10 mg/kg of body mass/day in their drinking water. In addition, respective animal groups received: NaF + Met group--10 mg of methionine/kg of body mass/day, NaF + Met + E group--10 mg of methionine/kg of body mass/day and 3 mg of vitamin E (tocopheroli acetas)/rat/day and NaF + E group--3 mg of vitamin E/rat/day. Femoral bones and incisor teeth were collected for the study, and the fluoride concentration was determined using a fluoride ion-selective electrode. Fluoride concentration in both bones and teeth was found to be higher in the NaF and NaF + Met groups compared to the control group. In groups NaF + Met + E and NaF + E, the study material contained much lower fluoride concentration compared to the NaF group, while the effect was more prominent in the NaF + E group. The results of the studies indicate that methionine and vitamin E have opposite effects on accumulation of fluorides in hard tissue in rats. By stimulating fluoride accumulation, methionine reduces the adverse effect of fluorides on soft tissue, while vitamin E, which prevents excessive accumulation of fluorides in bones and teeth, protects these tissues from fluorosis. Therefore, it seems that combined application of both compounds would be optimal for the prevention of the adverse effects of chronic fluoride intoxication.

  11. Giardia and Drinking Water from Private Wells

    Science.gov (United States)

    ... type="submit" value="Submit" /> Healthy Water Home Giardia and Drinking Water from Private Wells Recommend on ... visit CDC's Giardia website. Where and how does Giardia get into drinking water? Millions of Giardia parasites ...

  12. DRINK WATER, WASTEWATER - CUSTOMERS` AWARENESS AND ATTITUDE

    OpenAIRE

    Petrescu, Dacinia Crina; Mihaela TUTUNEA

    2012-01-01

    The objective of the study is to establish behavioural patterns related to drink water and beliefs on water and on the water company.Four main issues are analysed: the awareness on the services delivered by the water company, the use of drink water from the tap, the evaluation of general quality of the water and the cause of dissatisfaction with the water quality. The results show good awarenesson drink water transportation, medium for raw water treatment, low for wastewater collection and tr...

  13. [Studies on markers of exposure and early effect in areas with arsenic pollution: methods and results of the project SEpiAs. Epidemiological studies on population exposed to low-to-moderate arsenic concentration in drinking water].

    Science.gov (United States)

    Bustaffa, Elisa; Bianchi, Fabrizio

    2014-01-01

    Arsenic and its inorganic compounds are classified as human carcinogens. Several epidemiological studies conducted in areas of the world characterized by high arsenic concentration in drinking water, even up to 3,000 μg/l, report associations between arsenic exposure and skin, bladder, lung, liver and kidney cancer as well as cardiovascular diseases, diabetes and reproductive and developmental effects. Since general population is not exposed to these high arsenic concentrations in the last years attention focused on adverse health effects that low-to-moderate arsenic concentrations (0-150 μg/l) in drinking water could induce. The World Health Organization recommends a maximum limit of 10 μg/l for arsenic in drinking water. Almost all epidemiological studies conducted on populations exposed to low-to-moderate arsenic concentrations in drinking water are limited due to problems arising from both individual exposure assessment and low subjects number. The aim of the present review is to collect literature-based evidences regarding adverse health effects associated with exposure to low-to-moderate arsenic concentrations in drinking water (10-150 μg/l) in order to obtain a comprehensive picture of the health outcomes that such exposure can have on general population.

  14. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy consumpti

  15. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy consumpti

  16. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  17. Ammonia pollution characteristics of centralized drinking water sources in China

    Institute of Scientific and Technical Information of China (English)

    Qing Fu; Binghui Zheng; Xingru Zhao; Lijing Wang; Changming Liu

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009.The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces,5 autonomous regions and 4 municipalities were investigated.The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater.The levels of ammonia concentration in river sources gradually decreased from 2005 t0 2008,while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources.The proportion of the type of drinking water sources is different in different regions.In river drinking water sources,the ammonia level was varied in different regions and changed seasonally.The highest value and wide range of annual ammonia was found in South East region,while the lowest value was found in Southwest region.In lake/reservoir drinking water sources,the ammonia levels were not varied obviously in different regions.In underground drinking water sources,the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions.In the drinking water sources with higher ammonia levels,there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  18. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  19. Regulation Development for Drinking Water Contaminants

    Science.gov (United States)

    To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.

  20. Decontamination of Drinking Water Infrastructure ...

    Science.gov (United States)

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  1. Serum calciotropic hormone levels,and dental fluorlsis in Children exposed to different concentrations of fluoride and iodine in drinking water

    Institute of Scientific and Technical Information of China (English)

    BA Yue; ZHANG Ya-wei; ZHU Jiang-yuan; YANG Yue-jin; YU Bo; HUANG Hui; WANG Gang; REN Li-jun; CHENG Xue-min; CUI Liu-xin

    2010-01-01

    Background High fluoride exposure can result in dental fluorosis.Fluoride and iodine are coexistent in the drinking water of areas in China and may affect the prevalence of dental fluorosis and osteogenesis.The aim of this study was to investigate the relationship between serum calciotropic hormone level.and dentaI fluorisis in children exposed to different concentrations of fluoride and iodine in drinking water.Methods A pilot study was conducted in three villages located in the Kaifeng and Tongxu counties of Henan Province,China in 2006.Children aged 8 to 12 years.born and raised in the three villages were recruited.The fluoride levels in the samples of urine from these children were detected by fluoride ion selective electrode.Calcitonin and osteocalcin levels in the serum,and serum calcium were measured by radioimmunassay and flame atomic absorption spectrometry, respectively.Results Fluoride levels in urine were significantly lower in children from control area(CA)as compared with those from the high fluoride & iodine areas(HFIA)and the high fluoride area(HFA)(P<0.05 respectively),and no statistically significant difference was found between the children from HFIA and HFA.Additionally,calcitonin levels in the serum were significantly lower in children from CA and HFA as compared with that from HFIA(P<0.05 respectively),and osteocalcin levels in the serum was lower in children from CA than those from HFIA (P<0.05).No statistically significant difference in serum osteocalcin concentrations was found between children from HFA and HFIA.Conclusion This study provides an evidence that iodine exposure may modify the serum calciotropic hormone levels related to fluorine exposure.

  2. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  3. 30 CFR 75.1718 - Drinking water.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  4. Climate change influence on drinking water quality

    Science.gov (United States)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  5. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Safe Drinking Water

    Centers for Disease Control (CDC) Podcasts

    2008-04-23

    Listen to this podcast to learn more about the steps that are taken to bring you clean tap water.  Created: 4/23/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/1/2008.

  7. DRINKING WATER TREATMENT

    Science.gov (United States)

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  8. Drinking Water Maximum Contaminant Levels (MCLs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards...

  9. TRIHALOMETHANES IN THE DRINKING WATER OF TEHRAN

    Directory of Open Access Journals (Sweden)

    F.Vaezi

    1992-06-01

    Full Text Available Natural sources of water contain some halogenated organic compounds after disinfection by chlorine. Trihalomethanes are one group of the chlorination by products that suspected of being carcinogenic inhuman unfortunately, these compounds are in finished water of all treatment plants that use chlorine as a disinfectant. In this study, the concentration of total THMS of water treated in the water treatment plant No.1 of Tehran had been measured by spectrophotometric method, along the month of June, 1371. Results of experiments have shown that organic contents of Tehran drinking water were not considerable in the period of survey. The mean concentration of TTHMS in water samples is estimated to be 28 micrograms per liter and none of the analyzed samples was considered polluted.

  10. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  11. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guide to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.

  12. DRINKING WATER RESOURCES IN CROATIA

    Directory of Open Access Journals (Sweden)

    Darko Mayer

    1996-12-01

    Full Text Available Annualy renewed resources of drinking water on the Earth are about 45000 cu. km. With today's stage of development that quantity is enough for living 4.5 to 9 billion of people. As it is expected that by 2025 the population on our planet will be over 8.5 billion people, it is clear that the next century will be characterized by the problem of ensuring enaugh quantities of drinking water. This problem will be particularly emphasized in the developing countries and large cities. In the poor countries of arid and subarid areas water deficit will cause the food production crisis and large migrations of the population with almost unpredistable sociological, economical and political consequences could be expected. In the developed world the "water crisis" will stimulate scientific and tehnological progress. The Republic of Croatia, if examined as a whole, regarding the climatic, hydrological, hydrogeological and demographic conditions, has planty of good quality water. It is our duty to preserve this resources for future generations (the paper is published in Croatian.

  13. Effect of doxycycline concentrations in chicken tissues as a consequence of permanent exposure to enrofloxacin traces in drinking water

    Directory of Open Access Journals (Sweden)

    Gbylik-Sikorska Małgorzata

    2016-09-01

    Full Text Available Introduction: The main problem in poultry farming is the difficulty in producing food of animal origin without using antibacterial agents. Because most antibacterial compounds are dispensed in water, some water supply systems can be contaminated by antibiotics which are then administered to the animals unintentionally. This can lead to unexpected increases in antibiotic residues in food of animal origin. The aim of the present study was to determine whether the constant exposure of chicken broilers to enrofloxacin affects the withdrawal time of a therapeutic doxycycline that is intentionally administered to the chickens.

  14. Time to revisit arsenic regulations: comparing drinking water and rice

    National Research Council Canada - National Science Library

    Sauvé, Sébastien

    2014-01-01

    .... Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others...

  15. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2017-01-01

    Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess the potent......Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  16. Formation of disinfection byproducts in typical Chinese drinking water

    Institute of Scientific and Technical Information of China (English)

    Wenbo Liu; Yanmei Zhao; Christopher WK Chow; Dongsheng Wang

    2011-01-01

    Eight typical drinking water supplies in China were selected in this study.Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared.The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low.The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chiorodibromoacetic acid.The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality.The highest total THMs concentrations were detected in spring.

  17. Formation of disinfection byproducts in typical Chinese drinking water.

    Science.gov (United States)

    Liu, Wenbo; Zhao, Yanmei; Chow, Christopher W K; Wang, Dongsheng

    2011-01-01

    Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.

  18. Water Districts - MO 2010 Active Public Drinking Water Systems (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This point layer represents active public drinking water systems. Each public drinking water system's distribution or service area is represented by a single point.

  19. Organochlorine pesticides residues in bottled drinking water from Mexico City.

    Science.gov (United States)

    Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey

    2009-06-01

    This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.

  20. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.

  1. Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.

  2. Lead in Drinking Water in Slovenian Kindergartens and Schools

    Directory of Open Access Journals (Sweden)

    Bitenc K.

    2013-04-01

    Full Text Available The purpose of the work is to determine how high are the concentrations of lead in drinking water in older Slovenian kindergartens and primary schools and to demonstrate that lead can also migrate from newer materials used for the construction of water distribution networks. To determine the concentrations of lead in drinking water, it is needed to take 250 ml of drinking water that stood in the pipes from 8 to 18hours. It is also applied a method for determining the migration from different materials. An old lead pipe is utilized, as well as new materials (PEX-Al-PEX, copper, galvanized pipes and stainless steel pipes. Sampling showed that 6 samples of 39 had levels of lead higher than 10 µg/l, two of them highly exceeded that level. Negative correlation between the level of pH and concentration of lead in drinking water is moderate. Implementation of lead migration from various types of pipes demonstrated the migration from galvanized pipes in all simulants. Furthermore, the migration of lead from galvanized pipes is dependent on water temperature. The migration was confirmed from the lead pipe as expected. Study points to a problem with elevated concentrations of lead in drinking water faced by older kindergartens and primary schools in Slovenia. All concentrations of lead after flushing the pipes were below the 10 µg/l, which shows that the most effective action to lower the concentrations of lead is flushing the water pipes. For the purposes of national monitoring of drinking water is necessary to apply a better method for determining lead levels in drinking water namely the sampling of water that stood in the pipes at least 8 to 18 hours. This study has demonstrated the migration of lead from galvanized pipes. This material is also installed in 54 % of kindergartens and primary schools that participated in the study.

  3. Lead and Drinking Water from Private Wells

    Science.gov (United States)

    ... submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  4. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  5. Time to revisit arsenic regulations: comparing drinking water and rice

    Science.gov (United States)

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  6. Lithium in drinking water and thyroid function.

    Science.gov (United States)

    Broberg, Karin; Concha, Gabriela; Engström, Karin; Lindvall, Magnus; Grandér, Margareta; Vahter, Marie

    2011-06-01

    High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function. We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function. Women (n=202) were recruited in four Andean villages in northern Argentina. Lithium exposure was assessed based on concentrations in spot urine samples, measured by inductively coupled plasma mass spectrometry. Thyroid function was evaluated by plasma free thyroxine (T4) and pituitary gland thyroid-stimulating hormone (TSH), analyzed by routine immunometric methods. The median urinary lithium concentration was 3,910 μg/L (5th, 95th percentiles, 270 μg/L, 10,400 μg/L). Median plasma concentrations (5th, 95th percentiles) of T4 and TSH were 17 pmol/L (13 pmol/L, 21 pmol/L) and 1.9 mIU/L, (0.68 mIU/L, 4.9 mIU/L), respectively. Urine lithium was inversely associated with T4 [β for a 1,000-μg/L increase=-0.19; 95% confidence interval (CI), -0.31 to -0.068; p=0.002] and positively associated with TSH (β=0.096; 95% CI, 0.033 to 0.16; p=0.003). Both associations persisted after adjustment (for T4, β=-0.17; 95% CI, -0.32 to -0.015; p=0.032; for TSH: β=0.089; 95% CI, 0.024 to 0.15; p=0.007). Urine selenium was positively associated with T4 (adjusted T4 for a 1 μg/L increase: β=0.041; 95% CI, 0.012 to 0.071; p=0.006). Exposure to lithium via drinking water and other environmental sources may affect thyroid function, consistent with known side effects of medical treatment with lithium. This stresses the need to screen for lithium in all drinking water sources.

  7. Fluoride and bacterial content of bottled drinking water versus municipal tap water

    Directory of Open Access Journals (Sweden)

    Mythri H

    2010-01-01

    Full Text Available Background: Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. Objectives: The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Materials and Methods: Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs per milliliter. Results: Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. Conclusion: The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  8. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Safe drinking water: the toxicologist's approach.

    Science.gov (United States)

    van Leeuwen, F X

    2000-01-01

    The production of adequate and safe drinking water is a high priority issue for safeguarding the health and well-being of humans all over the world. Traditionally, microbiological quality of drinking water has been the main concern, but over the last decades the attention of the general public and health officials on the importance of chemical quality and the threat of chemical pollutants have increased with the increase of our knowledge on the hazards of chemical substances. There are many sources of contamination of drinking water. Broadly they can be divided into two categories: contaminants originating from surface and groundwater, and contaminants used or formed during the treatment and distribution of drinking water. Contaminants in surface and groundwater can range from natural substances such as arsenic and manganese leaching from soil, to contaminants introduced by human activities, such as run-off from agricultural activities, controlled discharge from sewage treatment works and industrial plants, and uncontrolled discharges or leakage from landfill sites and from chemical accidents. Disinfectants and disinfectant by-products are well known contaminants resulting from the processes used by the drinking water industry for the treatment and distribution of water. The basic question in the production of drinking water is how to rid drinking water of potentially dangerous microorganisms and chemicals without introducing new hazards that might pose new and different threats to human health. It is the responsibility of toxicologists to provide risk assessments for chemical pollutants and to derive guidelines or standards for drinking water quality below which no significant health risk is encountered, to assure consumers that drinking water is safe and can be consumed without any risk. This paper will focus on the toxicological procedures used by the World Health Organization to derive guideline values for chemical compounds in drinking water, and will touch

  10. Temporal and spatial variation of hardness and total dissolved solids concentration in drinking water resources of Ilam City using Geographic Information System

    Directory of Open Access Journals (Sweden)

    Zabihollah Yousefi

    2015-12-01

    Full Text Available Background: In recent times, the decreasing groundwater reserves due to over-consumption of water resources and the unprecedented reduction of precipitation, during the past 1 decades, have resulted in a change in the volume and quality of water with time. The aim of this study was to determine the spatial and temporal variations of hardness and total dissolved solids in drinking water resources of Ilam city, using the GIS system. Methods: This cross-sectional study was carried out on 20 sources of drinking water in Ilam and the results of 5 years archived by the Water and Sewage Co were analyzed using geographic information system (GIS software version 9.3, SPSS version 16 and one-way analysis of variance (ANOVA. The sampling and measurement were also performed in this study based on the Standard Method book. Results: The ordinary kriging method and spherical model are the best interpolation methods for hardness and total dissolved solid, due to the normal distribution of data. The highest values of parameters in most cases are related to the western parts based on maps. The one-way ANOVA test showed that the average amount of total hardness (P = 0.68 and total dissolved solids (P = 0.6 in different seasons of the year are the same. Conclusion: Overuse of groundwater due to illegal digging and permanent easy access to water, increased the salinity of water in the central sections of the studied area. Proper planning that allows the withdrawal of water from authorized underground aquifers or water supply from surface water or dams should be done to overcome this problem.

  11. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  12. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  13. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    Science.gov (United States)

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  14. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  15. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Science.gov (United States)

    2010-08-10

    ... AGENCY Tribal Drinking Water Operator Certification Program AGENCY: Environmental Protection Agency (EPA... Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking..., operators learn how to supply drinking water that meets national standards and gain understanding of...

  16. Rapid method for monitoring N-nitrosodimethylamine in drinking water at the ng/L level without pre-concentration using high-performance liquid chromatography-chemiluminescence detection.

    Science.gov (United States)

    Kodamatani, Hitoshi; Yamasaki, Hitomi; Sakaguchi, Takeru; Itoh, Shinya; Iwaya, Yoshimi; Saga, Makoto; Saito, Keiitsu; Kanzaki, Ryo; Tomiyasu, Takashi

    2016-08-19

    As a contaminant in drinking water, N-nitrosodimethylamine (NDMA) is of great concern because of its carcinogenicity; it has been limited to levels of ng/L by regulatory bodies worldwide. Consequently, a rapid and sensitive method for monitoring NDMA in drinking water is urgently required. In this study, we report an improvement of our previously proposed HPLC-based system for NDMA determination. The approach consists of the HPLC separation of NDMA, followed by NDMA photolysis to form peroxynitrite and detection with a luminol chemiluminescence reaction. The detection limit for the improved HPLC method was 0.2ng/L, which is 10 times more sensitive than our previously reported system. For tap water measurements, only the addition of an ascorbic acid solution to eliminate residual chlorine and passage through an Oasis MAX solid-phase extraction cartridge are needed. The proposed NDMA determination method requires a sample volume of less than 2mL and a complete analysis time of less than 15min per sample. The method was utilized for the long-term monitoring of NDMA in tap water. The NDMA level measured in the municipal water survey was 4.9ng/L, and a seasonal change of the NDMA concentration in tap water was confirmed. The proposed method should constitute a useful NDMA monitoring method for protecting drinking water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Arsenic drinking water regulations in developing countries with extensive exposure.

    Science.gov (United States)

    Smith, Allan H; Smith, Meera M Hira

    2004-05-20

    The United States Public Health Service set an interim standard of 50 microg/l in 1942, but as early as 1962 the US Public Health Service had identified 10 microg/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 microg/l of arsenic over many years may die from internal cancers attributable to arsenic, with lung cancer being the surprising main contributor. A prudent public health response is to reduce the permissible drinking water arsenic concentrations. However, the appropriate regulatory response in those developing countries with large populations with much higher concentrations of arsenic in drinking water, often exceeding 100 microg/l, is more complex. Malnutrition may increase risks from arsenic. There is mounting evidence that smoking and arsenic act synergistically in causing lung cancer, and smoking raises issues of public health priorities in developing countries that face massive mortality from this product. Also, setting stringent drinking water standards will impede short term solutions such as shallow dugwells. Developing countries with large populations exposed to arsenic in water might reasonably be advised to keep their arsenic drinking water standards at 50 microg/l.

  18. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  19. Development and validation of a methodology for determining the concentration of bacteriophages of enteric bacteria in drinking water; Desarrollo y validacion de una metodologia de concentracion de bacteriofagos de bacterias entericas en aguas de bebida

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, J.; Audicana, A.; Cancer, M.; Isern, A.; Llaneza, J.; Moreno, B.; Navarro, M.; Sesma, B.; Tarancon, M. L.; Jofre, J.; Lucena, F.

    2004-07-01

    A method has been developed for determining the concentration of bacteriophages in drinking water involving a primary validation followed by a secondary validation in collaboration with various public health laboratories. The secondary validation involved coordinating and transferring both the methodologies for detecting and enumerating phages, and the method for determining concentrations, to the laboratories, which had never routinely worked with bacteriophages before. The results obtained reveal the possibility of transferring these methodologies to public health laboratories and show how validated protocols and methods can be transferred in order to obtain more reliable results in microbiology studies of water. (Author)

  20. Human coffee drinking: manipulation of concentration and caffeine dose.

    OpenAIRE

    Griffiths, R R; Bigelow, G E; Liebson, I A; O'Keeffe, M; O'Leary, D.; Russ, N

    1986-01-01

    In a residential research ward coffee drinking was studied in 9 volunteer human subjects with histories of heavy coffee drinking. A series of five experiments was undertaken to characterize adlibitum coffee consumption and to investigate the effects of manipulating coffee concentration, caffeine dose per cup, and caffeine preloads prior to coffee drinking. Manipulations were double-blind and scheduled in randomized sequences across days. When cups of coffee were freely available, coffee drink...

  1. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  2. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    Science.gov (United States)

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters

  3. Smart Water: Energy-Water Optimization in Drinking Water Systems

    Science.gov (United States)

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  4. The generation of oxygen radicals after drinking of oxygenated water.

    Science.gov (United States)

    Schoenberg, M H; Hierl, T C; Zhao, J; Wohlgemuth, N; Nilsson, U A

    2002-03-28

    It has been speculated whether ingestion of oxygenated water can lead to an enhanced generation of oxygen radicals. The purpose of three prospective randomized blinded clinical studies was therefore to measure if, when and at which oxygen content in the water,drinking of oxygenated water induces the generation of radicals. Moreover in the fourth prospective,randomized, blinded study possible longterm effects of drinking oxygenated water were examined. Altogether 66 volunteers were drinking 300 ml oxygenated or tap water within 15 minutes. Before drinking, altogether 15 ml of blood from the antecubital vein was collected for determination of ascorbyl radicals with ESR, routine laboratory data (hemoglobin, erythrocytes, hematocrit, leukocytes, thrombocytes, uric acid) and the vitamins A,C,E by HPLC. After drinking the ascorbyl radical measurements were repeated from blood of the antecubital vein. In the longterm study ( fourth study) the volunteers had to undergo the same procedure, as described above, at day 1 and day 21. In the meantime they were drinking per day three times 300 ml either oxygenated water or tap water. All subjects exhibited normal vitamin levels in all three studies. Concommitantly in the fourth study there was no statistically relevant alteration of vitamin concentrations during the observation period of three weeks in the verum and placebo-group. 30 minutes after drinking oxygenated water the concentration of ascorbyl radicals increased significantly by median 42 % from median 48 to 65 nmol/l. This increase of ascorbyl radicals after 30 minutes was reproducible in all studies. The levels of ascorbyl radicals remained elevated for 60 minutes after drinking and returned to normal after 120 minutes. This increase was independent of the oxygen concentration in the water, beginning at 30 mg oxygen/l. Water containing 15 mg oxygen/l did not lead to an enhanced radical formation. Longterm consumption of oxygenated water attenuated the ascorbyl radical

  5. Refractive Errors in Northern China Between the Residents with Drinking Water Containing Excessive Fluorine and Normal Drinking Water.

    Science.gov (United States)

    Bin, Ge; Liu, Haifeng; Zhao, Chunyuan; Zhou, Guangkai; Ding, Xuchen; Zhang, Na; Xu, Yongfang; Qi, Yanhua

    2016-10-01

    The purpose of this study was to evaluate the refractive errors and the demographic associations between drinking water with excessive fluoride and normal drinking water among residents in Northern China. Of the 1843 residents, 1415 (aged ≥40 years) were divided into drinking-water-excessive fluoride (DWEF) group (>1.20 mg/L) and control group (≤1.20 mg/L) on the basis of the fluoride concentrations in drinking water. Of the 221 subjects in the DWEF group, with 1.47 ± 0.25 mg/L (fluoride concentrations in drinking water), the prevalence rates of myopia, hyperopia, and astigmatism were 38.5 % (95 % confidence interval [CI] = 32.1-45.3), 19.9 % (95 % CI = 15-26), and 41.6 % (95 % CI = 35.1-48.4), respectively. Of the 1194 subjects in the control group with 0.20 ± 0.18 mg/L, the prevalence of myopia, hyperopia, and astigmatism were 31.5 % (95 % CI = 28.9-34.2), 27.6 % (95 % CI = 25.1-30.3), and 45.6 % (95 % CI = 42.8-48.5), respectively. A statistically significant difference was not observed in the association of spherical equivalent and fluoride concentrations in drinking water (P = 0.84 > 0.05). This report provides the data of the refractive state of the residents consuming drinking water with excess amounts of fluoride in northern China. The refractive errors did not result from ingestion of mild excess amounts of fluoride in the drinking water.

  6. Mutagenic activity of drinking water in Wroclaw, Poland.

    Science.gov (United States)

    Gasiorowski, K; Szyba, K; Sawicka, J; Gulanowski, B

    1993-01-01

    The Salmonella mutagenicity test was applied to the evaluation of mutagenic activity of Wroclaw drinking water. Contaminants of water samples were concentrated by adsorption on XAD-2 resin. After while they were eluted sequentially with acetone, dichloromethane/methanol (1:1, v/v) and methanol, and then obtained organic extracts were evaporated to dryness. The extracts were then dissolved in DMSO and examined by using the Ames test. The results proved significant contamination of drinking water with mutagenic substances. Hydroxyapatite column chromatography performed after direct incubation of standard DNA probes with tested water extracts showed that drinking water was contaminated with DNA interstrand cross-linking substances. Filtration of tap water through carbon filters markedly reduced mutagenic activity of tested water extracts, whereas ceramic filters were more efficient in depleting of DNA interstrand cross-linking contaminants.

  7. Contribution of drinking water to dietary requirements of essential metals.

    Science.gov (United States)

    Deveau, Michelle

    2010-01-01

    Drinking water can be a source of essential metals, but only one study published thus far has compared the intake of essential metals in drinking water to dietary reference intakes. This assessment compares the ingestion of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), selenium (Se), and zinc (Zn) from drinking water at the maximum concentrations that should be found in water, or at concentrations that are potentially more likely to be found in Canadian water, to the recommended dietary allowance or adequate intake values established by the Institute of Medicine. At guideline limits, water provides sufficient Cr and Cu to meet nutritional requirements, and Mn and Zn levels are sufficient for some age categories to meet nutritional requirements. At concentrations that are more likely to be found in Canadian water, adequate intakes for Cr and Mn may be met by water alone for bottle-fed infants, and water was estimated to provide 23-66% of daily Cu requirements. Drinking water might become a significant source of some essential metals in individuals whose diets are low in these metals, especially in the case of Cu.

  8. MAGNESIUM, DRINKING WATER HARDNESS AND CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Dragana Nikic

    2006-01-01

    Full Text Available Many different countries suggest and justify an integrated laboratory and epidemiological research program with an aim to reject or accept the magnesium – CVD (cardiovascular disease hypothesis. The studies shown in this paper that have investigated the relationship between water hardness, especially magnesium and CVD indicate that, even though there has been an ongoing research for nearly half a century (1957-2004, it has not been completed yet. Different study designs (obductional, clinical, ecological, case-control and cohort restrict an adequate comparison of their results as well as the deduction of results applicable on each territorial level.The majority of researchers around the world, using populational and individual studies, have found an inverse (protective association between mortality and morbidity from CVD and the increase in water hardness, especially the increase in the concentration of magnesium. The most frequent benefit of the water with an optimal mineral composition is the reduction of mortality from ischemic heart disease.It was suggested that Mg from water is a supplementary source of Mg of high biological value, because magnesium from water is absorbed around 30% better than Mg in a diet. The vast majority of studies consider lower concentrations of Mg in the water, in the range of 10% of the total daily intake of Mg.Future research efforts must give better answers to low Mg concentrations in the drinking water, before any concrete recommendations are given to the public. Moreover, the researchers must also determine which chemical form of Mg is most easily absorbed and has the greatest impact.Additional research is necessary in order to further investigate the interrelation between different water and food components as well as individual risk factors in the pathogenesis of CVD.

  9. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  10. Toxicological relevance of emerging contaminants for drinking water quality

    NARCIS (Netherlands)

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we d

  11. Toxicological relevance of emerging contaminants for drinking water quality

    NARCIS (Netherlands)

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we

  12. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay.

  13. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  14. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  15. 30 CFR 71.602 - Drinking water; distribution.

    Science.gov (United States)

    2010-07-01

    ... resistant materials. The containers shall be marked with the words “Drinking Water.” ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in...

  16. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  17. Presence of enteric viruses in source waters for drinking water production in The Netherlands.

    Science.gov (United States)

    Lodder, W J; van den Berg, H H J L; Rutjes, S A; de Roda Husman, A M

    2010-09-01

    The quality of drinking water in The Netherlands has to comply with the Dutch Drinking Water Directive: less than one infection in 10,000 persons per year may occur due to consumption of unboiled drinking water. Since virus concentrations in drinking waters may be below the detection limit but entail a public health risk, the infection risk from drinking water consumption requires the assessment of the virus concentrations in source waters and of the removal efficiency of treatment processes. In this study, samples of source waters were taken during 4 years of regular sampling (1999 to 2002), and enteroviruses, reoviruses, somatic phages, and F-specific phages were detected in 75% (range, 0.0033 to 5.2 PFU/liter), 83% (0.0030 to 5.9 PFU/liter), 100% (1.1 to 114,156 PFU/liter), and 97% (0.12 to 14,403 PFU/liter), respectively, of 75 tested source water samples originating from 10 locations for drinking water production. By endpoint dilution reverse transcription-PCR (RT-PCR), 45% of the tested source water samples were positive for norovirus RNA (0.22 to 177 PCR-detectable units [PDU]/liter), and 48% were positive for rotavirus RNA (0.65 to 2,249 PDU/liter). Multiple viruses were regularly detected in the source water samples. A significant correlation between the concentrations of the two phages and those of the enteroviruses could be demonstrated. The virus concentrations varied greatly between 10 tested locations, and a seasonal effect was observed. Peak concentrations of pathogenic viruses occur in source waters used for drinking water production. If seasonal and short-term fluctuations coincide with less efficient or failing treatment, an unacceptable public health risk from exposure to this drinking water may occur.

  18. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  19. Biological instability in a chlorinated drinking water distribution network.

    Directory of Open Access Journals (Sweden)

    Alina Nescerecka

    Full Text Available The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM intact cell concentrations, intracellular adenosine tri-phosphate (ATP, heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3 cells mL(-1 to 4.66×10(5 cells mL(-1 in the network. While this parameter did not exceed 2.1×10(4 cells mL(-1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5 cells mL(-1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  20. World Health Organization discontinues its drinking-water guideline for manganese.

    Science.gov (United States)

    Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra

    2012-06-01

    The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.

  1. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Microbial quality of drinking water from groundtanks and tankers at source ... and lower educational standard were associated with poorer water quality, ... Keywords: drinking water; point of use; water quality; water quantity; hygiene; sanitation ...

  2. US Forest Service Surface Drinking Water Importance

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting watershed indexes to help identify areas of interest for protecting surface drinking water quality. The dataset depicted in this...

  3. Drinking Water Mapping Application (DWMA) - Public Version

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Mapping Application (DWMA) is a web-based geographic information system (GIS) that enhances the capabilities to identify major contaminant risks...

  4. Drinking Water Mapping Application (DWMA) - Public Version

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Mapping Application (DWMA) is a web-based geographic information system (GIS) that enhances the capabilities to identify major contaminant risks...

  5. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    Science.gov (United States)

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  6. Measurements of Arsenic in the Urine and Nails of Individuals Exposed to Low Concentrations of Arsenic in Drinking Water From Private Wells in a Rural Region of Québec, Canada.

    Science.gov (United States)

    Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France

    2016-01-01

    Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p arsenic intake (p arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic.

  7. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  8. Drinking water quality monitoring using trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  9. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  10. Evaluation of Minerals Content of Drinking Water in Malaysia

    Directory of Open Access Journals (Sweden)

    Azrina Azlan

    2012-01-01

    Full Text Available The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  11. Evaluation of minerals content of drinking water in Malaysia.

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  12. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    Science.gov (United States)

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source.

  13. Microbial quality of drinking water from microfiltered water dispensers.

    Science.gov (United States)

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users.

  14. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    Science.gov (United States)

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. © The American Society of Tropical Medicine and Hygiene.

  15. Health risks due to radon in drinking water

    Science.gov (United States)

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  16. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?

    DEFF Research Database (Denmark)

    Tiede, Karen; Hansen, Steffen Foss; Westerhoff, Paul

    2016-01-01

    drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes......This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different...... product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations...

  17. Onsite defluoridation system for drinking water treatment using calcium carbonate.

    Science.gov (United States)

    Wong, Elaine Y; Stenstrom, Michael K

    2017-08-28

    Fluoride in drinking water has several effects on teeth and bones. At concentrations of 1-1.5 mg/L, fluoride can strengthen enamel, improving dental health, but at concentrations above 1.5 to 4 mg/L can cause dental fluorosis. At concentrations of 4-10 mg/L, skeletal fluorosis can occur. There are many areas of the world that have excessive fluoride in drinking water, such as China, India, Sri Lanka, and the Rift Valley countries in Africa. Treatment solutions are needed, especially in poor areas where drinking water treatment plants are not available. On-site or individual treatment alternatives can be attractive if constructed from common materials and if simple enough to be constructed and maintained by users. Advanced on-site methods, such as under sink reserve osmosis units, can remove fluoride but are too expensive for developing areas. This paper investigates calcium carbonate as a cost effective sorbent for an onsite defluoridation drinking water system. Batch and column experiments were performed to characterize F(-) removal properties. Fluoride sorption was described by a Freundlich isotherm model, and it was found that the equilibrium time was approximately 3 h. Calcium carbonate was found to have comparable F(-) removal abilities as the commercial ion exchange resins and possessed higher removal effectiveness compared to calcium containing eggshells and seashells. It was also found that the anion Cl- did not compete with F(-) at typical drinking water concentrations, having little impact on the effectiveness of the treatment system. A fluoride removal system is proposed that can be used at home and can be maintained by users. Through this work, we can be a step closer to bringing safe drinking water to those that do not have access to it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.

  19. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  20. Nitrate intake from drinking water on Tenerife island (Spain).

    Science.gov (United States)

    Caballero Mesa, J M; Rubio Armendáriz, C; Hardisson de la Torre, A

    2003-01-20

    Although meat and vegetable products contain higher concentrations of nitrate, drinking water is the fastest and most direct form of nitrate consumption by the population. It becomes contaminated with nitrates when sea water infiltrates fresh water aquifers and when rain and irrigation water wash through soils that have been excessively treated with nitrated fertilizers. Nitrates are of great toxicological interest as they are involved in the origin of nitrites and nitrosamines and the development of metahaemoglobinaemia in infants. The objective of this study was to determine the quantities of NO(3)(-) in the water supply of each of the Island's municipalities and in the leading brands of bottled waters consumed by the population of Tenerife. This parameter is necessary for the determination of Acceptable Daily Intake (A.D.I.) of nitrates from drinking water. With one unremarkable exception, the nitrate levels found in the water analyzed were optimum for human consumption and amply complied with current European Legislation.

  1. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  2. Alternative technology for arsenic removal from drinking water

    OpenAIRE

    Purenović Milovan

    2007-01-01

    Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in wat...

  3. Accumulation of arsenic in drinking water distribution systems.

    Science.gov (United States)

    Lytle, Darren A; Sorg, Thomas J; Frietch, Christy

    2004-10-15

    The tendency for iron solid surfaces to adsorb arsenic is well-known and has become the basis for several drinking water treatment approaches that remove arsenic. It is reasonable to assume that iron-based solids, such as corrosion deposits present in drinking water distribution systems, have similar adsorptive properties and could therefore concentrate arsenic and potentially re-release it into the distribution system. The arsenic composition of solids collected from drinking water distribution systems (pipe sections and hydrant flush solids), where the waters had measurable amounts of arsenic in their treated water, were determined. The elemental composition and mineralogy of 67 solid samples collected from 15 drinking water utilities located in Ohio (7), Michigan (7), and Indiana (1) were also determined. The arsenic content of these solids ranged from 10 to 13 650 microg of As/g of solid (as high as 1.37 wt %), and the major element of most solids was iron. Significant amounts of arsenic were even found in solids from systems that were exposed to relatively low concentrations of arsenic (water.

  4. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  5. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  6. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  7. Small Drinking Water Systems Research and Development

    Science.gov (United States)

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...

  8. Relationship Between Microcystin in Drinking Water and Colorectal Cancer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the association of microcystin (MC) in drinking water with the incidence of colorectal cancer. Methods The study was designed as a retrospective cohort. Eight townships or towns were randomly selected as the study sites in Haining City of Zhejiang Province, China. 408 cases of colon and rectum carcinomas diagnosed from 1977 to 1996 in the study sites were included, and a survey on types of drinking water of these patients was conducted. Samples of different water sources (well, tap, river and pond) were collected separately and microcystin concentrations were determined by indirect competitive ELISA method. Results The incidence rate of colorectal cancer was significantly higher in population who drank river and pond water than those who drank well and tap water. Compared to well water, the relative risk (RR) for colorectal cancer was 1.88 (tap), 7.94 (river) and 7.70 (pond) respectively. The positive rate (>50 pg/mL) of microcystin in samples of well, tap, river and pond water was 0, 0, 36.23% and 17.14% respectively. The concentration of microcystin in river and pond water was significantly higher than that in well and tap water (P<0.01). Spearman rank correlation analysis showed that in the study sites, the microcystin concentration of river and pond water was positively associated with the incidence of colorectal cancer (rs= 0.881, P<0.01). Conclusions The types of drinking water are positively associated with the incidence of colorectal cancer in the study sites, and this may be related to microcystin contamination of drinking water. Further biological study is needed to support the possible causative role of mycrocystin in carcinogenesis of colon and rectum.

  9. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  10. Beyond Flint: National Trends in Drinking Water Quality Violations

    Science.gov (United States)

    Allaire, M.; Wu, H.; Lall, U.

    2016-12-01

    Ensuring safe water supply for communities across the U.S. represents an emerging challenge. Aging infrastructure, impaired source water, and strained community finances may increase vulnerability of water systems to quality violations. In the aftermath of Flint, there is a great need to assess the current state of U.S. drinking water quality. How widespread are violations? What are the spatial and temporal patterns in water quality? Which types of communities and systems are most vulnerable? This is the first national assessment of trends in drinking water quality violations across several decades. In 2015, 9% of community water systems violated health-related water quality standards. These non-compliant systems served nearly 23 million people. Thus, the challenge of providing safe drinking water extends beyond Flint and represents a nationwide concern. We use a panel dataset that includes every community water system in the United States from 1981 to 2010 to identify factors that lead to regulatory noncompliance. This study focuses on health-related violations of the Safe Drinking Water Act. Lasso regression informed selection of appropriate covariates, while logistic regressions modeled the probability of noncompliance. We find that compliance is positively associated with private ownership, purchased water supply, and greater household income. Yet, greater concentration of utility ownership and violations in prior years are associated with a higher likelihood of violation. The results suggest that purchased water contracts, which are growing among small utilities, could serve as a way to improve regulatory compliance in the future. However, persistence of violations and ownership concentration deserve attention from policymakers. Already, the EPA has begun to prioritize enforcement of persistent violators. Overall, as the revitalization of U.S. water infrastructure becomes a growing priority area, results of this study are intended to inform investment and

  11. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  12. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Model output data set (gwava-s_out)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents predicted nitrate concentration in shallow, recently recharged ground water, in milligrams per liter, in the conterminous United States, and...

  13. Anencephalus, drinking water, geomagnetism and cosmic radiation.

    Science.gov (United States)

    Archer, V E

    1979-01-01

    The mortality rates from anencephalus from 1950-1969 in Canadian cities are shown to be strongly correlated with city growth rate and with horizontal geomagnetic flux, which is directly related to the intensity of cosmic radiation. They are also shown to have some association with the magnesium content of drinking water. Prior work with these data which showed associations with magnesium in drinking water, mean income, latitude and longitude was found to be inadequate because it dismissed the observed geographic associations as having little biological meaning, and because the important variables of geomagnetism and city growth rate were overlooked.

  14. Pyrosequencing analysis of the bacterial community in drinking water wells.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  15. Are NORMs Accumulated in Filters of Drinking Water Facilities?

    Science.gov (United States)

    Choung, S.; Shin, W.; Park, M.; Han, J. H.; Ryu, J. S.; Han, W. S.; Chang, B. U.

    2016-12-01

    Groundwater is used as raw water to produce mineral drinking water through filtering processes in bottled water facilities. Although natural occurring radioactive materials (NORMs) exist in groundwater, accumulation of NORMs were rarely studied due to their low concentrations in groundwater. The goal of this study is to evaluate potential accumulation of NORMs in filters used at the drinking water facilities. Raw water and treated water after each filtering step, bottled water, and used filters were collected from a total of 13 bottled water facilities to analyze major dissolved ions and NORMs. Additionally, surface radioactive dose rate were measured at individual filter housings. The measured concentrations of NORMs in raw and treated water were quite low. However, the surface radioactivity dose rates dramatically increased around filter housing located at very first step regardless of filter type (i.e., activated carbon or membrane filter) in 4 out of 6 facilities. Some used filters showed approximately 20 times greater contents of Pb-210 than the Korean regulation level of 1 Bq g-1. Also, the concentrations of uranium and thorium were detected up to 75 µg g-1filter and 2 µg g-1filter, respectively, in 4 water facilities. These results implies potential accumulation of NORMs in filters used at bottled water facilities. Therefore, the filters need to be monitored during manufacturing processes of bottled water, and may be properly managed after use.

  16. Fluoride content of soft drinks, nectars, juices, juice drinks, concentrates, teas and infusions marketed in Portugal.

    Science.gov (United States)

    Fojo, C; Figueira, M E; Almeida, C M M

    2013-01-01

    A potentiometric method using a fluoride combination ion-selective electrode was validated and used to analyse 183 samples, including soft drinks, juices, nectars, juice drinks, concentrates, teas and infusions marketed in Portugal. The fluoride levels were higher in extract-based soft drinks, juice drinks and juice, with fluoride values of 0.86 ± 0.35, 0.40 ± 0.24 and 0.37 ± 0.11 mg l⁻¹, respectively. The lowest fluoride concentration was found in infusion samples (0.12 ± 0.01 mg l⁻¹), followed by teas and carbonated soft drinks with fluoride concentrations of 0.16 ± 0.12 and 0.18 ± 0.07 mg l⁻¹, respectively. Nectars, concentrates and juice-based drinks had similar fluoride concentrations of 0.33 ± 0.16, 0.29 ± 0.12 and 0.25 ± 0.14 mg l⁻¹, respectively. The fluoride concentrations in all these samples would only contribute intakes below the acceptable daily intake (ADI = 0.05 mg kg⁻¹ body weight day⁻¹), indicating that, individually, these beverages cannot induce fluoride toxicity in the population group of children.

  17. Infiltration of pesticides in surface water into nearby drinking water supply wells

    Science.gov (United States)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  18. Drinking behaviours and blood alcohol concentration in four European drinking environments: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hughes Karen

    2011-12-01

    Full Text Available Abstract Background Reducing harm in drinking environments is a growing priority for European alcohol policy yet few studies have explored nightlife drinking behaviours. This study examines alcohol consumption and blood alcohol concentration (BAC in drinking environments in four European cities. Methods A short questionnaire was implemented among 838 drinkers aged 16-35 in drinking environments in four European cities, in the Netherlands, Slovenia, Spain and the UK. Questions included self-reported alcohol use before interview and expected consumption over the remainder of the night. Breathalyser tests were used to measured breath alcohol concentration (converted to BAC at interview. Results Most participants in the Dutch (56.2%, Spanish (59.6% and British (61.4% samples had preloaded (cf Slovenia 34.8%. In those drinking 5 h. In other nationalities, BAC increases were less pronounced or absent. High BAC (> 0.08% was associated with being male, aged > 19, British and having consumed spirits. In all cities most participants intended to drink enough alcohol to constitute binge drinking. Conclusions Different models of drinking behaviour are seen in different nightlife settings. Here, the UK sample was typified by continued increases in inebriation compared with steady, more moderate intoxication elsewhere. With the former being associated with higher health risks, European alcohol policy must work to deter this form of nightlife.

  19. Heavy Metal Concentrations in Maltese Potable Water

    Directory of Open Access Journals (Sweden)

    Roberta Bugeja

    2015-05-01

    Full Text Available This study evaluates the levels of aluminum (Al, cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, lead (Pb, nickel (Ni and zinc (Zn in tap water samples of forty localities from around the Maltese Islands together with their corresponding service supply reservoirs. The heavy metal concentrations obtained indicated that concentrations of the elements were generally below the maximum allowed concentration established by the Maltese legislation. In terms of the Maltese and EU water quality regulations, 17.5% of the localities sampled yielded water that failed the acceptance criteria for a single metal in drinking water. Higher concentrations of some metals were observed in samples obtained at the end of the distribution network, when compared to the concentrations at the source. The observed changes in metal concentrations between the localities’ samples and the corresponding supply reservoirs were significant. The higher metal concentrations obtained in the samples from the localities can be attributed to leaching in the distribution network.

  20. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  1. [On the rating of Helicobacter pylori in drinking water].

    Science.gov (United States)

    Fedichkina, T P; Solenova, L G; Zykova, I E

    2014-01-01

    There are considered the issues related to the possibility to rate of Helicobacter pylori (H. pylori) content in drinking water. There is described the mechanism of of biofilm formation. The description refers to the biofilm formation mechanism in water supply systems and the existence of H. pylori in those systems. The objective premises of the definition of H. pylori as a potential limiting factor for assessing the quality of drinking water have been validated as follows: H. pylori is an etiologic factor associated to the development of chronic antral gastritis, gastric ulcer and duodenal ulcer, and gastric cancer either, in the Russian population the rate of infection with H. pylori falls within range of 56 - 90%, water supply pathway now can be considered as a source of infection of the population with H. pylori, the existence of WHO regulatory documents considering H. pylori as a candidate for standardization of the quality of the drinking water quite common occurrence of biocorrosion, the reduction of sanitary water network reliability, that creates the possibility of concentrating H. pylori in some areas of the water system and its delivery to the consumer of drinking water, and causes the necessity of the prevention of H. pylori-associated gastric pathology of the population. A comprehensive and harmonized approach to H. pylori is required to consider it as a candidate to its rating in drinking water. Bearing in mind the large economic losses due to, on the one hand, the prevalence of disease caused by H. pylori, and, on the other hand, the biocorrosion of water supply system, the problem is both relevant in terms of communal hygiene and economy.

  2. Fluoride in Drinking Water -Its Effects and Removal

    Directory of Open Access Journals (Sweden)

    Ram Gopal

    1985-01-01

    Full Text Available Occurrence of fluoride in water, its metabolism, excretion. effect oingestion in human and cattle system and methods of fluoridation and defluoridation have been discussed. The presence of fluoride in waters occurring in India, with special reference to Rajasthan desert has been reviewed. Based on the survey and physico-chemical analyses of about 2,700 water samples of Rajasthan, distribution of fluoride in this area has been discussed wrth reference to drinking water standards. A water resources map showing concentrations of fluoride in four arid districts of Rajasthan is also presented.

  3. Impact of harmful algal blooms on several Lake Erie drinking water treatment facilities; methodology considerations

    Science.gov (United States)

    The propagation of cyanbacterial cells and their toxins were investigated at seven drinking water treatment plants (DWTPs) on Lake Erie were investigated with regards to harmful algal bloom (HAB) toxin concentrations, water quality variations in treatment plant influents, and pr...

  4. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    Science.gov (United States)

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  5. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  6. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  7. Drinking Water. The Food Guide Pyramid.

    Science.gov (United States)

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of drinking water. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words. The book…

  8. CONTROL OF ZOONOTIC DISEASES IN DRINKING WATER

    Science.gov (United States)

    For over a century, the process of providing hygienically safe drinking water has focused on utilizing treatment processes to provide barriers to the passage of infectious disease-causing organisms to humans. This concept is often considered the cornerstone of sanitary engineerin...

  9. Microfiltration and Ultrafiltration Membranes for Drinking Water

    Science.gov (United States)

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  10. Drinking Water. The Food Guide Pyramid.

    Science.gov (United States)

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of drinking water. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words. The book…

  11. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia.

    Science.gov (United States)

    Jovanovic, Dragana; Jakovljević, Branko; Rašić-Milutinović, Zorica; Paunović, Katarina; Peković, Gordana; Knezević, Tanja

    2011-02-01

    Vojvodina, a northern region of Serbia, belongs to the Pannonian Basin, whose aquifers contain high concentrations of arsenic. This study represents arsenic levels in drinking water in ten municipalities in Serbia. Around 63% of all water samples exceeded Serbian and European standards for arsenic in drinking water. Large variations in arsenic were observed among supply systems. Arsenic concentrations in public water supply systems in Vojvodina were much higher than in other countries in the Pannonian Basin.

  12. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  13. Region 9 Drinking Water Wells (LD-SDWIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPAâ??s Safe Drinking Water Information System (SDWIS) databases store information about drinking water. The federal version (SDWIS/FED) stores the information EPA...

  14. A drinking water quality framework for South Africa

    African Journals Online (AJOL)

    Quality Framework for South Africa to enable effective management of drinking water quality and the protection of public health. ... to monitor, manage, communicate and regulate drinking water quality. ... Inadequate WSA institutional capacity (staffing, funding, .... Although demonstrating compliance with regulatory limits.

  15. Sole Source Aquifer Program | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    The Safe Drinking Water Act gives EPA the authority to designate aquifers which are the sole or principal drinking water source for an area, and which, if contaminated, would create a significant hazard to public health.

  16. Fluoride Content of Bottled Drinking Waters in Qatar.

    Science.gov (United States)

    Almulla, Hessa Ibrahim; King, Nigel M; Alnsour, Hamza Mohammad; Sajnani, Anand K

    2016-12-01

    Fluoridation of drinking water has been recognized as one of the most effective ways of achieving community-wide exposure to the caries prevention effects of fluoride (F). A vast majority of people in Qatar use bottled water for drinking. Use of bottled water without knowing the F level may expose children to dental caries risk if the F level is lower than optimal or to dental fluorosis if the F level is too high. The aim of this study was to determine the F concentration of bottled water available in Qatar. A total of 32 brands of bottled water were evaluated. The F concentrations displayed on the labels were recorded. The F ion-selective electrode method was used to measure the F concentration in water samples, and three measurements were taken for every sample to ensure reproducibility. The p value was set at 0.05. The F concentration ranged from 0.06 to 3.0 ppm with a mean value of 0.8 ppm (±0.88). The F levels were provided by the manufacturers on the labels of 60 % of the samples, but this was significantly lower than the measured F levels (p water that was produced in Saudi Arabia had significantly higher levels of F when compared to those produced in other countries (p water. Furthermore, there was a significant disparity between the F levels which were measured and those that were provided on the labels.

  17. National and sub-national drinking water fluoride concentrations and prevalence of fluorosis and of decayed, missed, and filled teeth in Iran from 1990 to 2015: a systematic review.

    Science.gov (United States)

    Taghipour, Nader; Amini, Heresh; Mosaferi, Mohammad; Yunesian, Masud; Pourakbar, Mojtaba; Taghipour, Hassan

    2016-03-01

    Fluoride intake, fluorosis, and dental caries could affect quality of life and disease burden worldwide. As a part of the National and Sub-national Burden of Disease Study (NASBOD) in Iran, we conducted a systematic review to evaluate province-year-specific mean drinking water fluoride concentrations and prevalence of fluorosis and of decayed, missed, and filled teeth (DMFT) in Iran from 1990 to December 2015. We did electronic searches of all English and Persian publications on PubMed, ScienceDirect, Google Scholar, and Iranian databases. Results revealed that the weighted mean drinking water fluoride concentration in Iran from 1990 to 2015 has been about 0.65 ± 0.38 mg/l. However, based on the WHO guideline value (1.50 mg/l) and the maximum permissible Iranian national fluoride standard (1.40 to 2.40 mg/l depending on the region's climate), there have been some regions in Iran with non-optimum fluoride concentrations in their drinking water (up to 7.0 mg/l). Overall, concentrations have been higher in southern parts of Iran and in some areas of Azerbaijan-e-Gharbi Province in the northwest and lower in the rest of the northwest and central parts of Iran. In addition, some hotspots have been found in Bushehr Province, southwest of Iran. The highest prevalence of dental flourosis has been reported in normal index while the lowest prevalence has been expressed in severe index. The lowest DMFT (about 0.1) was in Arsanjan City in Fars Province, and the highest (about 6.7) was for Najaf Abad City in Isfahan Province. Prevalence of fluorosis has been rather high in studied areas of Iran (e.g. 100 % in Maku City in Azarbaijan-e-Gharbi Province), and there was discrepancy for DMFT, but a lack of studies renders the results inconclusive. Further studies, health education and promotion plans, and evidence-based nutrition programs are recommended.

  18. Improving Drinking Water Quality by Remineralisation.

    Science.gov (United States)

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.

  19. CO2 emissions from German drinking water reservoirs.

    Science.gov (United States)

    Saidi, Helmi; Koschorreck, Matthias

    2017-03-01

    Globally, reservoirs are a significant source of atmospheric CO2. However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO2 source with a median flux of 167gCm(-2)y(-1), which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm(-2)y(-1) in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO2 emissions only occurred in reservoirs with pHCO2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO2 emissions. In total, German drinking water reservoirs emit 44000t of CO2 annually, which makes them a negligible CO2 source (CO2 emissions) in Germany.

  20. [Residual levels of acetochlor in source water and drinking water of China's major cities].

    Science.gov (United States)

    Yu, Zhi-Yong; Jin, Fen; Li, Hong-Yan; An, Wei; Yang, Min

    2014-05-01

    The concentration levels of acetochlor were investigated in source water and drinking water from 36 major cities in China by solid phase extraction (SPE) combined with gas chromatography - mass spectrometry (GC-MS). Acetochlor detection rate was 66.9% in all the 145 source water samples collected with an average concentration of 33.9 ng L-1. The average removal rate of acetochlor was limited through the drinking water treatment process. The detection concentration of the northeast region was the highest. The concentrations of acetochlor detected in lake were higher than those in river and groundwater as source water. The detection rate and concentration of Liaohe river watershed and the coastal watershed were the highest.

  1. The quality of drinking water in Poland

    Directory of Open Access Journals (Sweden)

    L. Kłos

    2015-05-01

    Full Text Available Introduction. An analysis of the drinking water quality and the degree of access to water supply and sewerage system in Poland was conducted. Materials and methods. Method of analysis of secondary statistical data was applied, mostly based on data available in the materials of the Central Statistical Office in Warsaw, the Waterworks Polish Chamber of Commerce in Bydgoszcz and the National Water Management in Warsaw. Result and discussion. 60 % of Poles do not trust to drink water without prior boiling. Water flowing from the taps, although widely available, is judged to be polluted, with too much fluorine or not having the appropriate consumer values (colour, smell and taste. The current water treatment systems can however improve them, although such a treatment, i.e. mainly through chlorination of water, deteriorates its quality in relation to pure natural water. The result is that fewer and fewer Poles drink water directly from the tap. They also less and less use tap water to cook food for which the bottled water is trusted more. Reason for that is that society does not trust the safety of the water supplied by the municipal water companies. The question thus is: Are they right? Tap water in Poland meets all standards since it is constantly monitored by the water companies and all relevant health services. Tap water supplied through the water supply system can be used without prior boiling. Studies have shown that only the operating parameters of water, suc h as taste, odour and hardness, are not satisfactory everywhere, different in each city, and sometimes in different districts of cities, often waking thoughts among users about its inappropriateness. The lowered water value can be easily improved at home through the use of filters. In conclusion, due to constant monitoring and investment in upgrading treatment processes, the quality of tap water has improved significantly in the last years. Conclusion. The results first allow assessing the

  2. Effects of slightly acidic electrolysed drinking water on mice.

    Science.gov (United States)

    Inagaki, Hideaki; Shibata, Yoshiko; Obata, Takahiro; Kawagoe, Masami; Ikeda, Katsuhisa; Sato, Masayoshi; Toida, Kazumi; Kushima, Hidemi; Matsuda, Yukihisa

    2011-10-01

    Slightly acidic electrolysed (SAE) water is a sanitizer with strong bactericidal activity due to hypochlorous acid. We assessed the safety of SAE water as drinking water for mice at a 5 ppm total residual chlorine (TRC) concentration to examine the possibility of SAE water as a labour- and energy-saving alternative to sterile water. We provided SAE water or sterile water to mice for 12 weeks, during which time we recorded changes in body weight and weekly water and food intakes. At the end of the experiment, all of the subject animals were sacrificed to assess serum aspartate aminotransferase, alanine aminotransferase and creatinine levels and to examine the main organs histopathologically under a light microscope. In addition, we investigated the bacteria levels of both types of water. We found no difference in functional and morphological health condition indices between the groups. Compared with sterile water, SAE water had a relatively higher ability to suppress bacterial growth. We suggest that SAE water at 5 ppm TRC is a safe and useful alternative to sterile water for use as drinking water in laboratory animal facilities.

  3. A Drop to Drink. . .A Report on the Quality of Our Drinking Water.

    Science.gov (United States)

    Tait, Jack

    Basic information about the quality of our nation's drinking water is contained in this brochure. Written for the general public to familiarize them with the situation, it will also help them evaluate the state of the nation's drinking water as well as that of their own communities. The need to assure reliable sources of healthful drinking water…

  4. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  5. Assessment of Drinking Water Quality from Bottled Water Coolers.

    Directory of Open Access Journals (Sweden)

    Marzieh Farhadkhani

    2014-05-01

    Full Text Available Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers.A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC, temperature, pH, residual chlorine, turbidity, electrical conductivity (EC and total organic carbon (TOC. Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA.The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05 higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified.A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control.

  6. Climate vulnerability of drinking water supplies

    Science.gov (United States)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  7. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  8. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  9. Risk assessment of fluoride exposure in drinking water of Tunisia.

    Science.gov (United States)

    Guissouma, Wiem; Hakami, Othman; Al-Rajab, Abdul Jabbar; Tarhouni, Jamila

    2017-06-01

    The presence of fluoride in drinking water is known to reduce dental cavities among consumers, but an excessive intake of this anion might leads to dental and skeletal fluorosis. This study reports a complete survey of the fluoridated tap water taken from 100 water consumption points in Tunisia. The fluoride concentrations in tap water were between 0 and 2.4 mg L(-1). Risk assessment of Fluoride exposure was assessed depending on the age of consumers using a four-step method: hazard identification, toxicity reference values selection (TRVs), daily exposure assessment, and risk characterization. Our findings suggest that approximately 75% of the Tunisian population is at risk for dental decay, 25% have a potential dental fluorosis risk, and 20% might have a skeletal fluorosis risk according to the limits of fluoride in drinking water recommended by WHO. More investigations are recommended to assess the exposure risk of fluoride in other sources of drinking water such as bottled water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Human exposure to trihalomethanes in drinking water].

    Science.gov (United States)

    Tominaga, M Y; Midio, A F

    1999-08-01

    Halogenated hydrocarbon compounds, some of them recognized as carcinogenic to different animal species can be found in drinking water. Chloroform, bromodichloromethane, dibromochloromethane and bromoform are the most important trihalomethanes found in potable water. They are produced in natural waters during chlorinated desinfection by the halogenation of precursors, specially humic and fulvic compounds. The review, in the MEDLINE covers the period from 1974 to 1998, presents the general aspects of the formation of trihalomethanes, sources of human exposure and their toxicological meaning for exposed organisms: toxicokinetic disposition and spectrum of toxic effects (carcinogenic, mutagenic and teratogenic).

  11. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  12. Drinking-water safety: challenges for community-managed systems.

    Science.gov (United States)

    Rizak, S; Hrudey, Steve E

    2008-01-01

    A targeted review of documented waterborne disease outbreaks over the past decades reveals some recurring themes that should be understood by drinking-water suppliers. Evidence indicates the outbreaks are often linked to some significant change in conditions that provides a sudden challenge to a water system. Severe weather events, such as heavy rainfall or runoff from snow melt, as well as treatment process and system changes, are common risk factors for drinking-water outbreaks. Failure to recognise warning signs and complacency are important contributors to drinking water becoming unsafe. Drinking-water suppliers must focus on competence and vigilance in maintaining effective multiple barriers appropriate to the challenges facing the drinking-water system. Understanding the risk factors and failure modes of waterborne disease outbreaks is an essential component for effective management of community drinking-water supplies and ensuring the delivery of safe drinking-water to consumers.

  13. Phosphorus limitation on bacterial regrowth in drinking water

    Institute of Scientific and Technical Information of China (English)

    SANG Jun-qiang; ZHANG Xi-hui; YU Guo-zhong; WANG Zhan-sheng

    2003-01-01

    Assimilable organic carbon (AOC) test and bacterial regrowth potential (BRP) analysis were used to investigate the effect of phosphorus on bacterial regrowth in the drinking water that was made from some raw water taken from a reservoir located in northern China. It was shown that AOC of the drinking water samples increased by 43.9%-59.6% and BRP increased by 100%-235% when 50 μg/L PO3-4-P(as NaH2 PO4 ) was added alone to the drinking water samples. This result was clear evidence of phosphorus limitation on bacteria regrowth in the drinking water. This investigation indicated the importance of phosphorus in ensuring biological stability of drinking water and offered a novel possible option to restrict microbial regrowth in drinking water distribution system by applying appropriate technologies to remove phosphorus efficiently from drinking water in China.

  14. Arsenic in drinking water and adverse birth outcomes in Ohio.

    Science.gov (United States)

    Almberg, Kirsten S; Turyk, Mary E; Jones, Rachael M; Rankin, Kristin; Freels, Sally; Graber, Judith M; Stayner, Leslie T

    2017-08-01

    Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Arsenic in drinking water: a worldwide water quality concern for water supply companies

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-06-01

    Full Text Available For more than a decade it has been known that shallow tube wells in Bangladesh are frequently contaminated with arsenic concentrations at a level that is harmful to human health. By now it is clear that a disaster of an unheard magnitude is going on: the World Health Organization has estimated that long-term exposure to arsenic in groundwater, at concentrations over 500 μg L−1, causes death in 1 in 10 adults. Other studies show that problems with arsenic in groundwater/drinking water occur in many more countries worldwide, such as in the USA and China. In Europe the focus on arsenic problems is currently confined to countries with high arsenic levels in their groundwater, such as Serbia, Hungary and Italy. In most other European countries, the naturally occurring arsenic concentrations are mostly lower than the European drinking water standard of 10 μg L−1. However, from the literature review presented in this paper, it is concluded that at this level health risks cannot be excluded. As consumers in European countries expect the drinking water to be of impeccable quality, it is recommended that water supply companies optimize arsenic removal to a level of <1 μg L−1, which is technically feasible.

  16. Leaching of heavy metals from water bottle components into the drinking water of rodents.

    Science.gov (United States)

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals.

  17. Chemical and Physical Indicators in Drinking Water and Water Sources of Boroujerd Using Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    Darabi , M. (MSC

    2014-05-01

    Full Text Available Background and Objective: Quality control of drinking water is important for maintaining health and safety of consumers, and the first step is to study the water quality variables. This study aimed to evaluate the chemical and physical indicators, water quality variables and qualitative classification of drinking water stations and water sources in Boroujerd. Material and Methods: This descriptive-cross sectional study was conducted on 70 samples of drinking water and 10 samples from sources in 2011-2012. Nine Water quality variables were measured and coded using STATISTICA10 Software. Principal component analysis (PCA was performed for qualitative classification of water samples and determination of water quality variables. Results: Based on PCA, chemical variables such as fluoride, nitrate, total hardness and iron, and physical variables such as pH and TDS were paramount importance to water quality. According to T-test, the average concentration of fluoride and iron, and the turbidity in all samples were significantly less than the standard. But other variables were up to standard. Conclusion: For the large water quality data, the use of PCA to identify the main qualitative variables and to classify physical and chemical variables can be used as an effective way in water quality management. Keywords: Physical and Chemical Indicators, Drinking Water and Sources, Boroujerd, Principal Component Analysis

  18. Widespread copper and lead contamination of household drinking water, New South Wales, Australia.

    Science.gov (United States)

    Harvey, P J; Handley, H K; Taylor, M P

    2016-11-01

    This study examines arsenic, copper, lead and manganese drinking water contamination at the domestic consumer's kitchen tap in homes of New South Wales, Australia. Analysis of 212 first draw drinking water samples shows that almost 100% and 56% of samples contain detectable concentrations of copper and lead, respectively. Of these detectable concentrations, copper exceeds Australian Drinking Water Guidelines (ADWG) in 5% of samples and lead in 8%. By contrast, no samples contained arsenic and manganese water concentrations in excess of the ADWG. Analysis of household plumbing fittings (taps and connecting pipework) show that these are a significant source of drinking water lead contamination. Water lead concentrations derived for plumbing components range from 108µg/L to 1440µg/L (n=28, mean - 328µg/L, median - 225µg/L). Analysis of kitchen tap fittings demonstrates these are a primary source of drinking water lead contamination (n=9, mean - 63.4µg/L, median - 59.0µg/L). The results of this study demonstrate that along with other potential sources of contamination in households, plumbing products that contain detectable lead up to 2.84% are contributing to contamination of household drinking water. Given that both copper and lead are known to cause significant health detriments, products for use in contact with drinking water should be manufactured free from copper and lead. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    Science.gov (United States)

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern.

  1. Drinking Water Consequences Tools. A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    In support of the goals of Department of Homeland Security’s (DHS) National Protection and Programs Directorate and the Federal Emergency Management Agency, the DHS Office of Science and Technology is seeking to develop and/or modify consequence assessment tools to enable drinking water systems owner/operators to estimate the societal and economic consequences of drinking water disruption due to the threats and hazards. This work will expand the breadth of consequence estimation methods and tools using the best-available data describing water distribution infrastructure, owner/assetlevel economic losses, regional-scale economic activity, and health. In addition, this project will deploy the consequence methodology and capability within a Web-based platform. This report is intended to support DHS effort providing a review literature review of existing assessment tools of water and wastewater systems consequences to disruptions. The review includes tools that assess water systems resilience, vulnerability, and risk. This will help to understand gaps and limitations of these tools in order to plan for the development of the next-generation consequences tool for water and waste water systems disruption.

  2. 硫酸根浓度突变对给水管网铁释放的影响%Effect of sulphate concentration change on iron release in drinking water distribution systems

    Institute of Scientific and Technical Information of China (English)

    米子龙; 张晓健; 陆品品; 陈超; 汪隽; 顾军农

    2013-01-01

    This study investigated the effect of sulphate concentration changes on the iron release in a drinking water distribution system caused frequently switching of the water source.The rates of iron release from corrosion scale for different water sources were analyzed with pipe section reactors designed to simulate the distribution system flow mode.The results showed that the sulphate concentration was the dominant factor that led to red water.The iron release rate from the corrosion scale correlated well with the sulphate concentration with a sulphate concentration increase from 25 mg/L to 180 mg/L accompanied by a Larson ratio increase from about 0.35 to 1.40.The turbidity in the pipe section reactors increased 6 NTU after 8 h,the color increased 50 degrees and the iron release rate increased 2.00 mg/(m2 · h).These results indicate that the sulphate concentration should be lower than 75 mg/L and the Larson Ratio should be controlled to less than 0.70 for the water quality in the distribution system to meet the Chinese drinking water quality standard.Based on these results,t was suggested to be and controlled less than 0.70 in order that in meet the standard of drinking in China.%针对水源频繁切换造成原水水质硫酸根质量浓度突变对给水管网铁释放的影响开展试验研究.选取北京市城区3个不同地区的管段,设计并制作管段模拟反应器,比较分析不同硫酸根质量浓度水质条件下、不同地区管段的铁释放情况.结果表明:硫酸根质量浓度的大幅增加可导致黄水问题.给水管网铁释放量与硫酸根质量浓度具有显著相关性,当硫酸根质量浓度从25 mg/L增加到180 mg/L,相应的Larson指数从0.35增加到1.40时,8h滞留时间后管段出水浊度、色度的最大增加值分别约为6 NTU和50度,总铁释放速率最大增加约2.00 mg/(m2·h).由此,确定了水源切换条件下,硫酸报和Larson指数对管垢铁释放的控制指标:硫酸根质量浓度<75 mg

  3. Water reclamation during drinking water treatments using polyamide nanofiltration membranes on a pilot scale.

    Science.gov (United States)

    Kukučka, Miroslav; Kukučka, Nikoleta; Habuda-Stanić, Mirna

    2016-09-01

    The aim of this study was to investigate the performances of polyamide nanofiltration membranes during water reclamation. The study was conducted using nanofiltration concentrates obtained from two different nanofiltration drinking water treatment plants placed in the northern part of Serbia (Kikinda and Zrenjanin). Used nanofiltration concentrates contained high concentrations of arsenic (45 and 451 μg/L) and natural organic matter (43.1 and 224.40 mgKMnO4/L). Performances of polyamide nanofiltration membranes during water reclamation were investigated under various fluxes and transmembrane pressures in order to obtain drinking water from nanofiltration concentrates and, therefore, reduce the amount of produced concentrates and minimize the waste that has to be discharged in the environment. Applied polyamide nanofiltration membranes showed better removal efficiency during water reclamation when the concentrate with higher content of arsenic and natural organic matter was used while the obtained permeates were in accordance with European regulations. This study showed that total concentrate yield can be reduced to ~5 % of the optimum flux value, in both experiments. The obtained result for concentrate yield under the optimum flux presents considerable amount of reclaimed drinking water and valuable reduced quantity of produced wastewater.

  4. Water drinking as a treatment for orthostatic syndromes

    Science.gov (United States)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  5. Following the water: a controlled study of drinking water storage in northern coastal Ecuador.

    Science.gov (United States)

    Levy, Karen; Nelson, Kara L; Hubbard, Alan; Eisenberg, Joseph N S

    2008-11-01

    To design the most appropriate interventions to improve water quality and supply, information is needed to assess water contamination in a variety of community settings, including those that rely primarily on unimproved surface sources of drinking water. We explored the role of initial source water conditions as well as household factors in determining household water quality, and how levels of contamination of drinking water change over time, in a rural setting in northern coastal Ecuador. We sampled source waters concurrently with water collection by household members and followed this water over time, comparing Escherichia coli and enterococci concentrations in water stored in households with water stored under controlled conditions. We observed significant natural attenuation of indicator organisms in control containers and significant, although less pronounced, reductions of indicators between the source of drinking water and its point of use through the third day of sampling. These reductions were followed by recontamination in approximately half of the households. Water quality improved after water was transferred from the source to household storage containers, but then declined because of recontamination in the home. Our experimental design allowed us to observe these dynamics by controlling for initial source water quality and following changes in water quality over time. These data, because of our controlled experimental design, may explain why recontamination has been reported in the literature as less prominent in areas or households with highly contaminated source waters. Our results also suggest that efforts to improve source water quality and sanitation remain important.

  6. Manganese deposition in drinking water distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Tammie L., E-mail: Tammie.Gerke@miamioh.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States); Little, Brenda J., E-mail: brenda.little@nrlssc.navy.mil [Naval Research Laboratory, Stennis Space Center, MS 39529 (United States); Barry Maynard, J., E-mail: maynarjb@ucmail.uc.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States)

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn{sup 3+} and Mn{sup 4+}) and hollandite (Mn{sup 2+} and Mn{sup 4+}), and a Mn silicate, braunite (Mn{sup 2+} and Mn{sup 4+}), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. - Highlights: • Oxidation and deposition of Mn deposits in drinking water distribution pipes • In-situ synchrotron-based μ-XANES and μ-XRF mapping • Toxic metal sorption in Mn deposits.

  7. Protecting health from metal exposures in drinking water.

    Science.gov (United States)

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  8. Water, Water Everywhere, But is it Safe to Drink?

    Science.gov (United States)

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  9. Impact of Environmental Factors on Legionella Populations in Drinking Water

    Directory of Open Access Journals (Sweden)

    David Otto Schwake

    2015-05-01

    Full Text Available To examine the impact of environmental factors on Legionella in drinking water distribution systems, the growth and survival of Legionella under various conditions was studied. When incubated in tap water at 4 °C, 25 °C, and 32 °C, L. pneumophila survival trends varied amongst the temperatures, with the stable populations maintained for months at 25 °C and 32 °C demonstrating that survival is possible at these temperatures for extended periods in oligotrophic conditions. After inoculating coupons of PVC, copper, brass, and cast iron, L. pneumophila colonized biofilms formed on each within days to a similar extent, with the exception of cast iron, which contained 1-log less Legionella after 90 days. L. pneumophila spiked in a model drinking water distribution system colonized the system within days. Chlorination of the system had a greater effect on biofilm-associated Legionella concentrations, with populations returning to pre-chlorination levels within six weeks. Biofilms sampled from drinking water meters collected from two areas within central Arizona were analyzed via PCR for the presence of Legionella. Occurrence in only one area indicates that environmental differences in water distribution systems may have an impact on the survival of Legionella. These results document the impact of different environmental conditions on the survival of Legionella in water.

  10. Concentration and Health Implication of Heavy Metals in Drinking ...

    African Journals Online (AJOL)

    The study was undertaken to assess the status of drinking water quality in the ... pH, and turbidity and ten heavy metals,viz., As, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, and ... treatment practices in the areas, which in turn have important human health ...

  11. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  12. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  13. Why Drinking Water Is the Way to Go

    Science.gov (United States)

    ... game, or just working out or playing hard, drink water before, during, and after playing. Don't forget ... is very dark yellow, it's holding on to water, so it's probably time to drink up. You can help your body by drinking ...

  14. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As(3+) and As(5+), from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Analysis of selected elements in water in the drinking water preparation plants in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Antanasijević Davor Z.

    2011-01-01

    Full Text Available Belgrade's water supply relies mainly on the River Sava and groundwater supply wells, which are located in the vicinity of the river and Ada Ciganlija. In this paper, the content of aluminum, boron, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, cadmium, barium and lead was analyzed in raw water as well as drinking water distributed by the Water Supply and Sewage of Belgrade. A total of 14 samples were examined from all water treatment plants that are part of the distribution system. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. The aim of this research was to examine the effectiveness of drinking water preparation process in the plants belonging to the Water Supply and Sewage of Belgrade. The content of certain elements varies considerably in raw water (river and groundwater: the concentration of boron in river water is two to three times lower than the concentration in groundwater; the concentration of arsenic in river water is ten to twenty five times lower than the concentration in groundwater; the concentration of aluminum in all groundwater samples was below the detection limit of the instrument (0.50 μg/dm3, whilst in the river water the content of aluminum was about 50 μg/dm3 and the concentration of manganese in the river water was up to 10 times lower than the concentrations in groundwater. In all drinking water samples the concentration of the elements were bellow the maximum allowed levels according to the Serbian regulations. Correlation coefficients determined for boron, manganese, cobalt, nickel, copper, zinc, arsenic, barium and lead, which were analyzed in raw waters, show that four groups of elements can be distinguished. Boron, manganese, arsenic and barium are related to each other and probably have a common natural origin; copper and lead probably have a common anthropogenic origin; correlation of nickel and cobalt was observed, while zinc was not in

  16. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales.

  17. [Revision of the drinking water regulations].

    Science.gov (United States)

    Hauswirth, S

    2011-11-01

    The revision the Drinking Water Regulations will come into effect on 01.11.2011. Surveillance authorities and owners of drinking water supply systems had hoped for simplifications and reductions because of the new arrangements. According to the official statement for the revision the legislature intended to create more clarity, consider new scientific findings, to change regulations that have not been proved to close regulatory gaps, to deregulate and to increase the high quality standards. A detailed examination of the regulation text, however, raises doubts. The new classification of water supply systems requires different modalities of registration, water analyses and official observation, which will complicate the work of the authorities. In particular, the implementation of requirements of registration and examination for the owners of commercial and publicly-operated large hot-water systems in accordance with DVGW Worksheet W 551 requires more effort. According to the estimated 30 000 cases of legionellosis in Germany the need for a check of such systems for Legionella, however, is not called into question. Furthermore, the development of sampling plans and the monitoring of mobile water supply systems requires more work for the health authorities.

  18. Sonication for advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-ming; WEI Xi-zhu; LI Xiang-kun; ZHANG Jie; DOU Zi-bo

    2009-01-01

    This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonication significantly reduces the toxicity of water. Sonication with 5 W/L at 90 kHz lasting for 30 min decreases he water SUVA and the disinfection byproduct formation potential (DBPFP) by 38.7% and 27.2% respective ly. Sonieation also decreases the UV254 by more than 50% through destroying unsaturated chemical bonds.Higher sound intensity and higher frequency benefit the reduction of TOC and UV254, Besides, sonication significantly increases the affinity of organics with granular activated carbon (GAC), and thus the hybrid sonication-GAC method reduces the water TOC, COD, UV254, and DBPFP by 78. 3%, 69.4%, 75.7%, and 70. 0% respectively. Therefore, sonieation and the hybrid sonieation-GAC method are proposed as advanced treatment methods for drinking water.

  19. Estimation of nitrite, nitrate, and N-nitrosamines in drinking water and soft drinks

    Energy Technology Data Exchange (ETDEWEB)

    Alwan, S.M.; Jawad, I.M.; Abdul-Rahman, S.K.; Al-Kafaji, S.H.

    1987-09-01

    A survey for the determination of the carcinogenic N-nitrosamines in drinking water and selected soft drinks was achieved, using a GLC method. This shows that these substances occur predominantly in the drinks. The average contents of dimethylnitrosamine and diethylnitrosamine in drinking water were 4.1 ..mu..g/L and 0.2 ..mu..g/L respectively, while they were approximately 3.9 ..mu..g/L and 0.43 ..mu..g/L in soft drinks. Nitrite and nitrate contents in drinking water samples were also estimated, as potential factors for the formation of N-nitrosamines. The mean contents of nitrite and nitrate in drinking water were 65 g/L and 10.8 g/L respectively.

  20. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-09-09

    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC). The.... Environmental Protection Agency, Office of Ground Water and Drinking Water, Water Security Division (Mail...

  1. Occurrence of fibrates and their metabolites in source and drinking water in Shanghai and Zhejiang, China.

    Science.gov (United States)

    Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi

    2017-04-12

    Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.

  2. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for fresh surface water withdrawal (gwava-s_swus)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the amount of fresh surface water withdrawal for irrigation, in megaliters per day, in the conterminous United States. The data set was used...

  3. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for water input (gwava-s_wtin)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents "water input," the ratio of the total area of irrigated land to precipitation, in square kilometers per centimeter, in the conterminous...

  4. Presence of Cryptosporidium spp. and Giardia duodenalis through drinking water.

    Science.gov (United States)

    Castro-Hermida, José Antonio; García-Presedo, Ignacio; Almeida, André; González-Warleta, Marta; Correia Da Costa, José Manuel; Mezo, Mercedes

    2008-11-01

    To evaluate the presence of Cryptosporidium spp. and Giardia duodenalis in the influent and final effluent of sixteen drinking water treatment plants located in a hydrographic basin in Galicia (NW Spain) - in which the principal river is recognised as a Site of Community Importance (SCI) - estimate the efficiency of treatment plants in removing these protozoans and determine the species and genotypes of the parasites by means of a molecular assay. All plant samples of influent and final effluent (50-100 l) were examined in the spring, summer, autumn and winter of 2007. A total of 128 samples were analysed by method 1623, developed by US Environmental Protection Agency for isolation and detection of both parasites. To identify the genotypes present the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and b-giardina (G. duodenalis). The mean concentrations of parasites in the influent were 0.0-10.5 Cryptosporidium spp. oocysts per litre and 1.0-12.8 of G. duodenalis cysts per litre. In the final treated effluent, the mean concentration of parasites ranged from 0.0-3.0 oocysts per litre and 0.5-4.0 cysts per litre. The distribution of results by season revealed that in all plants, the highest numbers of (oo)cysts were recorded in spring and summer. Cryptosporidium parvum, C. andersoni, C. hominis and assemblages A-I, A-II, E of G. duodenalis were detected. Cryptosporidium spp. and G. duodenalis were consistently found at high concentrations in drinking water destined for human and animal consumption in the hydrographic basin under study, in Galicia (NW Spain). It is important that drinking water treatment authorities rethink the relevance of contamination levels of both parasites in drinking water and develop adequate countermeasures.

  5. Prevalence of dental caries and dental fluorosis among 12 and 15 years old school children in relation to fluoride concentration in drinking water in an endemic fluoride belt of Andhra Pradesh.

    Science.gov (United States)

    Shekar, Chandra; Cheluvaiah, Manjunath Bhadravathi; Namile, Dinesh

    2012-01-01

    The published literature on the prevalence and severity of dental caries and dental fluorosis among school going children in Nalgonda district - An Endemic Fluoride belt was lacking . To assess the prevalence and severity of dental fluorosis and dental caries among 12 and 15 years old children in relation to fluoride concentration in drinking water . It was a cross-sectional study, done in Nalgonda district of Andhra Pradesh, India (endemic fluoride belt) . 5 of the 59 mandals in the district of Nalgonda were selected by simple random sampling. Then, 3 schools from each of these selected mandals were chosen at random. All the eligible 6 th and 9 th standard children were considered for final analysis. The demographic and other relevant information was collected by 3 trained and calibrated dentists, using a structured questionnaire. Dental caries were recorded using dentition status and treatment needs and fluorosis were recorded by Dean's fluorosis index. The statistical analysis was done using SPSS version 16. The prevalence of dental caries among children was 56.3% with the highest in below optimal fluoride area (71.3%) and lowest in optimal fluoride area (24.3%). The prevalence of dental fluorosis was 71.5%. The prevalence was 39.7% in below optimal fluoride area and 100% in high and very fluoride areas. The prevalence and severity of fluorosis increased with increasing fluoride concentration. The caries experience was more among boys than girls. There was a negative correlation between dental caries and fluoride concentration for the entire study population. However, in high fluoride areas, there was a positive correlation between fluoride concentration and dental caries. Water defluoridation on an urgent basis is a priority here than water fluoridation, because the prevalence and severity of dental flurorosis is very high.

  6. Prevalence of dental caries and dental fluorosis among 12 and 15 years old school children in relation to fluoride concentration in drinking water in an endemic fluoride belt of Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Chandra Shekar

    2012-01-01

    Full Text Available Background: The published literature on the prevalence and severity of dental caries and dental fluorosis among school going children in Nalgonda district - An Endemic Fluoride belt was lacking . Objectives: To assess the prevalence and severity of dental fluorosis and dental caries among 12 and 15 years old children in relation to fluoride concentration in drinking water . Settings and Design: It was a cross-sectional study, done in Nalgonda district of Andhra Pradesh, India (endemic fluoride belt . Materials and Methods: 5 of the 59 mandals in the district of Nalgonda were selected by simple random sampling. Then, 3 schools from each of these selected mandals were chosen at random. All the eligible 6 th and 9 th standard children were considered for final analysis. The demographic and other relevant information was collected by 3 trained and calibrated dentists, using a structured questionnaire. Dental caries were recorded using dentition status and treatment needs and fluorosis were recorded by Dean′s fluorosis index. The statistical analysis was done using SPSS version 16. Results: The prevalence of dental caries among children was 56.3% with the highest in below optimal fluoride area (71.3% and lowest in optimal fluoride area (24.3%. The prevalence of dental fluorosis was 71.5%. The prevalence was 39.7% in below optimal fluoride area and 100% in high and very fluoride areas. The prevalence and severity of fluorosis increased with increasing fluoride concentration. The caries experience was more among boys than girls. Conclusion: There was a negative correlation between dental caries and fluoride concentration for the entire study population. However, in high fluoride areas, there was a positive correlation between fluoride concentration and dental caries. Water defluoridation on an urgent basis is a priority here than water fluoridation, because the prevalence and severity of dental flurorosis is very high.

  7. Assessment of trace metal contamination of drinking water in the Pearl valley, azad jammu and kashmir

    Energy Technology Data Exchange (ETDEWEB)

    Ghulam Sarwar Shah, Syed [Centre for the Study of Health, School of Social Sciences and Law, Brunel University, Uxbridge (United Kingdom); Jabbar Chaudhary, Abdul [Institute for the Environment, Brunel University, Uxbridge (United Kingdom); Haleem Khan, Mohammad [Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad (Pakistan); Javaid, Saboor

    2008-02-15

    The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  9. Analysis of physical and chemical parameters of bottled drinking water.

    Science.gov (United States)

    Mahajan, Rakesh Kumar; Walia, T P S; Lark, B S; Sumanjit

    2006-04-01

    Seventeen different brands of bottled drinking water, collected from different retail shops in Amritsar, were analyzed for different physical and chemical parameters to ascertain their compliability with the prescribed/recommended limits of the World Heath Organization (WHO) and the United States Environmental Protection Agency (USEPA). It was found that the majority of the brands tested were over-treated. Lower values of hardness, total dissolved solids (TDS) and conductance than the prescribed limits of WHO showed that water was deficient in essential minerals. Minerals like magnesium, potassium, calcium and fluoride were present in some cases in such a low concentration that water seemed to be as good as distilled water. Samples showing fluoride lesser than 0.5 mg/l warranted additional sources of fluoride for the people consuming only bottled water for drinking purposes. Zero values for chlorine demand as shown by all the bottled water samples showed that water samples were safe from micro-organisms. In case of heavy metals, only lead had been found to be greater than the limit of 0.015 mg/l as prescribed by WHO and USEPA, in seven out of 17 samples. Lead even at such a low concentration can pose a great health hazard.

  10. 广东东部饮水氟适宜浓度的探讨 广东东部饮水氟适宜浓度的探讨%The Optimal Concentration of Drinking Water in Eastern Guangdong

    Institute of Scientific and Technical Information of China (English)

    杨军英; 龙琰; 沈彦民

    2001-01-01

    目的:探索广东东部饮水氟适宜浓度。方法:在广东东部,对饮用0.1~2.5mg/L不同水氟浓度水的1237名9~17岁、35~44岁居民,进行龋病和氟牙症检查;并通过问卷调查,对可能接触氟的生活习惯进行研究;让受检者对氟牙症牙色进行自我评价。结果:水氟浓度是影响氟牙症发生的最主要因素。氟牙症随水氟浓度升高加重,而随水氟浓度升高,龋均则下降。当水氟浓度为0.57mg/L时,氟牙症指数为0.4,水氟浓度为0.7mg/L时,氟牙症指数为0.6。当地居民对氟牙症流行可接受程度与Dean所订标准相符。结论:广东东部饮水氟适宜浓度建议为0.57mg/L,最高允许浓度为0.7mg/L。%Objective: The objectives were to explore the optimal concentration of drinking water in Eastern Guangdong and to provide information for the health administrative department to set up the criteria for fluoride concentration. Methods: Totally 1237 9~ 17 and 35~44 years old residents in Eastern Guangdong who drinking water containing 0.1~2.5mg/L fluoride were recruited to investigate the occurrences of dental caries and dental fluorosis. Their background information and perceived appearances of teeth were also recorded. Results: The major factor influencing dental fluorosis was fluoride concentration in drinking water. Dental caries decreased when the fluoride concentration increased but dental fluorosis also increased at the same time. It was showed by calculation that the Dental Fluorosis Index would be 0.4 and 0.6 when the fluoride concentration was 0.57 mg/L and 0.7 mg/L respectively. The acceptation to the severity of dental fluorosis among the study subjects was in accordance with the Dean's criteria. Conclusion: It suggests that the optimal fluoride concentration in Eastern Guangdong is 0.57 mg/L and should not exceed the upper limit of 0.7 mg/L.

  11. Affinity adsorption for the removal of organic micropollutants in drinking water sources; proof of principle

    NARCIS (Netherlands)

    Hofman-Caris, R.C.M.; Bäuerlein, P.S.; Siegers, W.G.; Ziaie, J.; Tolkamp, H.H.; de Voogt, P.

    2015-01-01

    Sources for drinking water (DW) production contain increasing concentrations of organic micropollutants, such as pesticides and pharmaceuticals. Traditional purification processes are not suitable for their removal or conversion, but even sophisticated technologies, like advanced oxidation processes

  12. Defluoridation of drinking water by using Calcium loaded Bentonite

    African Journals Online (AJOL)

    Dr.M.Singanan

    Hence, this process can be recommended for the water treatment. The untreated ... KEY WORDS: Drinking water, fluoride removal, bentonite C and red clay. INTRODUCTION. Water is ... find alternative water sources and suitable cost effective ...

  13. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?

    Science.gov (United States)

    Tiede, Karen; Hanssen, Steffen Foss; Westerhoff, Paul; Fern, Gordon J; Hankin, Steven M; Aitken, Robert J; Chaudhry, Qasim; Boxall, Alistair B A

    2016-01-01

    This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations of ENPs in raw water and treated drinking water, using a simple exposure model, were estimated and then qualitatively compared to available estimates for human exposure through other routes. A range of metal, metal oxide and organic-based ENPs were identified that have the potential to contaminate drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes. The exceptions were some clothing materials, paints and coatings and cleaning products containing Ag, Al, TiO2, Fe2O3 ENPs and carbon-based materials.

  14. Detection of bacterial endotoxin in drinking tap and bottled water in Kuwait.

    Science.gov (United States)

    Abdulraheem, Abdulkareem; Mustafa, Seham; Al-Saffar, Nabeel; Shahjahan, Muhammed

    2012-12-01

    This study was carried out to measure and compare the concentration of bacterial endotoxin in a variety of samples from drinking tap and bottled water available in Kuwait by using the Limulus Amoebocyte lysate test. A total of 29 samples were tested. Samples were collected from a variety of locations throughout the six governorates of Kuwait and 23 brands of local and imported bottled water samples were collected from the local market. The concentration of bacterial endotoxin was measured by using the standard Limulus Amoebocyte lysate test, gel clot method. This study showed that measured endotoxin concentrations in tap drinking water varied from 2.4 to 33.8 EU/ml with the average endotoxin concentration of 14.2 EU/ml. While the results of endotoxin concentrations in the bottled water were bottled water is 13.5 % of the average concentration of endotoxin in tap drinking water. This experimental investigation has proved that drinking bottled water has less endotoxin as compared to tap water in Kuwait. It is also demonstrated that the endotoxin concentration did not exceed the acceptable level in drinking tap water.

  15. Benefits of Safer Drinking Water: The Value of Nitrate Reduction

    OpenAIRE

    Crutchfield, Stephen R.; Cooper, Joseph C.; Hellerstein, Daniel

    1997-01-01

    Nitrates in drinking water, which may come from nitrogen fertilizers applied to crops, are a potential health risk. This report evaluates the potential benefits of reducing human exposure to nitrates in the drinking water supply. In a survey, respondents were asked a series of questions about their willingness to pay for a hypothetical water filter, which would reduce their risk of nitrate exposure. If nitrates in the respondent's drinking water were to exceed the EPA minimum safety standard,...

  16. Exposure assessment of natural uranium from drinking water.

    Science.gov (United States)

    Jakhu, Rajan; Mehra, Rohit; Mittal, H M

    2016-12-08

    The uranium concentration in the drinking water of the residents of the Jaipur and Ajmer districts of Rajasthan has been measured for exposure assessment. The daily intake of uranium from the drinking water for the residents of the study area is found to vary from 0.4 to 123.9 μg per day. For the average uranium ingestion rate of 35.2 μg per day for a long term exposure period of 60 years, estimations have been made for the retention of uranium in different body organs and its excretion with time using ICRP's biokinetic model of uranium. Radioactive and chemical toxicity of uranium has been reported and discussed in detail in the present manuscript.

  17. Drinking and water balance during exercise and heat acclimation

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  18. Biological stability of drinking water: Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and ca

  19. Biological stability of drinking water: Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and ca

  20. 30 CFR 71.600 - Drinking water; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  1. Biological stability of drinking water: Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  2. Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water

    DEFF Research Database (Denmark)

    Saunders, Aron M.; Kristiansen, Anja; Lund, Marie B.

    2009-01-01

    The results of this study support the use of fecal Bacteroidales qPCR as a rapid method to complement traditional, culture-dependent, water quality indicators in systems where drinking water is supplied without chlorination or other forms of disinfection. A SYBR-green based, quantitative PCR assay...... was developed to determine the concentration of fecal Bacteroidales 16S rRNA gene copies. The persistence of aBacteroides vulgatus pure culture and fecal Bacteroidales from a wastewater inoculum was determined in unchlorinated drinking water at 10 °C. B. vulgatus 16S rRNA gene copies persisted throughout...... the experimental period (200 days) in sterile drinking water but decayed faster in natural drinking water, indicating that the natural microbiota accelerated decay. In a simulated fecal contamination of unchlorinated drinking water, the decay of fecal Bacteroidales 16S rRNA gene copies was considerably faster than...

  3. Portable Nanomesh Creates Safer Drinking Water

    Science.gov (United States)

    2008-01-01

    Providing astronauts with clean water is essential to space exploration to ensure the health and well-being of crewmembers away from Earth. For the sake of efficient and safe long-term space travel, NASA constantly seeks to improve the process of filtering and re-using wastewater in closed-loop systems. Because it would be impractical for astronauts to bring months (or years) worth of water with them, reducing the weight and space taken by water storage through recycling and filtering as much water as possible is crucial. Closed-loop systems using nanotechnology allow wastewater to be cleaned and reused while keeping to a minimum the amount of drinking water carried on missions. Current high-speed filtration methods usually require electricity, and methods without electricity usually prove impractical or slow. Known for their superior strength and electrical conductivity, carbon nanotubes measure only a few nanometers in diameter; a nanometer is one billionth of a meter, or roughly one hundred-thousandth the width of a human hair. Nanotubes have improved water filtration by eliminating the need for chemical treatments, significant pressure, and heavy water tanks, which makes the new technology especially appealing for applications where small, efficient, lightweight materials are required, whether on Earth or in space. "NASA will need small volume, effective water purification systems for future long-duration space flight," said Johnson Space Center s Karen Pickering. NASA advances in water filtration with nanotechnology are now also protecting human health in the most remote areas of Earth.

  4. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  5. Fluoride concentrations in three types of commercially packed tea drinks in Taiwan.

    Science.gov (United States)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Chiang, Kuang-Mao

    2003-01-01

    Tea is a popular drink around the world. It is also one of the major sources of fluoride intake. The objectives of this study were to assess fluoride concentrations in popular non-, semi-, and full-fermented tea drinks sold on the Taiwan market. Concentration differences among three types of commercially available tea drinks (tea leaf, tea bag, and packaged tea beverage) were explored. Several influential factors in intake concentrations were evaluated. The acute threshold intake (ATI) and allowable daily intake (ADI) of those tea drinks were also estimated. For each commercial type, samples from the most popular tea in one particular fermentation degree (non, semi, and full) were randomly purchased and analyzed for fluoride concentrations. Fluoride levels in different rounds of tea, in different containers, and with different ratios of water and tea leaf were also assessed. In total, 132 tea samples were analyzed. The mean fluoride concentrations in leaf tea without the first round, leaf tea with the first round, bagged tea, and packaged tea were 7.04, 7.79, 5.37, and 25.7 mg/l, respectively. Most of the intake concentrations in those samples exceeded 4 mg/l F, the lower bound of fluoride levels reported in the literatures to be associated with a lower IQ in children and a higher risk of bone fracture. Fluoride concentrations in packaged tea were the highest among the three types of commercially available tea. For studied leaf and bagged tea, almost a constant amount of fluoride was infused from the same amount of tea leaf regardless of the water volume. Besides this, making tea with glass or pottery tea makers would not affect fluoride intake concentrations. Acute intoxication is unlikely to occur. However, tea lovers in high fluoride content areas shall consider limit their consumption of tea drinks to avoid potential chronic effects.

  6. [Identification of organic solvents in the water of a freshly coated drinking-water reservoir].

    Science.gov (United States)

    Karrenbrock, F; Haberer, K

    1982-01-01

    Chloro-caoutschouc coatings on reservoirs made of concrete can release organic solvents to the drinking water for several month after applying. These solvents can be identified directly in the water by highly sensitive analytical methods (GC/MS). The concentrations verified distinctly exceed the maximum permissible concentration of 10 micrograms/l as suggested by the EEG for the parameter: "dissolved or emulsified hydrocarbons (after extraction by petroleum ether); mineral oils" (2). Protective chloro-caoutchouc coatings should therefore be tested for the release of organic substances to water according to the KTW-Recommendations of the German Federal Health Bureau (1). In future drinking water reservoirs should not be coated unless compelling reasons exist, such as to protect concrete against aggressive water.

  7. Effect of Phosphorus on Survival of Escherichia coli in Drinking Water Biofilms▿

    OpenAIRE

    Juhna, Talis; Birzniece, Dagne; Rubulis, Janis

    2007-01-01

    The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems.

  8. Excretion of arsenic in urine as a function of exposure to arsenic in drinking water.

    Science.gov (United States)

    Calderon, R L; Hudgens, E; Le, X C; Schreinemachers, D; Thomas, D J

    1999-01-01

    Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first morning urine voids for up to 5 consecutive days. The study population was 56% male, and 44% was younger than 18 years of age. On one day of the study period, all voided urines were collected over a 24-hr period. Arsenic intake from drinking water was estimated from daily food diaries. Comparison between the concentration of As in individual urine voids with that in the 24-hr urine collection indicated that the concentration of As in urine was stable throughout the day. Comparison of the concentration of As in each first morning urine void over the 5-day study period indicated that there was little day-to-day variation in the concentration of As in urine. The concentration of As in drinking water was a better predictor of the concentration of As in urine than was the estimated intake of As from drinking water. The concentration of As in urine did not vary by gender. An age-dependent difference in the concentration of As in urine may be attributed to the higher As dosage rate per unit body weight in children than in adults. These findings suggest that the analysis of a small number of urine samples may be adequate to estimate an individual's exposure to InAs from drinking water and that the determination of the concentration of InAs in a drinking water supply may be a useful surrogate for estimating exposure to this metalloid. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10417365

  9. Drinking water standard for tritium-what's the risk?

    Science.gov (United States)

    Kocher, D C; Hoffman, F O

    2011-09-01

    This paper presents an assessment of lifetime risks of cancer incidence associated with the drinking water standard for tritium established by the U.S. Environmental Protection Agency (USEPA); this standard is an annual-average maximum contaminant level (MCL) of 740 Bq L(-1). This risk assessment has several defining characteristics: (1) an accounting of uncertainty in all parameters that relate a given concentration of tritium in drinking water to lifetime risk (except the number of days of consumption of drinking water in a year and the number of years of consumption) and an accounting of correlations of uncertain parameters to obtain probability distributions that represent uncertainty in estimated lifetime risks of cancer incidence; (2) inclusion of a radiation effectiveness factor (REF) to represent an increased biological effectiveness of low-energy electrons emitted in decay of tritium compared with high-energy photons; (3) use of recent estimates of risks of cancer incidence from exposure to high-energy photons, including the dependence of risks on an individual's gender and age, in the BEIR VII report; and (4) inclusion of risks of incidence of skin cancer, principally basal cell carcinoma. By assuming ingestion of tritium in drinking water at the MCL over an average life expectancy of 80 y in females and 75 y in males, 95% credibility intervals of lifetime risks of cancer incidence obtained in this assessment are (0.35, 12) × 10(-4) in females and (0.30, 15) × 10(-4) in males. Mean risks, which are considered to provide the best single measure of expected risks, are about 3 × 10(-4) in both genders. In comparison, USEPA's point estimate of the lifetime risk of cancer incidence, assuming a daily consumption of drinking water of 2 L over an average life expectancy of 75.2 y and excluding an REF for tritium and incidence of skin cancer, is 5.6 × 10(-5). Probability distributions of annual equivalent doses to the whole body associated with the drinking

  10. The average concentrations of As, Cd, Cr, Hg, Ni and Pb in residential soil and drinking water obtained from springs and wells in Rosia Montana area.

    Data.gov (United States)

    U.S. Environmental Protection Agency — The average concentrations of As, Cd, Cr, Hg, Ni and Pb in n=84 residential soil samples, in Rosia Montana area, analyzed by X-ray fluorescence spectrometry are...

  11. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  12. [Drinking water hardness and chronic degenerative diseases. II. Cardiovascular diseases].

    Science.gov (United States)

    Monarca, S; Zerbini, I; Simonati, C; Gelatti, U

    2003-01-01

    Since the 1950s a causal relation between water hardness and cardiovascular diseases (CVD) in humans has been hypothesized. In order to evaluate the influence of calcium and magnesium, the minerals responsible for the hardness of drinking water, on human health, a review of all the articles published on the subject from 1980 up to today has been carried out. Many but not all geographic correlation studies showed an inverse association between water hardness and mortality for CVD. Most case-control and one cohort studies showed an inverse relation, statistically significant, between mortality from CVD and water levels of magnesium, but not calcium. Consumption of water containing high concentrations of magnesium seems to reduce of about 30-35% the mortality for CVD, but not the incidence. This inverse association is supported by clinical and experimental findings and is biologically plausible and in line with Hill's criteria for a cause-effect relationship.

  13. Melioidosis caused by Burkholderia pseudomallei in drinking water, Thailand, 2012.

    Science.gov (United States)

    Limmathurotsakul, Direk; Wongsuvan, Gumphol; Aanensen, David; Ngamwilai, Sujittra; Saiprom, Natnaree; Rongkard, Patpong; Thaipadungpanit, Janjira; Kanoksil, Manas; Chantratita, Narisara; Day, Nicholas P J; Peacock, Sharon J

    2014-02-01

    We identified 10 patients in Thailand with culture-confirmed melioidosis who had Burkholderia pseudomallei isolated from their drinking water. The multilocus sequence type of B. pseudomallei from clinical specimens and water samples were identical for 2 patients. This finding suggests that drinking water is a preventable source of B. pseudomallei infection.

  14. Start-up of a drinking water biofilter

    DEFF Research Database (Denmark)

    Ramsay, Loren; Søborg, Ditte; Breda, Inês Lousinha Ribeiro

    When virgin filter media is placed in drinking water biofilters, a start-up period of some months typically ensues. During this period, the necessary inorganic coating and bacterial community are established on the filter medium, after which the treated water complies with drinking water criteria...

  15. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  16. Continous assessment of a drinking water PVC pipe

    NARCIS (Netherlands)

    Marques Arsenio, A.; Vreeburg, J.H.G.; Wielinga, M.P.C.; Van Dijk, J.C.

    2012-01-01

    In 2010 the Dutch drinking water network stretched for almost 116,000 km supplying water to more than 16 million people. Almost 50% was made of PVC. The analysis of the failure registration of 5 Dutch drinking water companies showed that ca. 29 % of the total number of failures in the PVC Dutch netw

  17. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality.

  18. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s “Four Lab Study” involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological...

  19. [Study on of the current status of volatile organic compounds pollution in typical rural drinking water and the relationship between its concentration and health of the population, in Huai'an, Jiangsu].

    Science.gov (United States)

    Pan, Enchun; Zhang, Qin; Yang, Fangying; Hu, Wei; Xu, Qiujin; Liang, Cunzhen; He, Yuan; Wang, Chuang

    2014-10-01

    This study was to understand the status of pollution on drinking water, by volatile organic compounds (VOCs), among rural residents living in the basin of Huaihe River. Relationship between the morbidity, morbidity of cancers and VOCs were also explored. 28 villages were chosen from Xuyi,Jinhu, Chuzhou along the Huaihe River, with water samples collected from ditch pond water, shallow wells, deep wells in November-December 2010. VOCs indicators were evaluated according to the Standard Quality GB 5749-2006 for Drinking Water. Methylene chloride, chloroform, benzene and carbon tetrachloride were all detected in 76 water samples. The rates of chloroform, benzene, carbon tetrachloride which exceeding the quality standards were 3.95% , 21.05% and 22.37% , but no significant differences were found among these three water resources in chloroform, benzene or carbon tetrachloride. Results from the correlation analysis showed that benzene had positive correlation with tumor deaths (r = 0.24, P water resources (P > 0.05). Drinking waters for rural residents along the Huaihe River were polluted while VOCs might have related to tumor incidence with potential impact and risk to the health of local residents.

  20. Monitoring for the Presence of Parasitic Protozoa and Free-living Amoebae in Drinking Water Plants

    Directory of Open Access Journals (Sweden)

    Amany Saad Amer.

    2012-07-01

    Full Text Available Contamination of drinking water by microorganisms represents a major human health hazard in many parts of the world. The main objective of drinking water treatment is to provide microbiologically safe drinking water. The conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. A number of processes; namely water treatment, disinfection and changes influence the quality of drinking water delivered to the customer’s tap during transport of treated water via the distribution system. At least 325 water-associated outbreaks of parasitic protozoan disease have reported. In this study, drinking water from treatment plants evaluated for the presence of parasitic protozoa. Water samples collected from two main points: (a outlet of the water treatment plants (b distribution system at different distances from the water treatment plants. Protozoa were concentrated from each water sample by adsorption and accumulation on the nitrocellulose membrane filters (0.45 μm pore size and detected by conventional staining methods.

  1. [Hydraulic fracturing - a hazard for drinking water?].

    Science.gov (United States)

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring.

  2. Drinking water treatment for a rural karst region in Indonesia

    Science.gov (United States)

    Matthies, K.; Schott, C.; Anggraini, A. K.; Silva, A.; Diedel, R.; Mühlebach, H.; Fuchs, S.; Obst, U.; Brenner-Weiss, G.

    2016-09-01

    An interdisciplinary German-Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed.

  3. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution......, since the method is very sensitive (detects 0.5 ng ATP/L) and results are obtained within minutes. When calculating the ATP value a number of parameters need to be considered. These were investigate by use of two different reagent kits (PCP-kit and Lumin(ATE)/Lumin(EX)-kit), internal standard...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  4. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution......, since the method is very sensitive (detects 0.5 ng ATP/L) and results are obtained within minutes. When calculating the ATP value a number of parameters need to be considered. These were investigate by use of two different reagent kits (PCP-kit and Lumin(ATE)/Lumin(EX)-kit), internal standard...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  5. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia.

    Science.gov (United States)

    Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z

    2016-02-01

    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. METHOD DEVELOPMENT FOR THE ANALYSIS OF N-NITROSODIMETHYLAMINE AND OTHER N-NITROSAMINES IN DRINKING WATER AT LOW NANOGRAM/LITER CONCENTRATIONS USING SOLID PHASE EXTRACTION AND GAS CHROMATOGRAPHY WITH CHEMICAL IONIZATION TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    N-Nitrosodimethylamine (NDMA) is a probable human carcinogen that has been identified as a drinking water contaminant of concern. United States Environmental Protection Agency (USEPA) Method 521 has been developed for the analysis of NDMA and six additional N-nitrosamines in dri...

  7. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    Science.gov (United States)

    Medverec Knežević, Zvonimira; Nadih, Martina; Josipović, Renata; Grgić, Ivanka; Cvitković, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this.

  8. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    Science.gov (United States)

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  9. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  10. Radioactivity in drinking water: regulations, monitoring results and radiation protection issues

    Directory of Open Access Journals (Sweden)

    Cristina Nuccetelli

    2012-12-01

    Full Text Available INTRODUCTION: Drinking waters usually contain several natural radionuclides: tritium, radon, radium, uranium isotopes, etc. Their concentrations vary widely since they depend on the nature of the aquifer, namely, the prevailing lithology and whether there is air in it or not. AIMS: In this work a broad overview of the radioactivity in drinking water is presented: national and international regulations, for limiting the presence of radioactivity in waters intended for human consumption; results of extensive campaigns for monitoring radioactivity in drinking waters, including mineral bottled waters, carried out throughout the world in recent years; a draft of guidelines for the planning of campaigns to measure radioactivity in drinking water proposed by the Environmental Protection Agency (ARPA of Lombardia.

  11. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    Science.gov (United States)

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  12. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.

    Science.gov (United States)

    Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya

    2014-03-01

    Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.

  13. Biological stability in drinking water distribution systems: A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the distribut

  14. Biological stability in drinking water distribution systems: A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  15. [The EU drinking water recommendations: objectives and perspectives].

    Science.gov (United States)

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level.

  16. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  17. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  18. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    Science.gov (United States)

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water.

  19. Defluoridation of drinking water by boiling with brushite and calcite.

    Science.gov (United States)

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water.

  20. Molybdenum distributions and variability in drinking water from England and Wales.

    Science.gov (United States)

    Smedley, P L; Cooper, D M; Lapworth, D J

    2014-10-01

    An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p  0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in all cases less than 2 μg/l, were more than an order of magnitude below the WHO health-based value and suggest that Mo is unlikely to pose a significant health or water supply problem in England and Wales.

  1. 离子色谱法测定饮用水中氯化物的不确定度评定%Uncertainty Evaluation of the Determination of Chloride Ion Concentration in Drinking Water by Ion Chromatogram(IC)

    Institute of Scientific and Technical Information of China (English)

    封蓉芳; 陈军; 缪英

    2011-01-01

    目的:为减少实验误差,提高检测结果精确度,评定水中氯化物的不确定度。方法:分析水中氯化物不确定度的来源,通过计算得出该法测定水中氯化物的扩展不确定度。结果:测量结果表明扩展不确定度U95=0.54mg/L,适用于每个水样的检测结果。结论:该方法简便,适合于每一个样本的检测结果,可参考用于水中某些检测参数的不确定评定。%Objective : To evaluate the uncertainty of measuring Cl-concentration in drinking water.This study was to decrease experimental error and increase the accuracy of results.Methods: The source of Measurement uncertainty of the chloride determination in wate

  2. Managing peatland vegetation for drinking water treatment

    Science.gov (United States)

    Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.

    2016-11-01

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision.

  3. Mutagenicity of the drinking water supply in Bangkok.

    Science.gov (United States)

    Kusamran, Wannee R; Tanthasri, Nopsarun; Meesiripan, Nuntana; Tepsuwan, Anong

    2003-01-01

    Seventeen samples of tap water in Bangkok and 2 neighboring provinces were collected in winter and summer, concentrated and tested for mutagenic activity using the Ames Salmonella mutagenesis assay. Preliminary results demonstrated that concentrated tap water exhibited clear mutagenicity towards S. typhimurium TA100 and YG1029, but not towards TA98 and YG1024, in the absence of S9 mix, and the addition of S9 mix markedly decreased the mutagenicity to both tester strains. Amberlite( ) XAD-2 resin, but not blue rayon, was able to adsorb mutagens from water at pH 2. Our data clearly demonstrated that all tap water samples prepared by chlorination of Chao Phraya River water were mutagenic to strain TA100 without S9 mix, inducing 3,351 + 741 and 2,216 + 770 revertants/l, in winter and summer, respectively. On the other hand, however, tap water samples prepared from ground water were not mutagenic. Furthermore, it was found that boiling for only 5 min and filtration through home purifying system containing activated charcoal and mixed resin units were very effective to abolish the mutagenicity of water. Storage of water also significantly decreased the mutagenicity, however, it took 2-3 weeks to totally abolish it. Additionally, we also found 1 out of 6 brands of commercially available bottled drinking water to be mutagenic, with about 26 % of the average mutagenicity of tap water. The results in the present study clearly demonstrated that chlorinated tap water in Bangkok and neighboring provinces contain direct-acting mutagens causing capable of causing base-pair substitution. Boiling and filtration of tap water through home purifying systems may be the most effective means to abolish the mutagenicity. Some brands of commercial bottled waters may also contain mutagens which may be derived from tap water.

  4. Should children drink more water?: the effects of drinking water on cognition in children.

    Science.gov (United States)

    Edmonds, Caroline J; Burford, Denise

    2009-06-01

    While dehydration has well-documented negative effects on adult cognition, there is little research on hydration and cognitive performance in children. We investigated whether having a drink of water improved children's performance on cognitive tasks. Fifty-eight children aged 7-9 years old were randomly allocated to a group that received additional water or a group that did not. Results showed that children who drank additional water rated themselves as significantly less thirsty than the comparison group (p=0.002), and they performed better on visual attention tasks (letter cancellation, p=0.02; spot the difference memory tasks, ps=0.019 and 0.014).

  5. A consolidated method for screening the endocrine activity of drinking water.

    Science.gov (United States)

    Chevolleau, Sylvie; Debrauwer, Laurent; Stroheker, Thomas; Viglino, Liza; Mourahib, Issam; Meireles, Maria-Helena; Grimaldi, Marina; Balaguer, Patrick; di Gioia, Lodovico

    2016-12-15

    Endocrine activity of drinking water is a matter of growing interest for scientists as well as health authorities. A concentration technique for endocrine activity screening was developed, optimized, and transposed from 200mL to 10L water samples. To avoid any contamination during concentration, the method was developed using exclusively glass, Teflon and stainless steel materials. Any potential losses were tracked using three model radiolabeled molecules, namely BPA, DEHP and 4n-NP. The final method allowed 10L water samples to be concentrated 5000-fold, with good recovery and repeatability. After validation, by concentrating spiked and non-spiked 10L samples of EVIAN natural mineral water, 14 different drinking water samples were concentrated and screened for endocrine disrupting activity using bioluminescent assays. Samples consisting of bottled water, conditioned in various materials (glass, PET) and subjected to different storage conditions, had no hormone-like activities whereas estrogenic activity was found in the filtered tap water.

  6. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.

    Science.gov (United States)

    Post, Gloria B; Cohn, Perry D; Cooper, Keith R

    2012-07-01

    Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other

  7. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  8. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  9. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filt

  10. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  11. Availability of drinking water in US public school cafeterias.

    Science.gov (United States)

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school.

  12. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment plants

  13. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  14. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment plants

  15. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  16. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  17. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    Science.gov (United States)

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  18. Reducing Lead in School Drinking Water: A Case Study.

    Science.gov (United States)

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  19. Meeting drinking water and sanitation targets of MDGs. Water use & competition in sub-Saharan Africa

    NARCIS (Netherlands)

    Hoek van der, Marjolijn

    2006-01-01

    Access to safe drinking water and improved sanitation is of vital importance for human beings. Improving the access to safe drinking water and improved sanitation in developing countries is therefore one of the Millennium Development Goals (MDGs) to be me

  20. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    Science.gov (United States)

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  1. Radionuclides in drinking water: the recent legislative requirements of the European Union.

    Science.gov (United States)

    Grande, Sveva; Risica, Serena

    2015-03-01

    In November 2013, a new EURATOM Directive was issued on the protection of public health from the radionuclide content in drinking water. After introducing the contents of the Directive, the paper analyses the hypotheses about drinking water ingestion adopted in documents of international and national organizations and the data obtained from national/regional surveys. Starting from the Directive's parametric value for the Indicative Dose, some examples of derived activity concentrations of radionuclides in drinking water are reported for some age classes and three exposure situations, namely, (i) artificial radionuclides due to routine water release from nuclear power facilities, (ii) artificial radionuclides from nuclear medicine procedures, and (iii) naturally occurring radionuclides in drinking water or resulting from existing or past NORM industrial activities.

  2. Correlation between lead levels in drinking water and mothers' breast milk: Dakahlia, Egypt.

    Science.gov (United States)

    Mandour, Raafat A; Ghanem, Abdel-Aziz; El-Azab, Somaia M

    2013-04-01

    This study was performed on fifty-two drinking tap water samples (surface and groundwater) collected from different districts of Dakahlia Governorate and fifty-two breast milk samples from lactating mothers hosted in Dakahlia Governorate hospitals. All these samples were subjected to lead analysis. Lead level in drinking groundwater showed higher levels than in drinking surface water. Also, an elevation of lead levels in breast milk of mothers drinking groundwater was noticed when compared with that of mothers drinking surface water. The comparison between mean lead levels in drinking water and mothers' breast milk samples showed positive relationship. Lead concentrations in breast milk of the studied samples were elevated by exposure to smoking. We conclude that prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood. Also, we recommend that chemical analyses must be carried out periodically for the surface and groundwater to ensure the water suitability for drinking purposes. Passive exposure to smoking during lactation should be avoided. Capsule: Prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood.

  3. Assessment of changes in drinking water quality during distribution ...

    African Journals Online (AJOL)

    ... turbidity, feacal coliforms, manganese, lead, zinc and residual chlorine. ... Tap water at Area 25 Township is generally safe for human consumption. Key words: Drinking water, distribution system, biochemical parameters, human health.

  4. Drinking Water Quality in Hospitals and Other Buildings

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pa...

  5. [Drinking water quality indices in the Orenburg Region].

    Science.gov (United States)

    Golubkina, N A; Burtseva, T I; Gatsenko, A Iu

    2011-01-01

    The quality of underground waters from 22 areas of the Orenburg Region was studied from the values of mineralization and pH and the amounts of the ions of Se, Cl, Pb, Cd, F, and phenols. High fluorine ion concentrations (5-12 mg/l), high mineralization (> 1 g/l), and alkalinity (pH > 8.0) were shown to be human risk factors in a considerable number of areas. Districts with cadmium, lead, and phenol ion-polluted underground waters were identified. The amount of selenium in the drinking water (18-319 ng/l) and in the sera of donors in Orenburg, Buzuluk, and Orsk (86-97 microg/l) fails to support the data available in the literature on environmental selenium pollution and is comparable with the relevant data for the Moscow Region.

  6. 75 FR 61751 - National Drinking Water Advisory Council: Request for Nominations

    Science.gov (United States)

    2010-10-06

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... National Drinking Water Advisory Council (Council). This 15-member Council was established by the Safe Drinking Water Act (SDWA) to provide practical and independent advice, consultation and recommendations...

  7. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    Science.gov (United States)

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (pmineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  8. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China.

    Science.gov (United States)

    Ding, Jinjian; Shen, Xiaoli; Liu, Weiping; Covaci, Adrian; Yang, Fangxing

    2015-12-15

    Organophosphate esters (OPEs) are ubiquitous in the environment and may pose potential health risks to humans. Drinking water is suspected as one possible exposure pathway of OPEs to humans. In this study, we investigated the residues of 9 OPEs in five types of drinking water in Eastern China. The median concentrations of Σ9OPEs were determined to be 3.99, 4.50, 27.6, 59.2 and 192ng/L in the bottled, well, barreled, direct drinking and tap waters, respectively. Triethyl phosphate (TEP) was the most abundant OPE in the tap water and filtered drinking water with median concentrations of 50.2 and 30.2ng/L, respectively. The mixture of tri(chloropropyl) phosphate (TCPP) and tri(chloroisopropyl) phosphate (TCIPP), named here as TCPP, dominated in the barreled and well water with median concentrations of 8.04 and 2.49ng/L, respectively. The calculated average daily doses of OPEs ranged from 0.14 to 7.07ng/kgbw/day for people consuming the five different types of drinking water. Among the drinking water, the tap water exhibited the highest exposure doses of OPEs. The calculated non-cancer hazard quotients (10(-4)-10(-7)) from OPEs were much lower than the theoretical threshold of risk. The carcinogenic risks posed by TCEP were very low (water. The results revealed that there was currently low risk to human health from exposure to OPEs through drinking water in Eastern China.

  9. Chlorination byproducts, their toxicodynamics and removal from drinking water.

    Science.gov (United States)

    Gopal, Krishna; Tripathy, Sushree Swarupa; Bersillon, Jean Luc; Dubey, Shashi Prabha

    2007-02-01

    No doubt that chlorination has been successfully used for the control of water borne infections diseases for more than a century. However identification of chlorination byproducts (CBPs) and incidences of potential health hazards created a major issue on the balancing of the toxicodynamics of the chemical species and risk from pathogenic microbes in the supply of drinking water. There have been epidemiological evidences of close relationship between its exposure and adverse outcomes particularly the cancers of vital organs in human beings. Halogenated trihalomethanes (THMs) and haloacetic acids (HAAs) are two major classes of disinfection byproducts (DBPs) commonly found in waters disinfected with chlorine. The total concentration of trihalomethanes and the formation of individual THM species in chlorinated water strongly depend on the composition of the raw water, on operational parameters and on the occurrence of residual chlorine in the distribution system. Attempts have been made to develop predictive models to establish the production and kinetics of THM formations. These models may be useful for operational purposes during water treatment and water quality management. It is also suggested to explore some biomarkers for determination of DBP production. Various methods have been suggested which include adsorption on activated carbons, coagulation with polymer, alum, lime or iron, sulfates, ion exchange and membrane process for the removal of DBPs. Thus in order to reduce the public health risk from these toxic compounds regulation must be inforced for the implementation of guideline values to lower the allowable concentrations or exposure.

  10. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Yunlin; Jeppesen, Erik; Murphy, Kathleen R; Shi, Kun; Liu, Mingliang; Liu, Xiaohan; Zhu, Guangwei

    2016-09-01

    Drinking water lakes are threatened globally and therefore in need of protection. To date, few studies have been carried out to investigate how the composition and dynamics of chromophoric dissolved organic matter (CDOM) in drinking water lakes are influenced by inflow rate. Such CDOM can lead to unpleasant taste and odor of the water and produce undesirable disinfection byproducts during drinking water treatment. We studied the drinking water Lake Qiandao, China, and found that the concentrations of suspended particulate matter (SPM) in the lake increased significantly with inflow rate (p water safety and requires higher removal efficiency of CDOM during drinking water treatment processes.

  11. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  12. Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Rango, Tewodros, E-mail: tg67@duke.edu [Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC (United States); Jeuland, Marc [Sanford School of Public Policy and Duke Global Health Institute, Duke University, Durham, NC (United States); Institute of Water Policy, National University of Singapore (Singapore); Manthrithilake, Herath; McCornick, Peter [International Water Management Institute, Colombo (Sri Lanka)

    2015-06-15

    Chronic kidney disease of unknown (“u”) cause (CKDu) is a growing public health concern in Sri Lanka. Prior research has hypothesized a link with drinking water quality, but rigorous studies are lacking. This study assesses the relationship between nephrotoxic elements (namely arsenic (As), cadmium (Cd), lead (Pb), and uranium (U)) in drinking water, and urine samples collected from individuals with and/or without CKDu in endemic areas, and from individuals without CKDu in nonendemic areas. All water samples – from a variety of source types (i.e. shallow and deep wells, springs, piped and surface water) – contained extremely low concentrations of nephrotoxic elements, and all were well below drinking water guideline values. Concentrations in individual urine samples were higher than, and uncorrelated with, those measured in drinking water, suggesting potential exposure from other sources. Mean urinary concentrations of these elements for individuals with clinically diagnosed CKDu were consistently lower than individuals without CKDu both in endemic and nonendemic areas. This likely stems from the inability of the kidney to excrete these toxic elements via urine in CKDu patients. Urinary concentrations of individuals were also found to be within the range of reference values measured in urine of healthy unexposed individuals from international biomonitoring studies, though these reference levels may not be safe for the Sri Lankan population. The results suggest that CKDu cannot be clearly linked with the presence of these contaminants in drinking water. There remains a need to investigate potential interactions of low doses of these elements (particularly Cd and As) with other risk factors that appear linked to CKDu, prior to developing public health strategies to address this illness. - Highlights: • Drinking water in rural Sri Lanka contains low levels of inorganic nephrotoxicants • Urinary nephrotoxicants are consistent with reference levels from

  13. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    Science.gov (United States)

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Drinking water from private wells and risks to children.

    Science.gov (United States)

    Rogan, Walter J; Brady, Michael T

    2009-06-01

    Drinking water for approximately one sixth of US households is obtained from private wells. These wells can become contaminated by pollutant chemicals or pathogenic organisms and cause illness. Although the US Environmental Protection Agency and all states offer guidance for construction, maintenance, and testing of private wells, there is little regulation. With few exceptions, well owners are responsible for their own wells. Children may also drink well water at child care or when traveling. Illness resulting from children's ingestion of contaminated water can be severe. This policy statement provides recommendations for inspection, testing, and remediation for wells providing drinking water for children.

  15. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  16. Safe drinking water: Experience with Water Safety Plans and assessment of risk factors in water supply

    OpenAIRE

    María J. Gunnarsdóttir 1947

    2012-01-01

    Access to adequate and clean drinking water is one of the fundamentals of a good and prosperous society. A comprehensive regulatory framework as well as institutional guidelines and procedures are necessary to secure this at any time. Iceland was one of the first countries to categorize drinking water as food in legislation passed in 1995. According to the legislation water utilities are obligated to implement systematic preventive management, Water Safety Plan (WSP), to ensure good quality w...

  17. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  18. Quality of source water and drinking water in urban areas of Myanmar.

    Science.gov (United States)

    Sakai, Hiroshi; Kataoka, Yatsuka; Fukushi, Kensuke

    2013-01-01

    Myanmar is one of the least developed countries in the world, and very little information is available regarding the nation's water quality. This report gives an overview of the current situation in the country, presenting the results of various water-quality assessments in urban areas of Myanmar. River, dam, lake, and well water sources were examined and found to be of generally good quality. Both As and F(-) were present in relatively high concentrations and must be removed before deep wells are used. Heterotrophic plate counts in drinking water were highest in public pots, followed by nonpiped tap water, piped tap water, and bottled water. Measures need to be taken to improve low-quality water in pots and nonpiped tap waters.

  19. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    Science.gov (United States)

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  20. (238)U and total radioactivity in drinking waters in Van province, Turkey.

    Science.gov (United States)

    Selçuk Zorer, Özlem; Dağ, Beşir

    2014-06-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.

  1. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    Science.gov (United States)

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Continuous corticosterone delivery via the drinking water or pellet implantation: A comparative study in mice.

    Science.gov (United States)

    Gasparini, Sylvia J; Weber, Marie-Christin; Henneicke, Holger; Kim, Sarah; Zhou, Hong; Seibel, Markus J

    2016-12-01

    In order to investigate the effects of glucocorticoid excess in rodent models, reliable methods of continuous glucocorticoid delivery are essential. The current study compares two methods of corticosterone (CS) delivery in regards to their ability to induce typical adverse outcomes such as fat accrual, insulin resistance, sarcopenia and bone loss. Eight-week-old mice received CS for 4weeks either via the drinking water (25-100μgCS/mL) or through weekly surgical implantation of slow release pellets containing 1.5mg CS. Both methods induced abnormal fat mass accrual, inhibited lean mass accretion and bone expansion, suppressed serum osteocalcin levels and induced severe insulin resistance. There was a clear dose dependant relationship between the CS concentrations in the drinking water and the severity of the phenotype, with a concentration of 50μg CS/mL drinking water most closely matching the metabolic changes induced by weekly pellet implantations. In contrast to pellets, however, delivery of CS via the drinking water resulted in a consistent diurnal exposure pattern, closely mimicking the kinetics of clinical glucocorticoid therapy. In addition, the method is safe, inexpensive, easily adjustable, non-invasive and avoids operative stress to the animals. Our data demonstrate that delivery of CS via the drinking water has advantages over weekly implantations of slow-release pellets. A dose of 50μg CS/mL drinking water is appropriate for the investigation of chronic glucocorticoid excess in mice.

  3. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health.

    Science.gov (United States)

    Simazaki, Dai; Kubota, Reiji; Suzuki, Toshinari; Akiba, Michihiro; Nishimura, Tetsuji; Kunikane, Shoichi

    2015-06-01

    The present study was performed to determine the occurrence of 64 pharmaceuticals and metabolites in source water and finished water at 6 drinking water purification plants and 2 industrial water purification plants across Japan. The analytical methods employed were sample concentration using solid-phase extraction cartridges and instrumental analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), liquid chromatography with mass spectrometry (LC/MS), or trimethylsilyl derivatization followed by gas chromatography with mass spectrometry (GC/MS). Thirty-seven of the 64 target substances were detected in the source water samples. The maximum concentrations in the source water were mostly below 50 ng/L except for 13 substances. In particular, residual concentrations of iopamidol (contrast agent) exceeded 1000 ng/L at most facilities. Most of the residual pharmaceuticals and metabolites in the source water samples were removed in the course of conventional and/or advanced drinking water treatments, except for 7 pharmaceuticals and 1 metabolite, i.e., amantadine, carbamazepine, diclofenac, epinastine, fenofibrate, ibuprofen, iopamidol, and oseltamivir acid. The removal ratios of the advanced water treatment processes including ozonation and granular activated carbon filtration were typically much higher than those of the conventional treatment processes. The margins of exposure estimated by the ratio of daily minimum therapeutic dose to daily intake via drinking water were substantial, and therefore the pharmacological and physiological impacts of ingesting those residual substances via drinking water would be negligible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    Science.gov (United States)

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs.

  5. Trihalomethanes in drinking water and the risk of death from esophageal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking

  6. Unsealed Tubewells Lead to Increased Fecal Contamination of Drinking Water

    Science.gov (United States)

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Mailloux, Brian J.; Ferguson, Andrew S.; Culligan, Patricia J.; Serre, Marc L.; Emch, Michael; Ahmed, Kazi M.; Sayler, Gary S.; van Geen, Alexander

    2013-01-01

    Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, 6 unsealed) were monitored for cultured E. coli over 18 months. Additionally, two “snap shot” sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (ETEC E. coli), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using qPCR. No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained cultured E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p<0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality. PMID:23165714

  7. Radioactivity of drinking water in Finland - basis for quality requirements; Talousveden radioaktiivisuus - perusteita laatuvaatimuksille

    Energy Technology Data Exchange (ETDEWEB)

    Maekelaeinen, I.; Huikuri, P.; Salonen, L.; Markkanen, M.; Arvela, H

    2001-07-01

    Several natural radioactive substances occur in drinking water in Finland, among which radon-222 is the most harmful from radiation protection viewpoint. Also long-lived alpha-active substances like uranium-238, uranium-234, polonium-210 and radium-226, as well as beta-active lead-210 and radium-228 occur in drinking water. Elevated concentrations are found only in ground water, those originating from bedrock being clearly higher than those from soil. Assessments based on dosimetry indicate that radioactivity in drinking water causes annually 20 fatal cancers. About 40% of cases is due to inhaled waterborn radon, 40% is due to ingested radon and 20% is due to other natural radioactive substances than radon. This report gives motivation for a proposition to restrict and monitor the radiation exposure from radioactive substances in drinking water, delivered by STUK to the Ministry of Social Affairs and Health in March 1999. The proposition introduces an action level of 300 Bq/l for radon concerning the waterworks. For other radionuclides except radon the action level proposed is 0.1 millisieverts per year (mSv/a), collectively. This new proposition does not bring in notable changes in the monitoring practice, although the calculated doses will change slightly. The proposed guideline for radon in private wells is 1000 Bq/l. According to the present monitoring data, less than 200 Finns served by waterworks use drinking water with radon concentration exceeding 300 Bq/l. Approximately 1000 waterworks consumers receive an annual dose that exceeds 0.1 mSv from other radionuclides than radon. About 20 000 Finns served by private wells use drinking water with radon concentration exceeding the STUK guideline 1 000 Bq/l. Radon can be removed from drinking water using aeration or granular activated carbon filtration (GAC), whereas uranium and radium can be effectively removed by ion exchange resins and lead and polonium using reverse osmosis. There are two methods to determine

  8. Radioactivity of drinking water in Finland - basis for quality requirements; Talousveden radioaktiivisuus - perusteita laatuvaatimuksille

    Energy Technology Data Exchange (ETDEWEB)

    Maekelaeinen, I.; Huikuri, P.; Salonen, L.; Markkanen, M.; Arvela, H

    2001-07-01

    Several natural radioactive substances occur in drinking water in Finland, among which radon-222 is the most harmful from radiation protection viewpoint. Also long-lived alpha-active substances like uranium-238, uranium-234, polonium-210 and radium-226, as well as beta-active lead-210 and radium-228 occur in drinking water. Elevated concentrations are found only in ground water, those originating from bedrock being clearly higher than those from soil. Assessments based on dosimetry indicate that radioactivity in drinking water causes annually 20 fatal cancers. About 40% of cases is due to inhaled waterborn radon, 40% is due to ingested radon and 20% is due to other natural radioactive substances than radon. This report gives motivation for a proposition to restrict and monitor the radiation exposure from radioactive substances in drinking water, delivered by STUK to the Ministry of Social Affairs and Health in March 1999. The proposition introduces an action level of 300 Bq/l for radon concerning the waterworks. For other radionuclides except radon the action level proposed is 0.1 millisieverts per year (mSv/a), collectively. This new proposition does not bring in notable changes in the monitoring practice, although the calculated doses will change slightly. The proposed guideline for radon in private wells is 1000 Bq/l. According to the present monitoring data, less than 200 Finns served by waterworks use drinking water with radon concentration exceeding 300 Bq/l. Approximately 1000 waterworks consumers receive an annual dose that exceeds 0.1 mSv from other radionuclides than radon. About 20 000 Finns served by private wells use drinking water with radon concentration exceeding the STUK guideline 1 000 Bq/l. Radon can be removed from drinking water using aeration or granular activated carbon filtration (GAC), whereas uranium and radium can be effectively removed by ion exchange resins and lead and polonium using reverse osmosis. There are two methods to determine

  9. Designing water supplies: Optimizing drinking water composition for maximum economic benefit.

    Science.gov (United States)

    Rygaard, M; Arvin, E; Bath, A; Binning, P J

    2011-06-01

    It is possible to optimize drinking water composition based on a valuation of the impacts of changed water quality. This paper introduces a method for assessing the potential for designing an optimum drinking water composition by the use of membrane desalination and remineralization. The method includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition to water quality aspects, costs of water production, fresh water abstraction and CO(2)-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.3 ± 0.2 per delivered m(3) for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water supply planning and management.

  10. Fluoride content in bottled drinking waters, carbonated soft drinks and fruit juices in Davangere city, India

    Directory of Open Access Journals (Sweden)

    Thippeswamy H

    2010-01-01

    Full Text Available Background: The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. Objective: To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Materials and Methods: Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. Results: The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19 F/L, 0.29 mg (±0.06 F/L and 0.22 mg (±0.05 F/L, respectively. Conclusion: In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.

  11. Fluoride content in bottled drinking waters, carbonated soft drinks and fruit juices in Davangere city, India.

    Science.gov (United States)

    Thippeswamy, H M; Kumar, Nanditha; Anand, S R; Prashant, G M; Chandu, G N

    2010-01-01

    The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19) F/L, 0.29 mg (±0.06) F/L and 0.22 mg (±0.05) F/L, respectively. In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.

  12. An assessment of drinking-water quality post-Haiyan.

    Science.gov (United States)

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  13. Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water

    Directory of Open Access Journals (Sweden)

    Arzu KILIÇ

    2012-12-01

    Full Text Available In recent years, nitrogenous fertilizers used in agriculture, unconscious and without treatment wastewater is discharged led to an increase in groundwater nitrate pollution. In many countries, nitrate concentration in the ground waters used as drinking water source exceeded the maximum allowable concentration of 10 mg/L NO3-N. According to a study, some wells in the Harran Plain contain nitrate as high as 180 mg/L NO3--N and the average concentration for whole plain is 35 mg/L NO3--N (Yesilnacar et al., 2008. Additionally, increased water consumption, unconscious use of fertilizers and pesticides has led to the emergence of co-contaminant in drinking water. Recently, hazardous to human health co-contaminant such as arsenic, pesticides, perchlorate, selenate, chromate, uranium are observed in the nitrate pollution drinking water. There are many processes used for the removal of nitrate. The physical–chemical technologies that can be used for nitrate removal are reverse osmosis, ion exchange and electrodialysis (Alvarez et al., 2007. Important disadvantages of these processes are their poor selectivity, high operation and maintenance costs and the generation of brine wastes after treatment. Consequently, biological treatment processes to convert nitrates to benign dinitrogen gas, could be an interesting alternative for the remediation of groundwater contaminated with nitrates. The aim of this article, effective and cheap method for the removal of nitrate from drinking water biological denitrification is to examine the usability of contaminated drinking water with co-contaminant pollutions.

  14. Effects of fluoride in drinking water on health of deciduous teeth

    Directory of Open Access Journals (Sweden)

    Blagojević Duška

    2004-01-01

    Full Text Available INTRODUCTION High incidence of decayed deciduous teeth, as well as lack of adequate therapy, makes tooth decay prevention very important. One of the simplest ways to reduce tooth decay is fluoridation of drinking water. The optimal concentration of fluoride in drinking water is 1 ppm/l, and many waters naturally contain this quantity. Waters in Vojvodina are mainly poor in fluoride, except in a few regions. It has long been postulated that fluoride has a prophyilactic effect during intrauterine life. Today a theory of greater local impact of fluoride as well as its role in de- and remineralization of solid tooth tissue. Material and methods This epidemiologocal study was performed in the area of Vojvodina, in places with various fluoride concentrations in drinking water (0.18 - 1.04 ppm/l. Dental examination was performed among 145 children, 6 years of age. For tooth decay detection dmf index was used. Results and discussion In places with low and optimal fluoride concentration in drinking water the percentage of children with decayed teeth is different, but without statistical significance. The percentage of affected deciduous teeth is high in all places. In places with low fluoride concentration it is 24.2 - 32.3%, in places with optimal concentration is 27 - 32%. Everidge value DMF in all places is between 4.7 - 6.4. These results show that optimal fluoride concentration in drinking water decreases the incidence of tooth decay, but this difference is not significant. CONCLUSION Presence of fluoride in drinking water doesn't affect health of deciduous teeth. Decreased incidence of decayed deciduous teeth can be achieved only with combined usage of fluoride (local and systemic, as well as with an intensive health education program.

  15. Field Study to Assess the Effects of Trace Concentrations of the Common Antibiotic Sulfamethoxazole on the Attached Bacterial Community Inhabiting a Sandy, Drinking-Water Aquifer in Cape Cod, Massachusetts USA.

    Science.gov (United States)

    Harvey, R. W.; Underwood, J. C.; Metge, D. W.; Barber, L. B.; LeBlanc, D. R.

    2016-12-01

    Subtherapeutic levels of a commonly used antibiotic, sulfamethoxazole (SMx), has been detected in a variety of drinking-water aquifers. Recent microcosm studies suggest that very low concentrations of SMx, which is highly mobile and persistent in subsurface environments, can suppress nitrate reduction and growth of unattached groundwater bacteria. However, most aquifer bacteria are associated with mineral surfaces and it remains unclear to what extent attached microbial communities are impacted by SMx and whether any such impairment(s) are ameliorated by the presence of nutrients from the same contaminant source. The present 30-day in-situ dosing study assessed the inhibitory effects of low SMx concentrations upon sediment-attached aquifer bacteria in the presence and absence of nutrient amendments. Bacterial responses were compared for exposure to: 1) SMx alone ( 400 ppb), 2) SMx and nutrients ( 0.2 mM acetate, 0.1 mM NaNO3 and 0.1 mM NH4Cl), 3) nutrients alone, and 4) ambient groundwater. The field test used an array of 8 pairs of 5-cm (diameter) PVC injection and observation wells with slotted screens placed 9.6-10.2 m below land surface (˜5 m below water table). Aquifer sediments containing microbial communities were placed inside filter chambers that were positioned within the screened sections of the observation wells arranged in a row perpendicular to the direction of groundwater flow. Bromide (0.7 mM) was used as a conservative tracer. Evidence that SMx suppresses in-situ reduction of nitrate to nitrite was apparent from the substantial lag (9.5 days) in breakthrough of the nitrite within the wells exposed to SMx and nutrients as compared to nutrients alone. Acetate consumption data indicated that the presence of SMx could affect degradation of other organic contaminants in groundwater, although the inhibitory effects may be ameliorated, in part, by the presence of nutrients that are co-transported within a wastewater plume.

  16. Rural drinking water at supply and household levels: quality and management.

    Science.gov (United States)

    Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad

    2006-09-01

    Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational

  17. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  18. Associations among dental caries experience, fluorosis, and fluoride exposure from drinking water sources in Saudi Arabia.

    Science.gov (United States)

    AlDosari, Abdullah M; Akpata, Enosakhare S; Khan, Nazeer

    2010-01-01

    a) To correlate fluoride levels in drinking water sources with caries experience and dental fluorosis in Saudi Arabia, and suggest appropriate fluoride concentration for drinking water in the country. Fluoride levels were determined from 3,629 samples obtained from drinking water sources in 11 regions of Saudi Arabia. Based on the fluoride concentrations, a stratified sample of subjects aged 6-7, 12-13, and 15-18 years was obtained from the regions. A total of 12,200 selected subjects were examined for dental caries according to the World Health Organization criteria, and dental fluorosis, using Thylstrup and Fejerskov classification. There was an inverse relationship between fluoride exposure and caries experience, but the prevalence of dental fluorosis increased with increase in fluoride concentration. There was no significant difference in caries experience or in the prevalence of dental fluorosis when fluoride levels increased from 0.3 ppm to 0.6 ppm. In contrast, caries experience was lower, while severity of fluorosis was significantly higher at fluoride levels above 0.6 ppm. a) Fluoride levels in drinking water sources in Saudi Arabia correlate significantly with caries experience and prevalence of dental fluorosis. b) Appropriate fluoride concentration for drinking water in Saudi Arabia may be about 0.6 ppm.

  19. Flow cytometry for immediate follow-up of drinking water networks after maintenance.

    Science.gov (United States)

    Van Nevel, Sam; Buysschaert, Benjamin; De Roy, Karen; De Gusseme, Bart; Clement, Lieven; Boon, Nico

    2017-03-15

    Drinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation. However, this takes at least 21 h of waiting time, which can be crucial when dealing with major supply pipes. A combination of flow cytometric (FCM) bacterial cell counts with FCM fingerprinting techniques is proposed in this study as a fast and sensitive additional technique. In three full scale situations, major supply pipes with 400-1050 mm diameter were emptied for maintenance, shock-chlorinated and flushed with large amounts of clean drinking water before taking back in operation. FCM measurements of the discharged flushing water revealed fast lowering and stabilizing bacterial concentrations once flushing is initiated. Immediate comparison with clean reference drinking water used for flushing was done, and the moment when both waters had similar bacterial concentrations was considered as the endpoint of the necessary flushing works. This was usually after 2-4 h of flushing. FCM fingerprinting, based on both bacteria and FCM background, was used as additional method to verify how similar flushing and reference samples were and yielded similar results. The FCM approved samples were several hours later approved as well by the drinking water supplier after plating and incubation for total Coliforms and Enterococci. These were used as decisive control to set the pipes back in operation. FCM proved to be a more conservative test than plating, yet it yielded immediate results. Application of these FCM methods can therefore avoid long unnecessary waiting times and large drinking water losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Occurrence of halogenated furanones in U.S. drinking waters.

    Science.gov (United States)

    Onstad, Gretchen D; Weinberg, Howard S; Krasner, Stuart W

    2008-05-01

    Chlorinated and brominated forms of MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) were detected in the disinfected waters of six pairs of U.S. drinking watertreatment plants, with MX as high as approximately 310 ng/L in finished water. The strength of this study is in its comparison between pairs of plants that drew water from the same or similar watersheds and treated the raw source water with two contrasting disinfection and/or treatment schemes. As expected, the brominated MX-analogues were produced in greater abundance than MX from raw source waters with high bromide concentrations. Disinfection of waters with free chlorine produced more MX-analogues than disinfection with monochloramine. Use of chloramines as the residual disinfectant appeared to stabilize MX-analogues once they were formed. Pretreatment with ozone and biologically active granular activated carbon minimized MX-analogue formation upon subsequent chlorination or chloramination, either because MX precursors were altered by ozone, removed by granular activated carbon, or degraded by biological filtration. Pretreatment with chlorine dioxide did not minimize MX-analogue formation. In plant effluent samples, MX and chloroform were positively correlated (molar R = 0.7, N = 6). Similar formation patterns of MX-analogues, trihalomethanes, and haloacetic acids in these water treatment plants suggest that the three classes of disinfection byproduct follow a common formation mechanism from natural organic matter and chlorine.

  1. [Fluoride content in potable water and drinks. Connection with dental caries prevention and dental fluorosis].

    Science.gov (United States)

    Borinskiĭ, Iu N; Rumiantsev, V A; Borinskaia, E Iu; Beliaev, V V

    2009-01-01

    Content of fluoride by ion selective electrode in potable water (municipal water supply, bottled, from draw-wells and springs), in juices of industrial and compotes of domestic preparation, in drinks of various grades of the tea made by water with unequal contents of fluorine was analyzed. Fluoride entered organism of the population in non-control mode more often in minimum quantities that explained, in certain measures a wide caries incidence. Granting of the information upon concentration of fluorides in potable water, juices and drinks used by population would allow people to adjust this microelement intake in the organism with the purpose of preventing of dental caries and fluorosis.

  2. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    Science.gov (United States)

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply.

  3. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries.

    Science.gov (United States)

    Malik, Amir Haider; Khan, Zahid Mehmood; Mahmood, Qaisar; Nasreen, Sadia; Bhatti, Zulfiqar Ahmed

    2009-08-30

    Arsenic concentrations above acceptable standards for drinking water have been detected in many countries and this should therefore is a global issue. The presence of arsenic in subsurface aquifers and drinking water systems is a potentially serious human health hazard. The current population growth in Pakistan and other developing countries will have direct bearing on the water sector for meeting the domestic, industrial and agricultural needs. Pakistan is about to exhaust its available water resources and is on the verge of becoming a water deficit country. Water pollution is a serious menace in Pakistan, as almost 70% of its surface waters as well as its groundwater reserves have contaminated by biological, organic and inorganic pollutants. In some areas of Pakistan, a number of shallow aquifers and tube wells are contaminated with arsenic at levels which are above the recommended USEPA arsenic level of 10 ppb (10 microg L(-1)). Adverse health effects including human mortality from drinking water are well documented and can be attributed to arsenic contamination. The present paper reviews appropriate and low cost methods for the elimination of arsenic from drinking waters. It is recommended that a combination of low cost chemical treatment like ion exchange, filtration and adsorption along with bioremediation may be useful option for arsenic removal from drinking water.

  4. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    Science.gov (United States)

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and

  5. Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply.

    Science.gov (United States)

    Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A

    2017-03-01

    In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.

  6. Safe and Affordable Drinking Water for Developing Countries

    Science.gov (United States)

    Gadgil, Ashok

    2008-09-01

    Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.

  7. Toxicological guidelines for monocyclic nitro-, amino- and aminonitroaromatics, nitramines, and nitrate esters in drinking water.

    Science.gov (United States)

    Wollin, K- M; Dieter, H H

    2005-07-01

    In order to secure a safe drinking water supply, the setting of tolerable/acceptable ceilings of drinking water hygiene is required with regard to xenobiotics resulting from several anthropogenic impacts. This is done in practice by using drinking water guidelines or standards as quantitative objectives. The list of the new EU Directive or the German drinking-water standards is limited to those parameters that have the highest relevance for drinking water quality; nitro compounds (NCs) are not regulated. Because other substances contained in water can also represent a hazard for human health, the German Drinking Water Ordinance clarifies that specific actions must be implemented if compounds other than those regulated appear at concentrations that may be a cause for concern regarding human health. NCs serve as intermediates for dyes, pharmaceuticals, and synthetic materials; they themselves are used as solvents, explosives, and pesticides. During their commercial production or from their use, they may be released to the environment and lead to a contamination of aquatic systems and thus also of drinking water resources. In practice, therefore, a need for assessment is frequently given for relevant NCs. For 19 nitro-, amino-, and aminonitroaromatics, nitramines, and nitrate esters health-based drinking water guide values have been derived. For toxicological evaluation and derivation of guideline values for the NCs of interest, the tolerable daily intake approach was used for chemicals exhibiting a threshold for toxic effects. This was done by using established tolerable body doses for humans based on an identified no-observed-adverse-effect level/low-observed-effect-level for the most sensitive indicator for toxicity. In the case of nonthreshold chemical substances, suitable estimates of excess lifetime cancer risk have been applied.

  8. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation

    DEFF Research Database (Denmark)

    Vingerhoeds, Monique H.; Nijenhuis-de Vries, Mariska A.; Ruepert, Nienke

    2016-01-01

    , permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect......Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from...... permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters.Samples selected varied in mineral composition, i.e. tap water...

  9. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik;

    2012-01-01

    . aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria...... (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni...... grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were...

  10. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers...... and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations...

  11. Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters.

    Science.gov (United States)

    Shi, Wei; Hu, Xinxin; Zhang, Fengxian; Hu, Guanjiu; Hao, Yingqun; Zhang, Xiaowei; Liu, Hongling; Wei, Si; Wang, Xinru; Giesy, John P; Yu, Hongxia

    2012-02-07

    Thyroid hormone is essential for the development of humans. However, some synthetic chemicals with thyroid disrupting potentials are detectable in drinking water. This study investigated the presence of thyroid active chemicals and their toxicity potential in drinking water from five cities in eastern China by use of an in vitro CV-1 cell-based reporter gene assay. Waters were examined from several phases of drinking water processing, including source water, finished water from waterworks, tap water, and boiled tap water. To identify the responsible compounds, concentrations and toxic equivalents of a list of phthalate esters were quantitatively determined. None of the extracts exhibited thyroid receptor (TR) agonist activity. Most of the water samples exhibited TR antagonistic activities. None of the boiled water displayed the TR antagonistic activity. Dibutyl phthalate accounted for 84.0-98.1% of the antagonist equivalents in water sources, while diisobutyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate also contributed. Approximately 90% of phthalate esters and TR antagonistic activities were removable by waterworks treatment processes, including filtration, coagulation, aerobic biodegradation, chlorination, and ozonation. Boiling water effectively removed phthalate esters from tap water. Thus, this process was recommended to local residents to reduce certain potential thyroid related risks through drinking water.

  12. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    Science.gov (United States)

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  13. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    Science.gov (United States)

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  14. Drugs of abuse and tranquilizers in Dutch surface waters, drinking water and wastewater: Results of screening monitoring 2009

    NARCIS (Netherlands)

    van der Aa, N.G.F.M.; Dijkman, E.; Bijlsma, L.; Emke, E.; van de Ven, B.M.; van Nuijs, A.L.N.; de Voogt, P.

    2011-01-01

    In the surface waters of the rivers Rhine and Meuse, twelve drugs that are listed in the Dutch Opium act were detected at low concentrations. They are from the groups amphetamines, tranquilizers (barbiturates and benzodiazepines) opiates and cocaine. During drinking water production, most compounds

  15. Radioactive substances in foodstuffs and drinking water in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Vaaramaa, K.; Vesterbacka, P.; Solatie, D. [STUK - Radiation and Nuclear Safety Authority (Finland)

    2014-07-01

    The concentrations of radioactive substances in the environment and foodstuffs are continuously monitored in Finland. Radiation and Nuclear Safety Authority (STUK) publishes the annual report of Surveillance of Environmental Radiation which shows the activity levels of artificial radionuclides in Finland. Based on the results the radiation dose to Finnish people is estimated. Natural radioactive elements will be included in the surveillance program in future years. The aim of the foodstuffs monitoring program is to obtain information from the intake of radionuclides through ingestion. The radioactivity in foodstuffs is monitored by collecting foodstuffs on market, drinking water and daily meals offered at hospitals over one week. The sampling sites are located in southern, central and northern Finland, representing the main population centres and areal differences in the consumption of foodstuffs. One of these sampling sites is located in the highest {sup 137}Cs deposition area in Finland originating from the Chernobyl accident. The foodstuff samples on market are, for example, wild game, wild berries, wild mushrooms and fish. {sup 137}Cs and {sup 90}Sr are analysed from mixed diet samples and {sup 137}Cs from foodstuffs samples on market. The concentrations of {sup 137}Cs and {sup 90}Sr in daily meals are low because the agricultural products used as raw material are almost free of artificial radionuclides. The small variation in the results is caused by the differences in the types of meals that were prepared on the sampling dates and in the areal origins of raw materials. {sup 137}Cs concentration is remarkably higher in such food which contains a lot of natural products like wild berries, freshwater fish, wild mushrooms and game. As an example, the concentrations of {sup 137}Cs in the solid food in 2012 ranged from 0.06 - 1.0 Bq/kg, and in the drinks from 0.27 - 0.40 Bq/l, respectively. The radiation dose to Finnish people is estimated based on an analysis of

  16. Detecting Contaminated Drinking Water: Harnessing Consumer Complaints

    Science.gov (United States)

    2004-11-10

    decrease in the flavor intensity. If a toxicant is injected into the water, it is likely that the FAC concentration will decrease. This change may be...Sharp, pungent , irritating Colorless No Free chlorine Astringent Chlorinous Colorless No Hydrogen cyanide* Bitter, metallic Almond, peach kernels... Pungent , hydrocarbon Varies Yes Sewage Salty Septic Gary, brown Yes Soman Not reported Fruity, camphor Colorless No Sulfur mustard Not reported

  17. Assessment of radioactivity in the drinking water of state of Goias, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Eliane E.; Costa, Heliana F.; Mignote, Raquel M., E-mail: mingote@cnen.gov.br, E-mail: heliana@cnen.gov.br, E-mail: esantos@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadias de Goias, GO (Brazil); Thome Filho, Jamilo J., E-mail: jamilothome@gmail.com [Geological Consultant, Cuiaba, MT (Brazil); Bakker, Alexandre P. de [Instituto Nacional do Semiarido (INSA/MCTI), Campina Grande, PB (Brazil)

    2013-07-01

    The demand for drinking water is supplied by surface and underground sources such as rivers and streams. However, there is an increasing worldwide concern about the quality of drinking water. As a result, it is a major goal of governments throughout the world to ensure that water is safe for human consumption through the control of microorganisms, chemicals and radioactive substances. The Brazilian Ministry of Health has issued guidelines designed to protect the quality of drinking water. The use of screening measurements for gross alpha and beta radioactivity is recommend since it maximizes cost-effectiveness of assessing the individual radionuclide content of drinking water. In order to do so tests were carried out to determine of gross alpha and beta radioactivity concentrations in drinking water samples from 44 water supply wells within the State of Goias. The technique used was thermal preconcentration and radiometric determination by liquid scintillation spectrometry. The concentrations for gross alpha ranged from < LD at 0.19 ± 0.05 Bq/L. As for gross beta they ranged from < LD at 0.2 ± 0.1 Bq/L. The results were also related with the geological and hydrological data. (author)

  18. A STUDY OF LEAKAGE OF TRACE METALS FROM CORROSION OF THE MUNICIPAL DRINKING WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2003-09-01

    Full Text Available Introduction: A high portion of lead and copper concentration in municipal drinking water is related to the metallic structure of the distribution system and facets. The corrosive water in pipes and facets cause dissolution of the metals such as Pb, Cu, Cd, Zn, Fe and Mn into the water. Due to the lack of research work in this area, a study of the trace metals were performed in the drinking water distribution system in Zarin Shahr and Mobareke of Isfahan province. Methods: Based on the united states Environmental protection Agency (USEPA for the cities over than 50,000 population such as Zarin Shahr and Mobareke, 30 water samples from home facets with the minimum 6 hours retention time of water in pipes, were collected. Lead and cadmium concentration were determined using flameless Atomic Absorption. Cupper, Zinc, Iron and Manganese were determined using Atomic Absorption. Results: The average concentration of Pb, Cd, Zn, Fe and Mn in water distribution system fo Zarin Shahr were 5.7, 0.1, 80, 3042, 23065 and in Mobareke were 7.83, 0.8,210,3100, 253, 17µg respectively. The cocentration of Pb, Cd and Zn were zero at the beginning of the water samples from the municipal drinking water distribution system for both cities. Conclusion: The study showed that the corrosion by products (such as Pb, Cd and Zn was the results of dissolution of the galvanized pipes and brass facets. Lead concentration in over that 10 percent of the water samples in zarin shahr exceeded the drinking water standard level, which emphasize the evaluation and control of corrosion in drinking water distribution systems.

  19. [DIRECTIONALITY OF THE BIOLOGICAL EFFECT OF DRINKING WATER].

    Science.gov (United States)

    Gibert, K K; Karasev, A K; Marasanov, A V; Stekhin, A A; Iakovleva, G V

    2015-01-01

    There have been performed the studies of the dimensional parameters of peroxide associates in drinking water, per- forming regulatory functions in cellular metabolism, that determine the character of the biological response of the human body to drinking water The direction of action of peroxide associates type Σ [(HO2-(*) ... OH-(*) (H2O) tp)]q, (where (H2O) tp is an associate with the tetragonal structure (Walrafen pentamer Is ice VI), q is the degree of association p--parameter of ion coordination) on the cellular structures of the organism is associated with their quantum properties, determining the macroscopic parameters of the electron wave packets. Research has confirmed the addressness of the nonlocal entering electron to certain cellular structures of the body, which is determined by the structural similarity of centers of condensation of electrons in the cells of systems and organs of the body with the parameters of the electron wave packets in the associates. Methodology for the estimation of the orientation of biological effect of the drinking water to the systems of the body on the base of the analysis of variations in heart rhythm under non-contact influence of water on the human body and its relationship with the dimensional parameters and peroxide activity of associates in drinking water can be suggested for the implementation of screening tests for drinking water quality, taking into account both the individualfeatures of responses of body systems to drinking water and its group action.

  20. Health Effects and Environmental Justice Concerns of Exposure to Uranium in Drinking Water.

    Science.gov (United States)

    Corlin, Laura; Rock, Tommy; Cordova, Jamie; Woodin, Mark; Durant, John L; Gute, David M; Ingram, Jani; Brugge, Doug

    2016-12-01

    We discuss the recent epidemiologic literature regarding health effects of uranium exposure in drinking water focusing on the chemical characteristics of uranium. While there is strong toxicologic evidence for renal and reproductive effects as well as DNA damage, the epidemiologic evidence for these effects in people exposed to uranium in drinking water is limited. Further, epidemiologic evidence is lacking for cardiovascular and oncogenic effects. One challenge in characterizing health effects of uranium in drinking water is the paucity of long-term cohort studies with individual level exposure assessment. Nevertheless, there are environmental justice concerns due to the substantial exposures for certain populations. For example, we present original data suggesting that individuals living in the Navajo Nation are exposed to high levels of uranium in unregulated well water used for drinking. In 10 out of 185 samples (5.4 %), concentrations of uranium exceeded standards under the Safe Drinking Water Act. Therefore, efforts to mitigate exposure to toxic elements in drinking water are warranted and should be prioritized.

  1. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  2. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based .... The measures for improvement of monitoring were: .... purposes, the effectiveness and desirability of a government.

  3. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.

  4. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  5. Optimal drinking water composition for caries control in populations

    DEFF Research Database (Denmark)

    Bruvo, M.; Ekstrand, K.; Arvin, Erik;

    2008-01-01

    Apart from the well-documented effect of fluoride in drinking water on dental caries, little is known about other chemical effects. Since other ions in drinking water may also theoretically influence caries, as well as binding of fluoride in the oral environment, we hypothesized that the effect...... of drinking water on caries may not be limited to fluoride only. Among 22 standard chemical variables, including 15 ions and trace elements as well as gases, organic compounds, and physical measures, iterative search and testing identified that calcium and fluoride together explained 45% of the variations...... in the numbers of decayed, filled, and missing tooth surfaces (DMF-S) among 52,057 15-year-old schoolchildren in 249 Danish municipalities. Both ions had reducing effects on DMF-S independently of each other, and could be used in combination for the design of optimal drinking water for caries control...

  6. Aircraft Drinking Water Rule Public Meetings and Summaries

    Science.gov (United States)

    In developing the Aircraft Drinking Water Rule, EPA used a collaborative process to obtain a broad range of views including the airlines, flight attendants, passengers, pilots, airports, laboratories, public health officials and environmental organizations

  7. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  8. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  9. ENVIRONMENTAL POLLUTION CONTROL ALTERNATIVES: DRINKING WATER TREATMENT FOR SMALL COMMUNITIES

    Science.gov (United States)

    This document provides information for small system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment technologies suitable for small systems. t is not intended to be a comprehensive m...

  10. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    Science.gov (United States)

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  11. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  12. Arsenic in drinking water in Northern region of Serbia

    Directory of Open Access Journals (Sweden)

    Stanisavljev B.

    2013-04-01

    Full Text Available In this study we present the results of arsenic concentration in water samples from public water supply system of city Zrenjanin and three Northern municipalities Elemiš, Taraš and Melenci taken every month during 2002, 2007 and 2011. Total arsenic content was determined using AAS technique with hydride generation system. Determined levels of arsenic in all investigated samples were more than 10 times higher than the maximum permissible limit recommended by WHO (10 μg/L and even reached levels higher than 300 μg/L. During 2011 drinking water from 44 pump wells in Zrenjanin was also analyzed showing that more than 50% of pump wells contain more than 10 μg As/L. These findings can be explained by geological characteristics of Northern region of Serbia belonging to Pannonian Basin which has aquifers that contain high concentration of naturally occurring arsenic. Results suggest that arsenic levels in this Serbian region are even higher than in other countries in the Pannonian Basin. Having in mind profound deleterious effects of arsenic on human health, different social, economical and technological measures are required in order to reduce arsenic concentration to acceptable limits.

  13. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  14. Association between Longevity and Element Levels in Food and Drinking Water of Typical Chinese Longevity Area.

    Science.gov (United States)

    Hao, Z; Liu, Y; Li, Y; Song, W; Yu, J; Li, H; Wang, W

    2016-01-01

    To carrying out an integrated analysis on regional environment and human health in China and to detect the association between longevity and daily element intake from food and drinking water. Cross-sectional study. All the 18 cities and counties in Hainan Province. The distribution of elderly population and longevity indexes at a county level in Hainan Province were investigated. Quality of food and drinking water in Hainan was evaluated by comparing the chemical elements with National Standards. In addition, the association between element concentrations in food and water and longevity was examined using spearman's rank correlation. The proportion of elderly people is higher in the northern part of the province compared with southern counties. Food contributes a greater proportion of daily element intake than drinking water. Compared with the National Standards, reaching rates for elements were over 85% for both food and drinking water. There was a positive correlation between daily intake of Cu, Se, and Zn from food and water and aging and longevity indexes, and a negative correlation between Pb intake and these indexes. The quality of food and water in Hainan Province are good and that, compared with water, food is a more important source of trace elements. An appropriate supply of Cu, Se, and Zn is important, whereas excessive intake of Pb should be avoided. The findings also provide basic data to support further studies on regional variations in longevity and their relationship to diet and drinking water.

  15. A survey of natural radioactivity in drinking water; Kartlaeggning av naturligt radioaktiva aemnen i dricksvatten

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Rolf; Mjoenes, Lars [Swedish Radiation Protection Authority, Stockholm (Sweden); Ek, Britt-Marie [SGU, Uppsala (Sweden); Appelblad, Petra [Swedish Defence Research Agency, Stockholm (Sweden); Erlandsson, Bitte; Svensson, Kettil [National Food Administration, Uppsala (Sweden); Hedenberg, Gullvy [Svenskt Vatten AB, Stockholm (Sweden)

    2004-11-01

    A survey of uranium and other radioactive material in drinking water from municipal water works has been conducted. Water samples from water works with ground water from 256 communities were analysed. In EUs Drinking Water Directive (98/83/EG) a reference level of 0.1 mSv/year is set for Total Indicative Dose (TID). Levels above 0.1 mSv/year is judged as 'fit for consumption with reservations' in the Swedish drinking water regulations. The radiation dose from uranium and other radionuclides in tap water is low. An estimated dose exceeding 0.1 mSv/year was found in only two samples. Half the amount of all tap water from municipal water work plants use surface water, which has low levels of radioactivity. Nine water works show a uranium concentration above 15 microgram per litre ({mu}g/l). There is no reference level for uranium in drinking water neither in the EU nor in Sweden but the WHO recommend a reference level of 15 ({mu}g/l)

  16. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    station 01104455) were generally higher than the medians of the monthly mean specific conductances for the period of record. The annual mean specific conductance for Fresh Pond Reservoir increased from 514 microsiemens per centimeter (?S/cm) in the 2004 water year to 553 ?S/cm for the 2005 water year. Water samples were collected from four tributaries during base-flow and stormflow conditions in December 2004, and July, August, and September 2005 and analyzed for suspended sediment, 6 major dissolved ions, total nitrogen, total phosphorus, 8 total metals, 18 polyaromatic hydrocarbons (PAHs), 61 pesticides and metabolites, and Escherichia coli bacteria. Concentrations for most dissolved constituents in samples of stormwater were generally lower than the concentrations observed in samples collected during base flow; however, concentrations of total phosphorus, PAHs, suspended sediment, and some total recoverable metals were substantially greater in stormwater samples. Concentrations of dissolved chloride and total recoverable manganese in water samples collected during base-flow conditions from three tributaries exceeded the U.S. Environmental Protection Agency (USEPA) secondary drinking water standards of 250 and 0.05 milligrams per liter (mg/L), respectively. Concentrations of total recoverable manganese exceeded the secondary drinking water standard in samples of stormwater from each tributary. Concentrations of total recoverable iron in water samples exceeded the (USEPA) secondary drinking water standard of 0.3 mg/L periodically in water samples collected at (USEPA) stations 01104415, 01104455, and 01104475, and consistently in all water samples collected at USGS station 01104433. Concentrations of Escherichia coli bacteria in water samples collected during base flow ranged from 4 to 1,400 colony-forming units per 100 milliliters (col/100mL). Concentrations of Escherichia coli bacteria in composite samples of stormwater ranged between 1,700 to 43,000 c

  17. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    mean specific conductance for water year 2005 which was 737 uS/cm. However, the annual mean specific conductance at Stony Brook near Route 20 in Waltham (U.S. Geological Survey (USGS) station 01104460), on the principal tributary to the Stony Brook Reservoir, and at USGS station 01104475 on a smaller tributary to the Stony Brook Reservoir were about 15 and 13 percent lower, respectively, than the previous annual mean specific conductances of 538 and 284 uS/cm, respectively for water year 2005. The annual mean specific conductance for Fresh Pond Reservoir decreased from 553 uS/cm in the 2005 water year to 514 uS/cm in the 2006 water year. Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during water year 2006. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 4 days. Composite samples, consisting of as many as 100 subsamples, were collected by automatic samplers during storms. Concentrations of most dissolved constituents were generally lower in samples of stormwater than in samples collected during base flow; however, the average concentration of total phosphorus in samples of stormwater were from 160 to 1,109 percent greater than the average concentration in water samples collected during base-flow conditions. Concentrations of total nitrogen in water samples co